
Interpreting a Finitary Pi-Calulus in Di�erentialInteration NetsThomas Ehrhard and Olivier LaurentPreuves, Programmes & SystèmesUniversité Denis Diderot and CNRSAbstrat. We propose and study a translation of a pi-alulus withoutsums nor repliation/reursion into an untyped and essentially promotion-free version of di�erential interation nets. We de�ne a transition systemof labeled proesses and a transition system of labeled di�erential in-teration nets. We prove that our translation from proesses to nets isa bisimulation between these two transition systems. This shows thatdi�erential interation nets are su�iently expressive for representingonurreny and mobility, as formalized by the pi-alulus.IntrodutionLinear Logi proofs [Gir87℄ admit a proof net representation whih has a veryasynhronous and loal redution proedure, suggesting strong onnetions withparallel omputation. This impression has been enfored by the introdution ofinteration nets and interation ombinators by Lafont in [Laf95℄.But the attempts at relating onurreny with linear logi (e.g. [EW97℄,[AM99℄, [Mel06℄, [Bef05℄, [CF06℄ based on [FM05℄. . . ) missed a ruial featureof true onurreny, suh as modelled by proess aluli like Milner's π-alulus[Mil93,SW01℄: its intrinsi non-determinism. Indeed, all known logial systemshad either an essentially deterministi redution proedure � this is the aseof intuitionisti and linear logi, and of lassial systems suh as Girard's LCor Parigot's λµ � or an exessively non determiniti one, as Gentzen's lassialsequent alulus LK, whih equates all proofs of the same formula.However, many denotational models of the lambda-alulus and of linearlogi admit some form of non-determinisms (e.g. [Plo76,Gir88℄), showing thata non-deterministi proof alulus is not neessarily trivial. The �rst authorintrodued suh models, based on vetor spaes (see e.g. [Ehr05℄), whih havea nie proof-theoreti ounterpart, orresponding to a simple extension of therules that linear logi assoiates with the exponentials.In this di�erential setting, the weakening rule has a mirror image rule alledoweakening, and similarly for derelition and for ontration, and the redutionrules have the orresponding mirror symmetry. The orresponding formalismof di�erential interation nets has been introdued in a joint work by the �rstauthor and Regnier [ER06℄1.1 Note that, in this di�erential linear logi, the two additive onnetives ⊕ and & areidenti�ed, but this does not prevent the system from having good logial properties,



In a joint work with Kohei Honda [HL07℄, the seond author proposed atranslation of a version of the π-alulus in proof-nets for a version of linear logiextended with the oontration rule (as we now understand). The basi ideaonsists in interpreting the parallel omposition as a ut between a ontrationlink (to whih several outputs are onneted, through derelition links) and aoontration link, to whih several promoted reeivers are onneted. Beingpromoted, these reeivers are repliable, in the sense of the π-alulus. The otherfundamental idea of this translation onsists in using linear logi polarities formaking the di�erene between outputs (negative) and inputs (positive), and ofimposing a strit alternation between these two polarities. This allows to reastin a polarized linear logi setting a typing system for the π-alulus previouslyintrodued by Berger, Honda and Yoshida in [BHY03℄. This translation has twofeatures whih an be onsidered as slight defets: it aepts only repliablereeivers and is not really modular (the parallel omposition of two proessesannot be desribed as a ombination of the orresponding nets).Priniple of the translation. The purpose of the present paper is to ontinuethis line of ideas, using more systematially the new strutures introdued bydi�erential interation nets2.
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Fig. 1. Communiationarea
The �rst key deision we made, guided by thestruture of the typial oontration/ontration utintended to interpret parallel omposition, was of as-soiating with eah free name of a proess not one,but two free ports in the orresponding di�erentialinteration net. One of these ports will have a !-type(positive type) and will have to be onsidered as theinput port of the orresponding name for this proess,and the other one will have a ?-type (negative type)and will be onsidered as an output port.We disovered strutures whih allow to ombinethese pairs of wires for interpreting parallel ompo-sition and alled them ommuniation areas : they are obtained by ombiningin a ompletely symmetri way oontration and ontration ells. There areommuniation areas of any �arity� (number of pairs of wires onneted to it).The ommuniation area of arity 3 an be pitured as in Figure 1, where oon-tration ells are pitured as !-labeled triangles and ontration ells as ?-labeledtriangles. The ports orresponding to the same pairs are the prinipal ports ofantipodi ells.and this identi�ation � whih results from non-determinism � does not extend tothe multipliative onnetives: ⊗ and � are distint.2 One should mention here that translations of the π-alulus into nets of variouskinds, subjet to loal redution relations, have been provided by various authors(f. the work of Laneve, Parrow and Vitor on solo diagrams [LPV01℄, of Be�araand Maurel [BM05℄, of Milner on bigraphs [JM04℄, of Mazza [Maz05℄ on multiportinteration nets et.). But these settings have no lear logial grounds nor simpledenotational semantis.



Content. We �rst introdue di�erential interation nets, typed with a reur-sive typing system (introdued by Danos and Regnier in [Reg92℄ and whihorresponds to the untyped lambda-alulus) for avoiding the appearane of nonreduible on�gurations. These nets are �nitary in the sense that they use onlya weak form of promotion. In this setting, we de�ne a �toolbox�, a olletionof nets that we shall ombine for interpreting proesses, and a few assoiatedredutions, derived from the basi redution rules of di�erential interation nets.We organize redution rules of nets as a labeled transition system, whose ver-ties are nets, and where the transitions orrespond to derelition/oderelitionredution. Then we de�ne a proess algebra whih is a polyadi π-alulus, with-out repliation and without sums. We speify the operational semantis of thisalulus by means of an abstrat mahine inspired by the mahine presentedin [AC98, Chapter 16℄. We de�ne a transition system whose verties are thestates of this mahine, and transitions orrespond to input/output redutions.Last we de�ne a �translation� relation from mahine states to nets and show thatthis translation relation is a bisimulation between the two transition systems.1 Di�erential interation netsInteration nets have been introdued by Lafont [Laf95℄ as a generalization oflinear logi proof nets. A signature of interation nets is a set of symbols, eahof them being given with an arity and a typing rule. A net is made of ells. In anet, eah ell γ bears exatly one symbol, and has therefore an arity n; the ell
γ must have n auxiliary ports (numbered from 1 to n) and one prinipal port(numbered 0). A net an also have free ports. Speifying the net onsists last ingiving its wiring, whih is a partition of its ports in 2-elements sets (the wires).Typing the net means assoiating a formula of some linear logial system witheah of its oriented wires in suh a way that, when reversing the orientation ofthe wire, the formula be turned to its orthogonal. Of ourse, the typing ruleattahed to eah ell of the net must also be respeted by the typing.See also [ER06℄ for an introdution to di�erential interation nets.1.1 Presentation of the ellsOur nets will be typed using a type system whih orresponds to the untypedlambda-alulus. This system is based on a single type symbol o (the type ofoutputs), subjet to the following reursive equation o = ?o⊥�o. We set ι = o⊥,so that ι = !o ⊗ ι and o = ?ι�o.In the present setting, there are eleven symbols: par (arity 2), bottom (arity
0), tensor (arity 2), one (arity 0), derelition (arity 1), weakening (arity 0),ontration (arity 2), oderelition (arity 1), oweakening (arity 0), oontration(arity 2) and losed promotion (arity 0). We present now the various ell symbols,with their typing rules, in a pitorial way. The prinipal port of a ell is loated atone of angles of the triangle representing the ell, the other ports are loated onthe opposit edge. We put often a blak dot to loate the auxiliary port number 1.



1.1.1 Multipliative ells. The par and tensor ells, as well as their �nullary�versions bottom and one are as follows:
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ι1.1.2 Exponential ells. They are typed aording to a stritly polarizeddisipline. Here are �rst the why not ells, whih are alled derelition, weakeningand ontration:
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!o1.1.3 Closed promotion ells and the de�nition of nets. The notionof simple net is then de�ned indutively, together with the notion of losedpromotion ell.Given a (non neessarily simple) net s with only one free port os weintrodue a ell s!
!o .A simple net is a typed interation net, in the signature we have just de�ned.A net is a �nite formal sum of simple nets having all the same interfae.Remember that the interfae of a simple net s is the set of its free ports, togetherwith the mapping assoiating to eah free port the type of the oriented wire of

s whose ending point is the orresponding port.Let L be a ountable set of labels ontaining a distinguished element τ (to beunderstood as the absene of label). A labeled simple net is a simple net whereall derelition and oderelition ells are equipped with labels belonging to L.We require moreover that, if two labels ourring in a labeled net are equal, theyare equal to τ . All the nets we onsider in this paper are labeled. In our pitures,the labels of derelition and oderelition ells will be indiated, unless it is τ ,in whih ase the (o)derelition ell will be drawn without any label.2 Redution rulesWe denote by ∆ the olletion of all simple nets and by N〈∆〉 the olletion ofall nets (�nite sums of simple nets with the same interfae).A redution rule is a subset R of ∆ × N〈∆〉 onsisting of pairs (s, s′) where
s is made of two ells onneted by their prinipal ports and s′ has the sameinterfae as s. This set an be �nite or in�nite. Suh a relation is easily extendedto arbitrary simple nets (s R t if there is (s0, u1 + · · · + un) ∈ R where s0 isa subnet of s, eah ui is simple and t = t1 + · · · + tn where ti is obtained byreplaing s0 by ui in s). This relation is extended to nets (sums of simple nets):
s1 + · · · + sn (where eah si is simple) is related to s′ by this extension RΣ if
s′ = s′1 + · · ·+ s′n where, for eah i, si R s′i or si = s′i. Last, R∗ is the transitivelosure of RΣ.



2.1 De�ning the redution2.1.1 Multipliative redution. The �rst two rules onern the interationof two multipliative ells of the same arity.
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;m ε1where ε stands for the empty simple net (not to be onfused with the net 0 ∈
N〈∆〉, the empty sum, whih is not a simple net). The next two rules onernthe interation between a binary and a nullary multipliative ell.� 1
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⊥So here the redution rule (denoted as ;m) has four elements.2.1.2 Communiation redution. Let R ⊆ L. We have the following re-dutions if l, m ∈ R.
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l mSo the set ;c,R is in bijetive orrespondene with the set of pairs (l, m) with
l, m ∈ R and l = m ⇒ l = m = τ .2.1.3 Non-deterministi redution. Let R ⊆ L. We have the followingredutions if l ∈ R.
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2.1.5 Box redution.
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lObserve that the redution rules are ompatible with the identi�ation of theoweakening ell with a promotion ell ontaining the 0 net. Observe also thatthe only rules whih do not admit a �symmetri� rule are those whih involvea promotion ell. Indeed, promotion is the only asymmetri rule of di�erentiallinear logi.One an hek that we have provided redution rules for all possible redexes,ompatible with our typing system: for any simple net s made of two ells on-neted through their prinipal ports, there is a redution rule whose left memberis s. This rule is unique, up to the hoie of a set of labels, but this hoie hasno in�uene on the right member of the rule.2.2 Con�ueneTheorem 1. Let R, R′ ⊆ L. Let R ⊆ ∆ × N〈∆〉 be the union of some of theredution relations ;c,R, ;nd,R′ , ;m, ;s and ;b. The relation R∗ is on�uenton N〈∆〉.The proof is essentially trivial sine the rewriting relation has no ritial pair(see [ER06℄). Given R ⊆ L, we onsider in partiular the following redution:
;R = ;m∪;c,{τ}∪;s∪;b∪;nd,R. We set ;d = ;∅ (�d� for �deterministi�)and denote by ∼d the symmetri and transitive losure of this relation.Some of the redution rules we have de�ned depend on a set of labels. Thisdependene is learly monotone in the sense that the relation beomes largerwhen the set of labels inreases.2.3 A transition system of simple nets2.3.1 {l, m}-neutrality. Let l and m be distint elements of L\{τ}. We all
(l, m)-ommuniation redex a ommuniation redex whose (o)derelition ellsare labeled by l and m. We say that a simple net s is {l, m}-neutral if, whenever
s ;
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{l,m} s′, none of the simple summands of s′ ontains an (l, m)-ommuniationredex.Lemma 1. Let s be a simple net. If s ;

∗
{l,m} s′ where all the simple summandsof s′ are {l, m}-neutral, then s is also {l, m}-neutral.2.3.2 The transition system. We de�ne a labeled transition system DLwhose objets are simple nets, and transitions are labeled by pairs of distintelements of L \ {τ}. Let s and t be simple nets, we have s

lm
−→ t if the followingholds: s ;

∗
{l,m} s1 + s2 + · · · + sn where s1 is a simple net whih ontainsan (l, m)-ommuniation redex (with derelition labeled by m and oderelitionlabeled by l) and beomes t when one redues this redex, and eah si (for i > 1)is {l, m}-neutral.Lemma 2. The relation ∼d ⊆ ∆ × ∆ is a strong bisimulation on DL.



3 A toolbox for proess aluli interpretation3.1 Compound ells3.1.1 Generalized ontration and oontration. A generalized on-tration ell or ontration tree is a simple net γ (with one prinipal port anda �nite number of auxiliary ports) whih is either a wire or a weakening ell ora ontration ell whose auxiliary ports are onneted to the prinipal port ofother ontration trees, whose auxiliary ports beome the auxiliary ports of γ.Generalized oontration ells (oontration trees) are de�ned dually.We use the same graphial notations for generalized (o)ontration ells asfor ordinary (o)ontration ells, with a �∗� in supersript to the � !� or �?�symbols to avoid onfusions. Observe that there are in�nitely many generalized(o)ontration ells of any given arity.3.1.2 The derelition-tensor and the oderelition-par ells. Let n bea non-negative integer. We de�ne an n-ary ell as follows. It will be deoratedby the label of its derelition ell (if di�erent from τ).
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lThe number of tensor ells in this ompound ell is equal to n. One de�nes duallythe !� ompound ell.3.1.3 The pre�x ells. Now we an de�ne the ompound ells whih willplay the main role in the interpretation of pre�xes of the π-alulus. Thanks tothe above de�ned ells, all the oriented wires of the nets we shall de�ne will beartype ?ι or !o. Therefore we omit types and draw all wires with an orientationorresponding to the ?ι type.The n-ary input ell and the n-ary output ell are de�ned as
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llwith n pairs of auxiliary ports.Pre�x ells are labeled by the label arried by their outermost derelition-tensor or oderelition-par ompound ell, if di�erent from τ , the other oderelition-par or derelition-tensor ompound ells being unlabeled (that is, labeled by τ).3.1.4 Transistors and boxed identity. In order to implement the sequen-tiality orresponding to sequenes of pre�xes in the π-alulus, we shall use theunary output pre�x ell de�ned above as a kind of transistor, that is, as a kindof swith that one an put on a wire, and whih is ontrolled by another wire.



This idea is strongly inspired by the translation of the π-alulus in the alulusof solos3. ��?⊗

⊥

o•Fig. 2. IdentityThese swithes will be losed by �boxed identity ells�,whih are the unique use we make of promotion in thepresent work. Let I be the �identity� net of Figure 2.Then we shall use the losed promotion ell labeled by
I !: I ! .3.2 Communiation tools

3Fig. 3. Area of or-der 3
3.2.1 The ommuniation areas. Let n ≥ −2. Wede�ne a family of nets with 2(n + 2) free ports, alledommuniation areas of order n, that we shall draw usingretangles with beveled angles. Figure 3 shows how wepiture a ommuniation area of order 3.A ommuniation area of order n is made of n+2 pairsof (n + 1)-ary generalized oontration and ontrationells (γ+

1 , γ−
1 ), . . . , (γ+

n+1, γ
−
n+1), with, for eah i and j suhthat 1 ≤ i < j ≤ n + 2, a wire from an auxiliary port of γ+

i to an auxiliary portof γ−
j and a wire from an auxiliary port of γ−

i to an auxiliary port of γ+
j .So the ommuniation area of order −2 is the empty net ε, and ommunia-tion areas of order −1, 0 and 1 are respetively of the shape
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?∗!∗3.2.2 Identi�ation strutures. Let n, p ∈ N and let f : {1, . . . , p} →
{1, . . . , n} be a funtion. An f -identi�ation net is a struture with p + n pairsof free ports (p pairs orrespond to the domain of f and, in our pitures, willbe attahed to the non beveled side of the identi�ation struture, and n pairsorrespond to the odomain of f , attahed to the beveled side of the struture)as in Figure 4(a). Suh a net is made of n ommuniation areas, and on the j'tharea, the j'th pair of wires of the odomain is onneted, as well as the pairsof wires of index i of the domain suh that f(i) = j. For instane, if n = 4,
p = 3, f(1) = 2, f(2) = 3 and f(3) = 2, a orresponding identi�ation strutureis made of four ommuniation areas, two of order −1, one of order 0 and oneof order 1, as in Figure 4(b).3 It is shown in [LV03℄ that one an enode the π-alulus sequentiality indued bypre�x nesting in the ompletely asynhronous solo formalism: the idea of suh trans-lations is to observe that, in a solo proess like P = νy (u(x, y) | y(. . . )) | Q, the �rstsolo must interat before the seond one with the environment Q.
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. . .() RedutionFig. 4. Identi�ation strutures3.3 Useful redutions.3.3.1 Aggregation of ommuniation areas. One of the nie propertiesof ommuniation areas is that, when one onnets two suh areas through a pairof wires, one gets another ommuniation area; if the two areas are of respetiveorders p and q, the resulting area is of order p + q, see Figure 5.
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sq ... ...Fig. 5. Aggregation3.3.2 Composition of identi�ation strutures. In partiular, we getthe redution of Figure 4().3.3.3 Port forwarding in a net. Let t be a net and p be a free port of t.We say that p is forwarded in t if there is a free port q of t suh that t is of oneof the two following shapes:
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where in eah simple net ui, the port r is forwarded (see 3.3.3). Of ourse onealso has a dual redution (where the derelition is replaed by a oderelition,and the generalized ontration by a generalized oontration).3.3.6 Redution of pre�xes. Let l, m ∈ L. If we onnet an n-ary outputpre�x labeled by m to a p-ary input pre�x labeled by l, we obtain a net whihredues by ;c,{l,m} to a net u whih redues by ;
∗
{τ} to 0 if n 6= p and to simplewires, in Figure 6(a), if n = p.3.3.7 Transistor triggering. A boxed identity onneted to the prinipalport of a unary output ell used as a �transistor� turns it into a simple wire asin Figure 6(b).
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∅(b) Transistor triggeringFig. 6. Pre�x redution4 A polyadi �nitary π-alulus and its enodingThe proess alulus we onsider is a fragment of the π-alulus where we havesuppressed the following features: sums, repliation, reursive de�nitions, mathand mismath. This does not mean that di�erential interation nets annot in-terpret these features4. Let N be a ountable set of names. Our proesses arede�ned by the following syntax. We use the same set of labels as before.� nil is the empty proess.� If P1 and P2 are proesses, then P1 | P2 is a proess.� If P is a proess and a ∈ N , then νa · P is a proess where a is bound.� If P is a proess, a, b1, . . . , bn ∈ N , the names bi being pairwise distint andif l ∈ L, then Q = [l]a(b1 . . . bn) ·P is a proess (pre�xed by an input ation,whose subjet is a and whose objets are the bis; the name a is free and eah

bi is bound in Q and hene a is distint from eah bi).� If P is a proess, a, b1, . . . , bn ∈ N and l ∈ L, then [l]a〈b1 . . . bn〉 · P is aproess (pre�xed by an output ation, whose subjet is a and whose objetsare the bis). This onstrution does not bind the names bi, and one does notrequire the bis to be distint. The name a an be equal to some of the bis.The purpose of this labeling of pre�xes is to distinguish the various ourrenesof names as subjet of pre�xes. The set FV(P ) of free names of a proess P andthe α-equivalene relation on proesses are de�ned in the usual way.4 Repliation an be interpreted using exponential boxes, sums are probably relatedto the unique additive onnetive of di�erential linear logi.



A labeled proess is a proess where all pre�xes are labeled, by pairwisedistint labels, all these labels being di�erent from τ . If P is a labeled proess,
L(P ) denotes the set of its labels. All the proesses we onsider in this paper arelabeled.4.1 An exeution modelRather than onsidering a rewriting relation on proesses as one usually does,we prefer to de�ne an �environment mahine�, similar to the mahine introduedin [AC98, Chapter 16℄5.An environment is a funtion e : Dom e → Codom e between �nite subsets of
N . A losure is a pair (P, e) where P is a proess and e is an environment suhthat FV(P ) ⊆ Dom(e). A soup is a multiset S = (P1, e1) · · · (PN , eN) of losures(denoted by simple juxtaposition). The set FV(S) of free names of a soup S isthe union of the odomains of the environments of S. The soup S is labeled ifall the Pis are labeled, with pairwise disjoint sets of labels. A state is a pair
(S, L) where S is a soup and L is a set of names (the names whih have to beonsidered as loal to the state) and we set FV(S, L) = FV(S) \ L.The state (S, L) is labeled if the soup S is labeled. All the states we onsiderare labeled. One de�nes the set L(S, L) of all labels of the state (S, L) as thedisjoint union of the sets of labels assoiated to the proesses of the losures of
S.4.1.1 Canonial form of a state. We say that a proess is guarded ifit starts with an input pre�x or an output pre�x. We say that a soup S =
(P1, e1) · · · (PN , eN ) is anonial if eah Pi is guarded, and that a state (S, L) isanonial if the soup S is anonial. One de�nes a rewriting relation ;can whihallows to turn a state into a anonial one.

((nil, e)S, L) ;can (S, L)

((νa · P, e)S, L) ;can ((P, e[a 7→ a′])S, L ∪ {a′})

((P | Q, e)S, L) ;can ((P, e)(Q, e)S, L)where, in the seond rule, a′ ∈ N \ (L ∪ Codom(e) ∪ Codom(S)). One showseasily that, up to α-onversion, this redution relation is on�uent, and it islearly strongly normalizing. We denote by Can(S, L) the normal form of thestate (S, L) for this rewriting relation. Observe that if (S, L) ;can (T, M) then
FV(T, M) ⊆ FV(S, L).4.1.2 Transitions. Next, one de�nes a labeled transition system SL. Theobjets of this system are labeled anonial states and the transitions, labeled5 The reason for this hoie is that the rewriting approah uses an operation whihonsists in replaing a name by another name in a proess. The orresponding op-eration on nets is rather ompliated and we prefer not to de�ne it here.



by pairs of labels, are de�ned as follows.
(([l]a(b1 . . . bn) · P, e)([m]a′〈b′1 . . . b′n〉 · P

′, e′)S, L)
lm
−→ Can((P, e[b1 7→ e′(b′1), . . . , bn 7→ e′(b′n)])(P ′, e′)S, L)if e(a) = e′(a′). Observe that if (S, L)

lm
−→ (T, M) then FV(T, M) ⊆ FV(S, L).4.2 Translation of proessesSine we do not work up to assoiativity and ommutativity of ontration andoontration, it does not make sense to de�ne this translation as a funtion fromproesses to nets. For eah repetition-free list of names a1, . . . , an, we de�ne arelation Ia1,...,an

from proesses whose free names are ontained in {a1, . . . , an}to nets t whih have 2n + 1 free ports aι
1, a

o
1, . . . , a

ι
n, ao

n and c as in Figure 7(a).The additional port c will be used for ontrolling the sequentiality of the redu-tion, thanks to transistors. Reduing the translation of a proess will be possibleonly when a boxed identity ell will be onneted to its ontrol port. This isompletely similar to the additional ontrol free name in the translation of the
π-alulus in solos, in [LV03℄6.Clearly, if P and P ′ are α-equivalent, then P Ia1,...,an

s i� P ′ Ia1,...,an
s.4.2.1 Empty proess. One has nil Ib1,...,bn

t if t is as in Figure 7(b).4.2.2 Name restrition. One has νa ·P Ib1,...,bn
t i� t is as in Figure 7(),with s satisfying P Ia,b1,...,bn

s.4.2.3 Parallel omposition. One has P1 | P2 Ib1,...,bn
t i� the simple net

t is as in Figure 7(d), where P1 Ib1,...,bn
t1, P2 Ib1,...,bn

t2 and γ1, . . . , γn areommuniation areas of order 1.4.2.4 Input pre�x. Let l ∈ L. Assume that a, b1, . . . , bn, c1, . . . , cp are pair-wise distint names and let Q = [l]a(b1 . . . bn) · P . One has Q Ia,c1,...,cp
t if allthe free names of P are ontained in a, b1, . . . , bn, c1, . . . , cp and if t is as in Fig-ure 7(e), where γ is a ommuniation area of order 1 and where s is a simple netwhih satis�es P Ia,b1,...,bn,c1,...,cp

s.6 There is a simple interpretation of of solo diagrams into di�erential interation nets,whih uses only our toolbox without promotion so that solo diagrams an be seenas an intermediate graphial language whih an be implemented in the low leveldi�erential syntax. Our translation of the π-alulus results from an analysis and asimpli�ation of the omposed translation �π-alulus→ solo diagrams→ di�erentialnets�. The simpli�ation results from some rewiring and from the use of the boxedidentity ells whih is easily repliable. The translation of solos into di�erential netsleads to yles (whih appear when a name is identi�ed with itself) whih are avoidedin the present diret translation. Well behaved onditions on solos for avoiding suhyles are introdued and studied in [EL07℄.
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(g) StateFig. 7. Proess and state translation4.2.5 Output pre�x. Let l ∈ L. Let b1, . . . , bn be a list of pairwise distintnames and let Q = [l]bf(0)〈bf(1) . . . bf(q)〉 ·P , where f : {0, 1, . . . , q} → {1, . . . , n}is a funtion. One has Q Ib1,...,bn
t if all the free names of P are ontained in

b1, . . . , bn and if t is as in Figure 7(f), where γ1, . . . , γn are ommuniation areasof order 1, δ is an f -identi�ation struture and where s is a simple net whihsatis�es P Ib1,...,bn
s.4.2.6 States. Let S = (P1, e1) . . . (PN , eN) be a soup and b1, . . . , bn be arepetition-free list of names ontaining all the odomains of the environments

e1, . . . , eN . One has S Ib1,...,bn
t if, for some simple nets si (i = 1, . . . , N) one has

Pi Ibi
1
,...,bi

ni

si where bi
1, . . . , b

i
ni

is a repetition-free enumeration of the domain of
ei, and t is obtained by onneting the pair of free ports of si assoiated to eah
bi
k to the orresponding pair of free port of an identi�ation struture assoiatedto the funtion e de�ned by e(bi

k) = ei(b
i
k), see Figure 7(g).Last, if we are moreover given L ⊆ N and a repetition-free list of names

b1, . . . , bn ontaining all the free names of the state (S, L), one has (S, L) Ib1,...,bn

u if one has S Ib1,...,bn,c1,...,cp
t for some repetition-free enumeration c1, . . . , cp of

L (assumed of ourse to be disjoint from b1, . . . , bn) and u is obtained by plugging



ommuniation areas of order −1 on the pairs of free ports of t orrespondingto the cjs.5 Comparing the transition systemsWe are now ready to state a bisimulation7 theorem. Given a repetition-free list
b1, . . . , bn of names, we de�ne a relation Ĩb1,...,bn

between states and simple netsby: (S, L) Ĩb1,...,bn
s if there exists a simple net s0 suh that (S, L) Ib1,...,bn

s0and s0 ∼d s.Theorem 2. The relation Ĩb1,...,bn
is a strong bisimulation between the labeledtransition systems SL and DL.Conlusion. The main goal of this work was not to de�ne one more translationof the π-alulus into yet another exoti formalism. We wanted to illustrate byour bisimulation result that di�erential interation nets are su�iently expres-sive for simulating onurreny and mobility, as formalized in the π-alulus.We believe that di�erential interation nets have their own interest and �nda strong mathematial and logial justi�ation in their onnetion with linearlogi, in the existene of various denotational models and in the analogy be-tween its basi onstruts and fundamental mathematial operations suh asdi�erentiation and onvolution produt. The fat that di�erential interationnets support onurreny and mobility suggests that they might provide moreonvenient mathematial and logial foundations to onurrent omputing.Referenes[AC98℄ Roberto Amadio and Pierre-Louis Curien. Domains and lambda-aluli, vol-ume 46 of Cambridge Trats in Theoretial Computer Siene. CambridgeUniversity Press, 1998.[AM99℄ Samson Abramsky and Paul-André Melliès. Conurrent games and full om-pleteness. In Proeedings of the 14th Annual IEEE Symposium on Logi inComputer Siene. IEEE, 1999.[Bef05℄ Emmanuel Be�ara. Logique, Réalisabilité et Conurrene. PhD thesis, Uni-versité Denis Diderot, 2005.[BHY03℄ Martin Berger, Kohei Honda, and Nobuko Yoshida. Strong normalisabilityin the pi-alulus. Information and Computation, 2003. To appear.[BM05℄ Emmanuel Be�ara and François Maurel. Conurrent nets: a study of pre�xingin proess aluli. Theoretial Computer Siene, 356, 2005.[CF06℄ Pierre-Louis Curien and Claudia Faggian. An approah to innoent strate-gies as graphs. Tehnial report, Preuves, Programmes et Systèmes, 2006.Submitted for publiation.7 We are not using transition systems and bisimulation in the standard proess theo-reti way, for analyzing the possible interations of proesses with their environment.On the ontrary, we use them for desribing and omparing the internal redutionsof proesses and nets, thanks to labels.
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