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Abstract

We introduce the notion of elementary Seely category as a notion of categorical model of El-
ementary Linear Logic (ELL) inspired from Seely’s definition of models of Linear Logic (LL). In
order to deal with additive connectives in ELL, we use the approach of Danos and Joinet [DJ03].
From the categorical point of view, this requires us to go outside the usual interpretation of con-
nectives by functors. The ! connective is decomposed into a pre-connective ] which is interpreted
by a whole family of functors (generated by id, ⊗ and &).

As an application, we prove the stratified coherent model and the obsessional coherent model
to be elementary Seely categories and thus models of ELL.

Introduction

The goal of implicit computational complexity is to give characterizations of complexity classes
which rely neither on a particular computation model nor on explicit bounds. In linear logic
(LL) [Gir87], the introduction of the exponential connectives gives a precise status to duplication
and erasure of formulas (the qualitative analysis). It has been shown that putting constraints on the
use of exponentials permits one to give a quantitative analysis of the cut elimination procedure of LL
and to define light sub-systems of LL characterizing complexity classes (for example BLL [GSS92],
LLL [Gir98] or SLL [Laf04] for polynomial time and ELL [Gir98, DJ03] for elementary time).

In order to have a better understanding of the mathematical structures underlying these systems,
various proposals have been made in the last years with the common goal of defining denotational
models of light systems [MO00, Bai04, DLH05, LTdF06, Red07]. Our goal is to define a general
categorical framework for the study of these systems. We will focus on ELL which is probably the
simplest one.1

Our starting point is quite simple: starting from Seely’s notion of categorical model of LL [See89],
it is natural to define models of ELL by removing the comonad structure of ! since ELL is obtained
from LL by removing the dereliction and digging rules which correspond to this comonad structure.
Things become more interesting when one wants to deal with the additive connectives. The usual
approach to categorical logic is based roughly on the interpretation: connective 7→ functor, formula
7→ object, rule 7→ natural transformation, proof 7→ morphism, ... The non-local definition of
valid proof-nets with additives for ELL given in [DJ03] is presented here by means of the pre-
connectives [ and ], pre-formulas and pre-proofs. Their categorical interpretation requires us to use

∗Partially supported by the French ANR “NO-CoST” project (JC05 43380).
1Brian Redmond has independently studied the question of categorical semantics of SLL [Red07].
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the association: pre-connective 7→ family of functors. The particular choice of an element of such
a family to interpret a pre-formula will depend on the particular proof being interpreted and on
the particular occurrence of formula in this proof. The key point is that a proof whose conclusion
does not contain any pre-connective can still be interpreted in the usual way.

A particular approach for building a denotational model of ELL is to start from a model of LL
and to restrict morphisms (without restriction we, of course, get a model of ELL, but this has no
interest from the ELL point of view). In such a case (the model we try to deal with lives inside a
model of LL), we give conditions to prove that we have in fact defined a model of ELL. We apply
this to the proof that obsessional coherent spaces [LTdF06] provide a model of ELL. We also prove
that stratified coherent spaces [Bai00, Bai04] are an elementary Seely category.

Finally we propose an alternative definition for categorical models of ELL based on linear non-
linear models of LL [Ben94], and we prove that the two proposals we give, for categories for ELL,
are equivalent.

1 Elementary Linear Logic

We give a sequent calculus presentation of the ELL system [Gir98]. Our presentation of the additive
connectives is inspired by [DJ03].

1.1 Formulas

Formulas are given by:

A,B ::= X | A�B | ⊥ | A & B | > | ?A
| X⊥ | A⊗B | 1 | A⊕B | 0 | !A

and pre-formulas by:
F,G ::= A | [A

The dual ] of [ could be introduced, but it is not used in practice for defining the sequent calculus
of ELL. This ] construction will however be used in the categorical setting.

A context is a multi-set of pre-formulas. We will use the notations Γ, ∆, Σ, ... for arbitrary
contexts, the notations Θ, Ξ, ... for contexts containing only formulas and the notations [Γ, [∆,
[Σ, ... for contexts containing only pre-formulas which are not formulas.

We deal with classical elementary linear logic2 so that sequents have the shape ` Γ.

1.2 Rules

ax
` A,A⊥ ` Γ, A ` ∆, A⊥

cut` Γ,∆

` Γ, A ` ∆, B ⊗` Γ,∆, A⊗B

` Γ, A, B
�` Γ, A�B

1` 1
` Γ ⊥` Γ,⊥

2As usual with categories for linear logic, the intuitionistic case can be obtained by replacing any ?-autonomous
category by a symmetric monoidal closed category, the assumption of having finite products being extended to the
requirement of having also finite coproducts in such a setting.
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` Γ, A ` Γ, B
&` Γ, A & B

` Γ, A ⊕1` Γ, A⊕B

` Γ, B ⊕2` Γ, A⊕B
>` Γ,>

` Γ, A
[` Γ, [A

` [Γ, A
!` ?Γ, !A

` Γ, [A, [A
[c` Γ, [A

` Γ
[w` Γ, [A

` Γ, ?A, ?A
?c` Γ, ?A

` Γ ?w` Γ, ?A

Proof-trees built with these rules are called pre-proofs and we use the word proof only if the
conclusion contains only formulas.

Here is an example of proof:
ax

` A⊥, A
[

` [A⊥, A
[w

` [A⊥, [B⊥, A

ax
` B⊥, B

[
` [B⊥, B

[w
` [A⊥, [B⊥, B

&
` [A⊥, [B⊥, A & B

!
` ?A⊥, ?B⊥, !(A & B)

�
` ?A⊥ � ?B⊥, !(A & B)

Remark 1
If we translate pre-formulas into formulas by [A 7→ ?A and A 7→ A, we transform any pre-proof in
ELL into a proof in LL.

2 Categorical semantics of ELL

2.1 Definitions

For the remainder of the paper, by Seely category we do not exactly mean the original notion
introduced by Seely [See89] but the ?-autonomous version of the modified notion of new Seely
category [Bie95, Mel03].

Definition 1 (Seely category)
A Seely category C is a ?-autonomous category with finite products equipped with an endofunctor
! such that:

1. (!, δ, ε) is a comonad

2. (!, p, q) is a strong symmetric monoidal functor from (C,&,>) to (C,⊗, 1)

3. the following diagram commutes:

!A⊗ !B
pA,B //

δA⊗δB

��

!(A & B)

δA&B

��
!!A⊗ !!B

p!A,!B &&NNNNNNNNNNN !!(A & B)

!〈!proj1,!proj2〉
��

!(!A & !B)
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If (C,⊗, 1) is a symmetric monoidal category, we denote by coMON (C) the category of sym-
metric ⊗-comonoids (A, cA,wA) of C with comonoidal morphisms. (coMON (C),⊗, 1) is a cartesian
category thus a symmetric monoidal category.

Lemma 1 (Preservation of comonoids)
A symmetric comonoidal functor between two symmetric monoidal categories preserves symmetric
comonoids.

Proof. See [Mel03, lemma 16] for example.

In a Seely category, each object A has a canonical symmetric &-comonoid structure (A,∆A, ∗A)
coming from the product structure of & and the terminal object >. By the previous lemma, this
induces a symmetric ⊗-comonoid structure (!A, c!A,w!A) on objects in the image of !.

Lemma 2
In a Seely category, ! is a symmetric monoidal functor from (C,⊗, 1) to (coMON (C),⊗, 1).

Proof. See [Mel03, lemmas 22 and 5] for example.

We now give the main definition of the paper.

Definition 2 (Elementary Seely category)
An elementary Seely category C is a ?-autonomous category with finite products equipped with an
endofunctor ! such that:

1. (!,m,n) is a symmetric monoidal functor from (C,⊗, 1) to (coMON (C),⊗, 1)

2. (!, p, q) is a strong symmetric monoidal functor from (C,&,>) to (C,⊗, 1)

3. ! maps the &-comonoid structure of A to the ⊗-comonoid structure of !A

To be a bit more precise: condition 1 endows any object !A with a symmetric ⊗-comonoid
structure (!A, c!A,w!A) and condition 3 corresponds to the commutation of the following two dia-
grams:

!A
c!A //

!∆A $$H
HHHHHHHH !A⊗ !A

pA,A

��
!(A & A)

!A
w!A //

!∗A   B
BB

BB
BB

B 1
q

��
!>

Remark 2
Any Seely category is an elementary Seely category (as given by lemma 2).

Lemma 3
In an elementary Seely category, ! is a strong symmetric monoidal functor from (C,&,>) to
(coMON (C),⊗, 1).

Proof. We have to show that pA,B and q are comonoidal morphisms.
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The following diagram commutes:

(!A⊗ !B)⊗ (!A⊗ !B)

'
��

!A⊗ !B
(a)

c!A⊗!B

33ggggggggggggggggggggggg c!A⊗c!B //

!∆A⊗!∆B ++WWWWWWWWWWWWWWWWWWWWWWW

pA,B

��

(!A⊗ !A)⊗ (!B ⊗ !B)

pA,A⊗pB,B

��

(b)

!(A & A)⊗ !(B & B)

pA&A,B&B

��
(c)

!((A & A) & (B & B))

'
��

!(A & B)
(d)

!(∆A&∆B)
33gggggggggggggggggggggg !∆A&B //

c!(A&B) ++WWWWWWWWWWWWWWWWWWWWWW !((A & B) & (A & B))

p−1
A&B,A&B
��

(e)

!(A & B)⊗ !(A & B)

by (a) definition of c!A⊗!B, (b) property 3 of elementary Seely categories, (c) naturality of p,
(d) definition of ∆ and (e) property 3 again. Moreover the last column is equal to pA,B ⊗ pA,B

by definition of a symmetric monoidal functor.
The following diagram commutes:

!A⊗ !B

w!A⊗!B

����
��

��
��

��
��

��
�

w!A⊗w!B

��

!∗A⊗!∗B

��=
==

==
==

==
==

==
==

=

pA,B // !(A & B)

!(∗A&∗B)

����
��

��
��

��
��

��
��

!∗A&B
��

w!(A&B)

��7
77

77
77

77
77

77
7

1 '
//

(a)

1⊗ 1
q⊗q

//

(b)

!>⊗ !> p>,>
//

(c)

!(>&>) '
//

(d)

!>
q−1

//

(e)

1

by (a) definition of w!A⊗!B, (b) property 3, (c) naturality of p, (d) definition of ∗ and (e) prop-
erty 3 again. Moreover the last line is the identity by definition of a monoidal functor.

Finally, q−1 is equal to w!> by property 3:

!>
w!> //

!∗> !!B
BB

BB
BB

B

id!>
33

1

!>

q−1

OO

and thus it is comonoidal.

2.2 The family of functors S

In order to interpret proofs of ELL as morphisms in an elementary Seely category C, we are going
to interpret pre-proofs with conclusion ` A1, . . . , An, [B1, . . . , [Bk as a morphism from ]JB1K⊥ ⊗
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. . .⊗ ]JBkK⊥ to JA1K� . . .� JAnK where, if A is an object, ]A is a notation which stands for “some
object built by applying an arbitrary interleaving of ⊗ and & to copies of A (in particular 1 and
>)” (for example A ⊗ ((A ⊗ A) & 1 & A)). More formally, ] can be any element of the smallest
family S of functors from C to C which:

• contains the constant functors 1 and >,

• contains the identity functor,

• is closed under ⊗ and &.

We immediately see that S is closed under composition.

Proposition 1 (Monoidality of ])
All the elements of S are symmetric monoidal functors from (C,⊗, 1) to (C,⊗, 1).

Proof. See appendix B.1.

We denote by (],m],n]) this monoidal structure on elements of S (an explicit inductive definition
is given in appendix B.2).

As a consequence, for any element ] of S, (!],m!],n!]) (with m!]
A,B = m]A,]B ; !m]

A,B and n!] =
n ; !n]) is a symmetric monoidal functor from (C,⊗, 1) to (coMON (C),⊗, 1).

Definition 3 (The b morphisms)
Let A be an object in C, the morphism b]

A from !A to !]A is defined by induction on ] in S:

• b1
A = !A w!A−−→ 1 n−→ !1

• b>A = !A w!A−−→ 1
q−→ !>

• bid
A = !A id!A−−→ !A

• b]1⊗]2
A = !A c!A−−→ !A⊗ !A

b
]1
A ⊗b

]2
A−−−−−→ !]1A⊗ !]2A

m]1A,]2A−−−−−−→ !(]1A⊗ ]2A)

• b]1&]2
A = !A c!A−−→ !A⊗ !A

b
]1
A ⊗b

]2
A−−−−−→ !]1A⊗ !]2A

p]1A,]2A−−−−−→ !(]1A & ]2A)

This family of morphisms is parameterized over both ] in S and A object of C3. If we fix the
first parameter and let the second vary, we obtain the following property.

Proposition 2 (Monoidality of b])
For any element ] of S, b] is a monoidal natural transformation from (!,m, n) to (!],m!],n!]).

Proof. See appendix C.

If we now fix the second parameter and let the first one vary, we have additional properties.

Proposition 3
Given two elements ]1 and ]2 of S, we have:

3It would be interesting to understand the more general 2-categorical structures underlying the family of functors
S. However it seems uneasy to do since, in particular, definition 3 is strongly relying on the use of !A as source.
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• bid
A = id!A and b]2]1

A = !A
b
]1
A−−→ !]1A

b
]2
]1A−−−→ !]2]1A

• b>A = !∗A and b]1
A = !A

b
]1&]2
A−−−−→ !(]1A & ]2A)

!proj1−−−→ !]1A

Proof. See appendix D.

2.3 Soundness

A pre-proof π of the sequent ` A1, . . . , An, [B1, . . . , [Bk will be interpreted as a morphism JπK from
]1JB1K⊥ ⊗ . . . ⊗ ]kJBkK⊥ to JA1K � . . . � JAnK for some (]i)1≤i≤k ∈ Sk which depends on π. Note
that for a proof (not a pre-proof) the parameter (]i)1≤i≤k disappears and the source and the target
of JπK only depend on the conclusion of π (not on π itself).

By implicitly using the ?-autonomous structure, we will not always distinguish between pre-
formulas and formulas in contexts (when it is not crucial and makes things easier to follow) for the
following definition of JπK: if we have a pre-proof π of ` Γ with Γ = Θ, [∆, and if we write JπK as a
morphism from 1 to JΓK, we really mean the unique corresponding morphism from ]J∆K⊥ to JΘK.

The interpretation of pre-proofs is given in the following way: if π1, π2, ... are the premises of
the last rule of π, we define JπK according to this last rule:

• ax-rule: The identity morphism from JAK to JAK gives, by the ?-autonomous structure, a
morphism from 1 to JAK⊥ � JAK.

• cut-rule: By the ?-autonomous structure, we can turn Jπ1K into a morphism from JΓK⊥ to JAK
and Jπ2K into a morphism from JAK to J∆K. By composition, we get a morphism from JΓK⊥

to J∆K and by the ?-autonomous structure again, we obtain JπK from 1 to JΓK� J∆K.

• ⊗-rule: By the ?-autonomous structure, we can turn Jπ1K into a morphism from JΓK⊥ to JAK
(and the same for Jπ2K from J∆K⊥ to JBK) and by the bifunctor ⊗, we get a morphism from
JΓK⊥ ⊗ J∆K⊥ to JAK ⊗ JBK. By the ?-autonomous structure again, we obtain JπK from 1 to
JΓK� J∆K� (JAK⊗ JBK).

• �-rule: We just have to apply the associativity of �.

• 1-rule: JπK is just the identity from 1 to 1.

• ⊥-rule: We compose on the right with the appropriate unit morphism of ⊥ with respect to
�.

• &-rule: We decompose the context Γ into Θ and [∆. By the ?-autonomous structure, we
can turn Jπ1K into a morphism from JΘK⊥ ⊗ ]1J∆K⊥ to JAK (resp. Jπ2K into a morphism from
JΘK⊥ ⊗ ]2J∆K⊥ to JBK). We compose it on the left with JΘK⊥ ⊗ proj1 (resp. JΘK⊥ ⊗ proj2)
from JΘK⊥ ⊗ (]1J∆K⊥ & ]2J∆K⊥) to JΘK⊥ ⊗ ]1J∆K⊥ (resp. to JΘK⊥ ⊗ ]2J∆K⊥). The pair of the
two thus obtained morphisms is a morphism from JΘK⊥ ⊗ (]1J∆K⊥ & ]2J∆K⊥) to JAK & JBK,
that is a morphism from JΘK⊥⊗ ]3J∆K⊥ to JAK& JBK with ]3 = ]1 & ]2. By the ?-autonomous
structure, this gives a morphism from ]3J∆K⊥ to JΘK� (JAK & JBK).

• ⊕1-rule: Since ⊕ is a coproduct we can compose on the right with the given morphism from
JAK to JAK⊕ JBK

7



• ⊕2-rule: Idem.

• >-rule: Since > is a terminal object, there is a unique morphism from JΓK⊥ to > which gives
JπK by applying the ?-autonomous structure.

• [-rule: Jπ1K is a morphism from 1 to JΓK � JAK which, by the ?-autonomous structure, is a
morphism from ]JAK⊥ to JΓK with the trivial case ] = id.

• !-rule: If Γ = B1, . . . , Bk, Jπ1K is a morphism from ]1JB1K⊥⊗ · · · ⊗ ]kJBkK⊥ to JAK. We apply
the functor ! and we get a morphism from !(]1JB1K⊥ ⊗ · · · ⊗ ]kJBkK⊥) to !JAK. We compose it
on the left with m to get a morphism from !]1JB1K⊥ ⊗ · · · ⊗ !]kJBkK⊥ to !JAK. We compose it
again on the left with b]i

JBiK⊥
from !JBiK⊥ to !]iJBiK⊥ for each Bi to get a morphism from !JΓK⊥

to !JAK. By the ?-autonomous structure, we turn it into a morphism from 1 to ?JΓK� !JAK.

• [c-rule: Jπ1K is a morphism from ]1JAK⊥ ⊗ ]2JAK⊥ to JΓK, thus it is a morphism JπK from
]3JAK⊥ to JΓK with ]3 = ]1 ⊗ ]2.

• [w-rule: Jπ1K is a morphism from 1 to JΓK. This is a morphism JπK from ]JAK⊥ to JΓK with
] = 1.

• ?c-rule: Since, for each object C, !C has a ⊗-comonoid structure, ?JAK has a �-monoid
structure and we can compose Jπ1K on the right with the contraction morphism from ?JAK�
?JAK to ?JAK.

• ?w-rule: As for the ⊥-rule, we can get a morphism from 1 to JΓK � ⊥. Using the �-monoid
structure of ?JAK, we can compose this morphism on the right with the weakening morphism
from ⊥ to ?JAK.

Theorem 1 (Soundness)
According to the interpretation J.K, any elementary Seely category is a model of ELL ( i.e. J.K is an
invariant of cut elimination).

Proof. We first prove that, for any pre-proof π of ` Θ, [∆ which reduces in one step to π′, if JπK
is a morphism from ]J∆K⊥ to JΘK then Jπ′K is a morphism from ]′J∆K⊥ to JΘK where either ] = ]′

and JπK = Jπ′K, or ] = ]′ & ]′′ (or ] = ]′′ & ]′) and JπK = proj]′J∆K⊥ ; Jπ′K.
We only consider the cut elimination steps given in appendix A. First, the reader can check

that the required complementary commutative steps do not modify the interpretation. Second,
it would be possible to represent pre-proofs of ELL by proof-nets (with boxes for the additive
connectives) [Gir98, LTdF06, Gir87] and to interpret these proof-nets into elementary Seely cate-
gories. In this setting the only cut elimination steps are those given in appendix A (the additional
commutative steps are invisible in the proof-net syntax).

We rely on the notations introduced in appendix A, and we omit semantic brackets around the
interpretations of formulas.

• ax: by properties of ?-autonomous categories.

• ⊗/�: by properties of ?-autonomous categories.

• 1/⊥: by properties of ?-autonomous categories.
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• &/⊕1: by properties of the cartesian product: the composition of 〈(id ⊗ proj1) ; Jπ1K, (id ⊗
proj2) ; Jπ2K〉 with proj1 is (id⊗ proj1) ; Jπ1K.

• ∗/&: Up to the ?-autonomous structure, Jπ2K is a morphism from C ⊗Θ⊥ ⊗ ]1∆⊥ to A and
Jπ3K is a morphism from C ⊗ Θ⊥ ⊗ ]2∆⊥ to B, and Jπ1K is a morphism from Γ⊥ to C, by
properties of pairs, we have:

Γ⊥⊗Θ⊥⊗(]1∆⊥&]2∆⊥)
Jπ1K⊗id−−−−−→ C⊗Θ⊥⊗(]1∆⊥&]2∆⊥)

〈(id⊗proj1);Jπ2K,(id⊗proj2);Jπ3K〉−−−−−−−−−−−−−−−−−−−−→ A&B

= 〈(id⊗ proj1) ; (Jπ1K⊗ id) ; Jπ2K, (id⊗ proj2) ; (Jπ1K⊗ id) ; Jπ3K〉

• ∗/>: > is a terminal object.

• ?c/!: A proof π0 ending with a !-rule is interpreted as a comonoidal morphism since b]
A

is a comonoidal morphism (proposition 2), mA,B is a comonoidal morphism, and if f is a
morphism, !f is a comonoidal morphism. This shows that the following diagram commutes:

!Γ⊥
Jπ0K //

c
!Γ⊥
��

!A

c!A

��
!Γ⊥ ⊗ !Γ⊥ Jπ0K⊗Jπ0K

// !A⊗ !A

• ?w/!: Idem with:

!Γ⊥
Jπ0K //

w
!Γ⊥   A

AA
AA

AA
A !A

w!A
����

��
��

��

1

• !/!: We denote by Dj the formulas of ∆ and by Gi the formulas of Γ.
As a starting point, the following diagram commutes:

N
!D⊥j ⊗

N
!G⊥i

(a)

N
b
]j

D⊥
j

⊗
N

b
]i
G⊥

i //

N
b
]j

D⊥
j

⊗
N

b
]]i
G⊥

i

��

N
!]jD⊥j ⊗

N
!]iG⊥i

(b)

id⊗
N

b
]

]iG⊥
i

wwpppppppppppppppppppppppp

id⊗m // N !]jD⊥j ⊗ !
N

]iG⊥i

(c)

id⊗!Jπ1K //

id⊗b
]N

]iG⊥
i

��

N
!]jD⊥j ⊗ !A

id⊗b
]
A

��N
!]jD⊥j ⊗

N
!]]iG⊥i

(d)

id⊗m

//

m

**VVVVVVVVVVVVVVVVV
N

!]jD⊥j ⊗ !
N

]]iG⊥i

(e)

id⊗!m]

//

m

��

N
!]jD⊥j ⊗ !]

N
]iG⊥i

(f)

id⊗!]Jπ1K
//

m

��

N
!]jD⊥j ⊗ !]A

m

��
!(

N
]jD⊥j ⊗

N
]]iG⊥i )

!(id⊗m])

// !(N
]jD⊥j ⊗ ]

N
]iG⊥i )

!(id⊗]Jπ1K)
// !(N

]jD⊥j ⊗ ]A)

!Jπ2K

��
!B

by (a) proposition 3, (b) proposition 2 (with m!]
A,B = m]A,]B ; !m]

A,B), (c) naturality of b],
(d) properties of m (monoidality of !), (e) naturality of m and (f) naturality of m.
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By bifunctoriality of ⊗, the top-right path is JπK, and by functoriality of !, the left-bottom
path is the interpretation of a !-rule applied to (

⊗
]jD

⊥
j ⊗ (m] ; ]Jπ1K)) ; Jπ2K. We have to

show this is the interpretation of the reduct. We prove it by induction on the pre-proof π2.
The key cases are when the last rule is a >, &, [, [w or [c rule:

– >-rule: Immediate since > is a terminal object.

– &-rule: We have Jπ1K from ]ΓΓ ( =
⊗

]iG
⊥
i ) to A, Jπ1

2K from Θ⊥ ⊗
⊗

]1jD
⊥
j ⊗ ]1A to B

and Jπ2
2K from Θ⊥⊗

⊗
]2jD

⊥
j ⊗]2A to C with ] = ]1&]2 and ]j = ]1j &]2j , we want to show

(Θ⊥ ⊗
⊗

]jD
⊥
j ⊗ (m] ; ]Jπ1K)) ; 〈(Θ⊥ ⊗

⊗
proj]1jD⊥

j
⊗ proj]1A) ; Jπ1

2K, (Θ
⊥ ⊗

⊗
proj]2jD⊥

j
⊗

proj]2A) ; Jπ2
2K〉 is the same as 〈(Θ⊥⊗

⊗
proj]1jD⊥

j
⊗

⊗
proj]1]iG⊥i

) ; (Θ⊥⊗
⊗

]1jD
⊥
j ⊗ (m]1 ;

]1Jπ1K)) ; Jπ1
2K, (Θ

⊥⊗
⊗

proj]2jD⊥
j
⊗

⊗
proj]2]iG⊥i

) ; (Θ⊥⊗
⊗

]2jD
⊥
j ⊗ (m]2 ; ]2Jπ1K)) ; Jπ2

2K〉.
It comes from the commutation of the following diagram and from properties of the
product: ⊗

]]iG
⊥
i

m]
//

N
proj

]1]iG⊥
i
��

]
⊗

]iG
⊥
i

]Jπ1K //

proj
]1

N
]iG⊥

i
��

]A

proj]1A

��⊗
]1]iG

⊥
i

m]1
// ]1

⊗
]iG

⊥
i ]1Jπ1K

// ]1A

which is obtained by definition of m]1&]2 since ] = ]1 & ]2 (proposition 1 and ap-
pendix B.2) and by naturality of projections.

– [-rule, [w-rule and [c-rule: These cases are immediate since they do not modify the
interpretation of the pre-proof π2.

To conclude we show that, given a proof (not only a pre-proof), its interpretation and the interpre-
tation of a reduct are the same (not only up to composition with a projection). The key point is
that if π is followed by a !-rule (it must be the case at some point since there is no [ in the conclusion
of the whole proof), then the interpretation of the whole proof is invariant under reduction. We
only consider the particular case where π is immediately followed by a !-rule and we show that
if π reduces to π′ then J!πK = J!π′K (where !π is π followed by a !-rule). This corresponds to the
commutation of the following diagram: ⊗

!]jD
⊥
j

m //

N
!proj

]′
j
D⊥

j

��

!
⊗

]jD
⊥
j

!JπK

))SSSSSSSSSSSSSSSSSS

!
N

proj
]′
j
D⊥

j

��

⊗
!D⊥

j

N
b
]j

D⊥
j

55jjjjjjjjjjjjjjjjjj

N
b
]′j
D⊥

j

))TTTTTTTTTTTTTTTTTT !C

⊗
!]′jD

⊥
j m

// !
⊗

]′jD
⊥
j

!Jπ′K

55kkkkkkkkkkkkkkkkkk

which is true by proposition 3, naturality of m, and the first part of the present proof which gives
the last triangle.
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3 Examples and applications

Two of the main models of ELL one can find in the literature are the stratified coherent model [Bai04]
and the obsessional coherent model [LTdF06]. We are going to show that they both give elementary
Seely categories.

In the case of the obsessional model, we will use a simple criterion which can be applied to any
model of ELL presented as a sub-model of a model of LL.

3.1 Coherent spaces

We first recall the definition and key properties of coherent spaces [Gir87] to be used in the two
models of ELL.

Definition 4 (Coherent space)
A coherent space is a pair A = (|A|,�A) where |A| is a set and �A is a reflexive symmetric relation
on |A|.

A clique x in A, denoted x @ A, is a set of elements of |A| such that if a, b ∈ x then a �A b.
A multiclique of A is a multiset of elements of |A| such that the underlying set (the support) is a
clique.

We use the following notations: a �A b if a �A b ∧ a 6= b, a �A b if ¬(a �A b), and a �A b if
a �A b ∧ a 6= b.

The basic constructions of coherent spaces are the following:

• A⊥ = (|A|,�A)

• > = 0 = (∅, ∅)

• ⊥ = 1 = ({?}, {(?, ?)})

• A�B: |A�B| = |A| × |B| and (a, b) �A�B (a′, b′) ⇐⇒ a �A a′ ∨ b �B b′

• A⊗B: |A⊗B| = |A| × |B| and (a, b) �A⊗B (a′, b′) ⇐⇒ a �A a′ ∧ b �B b′

• A( B = A⊥ �B

• A&B: |A&B| = |A|+|B|, (1, a) �A&B (1, a′) ⇐⇒ a �A a′, (2, b) �A&B (2, b′) ⇐⇒ b �B b′,
(i, a) �A&B (j, b) if i 6= j

• A⊕B: |A⊕B| = |A|+|B|, (1, a) �A⊕B (1, a′) ⇐⇒ a �A a′, (2, b) �A⊕B (2, b′) ⇐⇒ b �B b′,
(i, a) �A⊕B (j, b) if i 6= j

• !A: |!A| is the set of all finite multicliques of A and µ �!A ν if µ + ν is a multiclique of A

• ?A: |?A| is the set of all finite multicliques of A⊥ and µ �?A ν if µ + ν is not a multiclique of
A⊥

Proposition 4 (Category COH)
The category COH given by:

• objects: coherent spaces

11



• morphisms: COH(A,B) is the set of cliques of A( B

is a Seely category.

Proof. See [Mel03] for example.

3.2 Stratified coherent spaces

We look at the first denotational model of ELL defined by Baillot [Bai04] from coherent spaces. In
order to make things simpler, we consider the presentation of the model given in [Bai00].

Definition 5 (Stratified coherent space)
A stratified coherent space A is a sequence of triples (|A|i,�i

A, ϕi
A)i∈N where, for each i, Ai =

(|A|i,�i
A) is a coherent space and ϕi

A is a partial function from |A|i+1 to |A|i and moreover the
sequence is stationary : there exists some d (the depth of A) such that for any i ≥ d, |A|i = |A|d,
�i

A = �d
A and ϕi

A = id|A|d .
An element a of Ai is visible in A if ϕ0

A ◦ ϕ1
A ◦ · · · ◦ ϕi−1

A (a) is defined.
A clique of the stratified coherent space A is a clique of Ad (where d is the depth of A). A

visible clique is a clique containing only visible elements. A stratified clique is a visible clique x
such that for all i ≤ d, ϕi

A ◦ ϕi+1
A ◦ · · · ◦ ϕd−1

A (x) is a clique of Ai.

A stratified coherent space is called constant when its depth is 0. Any coherent space can be
considered as a constant stratified coherent space.

The multiplicative and additive constructions of stratified coherent spaces are obtained from
the corresponding constructions of coherent spaces applied level by level:

• (|A⊥|i,�i
A⊥

) = (|A|i,�i
A)⊥ and ϕi

A⊥
= ϕi

A

• (|A⊗B|i,�i
A⊗B) = (|A|i,�i

A)⊗ (|B|i,�i
B) and ϕi

A⊗B = ϕi
A × ϕi

B

• 1 = ({?}, {(?, ?)}, id)i∈N (the constant stratified coherent space with one point)

• (|A & B|i,�i
A&B) = (|A|i,�i

A) & (|B|i,�i
B) and ϕi

A&B = ϕi
A + ϕi

B

• > = (∅, ∅, id)i∈N (the constant empty stratified coherent space)

and by orthogonality, we define: A � B = (A⊥ ⊗ B⊥)⊥, A ⊕ B = (A⊥ & B⊥)⊥, ⊥ = 1⊥, 0 = >⊥,
and A( B = (A⊗B⊥)⊥.

The !A construction induces a lifting of levels:

• (|!A|0,�0
!A) = 1

• for i ≥ 1, (|!A|i,�i
!A) = !(|A|i−1,�i−1

A )

• ϕ0
!A is the constant function mapping any element to ?.

• for i ≥ 1, ϕi
!A([a1, . . . , an]) = [ϕi−1

A (a1), . . . , ϕi−1
A (an)] if all the ϕi−1

A (aj) are defined (1 ≤ j ≤
n) and if [ϕi−1

A (a1), . . . , ϕi−1
A (an)] belongs to |!A|i; and ϕi

!A([a1, . . . , an]) is undefined otherwise.

and by orthogonality, we define ?A = (!A⊥)⊥.
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Proposition 5 (Elementary Seely category SCOH)
The category SCOH of stratified coherent spaces and stratified cliques is an elementary Seely cate-
gory.

Proof. The main ingredients are given in [Bai00], we give some additional material in appendix E.

3.3 Models of ELL inside models of LL

The previous example requires quite a number of verifications in order to check all the axioms of
elementary Seely categories. In the particular case where the model of ELL under consideration
lives inside a model of LL, it is possible to give a much simpler approach.

We consider a Seely category L (thus a model of LL) and a sub-category C of L containing all
the objects of L (only some morphisms are removed). We are going to give a simple criterion to
show that C is an elementary Seely category, thus a model of ELL.

We say that C satisfies the closure criterion if the following properties about morphisms of C
hold:

• the morphisms for associativity, commutativity and neutral element of ⊗ corresponding to
the ?-autonomous structure of L belong to C

• if A
f−→ C ∈ C and B

g−→ D ∈ C then A⊗B
f⊗g−−→ C ⊗D ∈ C

• the morphism from (A( ⊥)( ⊥ to A coming from the ?-autonomous structure of L belongs
to C

• A & B
proj1−−−→ A ∈ C, A & B

proj2−−−→ B ∈ C and A
∗−→ > ∈ C

• if C
f−→ A ∈ C and C

g−→ B ∈ C then C
〈f,g〉−−−→ A & B ∈ C

• !A⊗ !B m−→ !(A⊗B) ∈ C and 1 n−→ !1 ∈ C

• if A
f−→ B ∈ C then !A

!f−→ !B ∈ C

• !A⊗ !B
p−→ !(A & B) ∈ C and 1

q−→ !> ∈ C

• !(A & B)
p−1

−−→ !A⊗ !B ∈ C and !> q−1

−−→ 1 ∈ C

Theorem 2 (Elementarity criterion)
If C satisfies the closure criterion then C is an elementary Seely category.

Proof. The key points are that any diagram concerning morphisms of C which commutes in L
commutes in C, and that L is a Seely category thus an elementary Seely category (remark 2).

C is a ?-autonomous category with finite products since the corresponding structure morphisms
(together with the pairing construction) belong to C.

The restriction of ! to C defines an endofunctor of C.
By property 3 of elementary Seely categories applied to L, c!A = !∆A ; p−1

A,A and w!A = !∗A ; q−1

thus c!A and w!A belong to C. Moreover (!A, c!A,w!A) is a ⊗-comonoid in C since the required
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diagrams commute in L. So that (!,m,n) is a functor from (C,⊗, 1) to (coMON (C),⊗, 1) which is
symmetric monoidal since the appropriate diagrams commute in L.

(!, p, q) is a strong symmetric monoidal functor from (C,&,>) to (C,⊗, 1) since p and q belong
to C, are isomorphisms in C and the required diagrams commute in L thus in C.

Finally the property 3 of elementary Seely categories is satisfied since it is given by the com-
mutation of two diagrams which are commutative in L.

The meaning of this result is in particular to show how the interaction between the additive
connectives and the exponential connectives in ELL can be axiomatized exactly through the fact
that ! is a strong symmetric monoidal functor from (C,&,>) to (C,⊗, 1) (thus the existence of p
and q). This was not obvious to us from a purely syntactic point of view (additional conditions
might have been required), and comes nicely from the categorical approach. Indeed this question
was the starting point for the present work.

3.4 Obsessional coherent spaces

We apply the previous criterion to show that obsessional coherent spaces give an elementary Seely
category. This second example is coming from [LTdF06]. It was described there in the relational
setting. We give here the coherent version. All the results proved in [LTdF06] in the relational case
are valid in the coherent case with the same proofs.

Definition 6 (N-coherent space)
A N-coherent space is given by a coherent space A and a function, called the action:

N∗ × |A| → |A|
(k, a) 7→ a(k)

which is an action of the monoid (N∗, ·, 1) on |A| (where N∗ = N \ {0}), that is a(1) = a and
a(kk′) = (a(k))(k

′) and such that:

a �A b =⇒ a(k)
�A b(k)

a �A b =⇒ a(k)
�A b(k)

A clique x of A is obsessional if ∀a ∈ x,∀k ∈ N∗, a(k) ∈ x.

In the particular case where the action is the identity a(k) = a, the space is called atomic. Any
coherent space can be considered as an atomic N-coherent space.

The constructions of N-coherent spaces are obtained from the corresponding constructions of
coherent spaces and the actions are built in the following way:

• the action on A⊥ is the same as the action on A

• for ⊥, 1, > and 0, we use the only possible action (making them atomic)

• the action on A⊗B or A�B is given by (a, b)(k) = (a(k), b(k))

• the action on A⊕B or A & B is given by (1, a)(k) = (1, a(k)) and (2, a)(k) = (2, a(k))
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• the action on !A or ?A is given by [a1, . . . , an](k) = [ka
(k)
1 , . . . , ka

(k)
n ] (that is we take k copies

of each a
(k)
i )

Definition 7 (Category NCOH)
The category NCOH is given by:

• objects: N-coherent spaces

• morphisms: NCOH(A,B) is the set of cliques of A( B

Proposition 6 (Elementary Seely category OCOH)
By restraining NCOH to the obsessional cliques only, one gets a category OCOH which is an
elementary Seely category.

Proof. The identity is obsessional and the composition of two obsessional cliques is obsessional [LTdF06],
thus OCOH is a sub-category of NCOH.

The categories COH and NCOH are equivalent categories: the forgetful functor from NCOH to
COH is full, faithful, surjective on objects (by considering atomic spaces) and strictly preserves all
the structures. As a consequence NCOH is a Seely category.

Finally we apply theorem 2 to NCOH and OCOH since OCOH satisfies the closure criterion:
the properties concerning only the multiplicative and exponential structures are given in [LTdF06]
and we now check those concerning the additive ones.

• If ((1, a), a) ∈ proj1 then ((1, a), a)(k) = ((1, a(k)), a(k)) ∈ proj1, thus proj1 is obsessional.

• ∗A from A to > is the empty clique which is obsessional.

• If f @ C ( A and g @ C ( B are obsessional, 〈f, g〉 = {(c, (1, a)) | (c, a) ∈ f} ∪ {(c, (2, b)) |
(c, b) ∈ g} @ C ( A & B is obsessional since (c, (1, a))(k) = (c(k), (1, a(k))) and (c(k), a(k)) ∈ f
(and the same with g).

• If (([a1, . . . , an], [b1, . . . , bm]), [(1, a1), . . . , (1, an), (2, b1), . . . , (2, bm)]) ∈ pA,B then:

(([a1, . . . , an], [b1, . . . , bm]), [(1, a1), . . . , (1, an), (2, b1), . . . , (2, bm)])(k)

= (([ka
(k)
1 , . . . , ka(k)

n ], [kb
(k)
1 , . . . , kb(k)

m ]), [k(1, a
(k)
1 ), . . . , k(1, a(k)

n ), k(2, b
(k)
1 ), . . . , k(2, b(k)

m )])
∈ pA,B

thus pA,B is obsessional.

• q = {(?, [ ])} is obsessional since (?, [ ])(k) = (?, [ ]).

and if f is an isomorphism in NCOH which belongs to OCOH, it is an isomorphism in OCOH:
f−1 = {(y, x) | (x, y) ∈ f} thus if f is obsessional then f−1 is obsessional.

4 Linear non-linear models

An important alternative to Seely categories as a notion of categorical model of linear logic is
the notion of linear non-linear model introduced by Benton [Ben94]. We are going to consider an
elementary version of these models. Since we are interested in additive connectives and classical
linear logic, we directly consider the ?-autonomous case with products.
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Definition 8 (Linear non-linear model)
A linear non-linear model is given by a ?-autonomous category C with finite products and a carte-
sian category M (with product denoted × and terminal element I) with a symmetric monoidal
adjunction between them (given by a symmetric monoidal functor (F,m0,n0) from C to M which
is right adjoint to a symmetric monoidal functor (G,m1,n1) from M to C).

This entails the following two properties.

Lemma 4
In a linear non-linear model, G is strong.

Proof. See [Ben94, proposition 1].

Lemma 5
In a linear non-linear model, F preserves products.

Proof. F is a right adjoint.

4.1 Elementary linear non-linear model

We now turn to an elementary version of linear non-linear models.

Definition 9 (Elementary linear non-linear model)
An elementary linear non-linear model is given by a ?-autonomous category C with finite products
and a cartesian category M, and two functors F from C to M and G from M to C such that:

• (F,m0,n0) is a symmetric monoidal functor from C to M

• (G,m1,n1) is a strong symmetric monoidal functor from M to C

• F preserves products (with p0 : FA× FB ' F (A & B) and q0 : I ' F>)

Remark 3
Any linear non-linear model is an elementary linear non-linear model (by lemmas 4 and 5).

Proposition 7
Any elementary linear non-linear model induces an elementary Seely category.4

Proof. C is a ?-autonomous category with finite products.
For any object A of C, (GFA, G∆FA ;m−1

1 , G ∗FA ;n−1
1 ) is a ⊗-comonoid, and we can define the

symmetric monoidal functor ! = GF from C to coMON (C) (see [Mel03, lemma 16] and the remark
just after in [Mel03]).

GF , equipped with the composition of m1 : GFA⊗GFB → G(FA× FB) and Gp0 : G(FA×
FB) → GF (A & B), and the composition of n1 : 1 → GI and Gq0 : GI → GF>, is a strong
symmetric monoidal functor from (C,&,>) to (C,⊗, 1).

4There is a proposal by P.-A. Melliès to introduce an intermediate affine category between C and M as a sufficient
condition to get rid of the S family presented in section 2.2.
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Finally if we apply the definition of the ⊗-comonoid structure of GFA given above, we have to
prove the commutation of the following two diagrams:

GFA
G∆FA //

GF∆

((RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR G(FA× FA)
m−1

1 // GFA⊗GFA

m1

��
G(FA× FA)

Gp0

��
GF (A & A)

GFA
G∗FA //

GF∗A

&&MMMMMMMMMMMMMMMMMMMMMMMMM GI
n−1
1 // 1

n1

��
GI

Gq0

��
GF>

They both commute, mainly by using the preservation of products by F .

Proposition 8
Any elementary Seely category induces an elementary linear non-linear model.

Proof. By hypothesis, C is a ?-autonomous category with finite product. Moreover, the category
M = (coMON (C),⊗, 1) is a cartesian category.

Let us assume F = ! and G is the forgetful functor from M to C, (!,m,n) is a symmetric
monoidal functor from (C,⊗, 1) to (coMON (C),⊗, 1) (thus from C to M). (G, id, id1) is a strong
symmetric monoidal functor from (coMON (C),⊗, 1) to (C,⊗, 1) (thus from M to C).

Finally, F preserves products since it maps & to ⊗ and the &-comonoid structure of A in C
(which is the product structure in C) to the ⊗-comonoid structure of !A in M (which is the product
structure in M).

4.2 Light linear non-linear model

As a final remark we just mention the existence of a natural refinement of elementary linear non-
linear models which gives a proposal for categorical models of light linear logic [Gir98].

Definition 10 (Light linear non-linear model)
A light linear non-linear model is given by a ?-autonomous category C with finite products and a
cartesian category M, and three functors F from C to M and G and H from M to C, and a natural
transformation α from G to H such that:

• (F,m0,n0) is a symmetric monoidal functor from C to M

• (G,m′
1,n

′
1) is a symmetric comonoidal functor from M to C

• (H,m2,n2) is a symmetric monoidal functor from M to C

• F preserves products

Remark 4
Any elementary linear non-linear model is a light linear non-linear model (with G = H and α is
the identity).
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In this setting, we can define the functor ! = GF from C to C and the symmetric monoidal
functor § = HF , and αF is a natural transformation from ! to §. Moreover, for any object A of C,
(!A,G∆F ; m′

1, G ∗F ;n′1) is a ⊗-comonoid. These are the key ingredients required for interpreting
light linear logic.

In order to model intuitionistic systems without additive connectives, elementary linear non-
linear models and light linear non-linear models can be weakened by only requiring C to be a
symmetric monoidal closed category and by removing the hypothesis that F preserves products.

Conclusion

We have proposed two possible axiomatizations of categorical models of ELL: elementary Seely
categories and elementary linear non-linear models. They both come from natural restrictions of
the corresponding notions for LL. As usual in categorical logic, such axiomatizations give a natural
formalism for proving that a would-be model is indeed a model of the corresponding logical system.
This is particularly important here to deal with the additive connectives of ELL. The ELL syntax
with additives is not always easy to manipulate while the axioms of our elementary models allow us
to hide such difficulties. These difficulties are moved into the soundness proof of our axiomatization,
once and for all. In some way, categorical models confirm that the choices made by Danos and
Joinet in the design of their syntax for ELL [DJ03] are the good one: the expressiveness of the
obtained system fits well with categorical semantics.

We have applied our categorical axiomatizations to (re)prove the soundness of two crucial
examples of models of ELL without reference to the syntax. In the particular case where such a
model of ELL arrives as a sub-model of a model of LL, we have extracted a very simple criterion
allowing us to check only minimal properties to derive a soundness result with respect to ELL. It
was not possible to apply this criterion to the stratified model since it is not clear how to find a
surrounding model of LL, but this would be an interesting question to investigate.

While the system ELL and its syntactic presentations could be considered as canonical, the
situation is quite different with LLL: should the § modality be self-dual or not? should we restrict
the context of the !-rule to only one formula or to at most one formula? etc. We have just proposed
a definition of light linear non-linear model which comes naturally as a refinement of elementary
linear non-linear models. A whole study of categorical models of LLL has to be given with the hope
that the categorical setting will discriminate between the various possible choices in the design of
the syntax of the LLL system.

Finally, concerning both ELL and LLL, it is often useful from the expressiveness point of view to
consider their intuitionistic versions extended with general weakening (the affine systems IEAL and
ILAL). It should not be difficult to adapt our results to these systems. Another interesting system
to address would be DLAL [BT04] which is particularly adapted for type inference.

Acknowledgements. Thanks to Lorenzo Tortora de Falco for the joint work on the models
of ELL from which this work is coming. Thanks to Patrick Baillot for discussions about light
linear logics and their denotational semantics. Thanks to Paul-André Melliès for discussions about
monoidal categories and categorical models of linear logic.
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A Cut elimination in ELL

We give the main steps of the cut elimination procedure of ELL.

π1

` Γ, A
ax

` A⊥, A
cut` Γ, A

 
π1

` Γ, A

π1

` Γ, A

π2

` ∆, B ⊗` Γ,∆, A⊗B

π3

` Σ, A⊥, B⊥
�

` Σ, A⊥ �B⊥
cut` Γ,∆,Σ

 π1

` Γ, A

π2

` ∆, B

π3

` Σ, A⊥, B⊥
cut

` ∆,Σ, A⊥
cut` Γ,∆,Σ

1` 1

π1

` Γ ⊥` Γ,⊥
cut` Γ

 
π1

` Γ

π1

` Γ, A

π2

` Γ, B
&` Γ, A & B

π3

` ∆, A⊥
⊕1

` ∆, A⊥ ⊕B⊥
cut` Γ,∆

 
π1

` Γ, A

π3

` ∆, A⊥
cut` Γ,∆

π1

` Γ, C

π2

` C⊥,Θ, [∆, A

π3

` C⊥,Θ, [∆, B
&

` C⊥,Θ, [∆, A & B
cut` Γ,Θ, [∆, A & B

 

π1

` Γ, C

π2

` C⊥,Θ, [∆, A
cut` Γ,Θ, [∆, A

π1

` Γ, C

π3

` C⊥,Θ, [∆, B
cut` Γ,Θ, [∆, B

&` Γ,Θ, [∆, A & B

π1

` Γ, C
>

` C⊥,∆,>
cut` Γ,∆,>

 >` Γ,∆,>

π1

` [Γ, A
!` ?Γ, !A

π2

` ∆, ?A⊥, ?A⊥
?c

` ∆, ?A⊥
cut` ?Γ,∆

 

π1

` [Γ, A
!` ?Γ, !A

π1

` [Γ, A
!` ?Γ, !A

π2

` ∆, ?A⊥, ?A⊥
cut

` ?Γ,∆, ?A⊥
cut` ?Γ, ?Γ,∆

?c` ?Γ,∆
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π1

` [Γ, A
!` ?Γ, !A

π2

` ∆ ?w
` ∆, ?A⊥

cut` ?Γ,∆

 
π2

` ∆
?w` ?Γ,∆

π1

` [Γ, A
!` ?Γ, !A

· · ·

πi
2

` Σi, A⊥
[

` Σi, [A⊥ · · ·
...

π2

...
` [∆, [A⊥, B

!
` ?∆, ?A⊥, !B

cut` ?Γ, ?∆, !B

 

· · ·

π1

` [Γ, A

πi
2

` Σi, A⊥
cut

` [Γ,Σi · · ·
...

π2

...
` [Γ, [∆, B

!` ?Γ, ?∆, !B

B Proposition 1

B.1 Proof of proposition 1

Proof. The constructions presented here are related with the idea of multiplication on monoidal
categories [JS93].

• A constant functor from (C,⊗, 1) to (C,⊗, 1) mapping all objects to Z is symmetric monoidal
if and only if Z is a symmetric monoid in (C,⊗, 1). This is the case for both 1 and >.

• The identity functor is a symmetric monoidal functor from (C,⊗, 1) to (C,⊗, 1).

• The diagonal functor from (C,⊗, 1) to (C × C,⊗, (1, 1)) (with the tensor product given by
tensor product on each component) is symmetric monoidal.

• The functor ⊗ from (C × C,⊗, (1, 1)) to (C,⊗, 1) is a symmetric monoidal functor if we use
the following natural transformation and morphism:

M = (A⊗B)⊗ (A′ ⊗B′) '−→ (A⊗A′)⊗ (B ⊗B′)

N = 1 '−→ 1⊗ 1

The following three diagrams commute by properties of symmetric monoidal categories:

((A⊗B)⊗ (A′ ⊗B′))⊗ (A′′ ⊗B′′) α //

M⊗(A′′⊗B′′)
��

(A⊗B)⊗ ((A′ ⊗B′)⊗ (A′′ ⊗B′′))

(A⊗B)⊗M
��

((A⊗A′)⊗ (B ⊗B′))⊗ (A′′ ⊗B′′)

M
��

(A⊗B)⊗ ((A′ ⊗A′′)⊗ (B′ ⊗B′′))

M
��

((A⊗A′)⊗A′′)⊗ ((B ⊗B′)⊗B′′)
α⊗α

// (A⊗ (A′ ⊗A′′))⊗ (B ⊗ (B′ ⊗B′′))
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A⊗B
' //

'
��

(A⊗B)⊗ 1

(A⊗B)⊗N

��
(A⊗ 1)⊗ (B ⊗ 1) (A⊗B)⊗ (1⊗ 1)

M
oo

(A⊗B)⊗ (A′ ⊗B′)
γ //

M
��

(A′ ⊗B′)⊗ (A⊗B)

M
��

(A⊗A′)⊗ (B ⊗B′)
γ⊗γ

// (A′ ⊗A)⊗ (B′ ⊗B)

• The functor & from (C × C,⊗, (1, 1)) to (C,⊗, 1) is a symmetric monoidal functor if we use
the following natural transformation and morphism:

M = (A & B)⊗ (A′ & B′)
〈proj1⊗proj1,proj2⊗proj2〉−−−−−−−−−−−−−−−−→ (A⊗A′) & (B ⊗B′)

N = 1 ∆1−−→ 1 & 1

To prove the commutation of the following diagram:

((A & B)⊗ (A′ & B′))⊗ (A′′ & B′′) α //

M⊗(A′′&B′′)
��

(A & B)⊗ ((A′ & B′)⊗ (A′′ & B′′))

(A&B)⊗M
��

((A⊗A′) & (B ⊗B′))⊗ (A′′ & B′′)

M
��

(A & B)⊗ ((A′ ⊗A′′) & (B′ ⊗B′′))

M
��

((A⊗A′)⊗A′′) & ((B ⊗B′)⊗B′′)
α&α

// (A⊗ (A′ ⊗A′′)) & (B ⊗ (B′ ⊗B′′))

it is enough to prove the commutation of the next diagram and of the corresponding one with
proj2 since the left side of the previous diagram is the pair of their left sides and its right side
is the pair of their right sides.

((A & B)⊗ (A′ & B′))⊗ (A′′ & B′′) α //

M⊗(A′′&B′′)
��

(A & B)⊗ ((A′ & B′)⊗ (A′′ & B′′))

(A&B)⊗M

��
((A⊗A′) & (B ⊗B′))⊗ (A′′ & B′′)

proj1⊗proj1
��

(A & B)⊗ ((A′ ⊗A′′) & (B′ ⊗B′′))

proj1⊗proj1
��

((A⊗A′)⊗A′′) α
// (A⊗ (A′ ⊗A′′))

since M ; proj1 = proj1 ⊗ proj1, this is obtained by naturality of α.
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The following diagram commutes:

A & B
' //

'
��

(A & B)⊗ 1

(A&B)⊗N

��
f

uujjjjjjjjjjjjjjj

(A⊗ 1) & (B ⊗ 1) (A & B)⊗ (1 & 1)
M
oo

with f = 〈proj1 ⊗ id1, proj2 ⊗ id1〉. The first triangle commutes by properties of monoidal
categories and of the product and the second triangle commutes by definition of M and N .

The following diagram commutes:

(A & B)⊗ (A′ & B′)
γ //

M
��

(A′ & B′)⊗ (A & B)

M
��

(A⊗A′) & (B ⊗B′)
γ&γ

// (A′ ⊗A) & (B′ ⊗B)

by pairing the next diagram with the corresponding one obtained by using proj2 instead of
proj1:

(A & B)⊗ (A′ & B′)
γ //

proj1⊗proj1
��

(A′ & B′)⊗ (A & B)

proj1⊗proj1
��

A⊗A′
γ

// A′ ⊗A

which commutes by naturality of γ.

• Finally the composition of two symmetric monoidal functors is a symmetric monoidal functor.

B.2 The monoidal structure

We explicitly give the monoidal structure on ] ∈ S obtained in the previous section/proof.
By induction on ], m]

A,B from ]A⊗ ]B to ](A⊗B) is given by:

• m1
A,B = 1⊗ 1 → 1 is the unit morphism of 1 with respect to ⊗

• m>
A,B = >⊗> → > is the unique such morphism since > is terminal

• mid
A,B = A⊗B

id−→ A⊗B

• m]1⊗]2
A,B = (]1A⊗ ]2A)⊗ (]1B ⊗ ]2B) '−→ (]1A⊗ ]1B)⊗ (]2A⊗ ]2B)

m
]1
A,B⊗m

]2
A,B−−−−−−−−→ ]1(A⊗B)⊗

]2(A⊗B)

• m]1&]2
A,B = (]1A&]2A)⊗(]1B&]2B)

〈proj1⊗proj1,proj2⊗proj2〉−−−−−−−−−−−−−−−−→ (]1A⊗]1B)&(]2A⊗]2B)
m

]1
A,B&m

]2
A,B−−−−−−−−→

]1(A⊗B) & ]2(A⊗B)
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and n] from 1 to ]1 by:

• n1 = 1 id1−−→ 1

• n> = 1 ∗1−→ >

• nid = 1 id1−−→ 1

• n]1⊗]2 = 1 → 1⊗ 1 n]1⊗n]2−−−−−→ ]11⊗ ]21

• n]1&]2 = 1 ∆1−−→ 1 & 1 n]1&n]2−−−−−→ ]11 & ]21

C Proof of proposition 2

Proof. We first prove that b]
A belongs to coMON (C) by induction on the definition:

• b1
A is comonoidal since w!A is comonoidal and n is comonoidal.

• b>A is comonoidal since w!A is comonoidal and q is comonoidal (by lemma 3).

• bid
A is comonoidal since id is comonoidal.

• b]1⊗]2
A is comonoidal since c!A is comonoidal, b]1

A and b]2
A are comonoidal by induction hypoth-

esis and m]1A,]2A is comonoidal.

• b]1&]2
A is comonoidal since c!A is comonoidal, b]1

A and b]2
A are comonoidal by induction hypoth-

esis and p]1A,]2A is comonoidal (by lemma 3).

In the same way, we easily check naturality by properties of all the constructions involved in the
definition of b].

We finally prove the commutation of the two diagrams corresponding to the monoidality of the
natural transformation:

!A⊗ !B m //

b]
A⊗b]

B
��

!(A⊗B)

b]
A⊗B
��

!]A⊗ !]B m
// !(]A⊗ ]B)

!m]
// !](A⊗B)

1 n //

n
��>

>>
>>

>>
> !1

b]
1
��

!1
!n]
// !]1

By induction on ] for the first diagram:

• If ] = 1, the following diagram commutes:

!A⊗ !B m //

b1
A⊗b1

B

��

w!A⊗w!B

%%JJJJJJJJJJ !(A⊗B)
w!(A⊗B)

xxqqqqqqqqqqqq

b1
A⊗B

��

(b)

(d)

1⊗ 1(a)
' //

n⊗n

yytttttttttt
1 (c)

n

&&MMMMMMMMMMMMM

!1⊗ !1 m
// !(1⊗ 1) '

// !1

by (a) definition of b1
A, (b) comonoidality of m, (c) definition of b1

A⊗B and (d) monoidality
of !.
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• If ] = >, the following diagram commutes:

!A⊗ !B m //

b>A⊗b>B

��

w!A⊗w!B

%%JJJJJJJJJJ !(A⊗B)
w!(A⊗B)

xxqqqqqqqqqqqq

b>A⊗B

��

(b)

(d)

1⊗ 1(a)
' //

q⊗q

yytttttttttt
1 (c)

q

&&MMMMMMMMMMMMMM

!>⊗ !> p
// !(>⊗>)

!∗
// !>

by (a) definition of b>A, (b) comonoidality of m, (c) definition of b>A⊗B and (d) monoidality
of !.

• If ] = id, the following diagram immediately commutes:

!A⊗ !B m //

id⊗id

��

!(A⊗B)

id
��

!A⊗ !B m
// !(A⊗B)

!id
// !(A⊗B)

• If ] = ]1 ⊗ ]2, the following diagram commutes:

!A⊗ !B

(b)

c!A⊗c!B

ttiiiiiiiiiiiiiiiiiii

(a)

c!A⊗!B

��

m // !(A⊗ B)

c!(A⊗B)

��
!A⊗ !A⊗ !B ⊗ !B

(c)

' //

b
]1
A
⊗b

]2
A
⊗b

]1
B
⊗b

]2
B

��

!A⊗ !B ⊗ !A⊗ !B

(d)

m⊗m

//

b
]1
A
⊗b

]1
B
⊗b

]2
A
⊗b

]2
B

��

!(A⊗ B)⊗ !(A⊗ B)

b
]1
A⊗B

⊗b
]2
A⊗B

��
!]1A⊗ !]2A⊗ !]1B ⊗ !]2B

(e)

' //

m⊗m

��

!]1A⊗ !]1B ⊗ !]2A⊗ !]2B
m⊗m

// !(]1A⊗ ]1B)⊗ !(]2A⊗ ]2B)

(f)

!m]1⊗!m]2

//

m

��

!]1(A⊗ B)⊗ !]2(A⊗ B)

m

��
!(]1A⊗ ]2A)⊗ !(]1B ⊗ ]2B)

m
// !(]1A⊗ ]2A⊗ ]1B ⊗ ]2B)

'
// !(]1A⊗ ]1B ⊗ ]2A⊗ ]2B)

!(m]1⊗m]2 )

// !(]1(A⊗ B)⊗ ]2(A⊗ B))

by (a) definition of c!A⊗!B, (b) comonoidality of m, (c) symmetry of ⊗, (d) induction
hypothesis, (e) monoidality and symmetry of !, and (f) naturality of m.

• If ] = ]1 & ]2, the diagram we want has the same first two lines as for ] = ]1 ⊗ ]2. The last
one becomes:

!]1A⊗ !]2A⊗ !]1B ⊗ !]2B

(a)

' //

p⊗p

��

!]1A⊗ !]1B ⊗ !]2A⊗ !]2B
m⊗m

// !(]1A⊗ ]1B)⊗ !(]2A⊗ ]2B)

(b)

!m]1⊗!m]2

//

p

��

!]1(A⊗ B)⊗ !]2(A⊗ B)

p

��
!(]1A & ]2A)⊗ !(]1B & ]2B)

m
// !((]1A & ]2A)⊗ (]1B & ]2B))

!〈proj1⊗proj1,proj2⊗proj2〉
// !((]1A⊗ ]1B) & (]2A⊗ ]2B))

!(m]1&m]2 )

// !(]1(A⊗ B) & ]2(A⊗ B))

The square (b) commutes by naturality of p. We are going to prove the commutation of the
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hexagon (a). We have:

!(A1 & A2)⊗ !(A1 & A2)⊗ !(B1 & B2)⊗ !(B1 & B2)

(b)

!proj1⊗!proj2⊗!proj1⊗!proj2//

'

��

!A1 ⊗ !A2 ⊗ !B1 ⊗ !B2

'

��
!(A1 & A2)⊗ !(B1 & B2)

(a)

(c)

c!(A1&A2)⊗c!(B1&B2)
22eeeeeeeeeeeeeeeeeeeeeeeeee

c!(A1&A2)⊗!(B1&B2)
//

m

��

!(A1 & A2)⊗ !(B1 & B2)⊗ !(A1 & A2)⊗ !(B1 & B2)

(d)

!proj1⊗!proj1⊗!proj2⊗!proj2//

m⊗m

��

!A1 ⊗ !B1 ⊗ !A2 ⊗ !B2

m⊗m

��
!((A1 & A2)⊗ (B1 & B2))

(e)

c!((A1&A2)⊗(B1&B2))//

!∆
,,YYYYYYYYYYYYYYYYYYYYYYYYYY !((A1 & A2)⊗ (B1 & B2))⊗ !((A1 & A2)⊗ (B1 & B2))

(f)

!(proj1⊗proj1)⊗!(proj2⊗proj2)//

p

��

!(A1 ⊗ B1)⊗ !(A2 ⊗ B2)

p

��
!((A1 & A2)⊗ (B1 & B2)) & ((A1 & A2)⊗ (B1 & B2))

!((proj1⊗proj1)&(proj2⊗proj2))
// !((A1 ⊗ B1) & (A2 ⊗ B2))

by (a) definition of c!(A1&A2)⊗!(B1&B2), (b) symmetry of ⊗, (c) comonoidality of m, (d) nat-
urality of m, (e) property 3 of elementary Seely categories and (f) naturality of p.
The last line is !〈proj1 ⊗ proj1, proj2 ⊗ proj2〉 and the first line pre-composed with p⊗ p is the
identity:

!(A1 & A2)⊗ !(B1 & B2)

(b)

c!(A1&A2)⊗c!(B1&B2) //

id

++

!∆⊗!∆

��
(a)

!(A1 & A2)⊗ !(A1 & A2)⊗ !(B1 & B2)⊗ !(B1 & B2)

!proj1⊗!proj2⊗!proj1⊗!proj2

��
!(A1 & A2 & A1 & A2)⊗ !(B1 & B2 & B1 & B2) (c)

!(proj1&proj2)⊗!(proj1&proj2)

��

p−1⊗p−1

22ddddddddddddddddddddddddddddddd
!A1 ⊗ !A2 ⊗ !B1 ⊗ !B2

!(A1 & A2)⊗ !(B1 & B2)

p−1⊗p−1

22ddddddddddddddddddddddddddddddd

by (a) properties of products, (b) property 3 of elementary Seely categories, and (c) natu-
rality of p.

By induction on ] also for the second diagram:

• If ] = 1, the following diagram commutes:

1 n //

n

�� id1
&&MMMMMMMMMMMMMM !1

w!1

��
!1

!id1 &&MMMMMMMMMMMMM 1

n

��
!1

by comonoidality of n for the triangle and by properties of id for the square.

• If ] = >, the following diagram commutes:

1 n // !1
w!1 //

!∗1   A
AA

AA
AA

A 1
q

��
!>

by property 3 of elementary Seely categories.
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• If ] = id, the following diagram commutes:

1 n //

n

��

!1

id!1

��
!1

!id1

// !1

• If ] = ]1 ⊗ ]2, the following diagram commutes:

!1

(a)
c!1

))SSSSSSSSSSSSSSSSS

1

(d)n

��

zzuuuuuuuuuu

n

99ssssssssssss //

n

��

1⊗ 1

(e)

n⊗n //

n⊗n

��

!1⊗ !1

b
]1
1 ⊗b

]2
1

��
1⊗ 1

(b)

(c)

n⊗1 $$I
IIIIIIII !1 c!1

// !1⊗ !1

(g)

!n]1⊗!n]2

//

m1,1

��

!]11⊗ !]21

m]11,]21

��

!1⊗ 1

(f)

!1⊗n

99ssssssssss

!1 //

55kkkkkkkkkkkkkkkkk !(1⊗ 1)
!(n]1⊗n]2 )

// !(]11⊗ ]21)

by (a) comonoidality of n, (b) properties of monoidal categories, (c) comonoidality of n,
(d) comonoidality of n, (e) induction hypothesis, (f) monoidality of ! and (g) naturality of
m.

• If ] = ]1 & ]2, the following diagram commutes:

!1

(a)
c!1

))SSSSSSSSSSSSSSSSS

1

(b)

n

;;vvvvvvvvvv //

n

��

1⊗ 1

(c)

n⊗n //

n⊗n

��

!1⊗ !1

b
]1
1 ⊗b

]2
1

��
!1

(d)

c!1 //

!∆1 ##F
FFFFFFFF !1⊗ !1

(e)

!n]1⊗!n]2

//

p1,1

��

!]11⊗ !]21

p]11,]21

��
!(1 & 1)

!(n]1&n]2 )
// !(]11 & ]21)

by (a) comonoidality of n, (b) comonoidality of n, (c) induction hypothesis, (d) property 3
of elementary Seely categories, and (e) naturality of p.

D Proof of proposition 3

Proof. • bid
A = id!A by definition.
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• b ; b: by induction on ]2:

– if ]2 = 1 or ]2 = >, we apply the definition of b]2
]1A and we obtain the following commu-

tative diagram:

!A
b
]1
A //

w!A
!!C

CC
CC

CC
CC

!]1A

w!]1A

��
1

n/q
// !1/!>

by comonoidality of b]1
A (proposition 2).

– if ]2 = id, the result is immediate.
– if ]2 = ]2′ ⊗ ]2′′ or ]2 = ]2′ & ]2′′ , we apply the definition of b]2

]1A and we obtain the
following commutative diagram:

!A
b
]1
A //

c!A

��

!]1A

c!]1A

��
!A⊗ !A

b
]1
A ⊗b

]1
A //

b
]2′ ]1
A ⊗b

]2′′ ]1
A

&&LLLLLLLLLLLLLLLLLLLLLL !]1A⊗ !]1A

b
]2′
]1A⊗b

]2′′
]1A

��
!]2′]1A⊗ !]2′′]1A

m/p
// !]2]1A

by comonoidality of b]1
A (proposition 2), and induction hypothesis.

• b>A = !∗A by property 3 of elementary Seely categories.

• b ; !proj: the following diagram commutes:

!A

(b)

b
]1&]2
A

''
c!A //

b
]1
A

��

!A⊗ !A

(c)

(d)

b
]1
A ⊗b

]2
A //

b
]1
A ⊗w!A

��

!]1A⊗ !]2A

(e)

(a)

p //

id⊗w!]2A

zztttttttttttttttttttt

id⊗!∗]2A

��

!(]1A & ]2A)

!(id&∗]2A)

��
!]1A '

// !]1A⊗ 1
id⊗q

// !]1A⊗ !> p
// !(]1A &>)

'

gg

(f)

by (a) definition of b]1&]2
A , (b) properties of the comonoid !A, (c) comonoidality of b]2

A ,
(d) property 3 of elementary Seely categories, (e) naturality of p and finally (f) monoidality

of !. We conclude by using !proj1 = !(]1A & ]2A)
!(id&∗)−−−−→ !(]1A &>) '−→ !]1A.
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E Proof of proposition 5

Starting from the ingredients given in [Bai00], we prove that SCOH satisfies all the axioms of
elementary Seely categories.

Definition 11 (Category SCOH)
The category SCOH is given by:

• objects: stratified coherent spaces

• morphisms: SCOH(A,B) is the set of cliques of A( B

Lemma 6
SCOH is a Seely category.

Proof. The categories COH and SCOH are equivalent categories: the forgetful functor from SCOH
to COH (which maps a stratified coherent space A with depth d to the coherent space Ad and which
maps a clique to itself) is full, faithful, surjective on objects (by considering constant stratified
coherent spaces) and strictly preserves all the structures.

The visibility function V maps a clique to the sub-clique containing the visible elements.
A clique x of SCOH(A,B) is right-handed if for any (a, b) ∈ x, if a is visible then b is visible

and moreover V (x) is stratified. A clique x of SCOH(A,B) is left-handed if for any (a, b) ∈ x, if b
is visible then a is visible and moreover V (x) is stratified. A clique of SCOH(A,B) is ambidextrous
if it is both left-handed and right-handed.

It is immediate that stratified cliques are ambidextrous and that V is the identity on visible
cliques (thus on stratified cliques).

Lemma 7 (Sub-categories of SCOH)
By keeping the same objects as in SCOH and by restraining morphisms to left-handed, right-handed
or ambidextrous cliques, one gets three sub-categories LHCOH, RHCOH and ACOH of SCOH.

V defines a functor (objects are not modified) from any of LHCOH, RHCOH or ACOH to
SCOH.

Proof. The identity is clearly ambidextrous and V (id) is the identity of SCOH [Bai00, section 3.3].
If x ∈ SCOH(A,B) and y ∈ SCOH(B,C) are right-handed, if (a, c) belongs to x ; y and if a is

visible, then there exists b in B such that (a, b) ∈ x (so that b is visible) and (b, c) ∈ y thus c is
visible. Moreover:

V (x ; y) = V ({(a, c) | ∃b (a, b) ∈ x ∧ (b, c) ∈ y})
= {(a, c) | v(a) ∧ v(c) ∧ ∃b (a, b) ∈ x ∧ (b, c) ∈ y}
= {(a, c) | v(a) ∧ v(c) ∧ ∃b (a, b) ∈ x ∧ v(b) ∧ (b, c) ∈ y}
= {(a, c) | ∃b (a, b) ∈ V (x) ∧ (b, c) ∈ V (y)}
= V (x) ; V (y)

28



where v(a) means “a is visible”. This entails that V (x ; y) is stratified [Bai00, section 3.3] and that
V is a functor.

In the same way, left-handed cliques and ambidextrous cliques compose, and functoriality of V
holds.

To avoid confusion with the ! construction of SCOH, we use !m for the usual multiset construc-
tion from COH (applied in SCOH). As in [Bai00, section 3.4], if x is a stratified clique, !x is defined
by !x = V (!m(x)).

The morphisms corresponding to the ?-autonomous structure of SCOH are ambidextrous and
the application of ! to them is also ambidextrous.

The morphisms corresponding to the finite products of SCOH are ambidextrous.
If x is a stratified clique, !mx is right-handed [Bai00, lemma 2].
The morphisms c!A and w!A are right-handed [Bai00, section 3.4].
The morphism mA,B is left-handed [Bai00, section 3.4], and n = {(?, [?])} is ambidextrous.
The morphism pA,B is ambidextrous [Bai00, lemma 4], and q = {(?, [ ])} is ambidextrous.

We now turn to the proof of proposition 5:

Proof. We are going to use V to show the commutation of the required diagrams in SCOH: if
a commutative diagram deals with right-handed morphisms only in SCOH, the corresponding
diagram in SCOH also commutes (and the same with left-handed morphisms).

V strictly preserves all the multiplicative and additive constructions [Bai00, section 3.4], thus
SCOH is a ?-autonomous category with finite products. Let us give the example of naturality of
the symmetry γ of ⊗ (which deals with ambidextrous morphisms only):

A⊗B
γA,B //

x⊗y

��

B ⊗A

y⊗x

��
A′ ⊗B′

γA′,B′
// B′ ⊗A′

In order to distinguish between constructions/morphisms in SCOH and SCOH (when required),
we use an exponent notation (.)0 for SCOH. If x and y are stratified cliques, we have:

γA,B ; y ⊗ x = V (γ0
A,B) ; V (y)⊗ V (x)

= V (γ0
A,B) ; V (y ⊗ x)

= V (γ0
A,B ; y ⊗ x)

= V (x⊗ y ; γ0
A′,B′)

= V (x⊗ y) ; V (γ0
A′,B′)

= x⊗ y ; γA′,B′

Concerning the exponential constructions, ! is an endofunctor [Bai00, section 3.4]. (!A, c!A,w!A)
is a symmetric ⊗-comonoid (the required diagrams use right-handed morphisms only), and if x is
a stratified clique, !x is a comonoidal morphism [Bai00, lemma 3].

m is a natural transformation [Bai00, section 3.4] defining comonoidal morphisms [Bai00,
lemma 3]. n is also a comonoidal morphism (the required diagrams use right-handed morphisms
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only). (!,m,n) is a symmetric monoidal functor since the additional required diagrams use left-
handed morphisms only.

pA,B is an isomorphism [Bai00, lemma 4]. It defines a natural transformation since the required
diagram uses right-handed morphisms only. We do it explicitly as an example:

!A⊗ !B
pA,B //

!x⊗!y

��

!(A & B)

!(x&y)
��

!A′ ⊗ !B′
pA′,B′

// !(A′ & B′)

we have:

pA,B ; !(x & y) = V (p0
A,B) ; V (!m(x & y))

= V (p0
A,B ; !m(x & y))

= V (!mx⊗ !my ; p0
A′,B′)

= V (!mx⊗ !my) ; V (p0
A′,B′)

= V (!mx)⊗ V (!my) ; pA′,B′

= !x⊗ !y ; pA′,B′

q is also an isomorphism (ambidextrous morphisms only). (!, p, q) is a symmetric monoidal functor
since the additional required diagrams use ambidextrous morphisms only.

Finally, the condition 3 of the definition of elementary Seely categories is satisfied since it
corresponds to diagrams using right-handed morphisms only.
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