EPIGENETICS, AGING AND SYMMETRY

or why DNA is not a program...

JEAN KRIVINE (CNRS & UNIVERSITÉ PARIS VII)

> ENS - Winter school ER06 2011

JOINT WORK

Arndt Benecke

Nicolas Tchitchek

breathing...

drinking...

CELLULAR DIVISION

SENESCENCE

BASICS: DNA STRUCTURE

Coding vs. non coding RNA...

NUCLEOSOMES

CHROMATIN STRUCTURE

Nature Reviews | Drug Discovery

SOME CONTINUITY?

SOME CONTINUITY?

Non standard unifying view

- Assume a set of cell phenotypes $\Phi = \{\varphi_1, \ldots, \varphi_n\}$
- A cell is Ψ-potent if it may eventually beget Ψ ⊆ Φ different types of differentiated cells
- E-sc are Φ -potent cells, H-sc are $\{\psi_1, \ldots, \psi_{11}\}$ -potent
- Differentiated cells with phenotype $\psi \operatorname{are} \{\psi\}$ -potent
- Senescent cells (aging) are Ø-potent

SPECS

- Dissipative (potency is monotonically decreasing)
- Genome preserving (each daughter cell has a copy of the mother cell's genome)
- Branching (potency graph is a directed *tree*)

IF NOT ON THE GENES, WHERE IS THE INFORMATION?

RECONFIGURING CHROMATIN

METHYLATION PATTERNS

- Markers for gene silencing
- Epigenetics (not directly on the code)!
- Source of phenotypic heterogeneity

ÅRRIVES... METHYL C SEQ!

Human DNA methylomes at base resolution show widespread epigenomic differences

Ryan Lister¹*, Mattia Pelizzola¹*, Robert H. Dowen¹, R. David Hawkins², Gary Hon², Julian Tonti-Filippini⁴, Joseph R. Nery¹, Leonard Lee², Zhen Ye², Que-Minh Ngo², Lee Edsall², Jessica Antosiewicz-Bourget^{5,6}, Ron Stewart^{5,6}, Victor Ruotti^{5,6}, A. Harvey Millar⁴, James A. Thomson^{5,6,7,8}, Bing Ren^{2,3} & Joseph R. Ecker¹

FOR COMPUTING

Genes are primitive instructions not the program!

T.	Phy	sical	Memo	ry for 3l	OCAOO	U [×□	
<u>F</u> unctions	<u>O</u> utp	ut	<u>M</u> ark/Fi	ind M <u>i</u> s	c <u>H</u> e	5	F1=He	lp
Memory from Ph	ysical	addre	ss 3E0CA0	88 for 188	bytes for	r process 'MOG	ZILLA':	
PISASSEMDLY DE	1ng dor 188 D8	ie for	32-Dit c	××	bhe	al . dl		
BENCAN62 (8862)E8 3D	E9 88	F8	×.=×	call	36958944		
BE8CA887 (8887)FF FF			*, ,*	<undef></undef>	edi		
BENCAN69 (NN69	88 45	68		*.E.*	MOV	eax, [ebp+8]		=
BE0CA06C (006C)F6 49	6D 88		×.e×	test	[eax+60],88		E
BE8CA818 (8818)6F 85	31 DD	65 69	×1×	jne/jnz	3E127D47		
BE8CA816 (8816)88 FE			××	MOV	edi, esi		
BENCAN18 (NN18)E9 32	14 68	69	×.2×	јнр	3E0CB44F		
BEOCA01D (001D)FF 4E	18		×.N.×	dec	(esi+18)		
BE0CA020 (0020)E9 63	12 68	69	×.c×	јнр	3E0CB288		
BE8CA825 (8825)98			×.×	nop			
BE8CA826 [8826	198			×.×	nop			
BEOCH027 10027	198			*.×	nop			
BENCHN28 INN28	198			*,*	nop			
BENCHN29 [NN29	198			*.*	nop			
BENCHN2H INN2H	11 88			**	MOV	ed1, ed1		
BENCHN2C [NN2C	155			XUX	push	ebp		
SEOCHO20 (0020	188 EU			** 	MOV	ebp, esp		
E00H02F 1002F	151			AUA 303	pusn	ecx		
E00H030 [0030	100 56			***	pusn	esi oci		
SECORSI (0031)64 04	12 60	69 69	~.~	XOF	esi, esi oov fe: [42]		
REALBOOK (8833	188 88	20 00	88 88	× ×	HOV	eax, 15; [10]	1	
BENCHNISE (NOISE	185 09	00 01	30 33	× ×	test	eax, [eax+roo]		
BERCARd1 (8841	189 45	FC		*.E.*	HOV	[ebotREC].eas		
BENCAN44 (NR44	18F 84	SE CA	85.88	×	ie/iz	3E126809		
BENCANAR (NN4A	188 BA	AC NO	88 88	×	HOV	esi.[eax+888	c]	
BERCAR58 [8858	185 F6			x x	test	esi.esi	-1	
BE8C8852 (8852	16F 84	5A 51	69 69	×Z0×	je/jz	3E0CF182		
BENCAN58 (NN58	188 06			×. ×	MOV	eax.esi		
BEOCA05A (005A)5E			***	DOD	esi		
PERCONTR (POED	ico			~ ~	1			هر
1							>	1

GENETIC MARKERS OF ACQUIRED FEATURES!

Cool mice

Stressed mice

THE MAINTENANCE ISSUE
METHYLATION CONTEXTS

hemi-methylated CpG island

methylated CpH context

SYMMETRY IS STABILITY

'Maintenance' DNA methyl transferase : DNMT1

WHAT ABOUT ASYMMETRIC CONTEXTS?

STEM CELL METHYLOME

OBSERVATION¹

80-100% 80-100% 60-80% 60-80% 40-60% 40-60% 20-40% 20-40% 0-20% 0-20%

mCpG

mCpH

METHYLATION PROFILE 1

Methylation profile around a 80% methylated CpT (positive strand)

Methylation profile around a 80% methylated CpG (positive strand)

METHYLATION PROFILE 2

Methylation profile around a 80% methylated CpT (negative strand)

Methylation profile around a 80% methylated CpG (negative strand)

NUCLEOTIDE PROFILE

Nucleotide probability profile given around a 80% methylated CpT

Nucleotide probability profile given around a 80% methylated CpG

POSSIBLE SEMANTICS...

SPECS

- mCpH contexts are absent from somatic cells and constitute about 25% of methylation contexts in stem cells
- Survive division
- Progressive loss?

PLASTICITY VS STABILITY

PLASTICITY VS STABILITY

MODEL FOR SHIFTING PATTERNS

BIO FACTS

- No (known) enzyme can de-methylate DNA
- about 5% bases methylated in the genome (more in stem cells, less in somatic cells)
- X-chromosome is silenced by methylation
- deregulation of methylation is involved in most cancers (causes over/under gene expression)
- DNA methylation is specific to pluri-cellular organisms

Deamination

С

G

С

Α

m

G

A

С

INVESTIGATING...

- What is known about these maintenance enzyme?
- How does epigenetic information changes with cell differentiation?

WITNESS 1

Table 7. Sequence specificity of the DNA methylation activities of recombinant Dnmt1, Dnmt3a and Dnmt3b.

					(
	CpG	CpA	CpT	CpC	
Dnmt1	$272\ (100)^1$	0 (0)	7.8(2.9)	0 (0)	
Dnmt3a	263(100)	10.5~(4.0)	0 (0)	0 (0)	
Dnmt3b	195(100)	13.9(7.1)	26.8(13.7)	6.0 (3.1)	
No enzyme	0	3.0	0	0	

J. Biochem. **133**, 737–744 (2003) DOI: 10.1093/jb/mvg095

Distinct Enzymatic Properties of Recombinant Mouse DNA Methyltransferases Dnmt3a and Dnmt3b

Isao Suetake, Junko Miyazaki, Chikako Murakami, Hideyuki Takeshima and Shoji Tajima^{*}

WITNESS 1

Table 7. Sequence specificity of the DNA methylation activities of recombinant Dnmt1, Dnmt3a and Dnmt3b.

					1
	CpG	CpA	CpT	CpC	
Dnmt1	$272\ (100)^1$	0 (0)	7.8(2.9)	0 (0)	
Dnmt3a	263 (100) <	10.5 (4.0)	0 (0)	0 (0)	
Dnmt3b	195~(100)	13.9(7.1)	26.8(13.7)	6.0(3.1)	
No enzyme	0	3.0	0	0	

J. Biochem. **133**, 737–744 (2003) DOI: 10.1093/jb/mvg095

Distinct Enzymatic Properties of Recombinant Mouse DNA Methyltransferases Dnmt3a and Dnmt3b

Isao Suetake, Junko Miyazaki, Chikako Murakami, Hideyuki Takeshima and Shoji Tajima^{*}

WITNESS 2

TABLE 1Kinetic Parameters for hTDG

Substrate	k _{max} ^a	-Fold change relative to CpG·X	-Fold change relative to CpG·T
	Min^{-1}		
G·X			
CpG·T	0.22 ± 0.04	1	1
TpG·T	0.0060 ± 0.0001	0.027	0.027
G pG•T	0.0023 ± 0.0002	0.010	0.010
ApG·T	0.00038 ± 0.00005	0.0017	0.0017
CpG·U	2.6 ± 0.3	1	12
T pG·U	0.79 ± 0.04	0.303	3.6
G pG·U	0.88 ± 0.11	0.340	4.0
ApG·U	0.117 ± 0.003	0.045	0.5
CpG·FU	202 ± 16	1	918
TpG·FU	113 ± 1	0.558	513
G pG•FU	125 ± 11	0.618	568
ApG·FU	18 ± 1	0.089	75
C p G · C lU	120 ± 6	1	546
TpG·ClU	20.9 ± 0.5	0.174	95
G pG·ClU	11.1 ± 0.3	0.093	51
ApG·ClU	1.46 ± 0.15	0.012	6.7
CpG·BrU	11.6 ± 1.0	1	53
TpG·BrU	1.2 ± 0.1	0.106	5.6
G pG · BrU	0.44 ± 0.06	0.038	2.0
ApG·BrU	0.15 ± 0.02	0.013	0.7

Excision of 5-Halogenated Uracils by Human Thymine DNA Glycosylase

ROBUST ACTIVITY FOR DNA CONTEXTS OTHER THAN CpG*

Received for publication, May 23, 2007, and in revised form, June 29, 2007 Published, JBC Papers in Press, June 29, 2007, DOI 10.1074/jbc.M704253200

THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 282, NO. 38, pp. 27578–27586, September 21, 2007 © 2007 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A.

Michael T. Morgan, Matthew T. Bennett, and Alexander C. Drohat¹

FUTURE WORK ...

RECONSTRUCTING A CRIME SCENE II

Upon encountering a G/T mismatch TDG undergoes a conformational change which opens its RD arm TDG excises the T base and enters a very stable configuration, via the binding of the catalytic domain to the opposite G base, where it starts recruiting possible partners for the next steps

