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Abstract

We generalize the intuitionistic Hyland–Ong games (and in a second step Abramsky–Jagadeesan–
Malacaria games) to a notion of polarized games allowing games with plays starting by proponent moves.
The usual constructions on games are adjusted to fit this setting yielding game models for both Intuition-

istic Linear Logic and Polarized Linear Logic. We prove a definability result for this polarized model and
this gives complete game models for various classical systems: LC, λµ-calculus, . . . for both call-by-name
and call-by-value evaluations.

Introduction

Game semantics has been used to interpret both logical systems and programming languages. The logical
step has often been a preliminary step towards the study of game models for programming languages.
Moreover Linear Logic (LL) has taken a very important place in this first step. We can classify these models
of linear logic along two main constraints:

• some of them are restricted to linear fragments (without exponential connective) of LL, such as MLL [1]
or MALL [2],

• the others are restricted to intuitionistic fragments [3, 4, 5].

In a different spirit, a model of MELL is given in [6] but introduces non-deterministic strategies to model a
deterministic language and does not lead to a completeness result.

On the computer science side, games have been developed to model different kinds of languages (PCF [4,
7], µPCF [8], Idealized Algol [9], . . . ). These games are based on call-by-name computation which corresponds
to the technical property that plays only start by opponent moves which is also the constraint appearing in
games for Intuitionistic Linear Logic (ILL). The idea of defining games constructions for proponent starting
games has been used to build a model of call-by-value computation [10] (another approach for call-by-value
games appears in [11]).

One of our goals is to liberalize these starting conditions in order to recover a real symmetry between the
two players. This is extremely natural in the spirit of LL, where duality (lost in intuitionistic systems) plays
a key role, but it is known to be a difficult problem: in Blass’s work [12], composition is not associative, and
non-determinism is required in [6]. Our solution is to put together opponent starting and proponent starting
games but to refuse plays starting by both players in the same game. The introduction of two families of
games: positive (proponent starting) and negative (opponent starting) corresponds to the notion of polarity
developed by Girard for his system of classical logic LC [13] and studied by the author in Polarized Linear
Logic (LLP).

As is clearly the case for game semantics, full LL is a difficult system to deal with. The problem is to
find a more simple fragment of LL which is expressive enough. The main proposition has been ILL, but it
refuses the linear negation connective which may be considered as the main connective of LL since it gives

1



duality. From an expressiveness view point, ILL is a good system for the study of intuitionistic logic but
the translations of classical logic into ILL are in fact ¬¬-translations. Using Girard’s idea of polarization
for classical logic, the system LLP [14] gives another possibility. It is obtained from LL by restricting to
polarized formulas and by generalizing structural rules to any negative formula (instead of only ?-formulas)
to get classical features. The study of this system is easier than for LL (proof-nets, . . . ), and the current
presentation will enforce this view point by giving a game model. Translations of various classical systems
into LLP have been developed and LLP appears as the part of LL corresponding to classical logic.

We are going to describe the notion of polarized games containing both proponent starting and opponent
starting games. They are presented as both a model of ILL and a model of LLP, where ILL has to be
considered as the natural linear setting for the study of intuitionistic logic and LLP as the natural one for
classical logic.

In order to get a model of these two systems, the key ingredient is to have a good interaction between
the numerous constructions required. The model of ILL is based on negative games only whereas LLP also
requires positive games. In particular the multiplicative structure of the two models is different since ILL is
based on a negative tensor product (denoted by ⊙ and coming from [5]), and LLP is based on a positive tensor
product (denoted by ⊗ and coming from [10]). The same story continues with the exponential structure
which transforms a negative game into a negative one for ILL (denoted by ♯) and into a positive one for LLP

(denoted by !). These two structures are related for example by the fact that ♯A⊙ ♯B _ C and !A⊗ !B⊸ C
lead to the same game but correspond to an analysis in ILL for the former and in LLP for the latter.

From the use of polarities in ludics [15], we get the idea of introducing two new lifting connectives ´ and
ˆ allowing a “linear” change of polarity (they have also been introduced by Lamarche [3], and used recently
in [16]). These two connectives act on games by adding a new move at the beginning of each play, in such
a way that ´ (resp. ˆ) turns a negative (resp. positive) game into a positive (resp. negative) one, and they
are responsible for the good cohabitation of positive and negative games.

The introduction of this large collection of connectives allows to go one step further than in LL in the
decomposition of the classical connectives and allows to give a precise analysis of the structure of games. In
particular, the separation between positive and negative games allows to solve the Blass’s problem [12] of
composing strategies. The introduction of the lifting connectives gives a solution to McCusker’s problem with
well-openness for defining the ! construction [5] and leads to a decomposition of the main LL isomorphism
!A⊗ !B ≃ !(A & B).

As our polarized games approach leads to a model of both ILL and LLP, it can be used to describe
models of many other systems. ILL has been used to embed the λ-calculus and linearized variants of the
λ-calculus [17, 18], and the author has studied generalizations of Girard’s translations of intuitionistic logic
into LL to embed many classical systems in LLP [14], using A→ B  !A⊸ B (the negative interpretation)
for the call-by-name systems: λµ-calculus [19], LKT [20], λc-calculus, . . . and A → B  !(A⊸ ?B)
(the positive interpretation) for the call-by-value systems: λµV -calculus [21], LKQ [20], . . . This unification
between call-by-name and call-by-value (an idea independently carried out by Levy [22], without linear logic)
realized by LLP through the duality positive/negative (or focalization/reversibility), in the spirit of [23, 24],
is preserved in our polarized game model. Indeed, this model is definable without any particular choice
between call-by-name and call-by-value, and we then get a model of a particular evaluation paradigm by
choosing the corresponding interpretation: negative for call-by-name and positive for call-by-value.

Games are not only used because they allow to define models for a large class of systems but also because
they lead to full completeness results, see [1, 2, 3, 4, 7] for example. We end our study of polarized games
with a full completeness (or definability) theorem with respect to LLP (without atom): a strategy on a
polarized game is the interpretation of a proof of LLP. And, as a consequence, we get the same result for
both call-by-name and call-by-value λµ-calculi.

The first section of the paper is devoted to the definition of polarized games in an HO [7] setting following
McCusker’s ideas. Section 2 describes the induced model of ILL recalling McCusker’s results. In section 3,
we present the model of LLP with the corresponding definability result. In a second part of the paper
corresponding to section 4, we develop the same ideas in an AJM [4] setting leading to another complete
model of LLP. Finally section 5 describes more explicitly the consequences on the denotational semantics of
call-by-name and call-by-value λµ-calculi.
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1 Polarized HO game semantics

In this section, we recall the key ingredients of HO-style game semantics. Our goal is to give the required
definitions with the appropriate extensions to the polarized case. Some of these definitions are quite technical
and it is possible to find more explanations in [5, 25].

1.1 Arenas and games

We introduce our notion of polarized games by extending the usual definitions of Hyland–Ong games [7] with
plays possibly starting by proponent moves. We are following McCusker’s presentation [5], but we change
the notations for some constructions in order to have a precise correspondence between games constructions
and LLP connectives, moreover we remove the Q/A distinction.

Definition 1 (Polarized arena)
A polarized arena is a tuple

A = (πA,MA, λA,⊢A)

where:

• πA ∈ {O, P} is the polarity of the arena, an O-arena (resp. P -arena) is also called negative (resp.
positive);

• MA is the set of moves ;

• λA is the labelling function fromMA to {O, P}, we use the notation mλA(m) to make explicit the label
of a move m;

• ⊢A is the enabling relation, that is a subset of ({∗} ∪MA)×MA denoted by m ⊢A n. The moves m
such that ∗ ⊢A m are the initial moves of the arena. This relation has to satisfy:

– ∗ ⊢A m⇒ λA(m) = πA ∧ ∀n ∈MA, n 0A m

– m ⊢A n⇒ λA(m) 6= λA(n)

We denote by πA (resp. λA) the opposite of πA (resp. λA) and by Mi
A (resp. Mni

A ) the initial (resp.
non-initial) moves of A.

Definition 2 (Justified sequence)
A justified sequence s on A is a sequence of moves of A with, for each non-initial move n, a pointer to an
earlier move m such that m ⊢A n, we say that m justifies n in s.

If there exists a sub-sequence n0, . . . , nk of moves of s such that ni justifies ni+1, we say that n0

hereditarily justifies nk in s. If n is a move of a justified sequence s, there is a unique initial move m which
hereditarily justifies n in s.

Notations and conventions.

• ε is the empty sequence of moves.

• ≤ is the prefix order on (justified) sequences of moves.

• The P -prefix order is defined by s ≤P t if s ≤ t and s ends by a P -move (including s = ε).

• clP (.) is the P -prefix closure of a set of (justified) sequences.

• If s is a (justified) sequence of moves, “m is a move of s” will always mean that m is an occurrence of
move of s.

• When the context is not ambiguous, we will sometimes say “move” instead of “move with its pointer”.
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Definition 3 (View)
Let s be a justified sequence, we define a sub-sequence called the proponent view psq by: pεq = ε, psmP q =
psqmP , psmOq = mO if m is initial, and psmtnOq = psqmnO if m justifies n. The opponent view xsy is
defined exactly as the proponent view by exchanging the two players.

The bi-view pxsqy is given by: pxεqy = ε, pxsmqy = m if m is initial, and pxsmtnqy = pxsmqyn if m justifies n.

Definition 4 (Legal position)
A justified sequence s is a legal position if:

• alternation: tmn ≤ s⇒ λ(m) 6= λ(n)

• proponent visibility: tmP ≤ s⇒ m points in ptq if m is not initial

• opponent visibility: tmO ≤ s⇒ m points in xty if m is not initial

The set of the legal positions of an arena A is denoted by LA.
A legal position s is well opened if the only initial move in s is the first one.

Lemma 1
If s is a legal position, pxsqy = xpsqy = pxsyq.

Proof: We prove the first equality by induction on the length of s:

• pxεqy = ε = xpεqy.

• If mO is initial, pxsm
Oqy = mO and xpsm

Oqy = xm
O
y = mO.

• If mP is initial, pxsmP qy = mP and xpsmP qy = xpsqmP
y = mP .

• If m justifies nO, pxsmtnOqy = pxsmqynO and xpsmtnOqy = xpsmqnO
y = xpsmqynO, with pxsmqy =

xpsmqy by induction hypothesis.

• If m justifies nP , pxsmtnP qy = pxsmqynP and xpsmtnP qy = xpsmtqnP
y = xpsmqynP because if

m ∈ psmtq (true by proponent visibility), psmq is the prefix of psmtq ending by m. Moreover
pxsmqy = xpsmqy by induction hypothesis.

Definition 5 (Projection on initial moves)
Let s be a legal position in A and I be a set of occurrences of initial moves of s, the projection s ↾I of s on
I is the justified sub-sequence of s of the moves hereditarily justified by a move of I .

If m is an occurrence of initial move of s and J is a set of occurrences of moves of s justified by m, the
projection s ↾mJ is the justified sub-sequence of s containing m, the moves of J and the moves hereditarily
justified by a move of J .

If m is initial and justifies n and if the moves of K are justified by n, we define s ↾mnK in the same
spirit, ...

We can see that with the conditions described above, s ↾I , s ↾mJ , s ↾mnK , ... are legal positions in A,
and s ↾mJ , s ↾mnK , ... are well opened.

The main constructions we need on polarized arenas are the following:

Sum of arenas. Let A and B be two arenas of the same polarity, we define the arena A + B by:

• πA+B = πA = πB

• MA+B =MA +MB (disjoint sum)

• λA+B = [λA, λB]

• ∗ ⊢A+B m ⇐⇒ ∗ ⊢A m ∨ ∗ ⊢B m

• m ⊢A+B n ⇐⇒ m ⊢A n ∨m ⊢B n

If s is a legal position of A+B, s ↾A (resp. s ↾B) is the justified sub-sequence of s containing the moves
of A (resp. B).
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Product of arenas. If A and B have the same polarity, A×B is defined by:

• πA×B = πA = πB

• MA×B =Mi
A ×M

i
B +Mni

A +Mni
B

• λA×B(m1, m2) = λA(m1) = λB(m2) if (m1, m2) ∈Mi
A ×M

i
B

• λA×B(m) = [λA, λB ](m) if m ∈Mni
A +Mni

B

• ∗ ⊢A×B (m1, m2)

• (m1, m2) ⊢A×B n ⇐⇒ m1 ⊢A n ∨m2 ⊢B n if (m1, m2) is initial

• m ⊢A×B n ⇐⇒ m ⊢A n ∨m ⊢B n if m is not initial

If s is a well opened legal position of A×B, s ↾A (resp. s ↾B) is the justified sub-sequence of s containing
the moves of A (resp. B) thus the first (resp. second) component of the initial move.

Remark: Defining the notion of projection on a component for a non well opened position of A×B would
be more complex, this is why we will restrict ourselves to this particular case in the definition of the product
of arenas. This is sufficient for what we want in this paper since this construction will mainly be used from
section 3.3 and only with well opened games.

Exponential of arenas. Let A and B be two arenas of the same polarity, we define the arena BA by:

• πBA = πA = πB

• MBA =MA +MB

• λBA = [λA, λB ]

• ∗ ⊢BA m ⇐⇒ ∗ ⊢B m

• m ⊢BA n ⇐⇒ m ⊢A n ∨m ⊢B n ∨ (∗ ⊢B m ∧ ∗ ⊢A n)

If s is a legal position of BA, s ↾A (resp. s ↾B) is the justified sub-sequence of s containing the moves
of A (resp. B).

Lifting of arenas. Let A be an arena, ˜A is the arena of opposite polarity defined by:

• π˜A = πA

• M˜A = {◦}+MA where ◦ is a new move not in MA

• λ˜A = λA for the moves of MA

• λ˜A(◦) = πA

• ∗ ⊢˜A ◦

• ◦ ⊢˜A m ⇐⇒ ∗ ⊢A m

• m ⊢˜A n ⇐⇒ m ⊢A n if m ∈MA

Arenas allow to describe the “game board”, and to obtain a game we add a set of accepted plays giving
a “game rule”.

Definition 6 (Polarized game)
A polarized game is a tuple

A = (πA,MA, λA,⊢A,PA)

where (πA,MA, λA,⊢A) is a polarized arena and PA, called the set of plays of A, is a non-empty prefix-closed
set of legal positions such that if s ∈ PA and I is a set of occurrences of initial moves of s, s ↾I ∈ PA.

A game is well opened if all its plays are well opened.
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The condition s ↾I ∈ PA in the previous definition is used to obtain PA ⊂ P♯A and is immediately true
for well opened games.

We denote by PP
A the plays ending by P -moves (including the empty play).

We turn now to the description of the various constructions of polarized games we are interested in.
In the sequel, we will use N , M , L, . . . for negative games (or formulas) and P , Q, R, . . . for positive

ones. A, B, C, . . . denote games (or formulas) of any polarity.

Dual. A⊥ = (πA,MA, λA,⊢A,PA)

Top. ⊤ = (O, ∅, ∅, ∅, {ε})

Bottom. ⊥ = (O, {◦}, λ⊥(◦) = O, {(∗, ◦)}, {ε, ◦})

Negative tensor. If M and N are negative, the arena of M ⊙N is M + N and PM⊙N = {s ∈ LM+N |
s ↾M ∈ PM ∧ s ↾N ∈ PN}.

Implication. If M and N are negative, the arena of M _ N is N M and PM_N = {s ∈ LNM | s ↾M ∈
PM ∧ s ↾N ∈ PN}.

With. If M and N are negative, the arena of M & N is M + N and PM&N = PM ∪ PN (the only common
play is ε).

Par. If M and N are well opened negative games, the arena of M `N is M ×N and PM`N = {s ∈ LM×N |
s ↾M ∈ PM ∧ s ↾N ∈ PN}.

Sharp. If N is negative, ♯N has the same arena as N and P♯N = {s ∈ LN | s ↾n ∈ PN , ∀n initial}.

Lift. If P is positive, the arena of ˆP is ˜P and PˆP = ◦.PP + {ε}.

Positive constructions. The positive constructions are obtained by duality: 0 = ⊤⊥, 1 = ⊥⊥, P ⊗ Q =
(P⊥ ` Q⊥)⊥, P ⊕Q = (P⊥ & Q⊥)⊥, ♭P = (♯P⊥)⊥ and ´N = (ˆN⊥)⊥.

Linear implication. P ⊸ N = P⊥ ` N which is just a notation.

Exponentials. !N = ´♯N and ?P = ˆ♭P = (!P ⊥)⊥ (just notations).

The constraints on the first move and on projections are sufficient to automatically get the usual switching
conditions for ⊙, `, ♯, . . . That is, only one player is allowed to switch between the components of a
game during a play, which is opponent for a “conjunctive” connective (⊙, &, ♯, . . . ) and proponent for a
“disjunctive” connective (`, _, . . . ).

Example 1 (A polarized game)
The arena of the game ˆ´(⊤⊙⊥)`(?1&(♯⊥_ ⊥)) is negative, has 6 moves {(ˆ, ?)O, (ˆ,⊥)O, ´P , 1P , ♯P ,⊥O},
and its enabling relation is:

´ ⊥
(ˆ, ?)

∗ 1
(ˆ,⊥)

♯

The following justified sequence is a play in this game: (ˆ, ?) ´ ⊥ 1.

Remark: The `-construction is a variant of ⊗ defined in [10]. The lifting constructions ´ and ˆ already
appeared in Lamarche’s games [3] but their use here is much in the spirit of Girard’s ludics [15]. The novelty
is to put these constructions together with an important place given to the lifts:

6



− '

&

$

%

+'

&

$

%

� -

q

i

´ !

()⊥

ˆ ?

⊤ ⊥

& ` ♯

0 1

⊕ ⊗ ♭

⊙ _
To compare the numerous constructions, we now introduce a strong notion of isomorphism of games

without any reference to strategies (defined later). The idea is to represent the main properties of logical
connectives by structural properties of games in a simpler way than the use of categorical isomorphisms.

Definition 7 (Play isomorphism)
A p-isomorphism between two games A and B of the same polarity is a bijective function f between PA and
PB which preserves the length and such that f respects:

• prefixes : if s ≤ t then f(s) ≤ f(t),

• pointers : if the ith move of s points to the jth move of s then the ith move of f(s) points to the jth

move of f(s),

• bi-views : if pxsaqy = pxtaqy and f(sa) = s′b then f(ta) = t′b.

Two games A and B are p-isomorphic, denoted by A ≃p B, if there exists a p-isomorphism between A and
B.

Remark: The notion of arena we use is coming from [5, 25], and is slightly more general than the original
one in [7] since the enabling relation is not required to correspond to a forest ordering. This makes our
presentation more general and helps us to give a simpler definition of the product of arenas.

However this requires to add the bi-view condition in the previous definition, while in the forest case,
this condition is just f(sa) = s′b ⇒ f(ta) = t′b since the bi-view is determined by the last move. In our
case this would be too strong to get N0 ` (M0 & L0) ≃p (N0 ` M0) & (N0 ` L0) in proposition 1. Here,
p-isomorphisms are not necessarily coming from isomorphisms between the underlying arenas.

A game construction has a given p-property if the underlying isomorphism is a p-isomorphism. For
example, “⊙ is p-commutative” means M ⊙N ≃p N ⊙M for any negative games M and N .

Proposition 1 (Structure of constructions)
All the binary constructions are p-commutative and p-associative (except _ and ⊸), and:

⊥ p-unit for `: ⊥` N0 ≃p N0

⊤ p-unit for ⊙: ⊤⊙N ≃p N
⊤ p-unit for &: ⊤& N ≃p N
⊤ p-left-unit for _: ⊤_ N ≃p N
` p-distributive over &: N0 ` (M0 & L0) ≃p (N0 ` M0) & (N0 ` L0)
⊤ p-zero for `: ⊤` N0 ≃p ⊤
⊤ p-right-zero for _: N _ ⊤ ≃p ⊤

M _ N0 ≃p ˆM⊥ ` N0

´(M ⊙N) ≃p ´M ⊗ ´N
♯(M & N) ≃p ♯M ⊙ ♯N
!(M & N) ≃p !M ⊗ !N

(P0 ⊗Q0)⊸ L0 ≃p P0 ⊸ (Q0 ⊸ L0)
(M ⊙N)_ L ≃p M _ (N _ L)

⊤ = ♯⊤
1 = ´⊤ = !⊤
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where L, M and N are negative games, L0, M0 and N0 are well opened negative games and P0 and Q0 are
well opened positive games.

Proof: We prove two key cases M _ N0 ≃p ˆM⊥ ` N0 and N0 ` (M0 & L0) ≃p (N0 ` M0) & (N0 ` L0).

We define the function f from PM_N0
into PˆM⊥`N0

by f(ε) = ε and f(ns) = (◦, n)s. We show that
f is a p-isomorphism:

• f is injective by definition and if t is a non-empty play in PˆM⊥`N0
it starts by a move (◦, n) so

that it is in the image of f , thus f is bijective.

• f preserves the length, and if s ≤ t (with s 6= ε), we can write s = ns′ and t = nt′ with s′ ≤ t′

and we have f(s) = (◦, n)s′ ≤ (◦, n)t′ = f(t).

• f does not modify pointers.

• f only modifies the first move of plays thus the last condition is straightforward.

If L0, M0 and N0 are well opened negative games, we define the function f from PN0`(M0&L0) into
P(N0`M0)&(N0`L0) by f(ε) = ε, f((n, (1, m))s) = (1, (n, m))(1, s) with m ∈ MM0

and f((n, (2, l))s) =
(2, (n, l))(2, s) with l ∈ ML0

(where (i, s) (i = 1, 2) is obtained by replacing any occurrence of move
n ∈ MN0

in s by (i, n)). We show that f is a p-isomorphism:

• f is injective by definition and the inverse function is easy to define so that f is bijective.

• f preserves the length, and respects prefixes.

• f does not modify pointers.

• If pxsaqy = pxtaqy, then sa and ta have the same initial move (because the game is well opened)
which is of the shape (n, (i, c)). If a is in MM0

or inML0
, the result is immediate since b = a, if

a is in MN0
, b = (i, a) and the result also holds.

The other cases are left to the reader.

Remark:

• The decomposition of the ! connective into two distinct operations gives rise to a decomposition of
the main LL isomorphism !(M & N) ≃p !M ⊗ !N through ´(M ⊙N) ≃p ´M ⊗ ´N and ♯(M & N) ≃p

♯M ⊙ ♯N .

• M _ N ≃p ˆM⊥`N can be interpreted as a linear version of Girard’s translation of the intuitionistic
implication in LL: M → N = ?M⊥ ` N .

• The introduction of polarities gives the p-associativity of the ⊕-construction which is stronger than
the result obtained for the corresponding negative connective of [5] and could be related to the fact
that this negative connective is a weak coproduct. The negative construction can be decomposed by
the positive one ⊕ into ˆ(´M ⊕ ´N).

A natural direction in game semantics is to move constraints on plays to constraints on strategies (in
order to use arenas instead of games for example). Since we want to build a game model in which it is possible
to interpret both ILL and LLP in order to compare them, we must be able to make a difference between the
two games M & N and M ⊙N which are based on the same arena (as for N and ♯N). Without plays, we
cannot be precise enough in the description of games and we would lose some equations of proposition 1. In
order to build a model of LLP only, it is possible to show that arenas are sufficient and Laird’s results for
the λµ-calculus [8] can be extended to a ` connective.

1.2 Strategies

We are going to introduce the notion of strategy. They will be used to interpret proofs and programs. From
a categorical view point, strategies correspond to morphisms.
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Definition 8 (Strategy)
A strategy σ on the game A, denoted by σ : A, is a non-empty P -prefix-closed subset of PP

A . Moreover we
require some additional properties:

• determinism: if saP ∈ σ and sbP ∈ σ then sa = sb;

• innocence: if sabP ∈ σ, t ∈ σ, ta ∈ PA and psaq = ptaq then tab ∈ σ.

A strategy on a negative (resp. positive) game can be represented as a partial function from proponent views
s of odd (resp. even) length to P -moves with pointers into s, called the view function (see [25] for example).

We define some properties of strategies:

• A strategy σ is finite if the sum of the lengths of the proponent views in the graph of its view function
is finite. We define the size |σ| of a finite strategy σ to be this sum.

• A strategy σ : A is total if when s ∈ σ and saO ∈ PA there exists some b such that sab ∈ σ (moreover,
if A is positive ∃b, b ∈ σ). This is equivalent to ask the view function to be total.

• A strategy σ : M _ N is strict, denoted by σ : M
•_ N , if either PN = {ε} or σ contains a play nm

with m ∈MM for each initial move n of N .

Lemma 2 (Views and p-isomorphisms)
Let f be a p-isomorphism from A to B, f(psq) = pf(s)q.

Proof: By induction on the length of s:

• f(pεq) = f(ε) = ε = pεq = pf(ε)q.

• f(psmP q) = f(psqmP ) = f(psq)m′P , and by induction hypothesis we have f(psq)m′P = pf(s)qm′P =
pf(s)m′P q, moreover pxpsqmP qy = pxsmP qy (by lemma 1) so that f(smP ) = f(s)m′P .

• If mO is initial, f(psmOq) = f(mO) = m′O, moreover pxmOqy = pxsmOqy so that f(smO) = f(s)m′O

and pf(smO)q = pf(s)m′Oq = m′O.

• If m justifies nO, f(psmtnOq) = f(psmqnO) = f(psmq)n′O = pf(sm)qn′O and pf(smtnO)q =
pf(sm)t′′n′′Oq = pf(sm)qn′′O, moreover pxpsmqnOqy = pxsmtnOqy so that n′ = n′′.

Lemma 3 (Strategies and p-isomorphisms)
Let σ be a strategy on a game A and f be a p-isomorphism from A to B, f(σ) is a strategy on B.

Proof: The set of plays f(σ) is non-empty because ε = f(ε). If s ∈ f(σ) and s′ is a P -prefix of s of length
k, there exists some t such that s = f(t). Let t′ be the P -prefix of t with length k (which belongs to
σ), by definition of a p-isomorphism: f(t′) is a P -prefix of s of length k thus s′ = f(t′) and s′ ∈ f(σ).

If saP ∈ f(σ) and sbP ∈ f(σ), we have sa = f(t1a
′) and sb = f(t2b

′) with t1a
′ ∈ σ and t2b

′ ∈ σ,
so that s = f(t1) = f(t2) which implies t1 = t2 by injectivity of f . By determinism of σ, we have
t1a

′ = t2b
′ and finally sa = f(t1a

′) = f(t2b
′) = sb.

If sabP ∈ f(σ), t ∈ f(σ), ta ∈ PB and psaq = ptaq, there exist s′a′b′ ∈ σ and t′ ∈ σ such that sab =
f(s′a′b′) and ta = f(t′a′′). Then we have, by lemma 2, f(ps′a′q) = psaq = ptaq = f(pt′a′′q) so that
ps′a′q = pt′a′′q (in particular a′ = a′′) which gives t′a′b′ ∈ σ by innocence of σ and finally f(t′a′b′) ∈
f(σ) but ps′a′b′q = ps′a′qb′ = pt′a′qb′ = pt′a′b′q entails pxs

′a′b′qy = pxt
′a′b′qy so that f(t′a′b′) = tab ∈

f(σ).

Using this lemma, we will often say that a strategy σ : A is a strategy on B if there exists a canonical
p-isomorphism f between A and B (in particular for the p-isomorphisms given by proposition 1) identifying
σ and f(σ).

Definition 9 (Identity)
Let N be a negative game, the identity idN on N

•_ N is the strict strategy given by idN = {s ∈ PP
N1_N2

|

∀t ≤P s, t ↾N1
= t ↾N2

} (the indexes are only used to distinguish the two occurrences of N).

9



Definition 10 (Composition)
Let σ : L _ M and τ : M _ N be two strategies, the composition σ ; τ is the strategy on L _ N defined
by:

σ ; τ = {s ↾L_N ∈ P
P
L_N | s ∈ int(L, M, N) ∧ s ↾L_M ∈ σ ∧ s ↾M_N ∈ τ}

where int(L, M, N) is the set of justified sequences s of (L _ M) _ N such that s ↾L_M ∈ PL_M and
s ↾M_N ∈ PM_N . s ↾L_N is obtained by replacing the pointer of the L-moves pointing in M (thus on an
initial M -move) by the justifier of the M -move (that must be an initial N -move).

Composition can be generalized to obtain a strategy on N from a strategy σ : M and a strategy τ : M _
N since M ≃p ⊤_M .

Proposition 2 (HO category)
Negative games with strategies on M _ N as morphisms between M and N give a category denoted by HO−.

Proof: See [5].

We can extend the game constructions to strategies (i.e. from objects to morphisms). Some associated
categorical structures are given in the following sections (propositions 3, 4, 6, 7, 14, lemma 5, ...). Let
σ : M1 _ N1 and τ : M2 _ N2 be two strategies:

Tensor product. The strategy σ⊙τ is {s ∈ PP
M1⊙M2_N1⊙N2

| s ↾M1_N1
∈ σ∧s ↾M2_N2

∈ τ} : M1⊙M2 _
N1 ⊙N2.

Cartesian product. The strategy σ & τ is σ ∪ τ = {s ∈ PP
M1&M2_N1&N2

| s ↾M1_N1
∈ σ∧ s ↾M2_N2

∈ τ} :
M1 & M2 _ N1 & N2.

Par product. If M1, N1, M2 and N2 are well opened, we define the set of plays σ ` τ as clP ({s ∈
PP

M1`M2_N1`N2
| s ↾M1_N1

∈ σ∧ s ↾M2_N2
∈ τ}). This set is a strategy on M1`M2 _ N1`N2 only

if σ : M1
•_ N1 is strict or τ : M2

•_ N2 is strict, and σ ` τ is strict if both σ and τ are strict (see
example 2).

We denote idN ` τ by N ` τ , which is a strategy for any strategy τ since idN is a strict strategy on
N

•_ N .

Negative lifting. The strict strategy ˆσ is clP ({◦M1
◦N1

s | s ∈ σ}) : ˆN⊥
1

•_ ˆM⊥
1 .

Positive lifting. If M and N are well opened and if ρ : M ` N , the strict strategy ´ρ is clP ({m◦ns |
(m, n)s ∈ ρ}) : ˆN⊥ •_M .

Promotion. If ρ : ♯M _ N , the strategy ρ† is {s ∈ P♯M_♯N | s ↾n ∈ ρ, ∀n initial} : ♯M _ ♯N .

Contraction. Let N be a negative game, if t is a play in ♯N0 _ ♯N1 ⊙ ♯N2 (where the indexes are just
used to distinguish the occurrences), we denote by ti (i = 1, 2) the sub-sequence of t containing the
moves in ♯Ni and the moves in ♯N0 hereditarily justified by an initial move in ♯Ni. We define the strict
strategy c♯N = {s ∈ PP

♯N0_♯N1⊙♯N2
| ∀t ≤P s, ti ∈ id♯N , i = 1, 2} : ♯N

•_ ♯N ⊙ ♯N .

Weakening. wN is the strict strategy on N
•_ ⊤ defined by wN = {ε}.

Example 2 (Par product of strategies)
The construction of the par product of two strategies contains a kind of synchronization scheme between the
two strategies. If we consider three strategies σ : M1

•_ N1, τ1 : M2
•_ N2 and τ2 : M2 _ N2 containing the

following plays (with M1, N1, M2 and N2 well opened):

σ τ1 τ2

M1
•_ N1 M2

•_ N2 M2 _ N2

n1 n′
1 n′

1

m1 m′
1 n′

2

n′
3

m′
1

10



we have the following plays in σ ` τ1 and σ ` τ2:

σ ` τ1 σ ` τ2

M1 ` M2
•_ N1 ` N2 M1 ` M2 _ N1 ` N2

(n1 , n′
1) (n1 , n′

1)
(m1 , m′

1) n′
2

n′
3

(m1 , m′
1)

In each case, the two starting moves are synchronized into a unique one in N1 ` N2 (as required by the
definition of this arena). In the case of two strict strategies, this leads to two moves in M1 and M2 which are
immediately synchronized (and then the play is given as for a tensor product). In σ ` τ2, σ is immediately
ready to synchronize on the left but has to wait that τ2 wants to do so. In the case of two non-strict
strategies, it is not possible to build such synchronizations as described in remark 3.2.

Example 3 (Contraction)
Let N be a negative game with at least two moves n1 and n2 (with ∗ ⊢N nO

1 ⊢N nP
2 ), the following play

belongs to c♯N :
c♯N

♯N
•_ ♯N ⊙ ♯N

n1

n1

n2

n2

n1

n1

n2

n2

2 Intuitionistic Linear Logic

We are now able to recall McCusker’s results [5] about the relation between negative games and Intuitionistic
Linear Logic (ILL). Due to the “opponent starts” constraint appearing in many game models, ILL has been
the natural linear setting to define linear game models (for example [3]).

2.1 Linear part: IMALL

As we will do for LLP, we first consider the linear (without exponential) fragment of ILL.

Linear intuitionistic formulas.

A ::= X | I | A⊙A | A_ A | ⊤ | A & A

Sequents are of the shape Γ ⊢ A where Γ is a multiset of formulas.

Rules.

ax
A ⊢ A

Γ ⊢ A ∆, A ⊢ C
cut

Γ, ∆ ⊢ C

Γ ⊢ A ∆ ⊢ B ⊙R
Γ, ∆ ⊢ A⊙B

Γ, A, B ⊢ C
⊙L

Γ, A⊙B ⊢ C

IR
⊢ I

Γ ⊢ C
IL

Γ, I ⊢ C

11



Γ, A ⊢ B _R
Γ ⊢ A_ B

Γ ⊢ A ∆, B ⊢ C _L
Γ, ∆, A_ B ⊢ C

Γ ⊢ A Γ ⊢ B &R
Γ ⊢ A & B

Γ, A ⊢ C
&1

L
Γ, A & B ⊢ C

Γ, B ⊢ C
&2

L
Γ, A & B ⊢ C

⊤
Γ ⊢ ⊤

Proposition 3 (McCusker)
(HO−,⊙,⊤,_) is a symmetric monoidal closed category with finite products (&,⊤).

From a denotational model point of view, this means:

Corollary 3.1
If we interpret atoms by negative games and each connective by the corresponding construction of games (I
is interpreted by ⊤), HO− is a denotational model of IMALL.

2.2 ILL

Adding exponentials leads to the ILL system which is expressive enough to embed the λ-calculus [26].

Intuitionistic formulas.

A ::= X | I | A⊙A | A_ A | ⊤ | A & A | ♯A

Rules. We add the rules for the ♯-connective:

♯Γ ⊢ A
♯

♯Γ ⊢ ♯A

Γ, A ⊢ C
♯d

Γ, ♯A ⊢ C

Γ, ♯A, ♯A ⊢ C
♯c

Γ, ♯A ⊢ C

Γ ⊢ C ♯w
Γ, ♯A ⊢ C

Proposition 4 (⊙-comonoid ♯N)
If N is a negative game, the triple (♯N, c♯N ,w♯N ) is a ⊙-comonoid in HO−.

Proof: Since associativity and commutativity are straightforward, we only prove the unit property: we
show that c♯N ; (w♯N ⊙ id♯N ) : ♯N _ ⊤⊙ ♯N is the canonical strategy on ♯N

•_ ⊤⊙ ♯N coming from

id♯N : ♯N
•_ ♯N with ♯N _ ♯N ≃p ♯N _ ⊤⊙♯N . If s ∈ c♯N ;(w♯N⊙id♯N ), by definition of composition,

s is the projection on ♯N0 _ ⊤ ⊙ ♯N3 of a sequence s0 in (♯N0 _ ♯N1 ⊙ ♯N2) _ ⊤ ⊙ ♯N3 such that
s0 ↾♯N0_♯N1⊙♯N2

∈ c♯N and s0 ↾♯N1⊙♯N2_⊤⊙♯N3
∈ w♯N ⊙ id♯N (the indexes are used to distinguish the

occurrences of N). This entails that s0 ↾♯N1_⊤ = ε and s0 ↾♯N2
= s0 ↾♯N3

, moreover since s0 ↾♯N1
= ε

we have s0 ↾♯N0
= s0 ↾♯N2

and finally s ↾♯N0
= s ↾♯N3

.

Together with the definition of σ†, this proposition allows to give an interpretation of the ♯, ♯c and ♯w
rules but not of the ♯d rule! It is not possible to define a strategy on ♯N _ N adequate to interpret the ♯d
rule, except if N is a well opened game (see [5] for more details).

Dereliction. Let N be a well opened negative game, the plays of idN are plays in ♯N _ N since any play
of N is a play of ♯N by definition 6. We define dN = idN : ♯N

•_ N .

This constraint of well openness required for the definition of dN is the reason why ♯ is not a comonad
on HO− and why HO− is not a model of ILL. However this is sufficient to give a model of the λ-calculus or
PCF since any simple type is interpreted as a well opened negative game.

The use of ⊗ instead of ⊙ and ! instead of ♯ in LLP can be seen as a way of using only well opened games
and being able to define dN for any required N .
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3 Polarized linear logic

Polarized Linear Logic has been introduced as a subsystem of Linear Logic with more structure. It is
easier to study but expressive enough to interpret classical logic. The main deterministic classical systems
have translations into LLP (see in particular appendixes C and D). Moreover LLP allows to interpret both
call-by-name and call-by-value classical logics by pointing out negative or positive formulas.

Our main goal is to move from the intuitionistic setting described above which is appropriate for the study
of the λ-calculus to a more classical setting as realized by LLP, with moreover the possibility of using well
opened games only. As a first step, we will consider only the fragment MALLP of LLP without exponential
connective.

3.1 Linear part: MALLP

This calculus is a linear fragment (without contraction and weakening) of polarized linear logic, the full
system will be studied in section 3.3. In this linear setting, exponentials are replaced by lifting operators
used to change the polarity (with rules corresponding to promotion and dereliction).

Linear polarized formulas. Formulas are split into two parts: positive and negative ones which interact
through ´ and ˆ.

P ::= X⊥ | 1 | 0 | P ⊗ P | P ⊕ P | ´N
N ::= X | ⊥ | ⊤ | N ` N | N & N | ˆP

Rules.

ax
⊢ N, N⊥

⊢ Γ, N ⊢ ∆, N⊥

cut
⊢ Γ, ∆

⊢ Γ, P ⊢ ∆, Q
⊗

⊢ Γ, ∆, P ⊗Q

⊢ Γ, M, N `
⊢ Γ, M ` N

⊢ Γ, P
⊕1

⊢ Γ, P ⊕Q

⊢ Γ, Q
⊕2

⊢ Γ, P ⊕Q

⊢ Γ, M ⊢ Γ, N
&

⊢ Γ, M & N

1
⊢ 1

⊢ Γ
⊥

⊢ Γ,⊥
⊤

⊢ Γ,⊤

with at most one positive formula in Γ for the ⊤-rule

⊢ N , N
´

⊢ N , ´N
⊢ Γ, P

ˆ
⊢ Γ, ˆP

where N contains only negative formulas

Lemma 4 (Positive formula)
If ⊢ Γ is provable in MALLP, Γ contains at most one positive formula.

Proof: By induction on the size of the proof, with the two key constraints of the rules in the ⊤-case and
in the ´-case.

3.2 Linear HO model

The game interpretation of ILL is mainly based on the constructions ⊙, _, & and ♯, we are going to use `,
ˆ, & and ! for LLP as constructions of well opened games.

Remark: ⊥, ⊤ and ˆP are well opened and if M and N are well opened then N ⊥, M _ N , M &N , M `N
are well opened.

13



Definition 11 (Well opened HO category)
The category woHO− is the full subcategory of HO− of well opened negative games, and woHO•

− is the
subcategory of woHO− containing only strict strategies.

Lemma 5
` is a bifunctor in woHO•

−.

Proof: The key point is to verify that, if σ : M1
•_ N1 and τ : M2

•_ N2 are two strict strategies, we have
(σ ` idM2

) ; (idN1
` τ) = σ ` τ = (idM1

` τ) ; (σ ` idN2
) : M1 ` M2

•_ N1 ` N2.

Remark: This result is false for general strategies because ` is only defined if at least one of the two
strategies is strict. The fact that ` is not bifunctorial in the full category corresponds to the premonoidal
structure of control categories of P. Selinger [23] (see appendix B). All this has also to be linked with the
problem of constructions on strategies for Blass games [12], solved here by adding the strictness constraint.

Lemma 6
Let P be a positive game, there is a one to one correspondence between strategies on P and strategies on ˆP .

If N1, ..., Nk are well opened negative games, a strategy σ on N1 ` . . . ` Nk is said to be strict in Ni if
either one of the games has a set of plays reduced to {ε} or if σ contains a play nn i with ni ∈ MNi

for each
initial move n of N1 ` . . .`Nk. A strategy σ : P⊥ •_ N1 ` . . .`Nk is strict according to definition 8 if and
only if the corresponding strategy on ˆP ` N1 ` . . . ` Nk is strict in ˆP according to this new definition.

Formulas are interpreted as well opened games of the corresponding polarity. Given an interpretation
of atoms X (resp. X⊥), ... as negative (resp. positive) well opened games, the various connectives are
interpreted by the corresponding game constructions. Since we have already used the appropriate notations,
we will use the same notation for a formula and for the corresponding game. In particular, the interpretation
of the sequent ⊢ Γ will be denoted by Γ and has to be understood as N1 ` . . . ` Nk if Γ = N1, . . . , Nk and
as ˆP ` N1 ` . . . ` Nk if Γ = P, N1, . . . , Nk (according to lemma 4).

A proof π of the sequent ⊢ N1, . . . , Nk is interpreted by a strategy σπ on N1` . . .`Nk (with the particular
case N1 ` . . .`Nk = ⊥ if k = 0), and a proof π of ⊢ P, N1, . . . , Nk by a strategy σπ on ˆP `N1 ` . . .`Nk

strict in ˆP which can also be seen as a strict strategy on P ⊥ •_ N1 ` . . . ` Nk (if k = 0, σπ is a strategy
on ˆP or equivalently on P according to lemma 6). We make a strong use of lemma 3 (in particular for
ˆM⊥ ` N ≃p M _ N).

Axioms.

• The ax-rule introducing ⊢ N, N⊥ is interpreted by the strategy on ˆN⊥ ` N strict in ˆN⊥

corresponding to idN : N
•_ N .

• The 1-rule is interpreted by the strategy {ε, ◦} on 1.

• The ⊤-rule is interpreted by the strategy {ε} (strict in any component).

Cut rule. The interpretation of the two premises gives a strategy σ : Γ`N and a strict strategy τ : N
•_ ∆.

The cut-rule is interpreted by the composition σ ; (Γ ` τ) : Γ`∆ which is strict in ˆP if Γ contains P .

Multiplicatives.

• ⊥: by lemma 3, a strategy on Γ gives us a strategy on Γ `⊥.

• `: this rule does not modify the interpretation.

• ⊗: if σ : ˆP ` Γ strict in ˆP and τ : ˆQ ` ∆ strict in ˆQ are the interpretations of the two
premises, we obtain the strategy σ ` τ : ˆ(P ⊗Q) ` Γ ` ∆ strict in ˆ(P ⊗Q).

Additives.

• &: if σ is the strategy on Γ ` M and τ is the strategy on Γ ` N , we use the strategy σ ∪ τ on
Γ ` (M & N).

• ⊕i: if σ : ˆPi ` Γ, we obtain the strategy σ : ˆ(P1 ⊕ P2) ` Γ.
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Lifts.

• ˆ: this rule does not modify the interpretation.

• ´: if σ is a strategy on N `N , we obtain the strategy on N`ˆ´N strict in ˆ´N which corresponds
to ´σ : ˆN⊥ •_ N .

Remark: The MIX-rule (sometimes added to linear logic, see for example [1]) cannot be interpreted in a
natural way:

⊢ Γ ⊢ ∆
MIX

⊢ Γ, ∆

if γ1γ2 ∈ σ : Γ and δ1δ2 ∈ τ : ∆ we want to build plays in Γ ` ∆ in a symmetric way but after the move
(γ1, δ1) we have to make a choice between γ2 and δ2 and we cannot choose the two moves if we want a
deterministic strategy. This corresponds again to the non-bifunctoriality of ` in woHO−.

The cut elimination procedure π → π′ for MALLP is simply defined in the natural way coming from the
LL cut elimination procedure [27] (see appendix A).

Theorem 1 (Correctness)
If π → π′ then σπ = σπ′ .

Proof: Since they are easy to reconstruct, we omit the pointers in the plays.

• Axiom cut: If the cut-formula is negative in the axiom, it is just composition with the identity; if
this formula is positive, we use idN ` Γ = idN`Γ by lemma 5.

• ´−ˆ: let σ : N `N and τ : N
•_ Γ be two strategies, we have to prove σ ; (τ `N ) = τ ; (Γ`´σ) :

Γ`N . Let s be a play in σ ; (τ `N ), it is the projection on Γ`N of a sequence s1 = (γ, ν)(n, ν)s′1
in PN`N_Γ`N . We define s2 = (γ, ν)(γ, ◦)ns′1 in PΓ`ˆN⊥_Γ`N , we have s2 ↾Γ`ˆN⊥ ∈ τ by
definition of τ `N and s2 ∈ Γ`´σ because s1 ↾N`N ∈ σ, moreover s2 ↾Γ`N = s1 ↾Γ`N = s thus
s ∈ τ ; (Γ ` ´σ). We prove the converse in the same way.

• ´−∗: Let σ : N`N`M and τ : N
•_ Γ be two strategies, we have to show that ´(σ ; (τ `N ` M)) =

´σ ; (τ `N `ˆ´M). If s is a play of ´(σ ; (τ `N ` M)), by definition of ´, s = (γ, ν, ◦)◦ms′ with
s1 = (γ, ν, m)s′ ∈ σ ; (τ `N `M). By definition of composition, s1 is the projection on Γ`N `M
of a sequence s0 = (γ, ν, m)(n, ν, m)s′0 in PN`N`M_Γ`N`M , let s2 = (γ, ν, ◦)(n, ν, ◦)◦ms′0
in PN`N`ˆ´M_Γ`N`ˆ´M , we have s2 ↾N`N`ˆ´M ∈ ´σ because s0 ↾N`N`M ∈ σ and we have
s2 ↾N_Γ ∈ τ . Moreover s = s2 ↾Γ`N`ˆ´M thus s ∈ ´σ ; (τ `N `ˆ´M). We prove the converse in
the same way.

• ⊗−`: By lemma 5, if σ : M
•_ Γ and τ : N

•_ ∆, we have σ ` τ `Ξ = σ ` N ` Ξ ; Γ ` τ ` Ξ =
M ` τ ` Ξ ; σ ` ∆ ` Ξ.

• Additive steps are basically proved as in [7].

• 1−⊥: Straightforward.

• ⊤: The strategy {ε} composed with any strategy gives the strategy {ε} (because strategies are
never empty).

In fact this result may be extended to a focalized calculus for MALL (see [15] for example) by replacing
the constraint of a negative context in the ´-rule by a focalization constraint (stoup [13] or η-constraint [28]
for example), even if provable sequents in these systems may contain several positive formulas (see [14]).
These polarized games are a good candidate to establish a precise link between ludics and games semantics
(in the spirit of [29]) which is not surprising since they have been developed by an introduction of ludics
ideas in a more traditional game setting.
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The HO game model we have obtained for MALLP is not fully complete as shown by the following
example:

( ˆ1 ` ˆ1 )
•_ ˆ1

◦
(◦ , ◦)
1

1

and

( ˆ1 ` ˆ1 )
•_ ˆ1

◦
(◦ , ◦)

1
1

This pseudo-contraction, coming from ˆ1 ≃p ?1, is not definable by a proof in MALLP, otherwise the last
rule of the corresponding proof would be:

⊢ ´⊥, ˆ1 ⊢ ´⊥, ˆ1
⊗

⊢ ´⊥⊗ ´⊥, ˆ1

and the problem appears in the splitting of the context for ⊗-rules.
Nevertheless, using a propagation condition as in ludics [15, 29] or using the recent work of Laird on

coherent games [18], it should be possible to add constraints to the model in order to go closer towards
completeness.

Remark: The notion of categorical models of MALLP corresponding to theorem 1 has not been clearly
described yet (Melliès and Selinger are working on such questions [30]). This is why we just mention here
the known categorical structures (lemma 5 for example) and we give the model of MALLP directly through
its concrete description.

3.3 LLP

To get a really expressive system corresponding to classical logic, we go from MALLP to the full system LLP.
In this way we will moreover get the definability property.

Polarized formulas. We replace the lifted formulas of MALLP by the corresponding exponential versions.

P ::= X⊥ | 1 | 0 | P ⊗ P | P ⊕ P | !N
N ::= X | ⊥ | ⊤ | N ` N | N & N | ?P

Rules. The two lifting rules are replaced by promotion and dereliction:

⊢ N , N
!

⊢ N , !N

⊢ Γ, P
?d

⊢ Γ, ?P

where N contains only negative formulas

And we add structural rules on negative formulas.

⊢ Γ, N, N
?c

⊢ Γ, N

⊢ Γ
?w

⊢ Γ, N

Instead of the usual LL structural rules on ?-formulas, LLP allows structural rules on any negative formula
N . So that LLP is obtained from LL by first restricting linear formulas to polarized ones and then by using
the properties of the induced system to generalize structural rules.

3.4 HO model

In order to interpret classical logic, we have to restrict to some particular games allowing us to define
structural rules: contraction and weakening. These multiple games are closed under the constructions
required to interpret polarized formulas and have the required structure (`-monoid) for the interpretation
of the structural rules.
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Definition 12 (Multiple game)
A game A is a multiple game if it is well opened and:

• restriction: if s ∈ PA, ∗ ⊢A m and m ⊢A n then s ↾mn ∈ PA.

• interleaving : if s ∈ LA is a well opened position with an initial move m, if I + J is a partition of the
occurrences of moves justified by m in s and if s ↾mI , s ↾mJ ∈ PA then s ∈ PA.

Proposition 5 (Multiple constructions)
Multiplicity is closed under the following constructions:

• 1, 0, ⊤ and ⊥ are multiple games.

• If N is negative and P is positive, !N and ?P are multiple games.

• If P , Q, M and N are multiple then P ⊗Q, P ⊕Q, M ` N and M & N are multiple games.

Proof: The cases of ⊤, ⊥ and M &N are straightforward. Up to duality, we only look at the two remaining
negative cases (since A is multiple if and only if A⊥ is multiple).

• ?P case:

– The only initial move is ◦, thus a well opened legal position in L?P is ◦s with s ∈ LP .

– ?P = ˆ♭P is well opened as mentioned in remark 3.2.

– If ◦s ∈ P?P and ◦ ⊢?P n then ∗ ⊢P n, by definition of ♭P we have s ↾n ∈ PP thus ◦s ↾◦n ∈ P?P .

– Let I +J be a partition of the occurrences of initial moves of s such that ◦s ↾◦I , ◦s ↾◦J ∈ P?P ,
that is s ↾I , s ↾J ∈ P♭P thus s ∈ P♭P and ◦s ∈ P?P .

• M ` N case:

– If M and N are well opened then M ` N is well opened as mentioned in remark 3.2.

– Let s be a play in PM`N and (m, n) and a be two occurrences of moves of s such that
∗ ⊢M`N (m, n) and (m, n) ⊢M`N a. Let assume a ∈ M , we have m ⊢M a and by definition
of M `N all the moves of s ↾(m,n)a (except the first one) are in M which is multiple so that
s ↾(m,n)a ↾M ∈ PM and s ↾(m,n)a ∈ PM`N .

– If s ∈ LM`N is well opened, (m, n) is its initial move and I + J is a partition of the occur-
rences of moves justified by (m, n) in s such that s ↾(m,n)I , s ↾(m,n)J ∈ PM`N then we have
s ↾M ↾mI = s ↾(m,n)I ↾M ∈ PM and s ↾M ↾mJ = s ↾(m,n)J ↾M ∈ PM thus s ↾M ∈ PM since M
is multiple. In the same way, s ↾N ∈ PN so that s ∈ PM`N .

Polarized contraction. Let N be a multiple negative game, if t is a play in N1 ` N2 _ N0 (where the
indexes are just used to distinguish the occurrences), we can decompose it into t = t0t

′ where t0
contains only moves in N0 and t′ starts by a move in N1 ` N2 (this entails that any move of t′ in N0

comes after at least one move in N1 `N2). We denote by ti (i = 1, 2) the sub-sequence of t containing
t0, all the moves in Ni, and the moves of t′ in N0 before which the last move in N1 ` N2 is in Ni.

We define the strategy cpol
N = {s ∈ PP

N1`N2_N0
| ∀t ≤P s, ti ∈ idN , i = 1, 2} : N ` N

•_ N .

Polarized weakening. wpol
N is the strategy on ⊥

•_ N defined by wpol
N = {ε} ∪ {n◦ | n ∈ Mi

N}.

Example 4 (Polarized contraction)
Let N be a multiple negative game with at least three moves n1, n2 and n3 (with ∗ ⊢N nO

1 ⊢N nP
2 ⊢N nO

3 ),
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the following play belongs to cpol
N :

cpolN

N ` N
•_ N

n1

(n1 , n1)
n2

n2

n3

n3

n2

n2

Proposition 6 (`-monoid N)

If N is a multiple negative game, the triple (N, cpolN ,wpol
N ) is a `-monoid in woHO•

−.

Proof: Since associativity and commutativity are straightforward, we only prove the unit property: we
show that (wpol

N ` idN ) ; cpolN : ⊥ ` N
•_ N is the canonical strategy on ⊥ ` N

•_ N . If s ∈

(wpol

N ` idN ) ; cpolN , by definition of composition, s is the projection on ⊥` N0 _ N3 of a sequence s0

such that s0 ↾⊥`N0_N1`N2
∈ wpol

N ` idN and s0 ↾N1`N2_N3
∈ cpolN (the indexes are used to distinguish

the occurrences of N).

If s0 ↾⊥_N1
= ε, we have s0 = ε and s = ε. If s0 ↾⊥_N1

= n◦ for some initial move n of N , we know

that s0 ↾N0
= s0 ↾N2

and, since s0 ↾N1
= n, s0 ↾N2

= s0 ↾N3
(by definition of cpol

N ) so that s ↾N0
= s ↾N3

with s ↾⊥ = ◦.

Given an interpretation of atoms as multiple games of the corresponding polarity, we now interpret
formulas as multiple games and proofs as strategies. The interpretation of axioms, cuts, multiplicatives and
additives is the same as for the linear case (section 3.2). For the exponential rules, we have:

• !: If σ : N ` N , we define !σ = {s ∈ PP
?N⊥_N

| ∀m initial and ∗ ⊢N n, s ↾m◦n ∈ ´σ} : ?N⊥ •_ N and
the interpretation of the proof is the corresponding strategy on N ` ˆ!N strict in ˆ!N .

• ?d: If σ : P⊥ •_ Γ then we obtain a strategy on ?P ` Γ from dP⊥ ; σ : ♯P⊥ •_ Γ.

• ?c: If σ : Γ ` N ` N , we compose it with Γ ` cpol
N to obtain a strategy on Γ ` N .

• ?w: If σ : Γ, we compose it with Γ ` wpol

N to obtain a strategy on Γ ` N , using Γ ≃p Γ `⊥.

Theorem 2 (Correctness)
If π → π′ then σπ = σπ′ .

Proof: This is an adaptation of the corresponding result for Hyland–Ong games [7, 5, 25] where the
linear connectives are treated like in the proof of theorem 1. The cut elimination steps are given in
appendix A.

Corollary 2.1 (Finiteness and totality)
The interpretation σπ of a proof π is a finite total strategy.

Proof: Let π′ be a normal form of π, by theorem 2, we have σπ = σπ′ . It is then easy to verify that the
interpretation of a proof without cuts is a finite total strategy.

Remark: As given by proposition 2, the composition of two strategies is a strategy. Since our model of
LLP is based on finite total strategies, it would be natural to wonder if finite total strategies also compose.
It is possible to prove it from the definability theorem of the next section. However it would be nice to
have a more semantical proof. Such a proof can certainly be obtained from Abramsky’s notion of winning
strategies [31].
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3.5 HO definability

As a converse of theorem 2 and corollary 2.1, we prove a definability result for LLP without atom, showing
that every finite total strategy is the interpretation of an LLP proof. We first show how it is possible to get
rid of the multiplicative connectives.

Lemma 7 (Additive type)
Let N be a game corresponding to a negative formula of LLP without atom, there exist some negative formulas
N1, . . . , Nn such that N ≃p

˘
1≤i≤n ?N⊥

i . Moreover this isomorphism is definable.

Proof: By induction on the size of N with a strong use of proposition 1:

• If N = ⊤, we have n = 0.

• If N = ⊥, we use ⊥ ≃p ?0 = ?⊤⊥.

• If N = ?P , we have the result with n = 1.

• If N = M1 & M2, it is straightforward by induction hypothesis for M1 and M2.

• If N = M1`M2, by induction hypothesis, we have M1 ≃p

˘
1≤i≤p ?M ′

i
⊥

and M2 ≃p

˘
1≤j≤q ?M ′′

j
⊥

.
By p-distributivity of ` over & and with ?P ` ?Q ≃p ?(P ⊕Q) we get:

N ≃p (
¯

1≤i≤p

?M ′
i
⊥

) ` (
¯

1≤j≤q

?M ′′
j
⊥

)

≃p

¯

1≤i≤p
1≤j≤q

(?M ′
i
⊥ ` ?M ′′

j
⊥

)

≃p

¯

1≤i≤p
1≤j≤q

?(M ′
i & M ′′

j )⊥

These isomorphisms are known to be provable in LL thus in LLP.

Before going into the proof of the definability theorem, we first prove some “reversibility” lemmas, showing
that in some particular cases, it is always possible to extract a last rule from a strategy.

Lemma 8 (Bang lemma)
If σ : ?M⊥ •_ N is a strict strategy then σ = !(dM ; σ ` M) where we use dM : ?M⊥ ` M .

Proof: We use the notation σ0 = dM ; σ `M : N `M . The empty play ε is both in σ and !σ0. A play of
length 2 in σ is n◦ where n is an initial move of N and ◦ is the first move of ?M⊥. Such a play n◦ is
also in !σ0 and moreover any play of length 2 in !σ0 is a play n◦.

Since σ and !σ0 are innocent, they are characterized by their proponent views. If s is a proponent view
of σ of length > 2, it has the shape s = n◦mt where m is the only initial move of M in s. We easily see
that (n, m)t ∈ σ0 so that s ∈ !σ0. Conversely, a proponent view of !σ0 is also of the shape s = n◦mt
with (n, m)t ∈ σ0 and it entails s = n◦mt ∈ σ by definition of the composition.

Lemma 9 (Plus lemma)
If σ : (

˘
1≤j≤q ?M⊥

j )
•_ ?N⊥ then there exists 1 ≤ j0 ≤ q such that σ : ?M⊥

j0

•_ ?N⊥.

Proof: The game ?N⊥ has a unique initial move ◦, this entails that all the non-empty plays of σ have the
shape ◦m0s with the same m0 (by determinism). Let j0 be the index such that m0 ∈ M?M⊥

j0

, a play

in (
˘

1≤j≤q ?M⊥
j )_ ?N⊥ containing the move m0 is entirely contained in ?M⊥

j0
_ ?N⊥, so that σ is

a strategy on ?M⊥
j0

•_ ?N⊥.

Theorem 3 (Definability)
Let A be a polarized formula without atom, if σ is a finite total strategy on A, σ is the interpretation of a
proof of ⊢ A in LLP.
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Proof: We will in fact prove that, moreover, if σ is a strategy on ˆP `N strict in ˆP (i.e. on P ⊥ •_ N ),
σ is the interpretation of a proof of ⊢ P,N in LLP.

By lemma 6, we can assume that A is negative, and by lemma 7, we can restrict ourselves to the case
of types

˘
1≤i≤p ?N⊥

i and (
˘

1≤j≤q ?M⊥
j )

•_ ˘
1≤i≤p ?N⊥

i . We prove the result by induction on the
pair (|σ|, |A|) where the size |.| of a formula is its number of symbols (and the size of a finite strategy
has been defined page 9). We first reduce the cases p 6= 1 or q 6= 1 to the case p = 1 and q = 1:

• If p = 0, the game is empty and σ is {ε}, that corresponds to a ⊤-rule.

• If p > 1, then σi = σ ↾?N⊥
i

(resp. σ ↾(&1≤j≤q?M⊥
j )_?N⊥

i
) is a definable strategy by induction

hypothesis with σ =
⋃

1≤i≤p σi, which corresponds to &-rules.

• If p = 1 and q = 0, σ cannot be strict on ⊤
•_ ?N⊥

1 .

• If p = 1 and q > 1, by the plus lemma (lemma 9), σ is a strategy on ?M⊥
j0

•_ ?N⊥
1 and is definable

by induction hypothesis. The strategy σ is obtained on (
˘

1≤j≤q ?M⊥
j )

•_ ?N⊥
1 by ⊕-rules.

We now prove the cases of formulas ?N⊥ or ?M⊥ •_ ?N⊥. For the second one, by the bang lemma
(lemma 8), we just have to prove the definability of dM ;σ`M . This is a smaller strategy on ?N⊥`M
thus definable by induction hypothesis.

If σ is a strategy on ?N⊥, either there is only one move justified by the initial one in each play and
σ = dN ; σ′, this corresponds to a dereliction rule on a strategy of the same size on a smaller formula
(thus definable). Or there exists a play with two occurrences of moves justified by the initial one. We
define the strategy σ1 on ?N⊥

1 ` ?N⊥
2 (the indexes are just used to distinguish the occurrences) by:

if s is a play in σ, the play in ?N⊥
1 ` ?N⊥

2 , obtained by putting the first proponent move and the

moves justified by it in ?N⊥
1 and the other ones in ?N⊥

2 , is a play in σ1. We have σ = σ1 ; cpol
?N⊥ . It is

easy to see that σ1 = dN ; σ2 where σ2 is a strategy on N
•_ ?N⊥. By applying the p-isomorphism of

lemma 7 to N and the plus lemma, we get a strategy σ3 on a game ?M⊥ •_ ?N⊥. Finally, we apply
the bang lemma and we obtain a strategy σ4 on ?N⊥ ` M which is smaller than σ. This last step
is a bit complicated because if N = ?N ′⊥ we may have |σ| = |σ1| = |σ2| = |σ3|, but we always have
|σ4| < |σ3|.

Using the usual techniques of game semantics and the notion of uniform families of strategies, dinatural
transformations, . . . the definability result can certainly be extended to formulas with atoms.

Example 5 (Catch)
We consider the finite total strategy on ?(!?1⊗ !⊥) ` ?(1⊕ 1) (≃p !(!?1⊸ ?1) ⊸ ?(1⊕ 1)) containing the
P -prefixes of the following two plays:

?(!?1 ⊗ !⊥) ` ?(1⊕ 1) ?(!?1 ⊗ !⊥) ` ?(1⊕ 1)
(◦ , ◦) (◦ , ◦)

(◦ , ◦) (◦ , ◦)
◦ ◦

t f

where t and f correspond to the moves coming from the two non-initial moves of ?(1⊕ 1).
This strategy corresponds to the catch function (A → A) → B which tells if its argument is strict or

not, using the fact that ?(1⊕ 1) corresponds to the usual interpretation of booleans B in game models [7].
If we apply our definability theorem to this strategy, we build a proof in the following bottom-up way:

• we first move the arena to its corresponding additive form:

?(!?1⊗ !⊥) ` ?(1⊕ 1) ≃p ?(!?!⊤⊗ !?0) ` ?(!⊤⊕ !⊤)

≃p ?(!(?!⊤& ?0)⊕ (!⊤⊕ !⊤))

• there are several moves justified by the initial one in the plays thus we isolate the first one corresponding
to the initial move of !(?!⊤& ?0), this means that the proof ends by:
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...
⊢ !(?!⊤& ?0)⊕ (!⊤⊕ !⊤), ?(!(?!⊤& ?0)⊕ (!⊤⊕ !⊤))

?d
⊢ ?(!(?!⊤& ?0)⊕ (!⊤⊕ !⊤)), ?(!(?!⊤& ?0)⊕ (!⊤⊕ !⊤))

?c
⊢ ?(!(?!⊤& ?0)⊕ (!⊤⊕ !⊤))

• we obtain a central strategy which always plays in the left-hand side of the ⊕, by application of the
⊕-lemma and of the !-lemma, the proof contains:

...

⊢ ?!⊤& ?0, ?(!(?!⊤& ?0)⊕ (!⊤⊕ !⊤))
!

⊢ !(?!⊤& ?0), ?(!(?!⊤& ?0)⊕ (!⊤⊕ !⊤))
⊕1

⊢ !(?!⊤& ?0)⊕ (!⊤⊕ !⊤), ?(!(?!⊤& ?0)⊕ (!⊤⊕ !⊤))

...

• up to a p-isomorphism, we have a strategy on:

(?!⊤& ?0) ` (?(!(?!⊤& ?0)⊕ (!⊤⊕ !⊤)))

≃p(?!⊤` ?(!(?!⊤& ?0)⊕ (!⊤⊕ !⊤))) & (?0 ` ?(!(?!⊤& ?0)⊕ (!⊤⊕ !⊤)))

which means that the proof contains a &-rule:

...

⊢ ?!⊤, ?(!(?!⊤& ?0)⊕ (!⊤⊕ !⊤))

...

⊢ ?0, ?(!(?!⊤& ?0)⊕ (!⊤⊕ !⊤))
&

⊢ ?!⊤& ?0, ?(!(?!⊤& ?0)⊕ (!⊤⊕ !⊤))

...

• and so on ...

• if we move back to the original formula, we eventually get the following LLP proof:

1
⊢ 12 ⊕1

⊢ 12 ⊕ 13
?w

⊢ ?11, 12 ⊕ 13
?d

⊢ ?11, ?(12 ⊕ 13)
!

⊢ !?11, ?(12 ⊕ 13)

1
⊢ 13 ⊕2

⊢ 12 ⊕ 13
⊥

⊢ ⊥, 12 ⊕ 13
?d

⊢ ⊥, ?(12 ⊕ 13)
!

⊢ !⊥, ?(12 ⊕ 13)
⊗

⊢ !?11 ⊗ !⊥, ?(12 ⊕ 13), ?(12 ⊕ 13)
?d

⊢ ?(!?11 ⊗ !⊥), ?(12 ⊕ 13), ?(12 ⊕ 13)
?c

⊢ ?(!?11 ⊗ !⊥), ?(12 ⊕ 13) `
⊢ ?(!?11 ⊗ !⊥) ` ?(12 ⊕ 13)

where the indexes are used to clarify the structure of the proof.
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3.6 Comparison with ILL

We have extracted two particular game models from our general framework of polarized games: one for ILL

and one for LLP. We are going to show how it is possible to reconstruct some of the constructions used in
the first one from the second one.

Definition 13 (Lifting functor)
Let M and N be two negative games and σ be a strategy on M _ N , we define LN = ˆN ⊥ and Lσ = ˆσ :
ˆN⊥ •_ ˆM⊥.

A similar functor has also been considered in [16].

Lemma 10 (Lift lemma)
If σ : ˆN⊥ •_ ˆM⊥ is a strict strategy, there exists a unique strategy τ : M _ N such that σ = Lτ .

Proposition 7
L is a full and faithful strong symmetric monoidal functor from (HO−,⊙, I) to (woHO•

−
op

,`,⊥).

Proof: Straightforward verifications.

Since the functor L is full and faithful, we can give a correspondence between strategies from M to N
and the associated strict strategies from ˆN⊥ to ˆM⊥. In particular, using also L♯N = ?N⊥ (by definition
of ?):

σ ⊙ τ : M1 ⊙M2 _ N1 ⊙N2
L
←→ σ ` τ : ˆN⊥

1 ` ˆN⊥
2

•_ ˆM⊥
1 ` ˆM⊥

2

σ† : ♯M _ ♯N
L
←→ !σ : ?N⊥ •_ ?M⊥

c♯N : ♯N _ ♯N ⊙ ♯N
L
←→ cpol

?N⊥ : ?N⊥ ` ?N⊥ •_ ?N⊥

w♯N : ♯N _ I
L
←→ wpol

?N⊥ : ⊥
•_ ?N⊥

♯N ⊙ ♯M ≃ ♯(N & M)
L
←→ ?N⊥ ` ?M⊥ •

≃ ?(N & M)⊥

Notice that the right constructions are more general than the left ones since they have been defined for more
general games than only those in the image of L.

Another structure of (HO−,⊙, I) that can be explained by (woHO•
−

op
,`,⊥) but not directly with the

functor L is the curryfication isomorphism for (⊙,_) which is a consequence of the corresponding one for
(⊗,⊸):

(M ⊙N)_ L ≃p ´(M ⊙N)⊸ L

≃p (´M ⊗ ´N)⊸ L

≃p ´M ⊸ ´N ⊸ L

≃p M _ N _ L

Remark: Some of these results can be interpreted as a partial embedding of ILL in an extension of LLP

with liftings, following the way polarized games are able to describe both systems together. Without being
completely formal, the key ideas of the syntactical counterpart of this section are the following.

We restrict intuitionistic formulas to the sub-grammar:

A ::= X | M _ A | ⊤ | A & A
M ::= A | ♯A | I | M ⊙M

We can show, up to the equations of proposition 1, that a formula A is a negative formula in the variant of
LLP using both liftings and exponentials, and that a formula M is such that ´M gives a positive formula.

A proof of M1, . . . , Mk ⊢M in ILL is then interpreted as a proof of the sequent ⊢ ˆM⊥
1 , . . . , ˆM⊥

k , ´M in
LLP with liftings with a strong use of the derivable rule:

⊢ Γ, ´N
REV

⊢ Γ, N
= ⊢ Γ, ´N

ax
⊢ N⊥, N

ˆ
⊢ ˆN⊥, N

cut
⊢ Γ, N

Left rules of ILL are in this way encoded with the corresponding right rules of LLP: ⊙L with `, ♯c with ?c, ...
in the spirit of the contravariant functor L of proposition 7.
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4 Polarized AJM model

The first part of the paper has used the HO game setting to describe models of ILL and LLP. We want to
show now that all this work is possible in an AJM setting. Instead of replaying all the previous results, we
will only concentrate on the description of the AJM polarized model of LLP (see [4] for the description of
the corresponding model of ILL).

4.1 Games

Starting from the definitions of [4], we introduce the required extensions to get a notion of polarized game
and the constructions we need.

Definition 14 (Polarized game)
A polarized game is a tuple

A = (πA,MA, λA,PA,≡A)

where:

• πA ∈ {O, P} is the polarity of the game;

• MA is the set of moves;

• λA is the labelling function fromMA to {O, P};

• PA is a non-empty prefix-closed set of alternated sequences of moves starting by moves of polarity πA,
called the set of plays ;

• ≡A is an equivalence relation on plays such that:

– it respects the length: s ≡A t⇒ |s| = |t|

– it is prefix-closed: if s ≡A t and s′ ≤ s, t′ ≤ t with |s′| = |t′| then s′ ≡A t′

– it is extensible: if s ≡A t and sa ∈ PA then there exists some tb ∈ PA such that sa ≡A tb

A move is initial in A if it appears as the first move of a play of A. We will only consider well opened games,
that is such that if a is an initial move of A, it never appears as a non-initial move (i.e. sa ∈ PA ⇒ s = ε).

There are two main differences between these games and the HO games: we do not have an enabling
relation anymore, so that plays are just sequences of moves (no pointers), and we add the equivalence relation
on the set of plays.

The “linear” game constructions ⊤, ⊥, _ and & are the same as the HO ones for πA, MA, λA and PA

and they can be found in [4]. We just give the precise definitions of the ` and ˆ constructions:

Par. If M and N are negative games, M ` N is the negative game defined by:

• MM`N =Mi
M ×M

i
N +Mni

M +Mni
N

• λM`N (m1, m2) = λM (m1) = λN (m2) if (m1, m2) ∈Mi
M ×M

i
N

• λM`N (m) = [λM , λN ](m) if m ∈Mni
M +Mni

N

• PM`N = {s | s ↾M ∈ PM ∧ s ↾N ∈ PN}

• s ≡M`N t if s ↾M ≡M t ↾M , s ↾N ≡N t ↾N , and s and t have the same interleaving.

Two plays s and t of M ` N are said to have the same interleaving if whenever the kth move (k ≥ 2)
of s is in M (resp. N), the kth move of t is also in M (resp. N).

Lift. If P is a positive game, ˆP is the negative game defined by:

• MˆP = {◦}+MP where ◦ is a new move not in MP

• λˆP = λP for the moves ofMP
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• λˆP (◦) = O

• PˆP = ◦.PP + {ε}

• ◦s ≡ˆP ◦t if s ≡P t

For the other linear constructions we give the description of ≡A only:

s ≡A⊥ t ⇐⇒ s ≡A t
s ≡⊤ t ⇐⇒ s = t
s ≡⊥ t ⇐⇒ s = t

s ≡M_N t ⇐⇒ s ↾M ≡M t ↾M and s ↾N ≡N t ↾N
and s, t have the same interleaving

s ≡M&N t ⇐⇒ s, t ∈ PM ∧ s ≡M t or s, t ∈ PN ∧ s ≡N t

The positive constructions are obtained using the definition of A⊥ and the corresponding negative construc-
tion.

The true difference with HO games is in the definition of ♯ which replaces the use of pointers by indexes:

Sharp. If N is a negative game, ♯N is the negative game defined by:

• M♯N = N×MN

• λ♯N (i, n) = λN (n)

• P♯N = {s | ∀i ∈ N, s ↾i ∈ PN} where s ↾i is the sub-sequence of s obtained by replacing any move
of the shape (i, n) by n and by removing the other moves.

• s ≡♯N t if there exists a permutation θ of N such that for each i, s ↾i ≡N θ(t) ↾i and s and θ(t)
have the same interleaving (where θ(t) is obtained by replacing any move (i, n) of t by (θ(i), n)).

Two plays s and t of ♯N are said to have the same interleaving if whenever the kth move of s has index
i, the kth move of t has also index i.

The main novelty required to define a model of LLP with AJM games is the appropriate notion of multiple
games.

Definition 15 (Multiple game)
A game A is a multiple game if the non-initial moves of any play are pairs starting with an integer (called
the index ) and:

• restriction: if s ∈ PA and i ∈ N, s(i) ∈ PA where s(i) is the sub-sequence of s containing the first move
and the moves with index i.

• renaming : if ϕ is an injective function N→ N, ϕ(s) ∈ PA and s ≡A ϕ(s) where ϕ(s) is obtained from
s by replacing any index i by ϕ(i).

• interleaving : if s1, s2 ∈ PA with the same initial move and disjoint sets of indexes, and s is an
interleaving of s1 and s2, we have s ∈ PA. Moreover, in the same conditions, if s is an interleaving of s1

and s2 and t is an interleaving of t1 and t2 with the same interleaving, s1 ≡A t1∧s2 ≡A t2 ⇐⇒ s ≡A t.

An interleaving of two plays s and t of a multiple game with the same initial move m is an alternated sequence
u starting by m, such that there exists a partition of the non-initial moves of u into two sub-sequences s ′

and t′ with s = ms′ and t = mt′.

Remark: As a consequence of the definition, we have the switching condition: if two successive moves of a
play have different indexes then the polarity of the second one is πA.

Proposition 8 (Multiple constructions)
Multiplicity is closed under the following constructions:

• 1, 0, ⊤ and ⊥ are multiple games.
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• If N is negative and P is positive, !N and ?P are multiple games.

• If P , Q, M and N are multiple then P ⊗Q, P ⊕Q, M ` N and M & N are multiple games.

Proof: The positive cases are deduced from the negative ones, the result for ⊤, ⊥ and M & N is straight-
forward, we concentrate on the two other cases ?P and M ` N :

• ?P case:

– If s ∈ P?P then the play obtained from s(i) by erasing the indexes is in PˆP thus s(i) ∈ P?P .

– The renaming by an injective function is easy to check.

– If s1, s2 ∈ P?P and s is an interleaving of s1 and s2, let i be an index, since s1 and s2 have
disjoint indexes, s(i) = s1(i) or s(i) = s2(i), thus by removing the indexes of s(i) we get a
play in PˆP and, by definition, s ∈ P?P . If t is an interleaving of t1 and t2 with the same
interleaving as s, if s1 ≡?P t1 and s2 ≡?P t2 then there exist two permutations θ1 and θ2

such that sk ↾i ≡ˆP θk(tk) ↾i. Using the fact that s1 and s2 (resp. t1 and t2) have disjoint
indexes, we can build a permutation θ such that s ↾i ≡ˆP θ(t) ↾i thus s ≡?P t. For the
converse, if s ≡?P t, we have θ such that s ↾i ≡ˆP θ(t) ↾i and we just use θ1 = θ2 = θ to get
sk ↾i ≡ˆP θk(tk) ↾i.

• M ` N case:

– Since s(i) ↾M = (s ↾M )(i), we have s(i) ↾M ∈ PM and s(i) ↾N ∈ PN by hypothesis on M and
N , thus s(i) ∈ PM`N .

– Let ϕ be in injection, since ϕ(s) ↾M = ϕ(s ↾M ) we have the result.

– If s is an interleaving of s1 and s2, s ↾M is an interleaving of s1 ↾M and s2 ↾M (and the same
for s ↾N) so that s ∈ PM`N . If t is an interleaving of t1 and t2 with the same interleaving as s,
if s1 ≡M`N t1 and s2 ≡M`N t2 then sk ↾M ≡M tk ↾M and s ↾M (resp. t ↾M ) is an interleaving
of s1 ↾M (resp. t1 ↾M ) and s2 ↾M (resp. t2 ↾M ) so that, by hypothesis on M , s ↾M ≡M t ↾M ,
and the same for N . The converse is proved in the same spirit.

4.2 Strategies

In order to get a denotational model, we have to introduce the notion of equivalence of strategies.

Definition 16 (Strategy and partial equivalence)
A strategy σ on the game A, denoted by σ : A, is a non-empty P -prefix-closed subset of sequences in PP

A

such that if saP ∈ σ and sbP ∈ σ then a = b.
Two strategies σ and τ on the game A are equivalent (σ ≈ τ) if:

sab ∈ σ, t ∈ τ, sa ≡A ta′ ⇒ ∃ta′b′ ∈ τ, sab ≡A ta′b′

together with the symmetric condition.

Proposition 9 (AJM category)
Negative games with equivalence classes of strategies on M _ N as morphisms give a category denoted by
AJM−.

Proof: See [4].

A p-isomorphism f : A→ B should now preserve the equivalence relation: s ≡A s′ ⇐⇒ f(s) ≡B f(s′).
It is easy to check that properties of proposition 1 are still correct.

Lemma 11
Let σ be a strategy on a game A such that σ ≈ σ and f be a p-isomorphism from A to B, f(σ) is a strategy
on B and f(σ) ≈ f(σ).

Proof: By lemma 3, f(σ) is a strategy on B. If ta2b2 = f(sa1b1) ∈ f(σ) and t′a′
2 = f(s′a′

1) with s′ ∈ σ
are such that ta2 ≡B t′a′

2 hence sa1 ≡A s′a′
1, since σ ≈ σ there exists b′1 such that s′a′

1b
′
1 ∈ σ and

sa1b1 ≡A s′a′
1b

′
1 thus t′a′

2b
′
2 = f(sa′

1b
′
1) ∈ f(σ) and ta2b2 ≡B t′a′

2b
′
2.
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Promotion. If c is an injection N
2 → N, let t be a play on ?N⊥ _ M (with M multiple) we denote by ti

the sub-sequence of t containing the first moves in M and ?N⊥, every move n ∈ MN which appears in
?N⊥ with index i and for every move in M of the shape (c(i, j), m), the move (j, m). If σ is a strategy
on M `N , we define !cσ : ?N⊥ •_M to be the strategy {s ∈ PP

?N⊥_M | s ⊂
⋃

i∈N
si ∧∀i ∈ N, si ∈ ´σ}

where s ⊂
⋃

i∈N
si means that each move of s must appear in some si.

Dereliction. If i is an integer, deri
N is the strategy on ˆN⊥ •_ ˆ♭N⊥ defined by deri

N = {s ∈ PP
ˆN⊥_ˆ♭N⊥ |

∀t ≤P s, t ↾ˆ♭N⊥ = i.(t ↾ˆN⊥)}.

Contraction. Let N be a multiple negative game, if t is a play of N1 ` N2 _ N0 (where the indexes are
just used to distinguish occurrences), we can decompose it into t = t0t

′ where t0 contains only moves
in N0 and t′ starts by a move in N1 ` N2 (this entails that any move of t′ in N0 comes after at least
one move in N1 `N2). We denote by ti (i = 1, 2) the sub-sequence of t containing t0, all the moves in
Ni, and the moves of t′ in N0 before which the last move in N1 ` N2 is in Ni.

If l and r are two injective functions N→ N with disjoint codomains, cl,r
N is the strategy on N`N

•_ N

defined by cl,r
N = {s ∈ PP

N1`N2_N0
| ∀t ≤P s, t1 ↾N1

= l(t1 ↾N0
) ∧ t2 ↾N2

= r(t2 ↾N0
)}.

Weakening. wN is the strategy on ⊥
•_ N defined by wN = {ε} ∪ {n◦ | n ∈Mi

N}.

Lemma 12
If l, r and l′, r′ are two pairs of injective functions N→ N with disjoint codomains, cl,rN ≈ cl′,r′

N .

Proof: Let sab be a play in cl,r
N : N1`N2

•_ N0, t be a play in cl′,r′

N : N1`N2
•_ N0, if sa ≡N1`N2_N0

ta′

we have to find b′ such that ta′b′ ∈ cl′,r′

N and sab ≡N1`N2_N0
ta′b′.

• If s = ε, then t = ε so that b = (a, a) and by taking b′ = (a′, a′) we have the result.

• If sab = s(i, n)(l(i), n) with (i, n) ∈ N1 (the case N2 is proved in the same way), then a′ = (j, m).
Since s(i, n) ≡ t(j, m), we have (j, m) ∈ N1. We choose b′ = (l′(j), m) so that t(j, m)(l′(j), m) ∈

cl′,r′

N and we have to show that s(i, n)(l(i), n) ≡ t(j, m)(l′(j), m):

– s(i, n)(l(i), n) and t(j, m)(l′(j), m) have the same interleaving (of moves of N1, N2 and N0)
since it is true for s(i, n) and t(j, m), and (l(i), n) and (l′(j), m) are both in N0.

– s(i, n)(l(i), n) ↾Nk
≡N t(j, m)(l′(j), m) ↾Nk

since s(i, n) ↾Nk
≡N t(j, m) ↾Nk

for k = 1, 2.

– It remains to prove s(i, n)(l(i), n) ↾N0
≡N t(j, m)(l′(j), m) ↾N0

, that is s ↾N0
(l(i), n) ≡N

t ↾N0
(l′(j), m). We know that s ↾N0

(l(i), n) is an interleaving of l(s(i, n) ↾N1
) and r(s ↾N2

),
and this holds also for t with the same interleaving because a P -move (resp. O-move) in s ↾N0

comes from a move in s ↾N1
if (in s) it is after (resp. before) a move in N1 and moreover the pth

move of s is in Nk (k = 1, 2) if and only if the pth move of t is also in Nk by s(i, n) ≡ t(j, m).
We also have s(i, n) ↾N1

≡N t(j, m) ↾N1
so that l(s(i, n) ↾N1

) ≡N l′(t(j, m) ↾N1
) by definition

of a multiple game (renaming condition) since l and l′ are injective (idem with r, r′ and
N2). Finally l(s(i, n) ↾N1

) and r(s(i, n) ↾N2
) have disjoint sets of indexes (idem for t) so that

s ↾N0
(l(i), n) ≡N t ↾N0

(l′(j), m) by the interleaving condition for multiple games.

• If sab = s(l(i), n)(i, n) (the case with r is similar), by the switching property of multiple games,
the last move of s is of the shape (l(i), x) so that the previous move of s is in N1 and by an
argument similar to what we have done just before, since s(l(i), n) ≡ ta′, it must be the case that
a′ = (l′(j), m) for some j and some m. We choose b′ = (j, m) ∈ N1 and we immediately have

t(l′(j), m)(j, m) ∈ cl′,r′

N . We now show that s(l(i), n)(i, n) ≡ t(l′(j), m)(j, m). The interleavings
are the same and the projections on N2 and N0 are in relation by s(l(i), n) ≡ t(l′(j), m). Concern-
ing N1, s(l(i), n)(i, n) ↾N0

is an interleaving of l(s(l(i), n)(i, n) ↾N1
) and r(s(l(i), n)(i, n) ↾N2

) (and
also for t with the same interleaving) so that, by the interleaving condition, s(l(i), n)(i, n) ↾N0

=
s(l(i), n) ↾N0

≡N t(l′(j), m) ↾N0
= t(l′(j), m)(j, m) ↾N0

implies l(s(l(i), n)(i, n) ↾N1
) ≡N l′(t(l′(j), m)(j, m) ↾N1

)
and, by the renaming condition, s(l(i), n)(i, n) ↾N1

≡N t(l′(j), m)(j, m) ↾N1
.

Proposition 10 (`-monoid N)

If N is a multiple negative game, the triple (N, cl,r
N ,wN ) is a `-monoid in AJM−.
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Proof: As for proposition 6.

Proposition 11 (AJM co-monad)
♯ is a co-monad in the category AJM− and ♯N ⊙ ♯M ≃ ♯(N & M).

Proof: See [4].

In the sequel we will say “strategy σ” instead of “strategy σ such that σ ≈ σ”.

4.3 AJM models

Given an interpretation of atoms as multiple games of the corresponding polarity, we now interpret formulas
as multiple games and proofs as equivalence classes of strategies σ (with σ ≈ σ). The interpretation of
axioms, cuts, multiplicatives and additives is the same as for the linear HO case (section 3.2). We just have
to verify that the strategies σ obtained from proofs verify σ ≈ σ.

We consider an arbitrary choice of an integer i ∈ N, of a pair l, r of injections N → N with disjoint
codomains and of an injection c : N

2 → N.

4.3.1 First model.

We give the interpretation of the exponential rules:

• !: If σ : N ` N , then !cσ is the strategy on ?N⊥ •_ N .

• ?d: If σ : N
•_ Γ, composing σ (considered on Γ`ˆN⊥) with the strategy Γ` deri

N gives the strategy
on Γ ` ?N⊥.

• ?c: If σ : Γ ` N ` N , we compose it with Γ ` cl,r
N to obtain a strategy on Γ ` N .

• ?w: If σ : Γ, we compose it with Γ ` wN to obtain a strategy on Γ ` N (using Γ ≃p Γ `⊥).

Proposition 12 (Correctness)
Multiple polarized AJM games are a denotational model of LLP.

4.3.2 Second model.

In order to get a completeness result for an AJM model, strategies have to respect the “history free” condition
but this condition is lost in our first model in the !c construction. This is why we are going to refine the
model.

Definition 17 (History free strategy)
A strategy σ : A is history free if sab ∈ σ and tac ∈ σ implies b = c.

This difficulty with the AJM definability already appears in the usual linear AJM setting since the
required “history free” condition is not respected by the product (the natural strategy A _ A & A is not
history free but the one on ♯A _ A & A is), this is why we have to move to the co-Kleisli category with
respect to ♯. This is known to work for the product and will also solve our problem with promotion.

Definition 18 (Linear strategy)
A strategy σ : ♯N

•_M is linear if, in each play of σ, all the moves in ♯N have the same index.

In our modified model, proofs of ⊢ P, N1, . . . , Nk are interpreted by (equivalence classes of) linear history
free strategies on ♯P⊥ •_ N1 ` . . . ` Nk.

History free promotion. Let c be an injection N
2 → N and d be an injection from the initial moves of M

to N, if σ is a strategy on M `N , we define !c,d
hf σ : ♯?N⊥ •_M to be the linear strategy {d(s) | s ∈ !cσ}

where d(s) is obtained from s by replacing any move n in ?N⊥ by (d(m), n) with m the initial move
of s.
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Lemma 13
If σ : M ` N is an history free strategy, !c,d

hf σ : ♯?N⊥ •_M is an history free strategy.

Proof: If sab ∈ !c,d
hf σ and tab′ ∈ !c,d

hf σ, we look at the lengths of s and t:

• If s = ε, a is an initial move m of M . This implies t = ε and by definition of !c,d
hf σ, b = b′ =

(d(m), ◦).

• If s = m(d(m), ◦), we have a = (d(m), i, n) with n initial in N which implies t = m′(d(m′), ◦) and
m′ = m because d is injective. Since σ is deterministic it answers a move (j, b1) to the play (m, n)
so that b = b′ = (d(m), i, j, b1) ∈ ♯?N⊥ if (j, b1) ∈ N or b = b′ = (c(i, j), b1) ∈M if (j, b1) ∈M .

• If the length of s is at least 4, it is also the case for t as we have seen. In this case a =
(d(m0), i, j, n) ∈ ♯?N⊥ (resp. a = (c(i, j), m) ∈ M) and the answer of the history free strategy σ
to (j, n) (resp. (j, m)) is a move (k, n′) ∈ N or (k, m′) ∈M and we have b = b′ = (d(m0), i, k, n′) ∈
♯?N⊥ or b = b′ = (c(i, k), m′) ∈M (note that i is computable from c(i, j) because c is injective).

The interpretation of the exponential rules is not very different from the first model:

• !: If σ : N ` N , then !c,d
hf σ is the strategy on ♯?N⊥ •_ N .

• ?d: If σ : ♯N
•_ Γ, the rule does not modify the interpretation, using ♯N _ Γ ≃p ?N⊥ ` Γ.

• ?c: If σ : Γ ` N ` N , we compose it with Γ ` cl,r
N to obtain a strategy on Γ ` N .

• ?w: If σ : Γ, we compose it with Γ ` wN to obtain a strategy on Γ ` N .

Proposition 13 (Correctness)
Through the interpretation given by the second model, multiple polarized AJM games (with equivalence classes
of history free strategies) are a denotational model of LLP.

It is now possible to state a definability result for this second model. Since we do not want to address
the question of compact strategies (corresponding to finite strategies in the HO setting), we will only state
a local definability result.

Theorem 4 (Local definability)
Let A be a polarized formula without atom, if σ is a total history free strategy on A, there exists a rule
R of LLP with conclusion ⊢ A and arity n and there exist n total strategies σ1, ..., σn such that σ is the
interpretation of R applied to σ1, ..., σn.

Proof: Very similar to what we have done for theorem 3, together with the AJM definability proof for
PCF [4].

Using the local definability, we can immediately extract a, possibly infinite, proof of LLP from any total
history free strategy.

Example 6 (Infinite proof)
We consider the smallest total history free strategy on ?!⊥ containing:

?!⊥

?
(1, !)

(1, (i,⊥))
(2, !)

(2, (j,⊥))
...

where ? is the first move of ?!⊥, ! is the first move of !⊥ and ⊥ is the unique move of ⊥. This strategy is the
interpretation of the infinite proof:
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...
⊢ ?!⊥

⊥
⊢ ⊥, ?!⊥

!
⊢ !⊥, ?!⊥

?d
⊢ ?!⊥, ?!⊥

?c
⊢ ?!⊥

while ⊢ ?!⊥ is not provable in LL and LLP.

Remark: We have described two polarized game models based on the HO and on the AJM exponentials. It
should be possible to do the same kind of work in the framework of sequential algorithms [32, 33] with the
introduction of the corresponding notion of multiple games.

5 Applications to the λµ-calculus

We have described a game model for Polarized Linear Logic claiming that it gives models for many other
systems by translation in LLP. We will focus on Parigot’s λµ-calculus [19, 21, 23] for both call-by-name and
call-by-value evaluations.

Some details about the translations of the λµ-calculus into LLP are given in appendixes C and D and we
are going to describe some consequences of our results for the semantics of the λµ-calculus. The following
results strongly rely on the results sketched in appendixes in order to directly transfer the results from LLP

to the λµ-calculus. However it is also possible to replay the corresponding proofs given previously for LLP

and to get a direct proof for the λµ-calculus.

By proposition 18 and theorem 2, HO negative games give a denotational model of the call-by-name
λµ-calculus. This can also be expressed through Selinger’s control categories [23] (see appendix B for some
elements about the relation between control categories and LLP) for which the call-by-name λµ-calculus
forms an internal language.

Proposition 14 (Control category of HO games)
The category of HO multiple negative games with morphisms given by strategies on !M ⊸ N (≃p ♯M _ N
used in intuitionistic games) is a control category.

We can apply the definability result to the λµ-calculus:

Proposition 15 (Call-by-name full completeness)
Let A be a type without variable and σ be a finite total strategy on A−, there exists a λµ-term u of type A
such that σ is the call-by-name interpretation of u.

Proof: By theorem 3, there exists a proof π of A− in LLP such that σ is the interpretation of π. Using [14,
34], we can associate with π a proof-net R which has the same game interpretation as π and given
such a proof-net, there exists a λµ-term u such that u− = R, thus σ is the call-by-name interpretation
of u.

In the same way, we obtain a model of the call-by-value λµ-calculus from positive HO games (by propo-
sition 19 and theorem 2):

Proposition 16 (Co-control category of HO games)
The category of HO multiple positive games with morphisms from P to Q given by strategies on P⊥ ` ?Q is
a co-control category.

Proof: This category is the opposite of the control category of proposition 14.

Proposition 17 (Call-by-value full completeness)
Let A be a type without variable and σ be a finite total strategy on ?A+, there exists a λµ-term u of type A
such that σ is the call-by-value interpretation of u.
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Proof: By proposition 15, there exists a λµ-term t such that the call-by-name interpretation of t is σ. Let
t̃ be Selinger’s syntactical dual [23] of t, the call-by-value interpretation of t̃ is σ.

This shows that polarized games give a tool for building models of call-by-name and call-by-value pro-
gramming languages with control operators. In particular,we can easily interpret call/cc, catch (see
example 5), . . .

We also get models of both call-by-name and call-by-value λµ-calculi from the AJM polarized game model
of LLP, except for completeness which is reduced to its local version.
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A Cut elimination for LLP

The definition of the cut-elimination procedure for LLP in sequent calculus requires a lot of commutative
steps. However it is possible to define a proof-net syntax for LLP [14] showing that almost all these commu-
tative steps are innocuous. We only give here the sequent calculus steps which are shown to be meaningful
by the proof-net syntax.

The reader can verify either that the game interpretation of a sequent calculus proof is definable on
the corresponding proof-net or that the “innocuous” commutative steps do not modify the interpretation of
proofs.

MALLP

⊢ Γ, A
ax

⊢ A⊥, A
cut

⊢ Γ, A

ax
−→ ⊢ Γ, A

⊢ N , N
´

⊢ N , ´N

⊢ N⊥, Γ
ˆ

⊢ ˆN⊥, Γ
cut

⊢ N , Γ

´−ˆ
−→

⊢ N , N ⊢ N⊥, Γ
cut

⊢ N , Γ

⊢ M,N , N
´

⊢ ´M,N , N ⊢ N⊥, Γ
cut

⊢ ´M,N , Γ

´−∗
−→

⊢ M,N , N ⊢ N⊥, Γ
cut

⊢ M,N , Γ
´

⊢ ´M,N , Γ

⊢ Γ, M⊥ ⊢ ∆, N⊥

⊗
⊢ Γ, ∆, M⊥ ⊗ N⊥

⊢ M, N, Ξ
`

⊢ M ` N, Ξ
cut

⊢ Γ, ∆, Ξ

⊗−`
−→ ⊢ Γ, M⊥

⊢ ∆, N⊥ ⊢ M, N, Ξ
cut

⊢ M, ∆, Ξ
cut

⊢ Γ, ∆, Ξ

⊢ Γ, N⊥
i ⊕i

⊢ Γ, N⊥
1 ⊕ N⊥

2

⊢ N1, ∆ ⊢ N2, ∆
&

⊢ N1 & N2, ∆
cut

⊢ Γ, ∆

⊕−&
−→

⊢ Γ, N⊥
i ⊢ Ni, ∆

cut
⊢ Γ, ∆

⊢ M1, Γ, A ⊢ M2, Γ, A
&

⊢ M1 & M2, Γ, A ⊢ A⊥, ∆
cut

⊢ M1 & M2, Γ, ∆

&−∗
−→

⊢ M1, Γ, A ⊢ A⊥, ∆
cut

⊢ M1, Γ, ∆

⊢ M2, Γ, A ⊢ A⊥, ∆
cut

⊢ M2, Γ, ∆
&

⊢ M1 & M2, Γ, ∆

1
⊢ 1

⊢ Γ
⊥

⊢ Γ,⊥
cut

⊢ Γ

1−⊥
−→ ⊢ Γ

⊤
⊢ ⊤, Γ, A ⊢ A⊥, ∆

cut
⊢ ⊤, Γ, ∆

⊤
−→ ⊤

⊢ ⊤, Γ, ∆
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LLP

⊢ N , N
!

⊢ N , !N

⊢ N⊥, Γ
?d

⊢ ?N⊥, Γ
cut

⊢ N , Γ

!−?d
−→

⊢ N , N ⊢ N⊥, Γ
cut

⊢ N , Γ

⊢ M,N , N
!

⊢ !M,N , N ⊢ N⊥, Γ
cut

⊢ !M,N , Γ

!−∗
−→

⊢ M,N , N ⊢ N⊥, Γ
cut

⊢ M,N , Γ
!

⊢ !M,N , Γ

⊢ Γ, N, N
?c

⊢ Γ, N ⊢ N⊥, ∆
cut

⊢ Γ, ∆

?c−∗
−→

⊢ Γ, N, N ⊢ N⊥, ∆
cut

⊢ Γ, ∆, N ⊢ N⊥, ∆
cut

⊢ Γ, ∆, ∆
?c

⊢ Γ, ∆

⊢ Γ
?w

⊢ Γ, N ⊢ N⊥, ∆
cut

⊢ Γ, ∆

?w−∗
−→

⊢ Γ
?w

⊢ Γ, ∆
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B Categorical interpretation of LLP

P. Selinger introduced the notion of control categories [23] as models of both call-by-name and call-by-value
λµ-calculi.

We recall the main ingredients of control categories:

Definition 19 (Control category)
A category (C, &,⊤,→,`,⊥) is a control category if:

• (C, &,⊤,→) is a cartesian closed category

• (C,`,⊥) is a symmetric premonoidal category (see [35]) with codiagonals (that is with a `-monoidal
structure for each object)

• ` distributes over &

• there is a natural isomorphism between A→ (B ` C) and (A→ B) ` C

with some more commutative diagrams.
C is a co-control category if Cop is a control category.

Theorem 5 (Selinger)
Control categories are denotational models of the call-by-name λµ-calculus and co-control categories are
denotational models of the call-by-value λµ-calculus.

It is possible to interpret LLP into any control category C. Moreover Selinger’s interpretations of the call-
by-name and the call-by-value λµ-calculi into a (co)-control category C factorize through the translations
(.)− and (.)+ of the λµ-calculi in LLP (see appendixes C and D) and this interpretation (.)⋆ of LLP in C.

The interpretation of formulas as objects is straightforward:

(N ` M)⋆ = N⋆ ` M⋆

(N & M)⋆ = N⋆ & M⋆

⊥⋆ = ⊥

⊤⋆ = ⊤

(?N⊥)⋆ = N⋆ → ⊥

A proof π of ⊢ N is interpreted as a morphism π⋆ from ⊤ to N ⋆ and a proof π of ⊢ N , P is interpreted
as a central morphism π⋆ from (P⊥)⋆ to N ⋆. The details of this interpretation are given in [14].
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C Call by name λµ-calculus and LLP

The translation (.)− of the call-by-name λµ-calculus into LLP is obtained by translating types as negative
formulas:

X  X
T  ⊤
F  ⊥

A ∧ B  A− & B−

A ∨ B  A− ` B−

A→ B  !A− ⊸ B−

the judgment Γ ⊢ t : A | ∆ is translated as ⊢ ?(Γ−)⊥, A−, ∆−.
The translation of terms is given in the following way:

(xA : A)− = ⊢ A−⊥
, A−

⊢ ?A−⊥
, A−

(λx
A
.t

B : A → B)− =

...

⊢ ?Γ−⊥
, B−, ∆−

⊢ ?Γ−⊥
\ {?A−⊥

}, ?A−⊥
` B−, ∆−

((tA→B)uA : B)− =

...

⊢ ?Γ−⊥
, ?A−⊥

` B−, ∆−

...

⊢ ?Γ′−⊥
, A−, ∆′−

⊢ ?Γ′−⊥
, !A−, ∆′− ⊢ B−⊥

, B−

⊢ ?Γ′−⊥
, !A− ⊗ B−⊥

, B−, ∆′−

⊢ ?Γ−⊥
, ?Γ′−⊥

, B−, ∆−, ∆′−

⊢ ?Γ−⊥
∪ ?Γ′−⊥

, B−, ∆− ∪ ∆′−

([αA]tA : F)− =

...

⊢ ?Γ−⊥
, A−, ∆−

⊢ ?Γ−⊥
, A−, ∆− \ {A−}

⊢ ?Γ−⊥
,⊥, A−, ∆− \ {A−}

(µα
A

.t
F : A)− =

...

⊢ ?Γ−⊥
,⊥, ∆− ⊢ 1

⊢ ?Γ−⊥
, ∆−

⊢ ?Γ−⊥
, A−, ∆− \ {A−}

(〈tA
, u

B〉 : A ∧ B)− =

...

⊢ ?Γ−⊥
, A−, ∆−

...

⊢ ?Γ−⊥
, B−, ∆−

⊢ ?Γ−⊥
, A− & B−, ∆−

(π1t
A∧B : A)− =

...

⊢ ?Γ−⊥
, A− & B−, ∆−

⊢ A−⊥
, A−

⊢ A−⊥
⊕ B−⊥

, A−

⊢ ?Γ−⊥
, A−, ∆−
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(π2t
A∧B : B)− =

...

⊢ ?Γ−⊥
, A− & B−, ∆−

⊢ B−⊥
, B−

⊢ A−⊥
⊕ B−⊥

, B−

⊢ ?Γ−⊥
, B−, ∆−

(⋆T : T)− = ⊢ ?Γ−⊥
,⊤, ∆−

([αA
, β

B ]tA∨B : F)− =

...

⊢ ?Γ−⊥
, A−

` B−, ∆−

⊢ A−⊥
, A− ⊢ B−⊥

, B−

⊢ A−⊥
⊗ B−⊥

, A−, B−

⊢ ?Γ−⊥
, A−, B−, ∆−

⊢ ?Γ−⊥
, A−, B−, ∆− \ {A−, B−}

⊢ ?Γ−⊥
,⊥, A−, B−, ∆− \ {A−, B−}

(µ(αA
, β

B).tF : A ∨ B)− =

...

⊢ ?Γ−⊥
,⊥, ∆− ⊢ 1

⊢ ?Γ−⊥
, ∆−

⊢ ?Γ−⊥
, A−, B−, ∆− \ {A−, B−}

⊢ ?Γ−⊥
, A−

` B−, ∆− \ {A−, B−}

Proposition 18 (Simulation)
The translation (.)− allows to simulate the reduction of the call-by-name λµ-calculus by the cut-elimination
of LLP.

Proof: This result is proved in [34] for the case of simple types and is easy to extend to T, F, ∧ and ∨.
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D Call by value λµ-calculus and LLP

The translation (.)+ of the call-by-value λµ-calculus into LLP is obtained by translating types as positive
formulas:

X  X⊥

T  1
F  0

A ∧ B  A+ ⊗B+

A ∨ B  A+ ⊕B+

A→ B  !(A+ ⊸ ?B+)

the judgment Γ ⊢ t : A | ∆ is translated as ⊢ (Γ+)⊥, ?A+, ?∆+.
The translation of terms is given in the following way:

(xA : A)+ = ⊢ A+⊥
, A+

⊢ A+⊥
, ?A+

(λx
A
.t

B : A → B)+ =

...

⊢ Γ+⊥
, ?B+, ?∆+

⊢ Γ+⊥
\ {A+⊥

}, A+⊥
` ?B+, ?∆+

⊢ Γ+⊥
\ {A+⊥

}, !(A+⊥
` ?B+), ?∆+

⊢ Γ+⊥
\ {A+⊥

}, ?!(A+⊥
` ?B+), ?∆+

((tA→B)uA : B)+ =

...

⊢ Γ+⊥
, ?!(A+⊥

` ?B+), ?∆+

...

⊢ Γ′+⊥
, ?A+, ?∆′+

⊢ A+⊥
, A+ ⊢ !B+⊥

, ?B+

⊢ A+⊥
, A+ ⊗ !B+⊥

, ?B+

⊢ A+⊥
, ?(A+ ⊗ !B+⊥

), ?B+

⊢ !A+⊥
, ?(A+ ⊗ !B+⊥

), ?B+

⊢ Γ′+⊥
, ?(A+ ⊗ !B+⊥

), ?B+, ?∆′+

⊢ Γ′+⊥
, !?(A+ ⊗ !B+⊥

), ?B+, ?∆′+

⊢ Γ+⊥
, Γ′+⊥

, ?B+, ?∆+, ?∆′+

⊢ Γ+⊥
∪ Γ′+⊥

, ?B+, ?∆+ ∪ ?∆′+

([αA]tA : F)+ =

...

⊢ Γ+⊥
, ?A+, ?∆+

⊢ Γ+⊥
, ?A+, ?∆+ \ {?A+}

⊢ Γ+⊥
, ?0, ?A+, ?∆+ \ {?A+}

(µα
A

.t
F : A)+ =

...

⊢ Γ+⊥
, ?0, ?∆+

⊢ ⊤
⊢ !⊤

⊢ Γ+⊥
, ?∆+

⊢ Γ+⊥
, ?A+, ?∆+ \ {?A+}
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(〈tA
, u

B〉 : A ∧ B)+ =

...

⊢ Γ+⊥
, ?A+, ?∆+

...

⊢ Γ′+⊥
, ?B+, ?∆′+

⊢ A+⊥
, A+ ⊢ B+, B+⊥

⊢ A+⊥
, A+ ⊗ B+, B+⊥

⊢ A+⊥
, ?(A+ ⊗ B+), B+⊥

⊢ A+⊥
, ?(A+ ⊗ B+), !B+⊥

⊢ Γ′+⊥
, A+⊥

, ?(A+ ⊗ B+), ?∆′+

⊢ Γ′+⊥
, !A+⊥

, ?(A+ ⊗ B+), ?∆′+

⊢ Γ+⊥
, Γ′+⊥

, ?(A+ ⊗ B+), ?∆+, ?∆′+

⊢ Γ+⊥
∪ Γ′+⊥

, ?(A+ ⊗ B+), ?∆+ ∪ ?∆′+

(π1t
A∧B : A)+ =

...

⊢ Γ+⊥
, ?(A+ ⊗ B+), ?∆+

⊢ A+⊥
, A+

⊢ A+⊥
, B+⊥

, A+

⊢ A+⊥
` B+⊥

, A+

⊢ A+⊥
` B+⊥

, ?A+

⊢ !(A+⊥
` B+⊥

), ?A+

⊢ Γ+⊥
, ?A+, ?∆+

(π2t
A∧B : B)+ =

...

⊢ Γ+⊥
, ?(A+ ⊗ B+), ?∆+

⊢ B+⊥
, B+

⊢ A+⊥
, B+⊥

, B+

⊢ A+⊥
` B+⊥

, B+

⊢ A+⊥
` B+⊥

, ?B+

⊢ !(A+⊥
` B+⊥

), ?B+

⊢ Γ+⊥
, ?B+, ?∆+

(⋆T : T)+ = ⊢ 1
⊢ ?1

([αA
, β

B ]tA∨B : F)+ =

...

⊢ Γ+⊥
, ?(A+ ⊕ B+), ?∆+

⊢ A+⊥
, A+

⊢ A+⊥
, ?A+

⊢ A+⊥
, ?A+, ?B+

⊢ B+⊥
, B+

⊢ B+⊥
, ?B+

⊢ B+⊥
, ?A+, ?B+

⊢ A+⊥
& B+⊥

, ?A+, ?B+

⊢ !(A+⊥
& B+⊥

), ?A+, ?B+

⊢ Γ+⊥
, ?A+, ?B+, ?∆+

⊢ Γ+⊥
, ?A+, ?B+, ?∆+ \ {?A+, ?B+}

⊢ Γ+⊥
, ?0, ?A+, ?B+, ?∆+ \ {?A+, ?B+}
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(µ(αA
, β

B).tF : A ∨ B)+ =

...

⊢ Γ+⊥
, ?0, ?∆+

⊢ ⊤
⊢ !⊤

⊢ Γ+⊥
, ?∆+

⊢ Γ+⊥
, ?A+, ?B+, ?∆+ \ {?A+, ?B+}

⊢ B+⊥
, B+

⊢ B+⊥
, A+ ⊕ B+

⊢ B+⊥
, ?(A+ ⊕ B+)

⊢ !B+⊥
, ?(A+ ⊕ B+)

⊢ Γ+⊥
, ?A+, ?(A+ ⊕ B+), ?∆+ \ {?A+, ?B+}

⊢ A+⊥
, A+

⊢ A+⊥
, A+ ⊕ B+

⊢ A+⊥
, ?(A+ ⊕ B+)

⊢ !A+⊥
, ?(A+ ⊕ B+)

⊢ Γ+⊥
, ?(A+ ⊕ B+), ?(A+ ⊕ B+), ?∆+ \ {?A+, ?B+}

⊢ Γ+⊥
, ?(A+ ⊕ B+), ?∆+ \ {?A+, ?B+}

Proposition 19 (Simulation)
The translation (.)+ allows to simulate the reduction of the call-by-value λµ-calculus by the cut-elimination
of LLP.

Proof: We can extend the proof given in [14] to all the connectives or use Selinger’s syntactical duality [23]:
if t→ u in call-by-value, let t̃ and ũ be their call-by-name dual terms, we have t̃ → ũ in call-by-name
thus (t̃)− →∗ (ũ)− by proposition 18, and finally t+ →∗ u+ since (t̃)− = t+.
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