#### Logarithmic Space and Permutations (Joint work with Clément Aubert)

**Thomas Seiller** 

Innin-

Journée GeoCal, Lyon, 15 Février 2013

# Introduction

- Linear Logic and Geometry of Interaction (GoI) have lead to a number of work on computational complexity.
- This work develops a new approach for the study of complexity classes proposed by Girard (2012):
  - It uses operator theory, and it is in particular constructed around the construction of the *crossed product algebra*;
  - It comes from Girard's latest GoI construction;
  - We use it to characterize the classes co-NL and L by sets of operators.

$$\mathfrak{E} = (\bigotimes_{n \in \mathbf{N}} \mathfrak{R}) \rtimes \mathfrak{S}$$

where:

- $\Re$  is the hyperfinite type II<sub>1</sub> factor;
- $\mathfrak{S}$  is the group of finite permutations of **N** acting on  $\bigotimes_{n \in \mathbb{N}} \mathfrak{R}$ :

 $\sigma.(x_0 \otimes x_1 \otimes \cdots \otimes x_n \otimes \ldots) = x_{\sigma^{-1}(0)} \otimes x_{\sigma^{-1}(1)} \otimes \cdots \otimes x_{\sigma^{-1}(n)} \otimes \ldots$ 

▲ロト ▲ 同 ト ▲ 国 ト ▲ 国 ト ク Q (~)



where:

- ▶ ℜ contains representations of integers;
- $\blacktriangleright$  S generates an algebra  ${\mathfrak M}$  in  ${\mathfrak E}$  containing the "machines".

 Principle: an integer *n* is represented as a binary list, i.e. as a proof of

$$\underbrace{!(X \multimap X)}_{0} \multimap \underbrace{!(X \multimap X)}_{1} \multimap !(X \multimap X)$$

- The list can be read from the contraction rules.
- The GoI interpretation of these proofs are the sets of axiom links: we obtain a 6 × 6 matrix whose coefficients are k × k matrices (k = log<sub>2</sub>(n)).

## **Representation of Integers: Example**



The last GoI construction takes place in the hyperfinite factor  $\Re$  of type II<sub>1</sub>. The property we are interested in is that every matrix algebra embeds in the hyperfinite factor.

## Definition

A representation of *n* is the image of the matrix  $M_n$  by a trace-preserving injective \*-morphism  $\mathfrak{M}_{\log_2(n)}(\mathbf{C}) \to \mathfrak{R}$ .

 We now have a uniform representation of integers (all representations live in the same algebra).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

## Definition

A representation of *n* is the image of the matrix  $M_n$  by a trace-preserving injective \*-morphism  $\mathfrak{M}_{\log(n)}(\mathbb{C}) \to \mathfrak{R}$ .

#### Remark

This is in no way unique!

#### Proposition

Let  $N_n$  and  $N'_n$  be two representations of the same integer. Then there exists a unitary u such that  $N_n = u^* N'_n u$ .

# The Algebra of Machines

#### Proposition

# Let $N_n$ and $N'_n$ be two representations of the same integer and $\phi \in \mathfrak{M}$ . Then:

#### $\phi N_n$ is nilpotent iff $\phi N_{n'}$ is nilpotent

**Definition** For  $\phi \in \mathfrak{M}$ , one can define:

 $[\phi] = \{n \in \mathbf{N} \mid \phi N_n \text{ is nilpotent}\}\$ 

▶ We will now define two sets P<sub>+</sub> and P<sub>+,1</sub> of elements\* of M and show that [P<sub>+</sub>] = co-NL and [P<sub>+,1</sub>] = L.

- Pointers: move back and forth on the input tape, but never write.
- The input tape is cyclic.

# Definition

A non-deterministic pointer machine with  $p \in \mathbf{N}^*$  pointers is a triple  $M = \{Q, \rightarrow\}$  where:

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

- *Q* is the set of *states*;
- $\rightarrow$  is the transition relation.

Pointer machines are equivalent to *Multi-Head Two-Way Finite Automata*. Since the latter characterize **NL** (non-deterministic automata [Holzer, Kutrib, Malcher '08]) and **L** (deterministic automata), we obtain:

Theorem

DPM = L and NDPM = co-NL

We can encode the pointer machines as operators:

- ► We encode the basic instructions (move forward/backward and change the state) as partial isometries in 𝔐;
- We define  $\rightarrow^*$  as the sum of these atomic transitions.
- We obtain an encoding  $M^*$  of M as an operator in  $\mathfrak{M}$ .

We then obtain:

#### Theorem

Let M be a non-deterministic pointer machine,  $n \in \mathbb{N}$  and  $N_n$  a representation of n. Then M accepts  $n \in \mathbb{N}$  if and only if  $M^*N_n$  is nilpotent.

# Operators and Logarithmic Space: Non-deterministic case

The encoding of pointer machines are *boolean operators*:

#### Definition

A boolean operator is an element of  $\mathfrak{M}_{6\times q}(\mathfrak{E})$  such that each coefficient is a finite sum of unitaries induced by  $\mathfrak{S}$ .

#### Proposition

If  $P_+$  denotes the set of boolean operators.

 $co-NL \subset [P_+]$ 

# Proposition

# If M is deterministic pointer machine, then $M^*$ satisfies $\|M^*\|_1 \leq 1$ .

# Proposition

If  $P_{+,1}$  denotes the set of boolean operators  $\phi$  such that  $\|\phi\|_1 \leq 1$ .

$$L \subset [P_{+,1}]$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

To get the converse inclusion, we prove a technical lemma:

#### Lemma

Let  $\phi$  be a boolean operator and  $N_n$  the representation of an integer. Then there exists matrices  $\overline{\phi}$  and  $M_n$  such that:

 $\phi N_n$  is nilpotent iff  $\overline{\phi} M_n$  is nilpotent

- To check nilpotency of  $\phi N_n$ , one can check the nilpotency of  $\bar{\phi}M_n$  which can be done by a Turing machine using only logarithmic space.
- ► This Turing machine can be chosen deterministic if we restrict to  $\phi \in \mathfrak{M}$  such that  $\|\phi\|_1 \leq 1$ .

#### Theorem

#### $co-NL = NDPM = [P_+]$

Theorem

 $L = DPM = [P_{+,1}]$ 

・ロト・日本・日本・日本・日本・日本

- ► Extend to other classes (other groups, supersets of P<sub>+</sub>);
- Obtain a real connection with GoI (construct co-NL and L types);

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Solve the separation problem ?