Is $\neg \neg A$ equal to A ?
 J.-Y. Girard's 60th birthday - Paris

Olivier LAURENT

Olivier.Laurent@pps.jussieu.fr

Preuves Programmes Systèmes
CNRS - Université Paris VII

Understanding the question

- In which logic?
- classical logic
- intuitionistic logic
- minimal logic
- linear logic
- constructive classical logic
- With which negation?
- answer type is \mathbf{F} or not $(\neg A=A \rightarrow \mathbf{F}$ or $A \rightarrow R)$
- linear / non linear
- For which equality?
- equiprovability (A provable $\Longleftrightarrow \neg \neg A$ provable)
- equivalence ($A \leftrightarrow \neg \neg A$ provable)
- isomorphism $(A \simeq \neg \neg A)$

Related questions

- If $\neg \neg A \neq A$, what remains?
- What about:

$$
\begin{aligned}
& \neg(A \vee B)=\neg A \wedge \neg B \\
& \neg(A \wedge B)=\neg A \vee \neg B
\end{aligned}
$$

- What about:

$$
\begin{aligned}
& A \vee(B \wedge C)=(A \vee B) \wedge(A \vee C) \\
& A \wedge(B \vee C)=(A \wedge B) \vee(A \wedge C)
\end{aligned}
$$

- What about:

$$
\begin{aligned}
& \neg(\forall x A)=\exists x \neg A \\
& \neg(\exists x A)=\forall x \neg A
\end{aligned}
$$

Syntax vs. Semantics

We consider:

- a (syntactically given) logic \mathcal{L} with derivable formulas: $\vdash_{\mathcal{L}} A$
- a corresponding (semantic) notion of \mathcal{L}-model with valid formulas: $\mathcal{M} \vDash A$

We look for:

- Soundness
$\vdash_{\mathcal{L}} A \quad \Longrightarrow \quad \forall \mathcal{M}, \mathcal{M} \vDash A$
- Completeness
$\forall \mathcal{M}, \mathcal{M} \vDash A \Longrightarrow \vdash_{\mathcal{L}} A$

Classical logic (1)

- Syntactically
$\neg \neg A \leftrightarrow A \quad$ is derivable
- Semantically
- Truth tables

$$
\begin{array}{c||c|c}
\llbracket A \rrbracket & \llbracket \neg A \rrbracket & \llbracket \neg \neg A \rrbracket \\
\hline 0 & 1 & 0 \\
1 & 0 & 1
\end{array}
$$

$$
\llbracket A \rrbracket=1 \text { if and only if } \llbracket \neg \neg A \rrbracket=1
$$

Classical logic (2)

- Semantically
- Boolean algebras complemented distributive lattice partial order with finite infs and sups $(\vee, \wedge, 0,1)$ and complement \bar{x} such that $x \wedge \bar{x}=0$ and $x \vee \bar{x}=1$ typical example: $\mathcal{P}(E)$

unicity of \bar{x} thus $\overline{\overline{\llbracket A \rrbracket}}=\llbracket A \rrbracket$
- Boolean rings ring with $x^{2}=x$
(equivalent to Boolean algebras)

$$
\bar{x}=1-x \quad \text { and } \quad 1-(1-\llbracket A \rrbracket)=\llbracket A \rrbracket
$$

Intuitionistic logic (1)

- Syntactically

$$
\begin{aligned}
& \vdash A \rightarrow \neg \neg A \\
& \forall \neg \neg A \rightarrow A
\end{aligned}
$$

- Semantically
- Topological semantics / Heyting algebras open sets of a topological space \mathcal{S}

$$
\begin{aligned}
& \llbracket A \rightarrow B \rrbracket=(\llbracket B \rrbracket \cup \mathcal{S} \backslash \llbracket A \rrbracket)^{\circ} \\
& \llbracket \mathbf{F} \rrbracket=\emptyset \\
& \llbracket \neg A \rrbracket=(\mathcal{S} \backslash \llbracket A \rrbracket)^{\circ}
\end{aligned}
$$

$\llbracket A \rrbracket$ is open thus $\llbracket A \rrbracket \subseteq \frac{\circ}{\llbracket A \rrbracket}$ but in general $\frac{0}{\llbracket A \rrbracket} \nsubseteq \llbracket A \rrbracket$

Intuitionistic logic (2)

- Semantically
- Kripke models partial order with a morphism \mathcal{I} into $(\mathcal{P}(\mathrm{Var}), \subseteq)$

$$
\begin{array}{lll}
x \Vdash X & \text { if } \quad X \in \mathcal{I}(x) \\
x \Vdash A \rightarrow B & \text { if } & \forall y \geq x, y \Vdash A \Longrightarrow y \Vdash B \\
x \Vdash \mathbf{F} & & \\
x \Vdash \neg A & \text { if } & \forall y \geq x, y \Vdash A
\end{array}
$$

Lemma: $x \Vdash A$ and $y \geq x \Longrightarrow y \Vdash A$
$\mathcal{K} \vDash A \quad \Longleftrightarrow \quad \forall x, x \Vdash A$
$\mathcal{K} \vDash \neg \neg A \quad \Longleftrightarrow \quad \forall x, \exists y \geq x, y \Vdash A \quad \Longleftrightarrow \mathcal{K} \vDash A$

Counter model:

$$
\text { - }{ }_{\emptyset}\{X\} \not \forall \neg \neg X \rightarrow X
$$

Minimal logic

and parametrized negation

$$
\neg_{R} A \equiv A \rightarrow R \quad\left(\text { particular case } \neg A \equiv \neg_{\mathbf{F}} A\right)
$$

Intuitionistic logic: $\vdash_{I} \mathbf{F} \rightarrow A$ and $\quad \vdash_{I} R \rightarrow A$
Minimal logic: $\quad \forall_{M} \mathbf{F} \rightarrow A$ and $\vdash_{M} R \rightarrow A$

- Syntactically

$$
\begin{aligned}
& \vdash A \rightarrow \neg R \neg R A \\
& \forall \neg \neg \neg_{R} A \rightarrow A
\end{aligned}
$$

- Semantically
results given for the particular case \mathbf{F} hold in general (ex.: Kripke models with arbitrary interpretation for R)

Linear logic

- Syntactically

$$
A \circ A^{\perp \perp}
$$

- Semantically Phase spaces commutative monoid with a distinguished subset \perp

$$
\begin{aligned}
& \llbracket A \multimap B \rrbracket=\{m \mid \forall n \in \llbracket A \rrbracket, m n \in \llbracket B \rrbracket\} \\
& \llbracket \mathbf{F} \rrbracket=\perp \\
& \llbracket A^{\perp} \rrbracket=\{m \mid \forall n \in \llbracket A \rrbracket, m n \in \perp\}=\llbracket A \rrbracket^{\perp} \\
& \llbracket A^{\perp \perp} \rrbracket=\llbracket A \rrbracket^{\perp \perp} \triangleq \llbracket A \rrbracket
\end{aligned}
$$

Core proof system

- Sequent $\quad \Gamma \vdash \Delta$

$$
A_{1}, \ldots, A_{n} \vdash B_{1}, \ldots, B_{m}
$$

$$
(n=0 \quad \Gamma=\mathbf{T}) \quad \bigwedge A_{i} \rightarrow \bigvee B_{j} \quad(m=0 \quad \Delta=\mathbf{F})
$$

- Rules

$$
\begin{array}{cc}
\frac{A \vdash A}{} a x & \frac{\Gamma \vdash A, \Delta \quad \Gamma^{\prime}, A \vdash \Delta^{\prime}}{\Gamma, \Gamma^{\prime} \vdash \Delta, \Delta^{\prime}} c u t \\
\frac{\Gamma \vdash A, \Delta}{\Gamma, \neg A \vdash \Delta} \neg L & \frac{\Gamma, A \vdash \Delta}{\Gamma \vdash \neg A, \Delta} \neg R / \neg \text { intro } \\
\frac{\Gamma \vdash \neg A, \Delta}{\Gamma, \Gamma^{\prime} \vdash F, \Delta, \Delta^{\prime}} \neg \text { elia }
\end{array}
$$

Variations

- Structural rules

$$
\frac{\Gamma, A, A \vdash \Delta}{\Gamma, A \vdash \Delta} \quad \frac{\Gamma \vdash A, A, \Delta}{\Gamma \vdash A, \Delta} \quad \frac{\Gamma \vdash \Delta}{\Gamma, A \vdash \Delta} \quad \frac{\Gamma \vdash \Delta}{\Gamma \vdash A, \Delta}
$$

- Restrictions
- Classical logic: all structural rules
- Intuitionnistic logic: at most one formula on the right (no contraction)
- Minimal logic: exactly one formula on the right (no weakening either)
- Linear logic: no structural rules

A and $\neg \neg A$

- $A \rightarrow \neg \neg A \quad$ and $\quad \neg \neg A \rightarrow A$

$$
\begin{gathered}
\frac{\overline{A \vdash A}}{} a x \\
\frac{A, \neg A \vdash}{A \vdash} \neg L \\
\hline \vdash \neg A \\
\end{gathered}
$$

$A=\neg \neg A$ really means perfect symmetry between left and right

- $\neg \neg A \rightarrow \neg \neg A$

$$
\begin{gathered}
\frac{\overline{A \vdash A}}{\frac{A x}{A, \neg A \vdash}} \neg L \\
\frac{\neg A \vdash \neg A}{\neg R} \\
\stackrel{\neg A, \neg \neg A \vdash}{\neg \neg A \vdash} \neg R
\end{gathered}
$$

$$
\begin{gathered}
\frac{\overline{A \vdash A}}{\vdash} a x \\
\frac{\vdash A, \neg A}{\neg \neg A \vdash A} \neg L \\
\neg A, \neg \neg A \vdash \\
\neg \neg \\
\neg \neg A \vdash \neg \neg A \\
\end{gathered}
$$

Expressiveness of Linear Logic

- Structural rules under the control of connectives

$$
\begin{array}{cc}
\frac{\Gamma \vdash ? A, ? A, \Delta}{\Gamma \vdash ? A, \Delta} & \frac{\Gamma \vdash \Delta}{\Gamma \vdash ? A, \Delta} \\
\frac{\Gamma,!A,!A \vdash \Delta}{\Gamma,!A \vdash \Delta} & \frac{\Gamma \vdash \Delta}{\Gamma,!A \vdash \Delta}
\end{array}
$$

- Translations
- Minimal Logic

$$
(A \rightarrow B)^{\star}=!A^{\star} \multimap B^{\star}=? A^{\star \perp} \Upsilon B^{\star}
$$

- Intuitionistic Logic

$$
\mathbf{F}^{\star}=0
$$

- Classical Logic

$$
\begin{aligned}
& (A \rightarrow B)^{\star}=?\left(!A^{\star} \multimap B^{\star}\right)=?\left(? A^{\star \perp} \mathfrak{\wp} B^{\star}\right) \\
& \mathbf{F}^{\star}=? 0
\end{aligned}
$$

Equiprovability

equivalence \Longrightarrow equiprovability

$$
\begin{aligned}
& \quad \vdots \\
& \stackrel{\vdash A \quad A \vdash \neg \neg A}{\vdash \neg \neg A} c u t
\end{aligned}
$$

$$
\begin{gathered}
\vdots \\
\vdash \neg \neg A \quad \neg \neg A \vdash A \\
\vdash A \\
\end{gathered}
$$

- Classical logic
immediate from equivalence
- Intuitionnistic logic

If $\vdash_{C} A$ then $\vdash_{I} \neg \neg A$ (for A propositionnal) [Glivenko]

- Linear logic
for $(.)^{\perp}$: immediate from equivalence
$\vdash 1$ and $\vdash ?!1$ but ?! 1 to 1
$\vdash A \Longrightarrow \vdash ?!A$ but $\vdash ? X^{\perp} \oplus X$ and $\vdash ?!\left(? X^{\perp} \oplus X\right)$

Proof transformations

- Cut elimination

$$
\frac{\frac{\Gamma, A \vdash \Delta}{\Gamma \vdash \neg A, \Delta} \neg R}{} \frac{\Gamma^{\prime} \vdash A, \Delta^{\prime}}{\Gamma^{\prime}, \neg A \vdash \Delta^{\prime}} \neg L \text { cut } \quad \rightsquigarrow \quad \begin{array}{cc}
\vdots & \frac{\Gamma, A \vdash \Delta}{\Gamma, \Gamma^{\prime} \vdash \Delta, \Delta^{\prime}} \quad \Gamma^{\prime} \vdash A, \Delta^{\prime} \\
\Gamma, \Gamma^{\prime} \vdash \Delta, \Delta^{\prime} &
\end{array}
$$

- Axiom expansion

$$
\overline{\neg A \vdash \neg A} a x \quad \rightsquigarrow \quad \frac{\overline{A \vdash A}}{\frac{A x}{A, \neg A \vdash} \neg L}
$$

Examples

- Cut elimination

$$
\begin{array}{cc}
\frac{\overline{A \vdash A}}{\frac{A x}{A, \neg A \vdash} \neg L} & \frac{\overline{A \vdash A}}{\vdash A, \neg A} \neg R \\
\frac{\perp \vdash \neg \neg A}{\perp} \neg R & \frac{\neg \neg A \vdash A}{\neg L} \\
& A \vdash A
\end{array}
$$

Examples

- Cut elimination

$$
\frac{\frac{\overline{A \vdash A}_{A, \neg A \vdash}^{A x} \neg L \quad \frac{\overline{A \vdash A}}{\digamma A, \neg A} \neg R}{A \vdash A} c u t}{}
$$

Examples

- Cut elimination

$$
\frac{\overline{A \vdash A} a x \quad \overline{A \vdash A}}{A \vdash A} \text { cut }
$$

Examples

- Cut elimination

$$
\overline{A \vdash A} a x
$$

Examples

- Cut elimination

$$
\overline{A \vdash A} a x
$$

- Axiom expansion

$$
\overline{\neg \neg A \vdash \neg \neg A} a x
$$

Examples

- Cut elimination

$$
\overline{A \vdash A} a x
$$

- Axiom expansion

$$
\begin{gathered}
\frac{\neg A \vdash \neg A}{\neg A x} \\
\frac{\neg A, \neg \neg A \vdash}{\neg \neg A \vdash \neg \neg A} \neg R
\end{gathered}
$$

Examples

- Cut elimination

$$
\overline{A \vdash A} a x
$$

- Axiom expansion

$$
\begin{gathered}
\frac{\overline{A \vdash A}}{\frac{A, \neg A \vdash}{A, \neg L}} \begin{array}{c}
\overline{\neg A \vdash \neg A} \neg R \\
\neg A, \neg \neg A \vdash \\
\neg \\
\neg \neg A \vdash \neg \neg A \\
\\
\neg A
\end{array} ~
\end{gathered}
$$

Proofs as morphisms

A proof of $A \vdash B$ is a morphism from A to B.

- the $a x$-rule is the identity morphism
- the cut-rule is the composition of morphisms

Plus equalities on proofs:

- none: no isomorphisms
- cut elimination: trivial isomorphisms [Böнм-Dezani]
- cut elimination and axiom expansion: now
- maximal: back to equivalence, i.e. degenerated (at most one morphism in $[A, B] \Longleftrightarrow$ pre-order)

Syntax vs. Denotational Semantics

- From soundness
if $A \vdash B$ then $[A, B]$ is not empty
to faithfulness
two different proofs have different interpretations
- From completeness
if $[A, B]$ is not empty then $A \vdash B$
to full completeness
any element of $[A, B]$ is the interpretation of a proof

Minimal logic

Cartesian Closed Categories

$$
A_{1}, \ldots, A_{n} \vdash B \quad A_{1} \times \cdots \times A_{n} \rightarrow B
$$

- Constructors I $\quad A \times B$
B^{A}
- Product

$$
\begin{array}{rl}
\left.\begin{array}{r}
A \xrightarrow{f} C \\
B \xrightarrow{g} D
\end{array}\right\} & A \times B \xrightarrow{f \times g} C \times D \\
A \times \mathrm{I} \simeq A & A \xrightarrow{\Delta} A \times A \quad A \xrightarrow{t} \mathrm{I}
\end{array}
$$

- Curryfication

$$
[A \times B, C] \simeq\left[A, C^{B}\right]
$$

Example: sets and functions thus non-degenerated

Intuitionistic logic

Cartesian Closed Categories with initial object

$$
\begin{array}{lll}
A_{1}, \ldots, A_{n} \vdash B & \rightsquigarrow & A_{1} \times \cdots \times A_{n} \rightarrow B \\
A_{1}, \ldots, A_{n} \vdash & \rightsquigarrow & A_{1} \times \cdots \times A_{n} \rightarrow 0
\end{array}
$$

- Additional constructors
- Initial object

$$
0 \xrightarrow{i} A
$$

Example: sets and functions $(0=\emptyset)$ thus non-degenerated

Classical logic

Cartesian Closed Categories with involution

$A_{1}, \ldots, A_{n} \vdash B_{1}, \ldots, B_{m} \rightsquigarrow A_{1} \times \cdots \times A_{n} \times 0^{B_{1}} \times \cdots \times 0^{B_{m}} \rightarrow 0$

- Involution

$$
0^{0^{A}} \simeq A
$$

Degenerated !!! back to Boolean algebras

Proof sketch

$[A, B] \simeq[I \times A, B] \simeq\left[\mathrm{I}, B^{A}\right] \simeq\left[\neg\left(B^{A}\right), 0\right]$
$\sharp[0 \times C, D]=\sharp\left[0, D^{C}\right]=1$
If $e, f, g \in\left[\neg\left(B^{A}\right), 0\right]$:

thus $f=g$ or $[A, B]=\emptyset$

$$
\Longrightarrow \quad \sharp[A, B] \leq 1
$$

Linear logic

\star-autonomous categories with products, co-monad, etc. . .
$A_{1}, \ldots, A_{n} \vdash B_{1}, \ldots, B_{m} \rightsquigarrow A_{1} \otimes \cdots \otimes A_{n} \rightarrow B_{1} \vee \not \cdots \ngtr B_{m}$

- Constructors $1 \quad \perp \quad A \otimes B \quad A \multimap B \quad!A$
- Tensor product, curryfication and involution

$$
\begin{gathered}
\left.\begin{array}{c}
A \xrightarrow{f} C \\
B \xrightarrow{g} D
\end{array}\right\} A \otimes B \xrightarrow{f \otimes g} C \otimes D \\
A \otimes 1 \simeq A \quad[A \otimes B, C] \simeq[A, B \multimap C] \quad(A \multimap \perp) \multimap \perp \simeq A
\end{gathered}
$$

- Co-monad...

$$
!A \xrightarrow{c}!A \otimes!A \quad!A \xrightarrow{w} 1 \quad!A \xrightarrow{d} A \quad \ldots
$$

Example: sets and relations thus non-degenerated

Curry-Howard isomorphism

- The computational meaning of proof theory

Logic
formula $\leftrightarrow \leadsto$ type
rule $\leftrightarrow \leadsto$ instruction proof of $A \quad \leadsto \leadsto$ program of type A cut elimination $\longleftrightarrow \rightsquigarrow$ computation cut-free proof $\leftrightarrow \rightsquigarrow$ result

- Example: booleans

$$
\frac{\overline{X \vdash X}}{X, X \vdash X} \quad \text { an } \quad t t: \text { BOOL } \quad \mathrm{ff}: \text { BOOL }
$$

Computational meaning $\quad \Longrightarrow$ non-trivial equality of proofs

Any hope for classical logic?

- Not a Cartesian Closed Category
- [FÜHRMANN-Pym]
- [Lamarche-Strassburger]
- Breaking some symmetry
- Two dual classes of formulas and constrained rules (in an asymmetric way)
- Negation is not an involution

Extending Minimal Logic inside LL

$$
(A \rightarrow B)^{\star}=? A^{\star \perp} \text { 叉 } B^{\star}
$$

- Structural rules valid for ?-formulas:

$$
\perp \multimap ? A \quad ? A \not \subset ? A \multimap ? A
$$

- Required for [the translation of] all formulas
- Preserved by $\mathcal{\odot}$, valid for \perp : negative formulas (reversibility)

$$
N::=\perp|N \ngtr N| ? A|\quad \top| N \& N \mid \quad \forall \alpha N
$$

- Dual notion: positive formulas (focalization [Andreoli])
- Two negations:
- (. $)^{\perp}$ exchange positive and negative: involutive
- $N \rightarrow \mathbf{F} \simeq ? N^{\perp}$: not involutive $?!N \not \approx N$ (using $\mathbf{F}^{\star}=\perp$)

Polarized Linear Logic and LC

- Polarized formulas are expressive enough for minimal logic
- Restrict $L L$ to polarized formulas: $L L_{\text {pol }}$

$$
\begin{array}{cc|c|c|c|c|c}
N::=\perp & N \ngtr N & \top & N \& N & \forall \alpha N & ? P \\
P::=1 & P \otimes P & 0 & P \oplus P & \exists \alpha P & !N
\end{array}
$$

- Alternative syntax without explicit? and !: LC

$$
\vdash ? P, ? Q, ? M, ? N, P^{\prime}, Q^{\prime}, M^{\prime}, N^{\prime}
$$

Polarized Linear Logic and LC

- Polarized formulas are expressive enough for minimal logic
- Restrict $L L$ to polarized formulas: $L L_{\text {pol }}$

$$
\begin{array}{cc|c|c|c|c|c}
N::=\perp & N \ngtr N & \top & N \& N & \forall \alpha N & ? P \\
P::=1 & P \otimes P & 0 & P \oplus P & \exists \alpha P & !N
\end{array}
$$

- Alternative syntax without explicit? and !: LC

$$
\vdash ? P, ? Q, ? M, ? N, M^{\prime}, N^{\prime} ; P^{\prime}, Q^{\prime}
$$

Polarized Linear Logic and LC

- Polarized formulas are expressive enough for minimal logic
- Restrict $L L$ to polarized formulas: $L L_{\text {pol }}$

$$
\begin{array}{cc|c|c|c|c|c}
N & ::= & \perp & N \not 又 N & \top & N \& N & \forall \alpha N \\
P & ::=1 & P \otimes P & 0 & P \oplus P & \exists \alpha P & !N
\end{array}
$$

- Alternative syntax without explicit ? and !: LC

$$
\vdash ? P, ? Q, ? M, ? N, M^{\prime}, N^{\prime} ; P^{\prime}
$$

lemma: at most one positive formula in $\vdash_{\mathrm{LL}_{\mathrm{pol}}} \Gamma$

Polarized Linear Logic and LC

- Polarized formulas are expressive enough for minimal logic
- Restrict $L L$ to polarized formulas: $L L_{\text {pol }}$

$$
\begin{array}{cc|c|c|c|c|c}
N::=\perp & N \ngtr N & \top & N \& N & \forall \alpha N & ? P \\
P::=1 & P \otimes P & 0 & P \oplus P & \exists \alpha P & !N
\end{array}
$$

- Alternative syntax without explicit ? and !: LC

$$
\vdash \underline{P}, \underline{Q}, \underline{M}, \underline{N}, \underline{M^{\prime}}, \underline{N^{\prime}} ; \underline{P^{\prime}}
$$

lemma: at most one positive formula in $\vdash_{\mathrm{LL}_{\mathrm{pol}}} \Gamma$
LC sequents: $\quad \vdash \Gamma ; \Pi \quad$ (with polarities on formulas)

Constructive Classical Logic so many systems

$\lambda \mathcal{C}$-calculus [Felleisen]
LC [Girard]
$\lambda \mu$-calculus [PARIGot,ONG-Stewart]
λc-calculus [Krivine]
LKT/LKQ [Danos-Joinet-Schellinx]
Call-by-Push-Value [Levy]
$\bar{\lambda} \mu \tilde{\mu}$-calculus [Curien-Herbelin]
dual calculus [WADLER]

Denotational semantics

- Correlation spaces
- Coherent spaces (the model of linear logic) $A=\left(|A|, \frown_{A}\right)$: a set and a reflexive relation
- 8 -monoids: $N \ngtr N \multimap N$ and $\perp \multimap N$ \otimes-comonoids: $\quad P \multimap P \otimes P \quad$ and $\quad P \multimap 1$
- Control categories [Selinger]
- Additional constructors $\perp \quad A \ngtr B$
- Pre-tensor

$$
\begin{gathered}
\left.\begin{array}{r}
A \xrightarrow{f} C \\
B \xrightarrow{g} D \\
A \times \perp \simeq A
\end{array}\right\} A \underbrace{A} \simeq B \times \perp^{A}
\end{gathered}
$$

Towards completeness

- The completeness conjecture of correlation domains
- Introduce a notion of totality
- Failure: [Quatrini]
- Game semantics
- Closer to the syntax (cf. syntax vs. semantics)
- Focus on interaction
- Full completeness for constructive classical logic
- Faithfulness for constructive classical logic (e.g. proof-nets)

Game semantics

- From logic to games
- polarization \Rightarrow clusters of connectives
- successive moves of two players: Player and Opponent
- Moves: "sub-formulas" (tree structure)
- Game constructions

- Strategies: a proof is a winning strategy for Player such that...
- Dynamics:
cut elimination by composition/interaction between strategies

Let's play (1)

$((A \rightarrow \perp) \rightarrow \perp) \rightarrow A$

Let's play (2)

$\neg \neg A \rightarrow A$

$A \rightarrow \neg \neg A$
$\neg \neg A \rightarrow \neg \neg A$
$\neg \neg A \rightarrow \neg \neg A$

Type isomorphisms

- Equational characterization
- Cartesian Closed Categories
[Soloviev,BRUCE-LONGO,Di CoSMO,...]

$$
\begin{aligned}
& (A \times B) \rightarrow C \simeq A \rightarrow(B \rightarrow C) \\
& A \rightarrow(B \times C) \simeq(A \rightarrow B) \times(A \rightarrow C)
\end{aligned}
$$

- Control categories

$$
\begin{aligned}
A \curlyvee(B \times C) & \simeq(A \curlyvee B) \times(A \curlyvee C) \\
A \rightarrow B & \simeq \neg A \curlyvee B
\end{aligned}
$$

- Geometric characterization (using game semantics) $A \simeq B \quad \Longleftrightarrow \quad$ the corresponding trees are isomorphic

Second order quantification

- Church style [Di Cosmo,De Lataillade]

$$
\begin{aligned}
\forall X(A \rightarrow B) & \simeq A \rightarrow \forall X B \quad X \notin A \\
\forall X(A \times B) & \simeq \forall X A \times \forall X B
\end{aligned}
$$

- Curry style [De Lataillade]

$$
\forall X A \simeq A\left[{ }^{\forall X X} / X\right] \quad X \in^{+} A
$$

$$
\forall X \neg \neg X \quad \rightarrow \quad \neg \neg \forall X X
$$

$$
\neg \neg \forall X X \quad \rightarrow \quad \forall X \neg \neg X
$$

$[\forall Y Y / X] \bullet$
$[A / X] a$

$$
\left[{ }^{A} / Y\right] a
$$

$$
[A / X] a
$$

