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Understanding the question

In which logic?
classical logic
intuitionistic logic
minimal logic
linear logic
constructive classical logic

With which negation?
answer type is F or not (¬A = A → F or A → R)
linear / non linear

For which equality?
equiprovability (A provable ⇐⇒ ¬¬A provable)
equivalence (A ↔ ¬¬A provable)
isomorphism (A ' ¬¬A)



Related questions

If ¬¬A 6= A, what remains?
What about:

¬(A ∨ B) = ¬A ∧ ¬B

¬(A ∧ B) = ¬A ∨ ¬B

What about:

A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C)

A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C)

What about:

¬(∀xA) = ∃x¬A

¬(∃xA) = ∀x¬A



Syntax vs. Semantics
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We consider:
a (syntactically given) logic L
with derivable formulas: `L A

a corresponding (semantic) notion of L-model
with valid formulas: M � A

We look for:
Soundness
`L A =⇒ ∀M, M � A

Completeness
∀M, M � A =⇒ `L A



Classical logic (1)

Syntactically
¬¬A ↔ A is derivable

Semantically
Truth tables

JAK J¬AK J¬¬AK

0 1 0

1 0 1

JAK = 1 if and only if J¬¬AK = 1



Classical logic (2)
Semantically

Boolean algebras complemented distributive lattice
partial order with finite infs and sups (∨, ∧, 0, 1)
and complement x such that x ∧ x = 0 and x ∨ x = 1
typical example: P(E)

1

p = q q = p

0

{p, q}

{p} {q}

∅

unicity of x thus JAK = JAK

Boolean rings ring with x2 = x
(equivalent to Boolean algebras)
x = 1 − x and 1 − (1 − JAK) = JAK



Intuitionistic logic (1)

Syntactically

` A → ¬¬A

6` ¬¬A → A

Semantically
Topological semantics / Heyting algebras
open sets of a topological space S

JA → BK = (JBK ∪ S \ JAK)◦

JFK = ∅
J¬AK = (S \ JAK)◦

JAK is open thus JAK ⊆
◦

JAK but in general
◦

JAK 6⊆ JAK



Intuitionistic logic (2)
Semantically

Kripke models
partial order with a morphism I into (P(Var),⊆)

x 
 X if X ∈ I(x)

x 
 A → B if ∀y ≥ x, y 
 A =⇒ y 
 B

x 6
 F
x 
 ¬A if ∀y ≥ x, y 6
 A

Lemma: x 
 A and y ≥ x =⇒ y 
 A
K � A ⇐⇒ ∀x, x 
 A

K � ¬¬A ⇐⇒ ∀x, ∃y ≥ x, y 
 A ⇐= K � A

Counter model: ∅

{X}
6� ¬¬X → X



Minimal logic
and parametrized negation

¬RA ≡ A → R (particular case ¬A ≡ ¬FA)

Intuitionistic logic: `I F → A and 6`I R → A

Minimal logic: 6`M F → A and 6`M R → A

Syntactically

` A → ¬R¬RA

6` ¬R¬RA → A

Semantically
results given for the particular case F hold in general
(ex.: Kripke models with arbitrary interpretation for R)



Linear logic

Syntactically
A ◦—◦ A⊥⊥

Semantically Phase spaces
commutative monoid with a distinguished subset ⊥

JA( BK = {m | ∀n ∈ JAK, mn ∈ JBK}
JFK = ⊥

JA⊥K = {m | ∀n ∈ JAK, mn ∈ ⊥} = JAK⊥

JA⊥⊥
K = JAK⊥

⊥ ∆
= JAK



Core proof system
Sequents Γ ` ∆

A1, . . . , An ` B1, . . . , Bm

(n = 0 Γ = T)
∧

1≤i≤n

Ai →
∨

1≤j≤m

Bj (m = 0 ∆ = F)

Rules
ax

A ` A
Γ ` A,∆ Γ′, A ` ∆′

cut
Γ,Γ′ ` ∆,∆′

Γ ` A,∆
¬L

Γ,¬A ` ∆

Γ, A ` ∆
¬R/¬intro

Γ ` ¬A,∆

Γ ` ¬A,∆ Γ′ ` A,∆′

¬elim
Γ,Γ′ ` F,∆,∆′



Variations

Structural rules

Γ, A,A ` ∆

Γ, A ` ∆

Γ ` A,A,∆

Γ ` A,∆
Γ ` ∆

Γ, A ` ∆
Γ ` ∆

Γ ` A,∆

Restrictions
Classical logic: all structural rules
Intuitionnistic logic: at most one formula on the right
(no contraction)
Minimal logic: exactly one formula on the right
(no weakening either)
Linear logic: no structural rules



A and ¬¬A

A → ¬¬A and ¬¬A → A

ax
A ` A

¬L
A,¬A `

¬R
A ` ¬¬A

ax
A ` A

¬R
` A,¬A

¬L
¬¬A ` A

A = ¬¬A really means perfect symmetry between left and right

¬¬A → ¬¬A

ax
A ` A

¬L
A,¬A `

¬R
¬A ` ¬A

¬L
¬A,¬¬A `

¬R
¬¬A ` ¬¬A

ax
A ` A

¬R
` A,¬A

¬L
¬¬A ` A

¬L
¬A,¬¬A `

¬R
¬¬A ` ¬¬A



Expressiveness of Linear Logic

Structural rules under the control of connectives

Γ ` ?A, ?A,∆

Γ ` ?A,∆
Γ ` ∆

Γ ` ?A,∆

Γ, !A, !A ` ∆

Γ, !A ` ∆
Γ ` ∆

Γ, !A ` ∆

Translations
Minimal Logic
(A → B)? = !A?

( B? = ?A?⊥ ` B?

Intuitionistic Logic
F? = 0

Classical Logic
(A → B)? = ?(!A?

( B?) = ?(?A?⊥ ` B?)

F? = ?0



Equiprovability

equivalence =⇒ equiprovability
...

` A A ` ¬¬A cut
` ¬¬A

...
` ¬¬A ¬¬A ` A cut

` A

Classical logic
immediate from equivalence
Intuitionnistic logic
If `C A then `I ¬¬A (for A propositionnal) [GLIVENKO]

Linear logic
for (.)⊥: immediate from equivalence
` 1 and ` ?!1 but ?!1 6( 1

` A =⇒ ` ?!A but 6` ?X⊥ ⊕ X and ` ?!(?X⊥ ⊕ X)



Proof transformations

Cut elimination

...
Γ, A ` ∆

¬R
Γ ` ¬A,∆

...
Γ′ ` A,∆′

¬L
Γ′,¬A ` ∆′

cut
Γ,Γ′ ` ∆,∆′

 

...
Γ, A ` ∆

...
Γ′ ` A,∆′

cut
Γ,Γ′ ` ∆,∆′

Axiom expansion

ax
¬A ` ¬A  

ax
A ` A

¬L
A,¬A `

¬R
¬A ` ¬A



Examples

Cut elimination
ax

A ` A
¬L

A,¬A `
¬R

A ` ¬¬A

ax
A ` A

¬R
` A,¬A

¬L
¬¬A ` A cut

A ` A



Examples

Cut elimination
ax

A ` A
¬L

A,¬A `

ax
A ` A

¬R
` A,¬A

cut
A ` A



Examples

Cut elimination
ax

A ` A
ax

A ` A cut
A ` A



Examples

Cut elimination
ax

A ` A



Examples

Cut elimination
ax

A ` A

Axiom expansion
ax

¬¬A ` ¬¬A



Examples

Cut elimination
ax

A ` A

Axiom expansion
ax

¬A ` ¬A
¬L

¬A,¬¬A `
¬R

¬¬A ` ¬¬A



Examples

Cut elimination
ax

A ` A

Axiom expansion
ax

A ` A
¬L

A,¬A `
¬R

¬A ` ¬A
¬L

¬A,¬¬A `
¬R

¬¬A ` ¬¬A



Proofs as morphisms
-2

A proof of A ` B is a morphism from A to B.

the ax-rule is the identity morphism
the cut-rule is the composition of morphisms

Plus equalities on proofs:
none: no isomorphisms
cut elimination: trivial isomorphisms [BÖHM–DEZANI]

cut elimination and axiom expansion: now

maximal: back to equivalence, i.e. degenerated
(at most one morphism in [A,B] ⇐⇒ pre-order)



Syntax vs. Denotational Semantics

From soundness
if A ` B then [A,B] is not empty

to faithfulness
two different proofs have different interpretations

From completeness
if [A,B] is not empty then A ` B

to full completeness
any element of [A,B] is the interpretation of a proof



Minimal logic
Cartesian Closed Categories

A1, . . . , An ` B  A1 × · · · × An −→ B

Constructors I A × B BA

Product

A
f
−→ C

B
g
−→ D

}

A × B
f×g
−−→ C × D

A × I ' A A
∆
−→ A × A A

t
−→ I

Curryfication
[A × B,C] ' [A,CB]

Example: sets and functions thus non-degenerated



Intuitionistic logic
Cartesian Closed Categories with initial object

A1, . . . , An ` B  A1 × · · · × An −→ B

A1, . . . , An `  A1 × · · · × An −→ 0

Additional constructors 0

Initial object
0

i
−→ A

Example: sets and functions (0 = ∅) thus non-degenerated



Classical logic
Cartesian Closed Categories with involution

A1, . . . , An ` B1, . . . , Bm  A1 × · · · × An × 0B1 × · · · × 0Bm −→ 0

Involution

00
A

' A

Degenerated !!! back to Boolean algebras



Proof sketch

[A,B] ' [I× A,B] ' [I, BA] ' [¬(BA), 0]

][0 × C,D] = ][0, DC ] = 1

If e, f, g ∈ [¬(BA), 0]:

¬(BA) ¬(BA) 0

0 × ¬(BA)

id

〈e, id〉 π2

f, g

w

thus f = g or [A,B] = ∅
=⇒ ][A,B] ≤ 1



Linear logic
?-autonomous categories

with products, co-monad, etc. . .
A1, . . . , An ` B1, . . . , Bm  A1 ⊗ · · · ⊗ An −→ B1 ` · · · ` Bm

Constructors 1 ⊥ A ⊗ B A( B !A

Tensor product, curryfication and involution

A
f
−→ C

B
g
−→ D

}

A ⊗ B
f⊗g
−−→ C ⊗ D

A ⊗ 1 ' A [A ⊗ B,C] ' [A,B( C] (A( ⊥)( ⊥ ' A

Co-monad. . .
!A

c
−→ !A ⊗ !A !A

w
−→ 1 !A

d
−→ A . . .

Example: sets and relations thus non-degenerated



Curry-Howard isomorphism

The computational meaning of proof theory

Logic Programming

formula ! type
rule ! instruction

proof of A ! program of type A

cut elimination ! computation
cut-free proof ! result

Example: booleans
ax

X ` X
X,X ` X

! tt : BOOL ff : BOOL

Computational meaning =⇒ non-trivial equality of proofs



Any hope for classical logic?

Not a Cartesian Closed Category
[FÜHRMANN–PYM]
[LAMARCHE–STRASSBURGER]

Breaking some symmetry
Two dual classes of formulas and constrained rules
(in an asymmetric way)
Negation is not an involution



Extending Minimal Logic inside LL
(A → B)? = ?A?⊥

` B?

Structural rules valid for ?-formulas:
⊥( ?A ?A ` ?A( ?A

Required for [the translation of] all formulas
Preserved by `, valid for ⊥: negative formulas (reversibility)

N ::= ⊥ | N ` N | ?A | > | N & N | ∀αN

Dual notion: positive formulas (focalization [ANDREOLI])
Two negations:

(.)⊥ exchange positive and negative: involutive
N → F ' ?N⊥ : not involutive ?!N 6' N

(using F? = ⊥)



Polarized Linear Logic and LC

Polarized formulas are expressive enough for minimal logic
Restrict LL to polarized formulas: LLpol

N ::= ⊥ | N ` N | > | N & N | ∀αN | ?P

P ::= 1 | P ⊗ P | 0 | P ⊕ P | ∃αP | !N

Alternative syntax without explicit ? and !: LC

` ?P, ?Q, ?M, ?N,P ′, Q′,M ′, N ′



Polarized Linear Logic and LC

Polarized formulas are expressive enough for minimal logic
Restrict LL to polarized formulas: LLpol

N ::= ⊥ | N ` N | > | N & N | ∀αN | ?P

P ::= 1 | P ⊗ P | 0 | P ⊕ P | ∃αP | !N

Alternative syntax without explicit ? and !: LC

` ?P, ?Q, ?M, ?N,M ′, N ′;P ′, Q′



Polarized Linear Logic and LC

Polarized formulas are expressive enough for minimal logic
Restrict LL to polarized formulas: LLpol

N ::= ⊥ | N ` N | > | N & N | ∀αN | ?P

P ::= 1 | P ⊗ P | 0 | P ⊕ P | ∃αP | !N

Alternative syntax without explicit ? and !: LC

` ?P, ?Q, ?M, ?N,M ′, N ′;P ′

lemma: at most one positive formula in `LLpol Γ



Polarized Linear Logic and LC

Polarized formulas are expressive enough for minimal logic
Restrict LL to polarized formulas: LLpol

N ::= ⊥ | N ` N | > | N & N | ∀αN | ?P

P ::= 1 | P ⊗ P | 0 | P ⊕ P | ∃αP | !N

Alternative syntax without explicit ? and !: LC

` P ,Q,M,N,M ′, N ′;P ′

lemma: at most one positive formula in `LLpol Γ

LC sequents: ` Γ; Π (with polarities on formulas)



Constructive Classical Logic
so many systems

λC-calculus [FELLEISEN]

LC [GIRARD]

λµ-calculus [PARIGOT,ONG–STEWART]

λc-calculus [KRIVINE]

LKT/LKQ [DANOS–JOINET–SCHELLINX]

Call-by-Push-Value [LEVY]

λ̄µµ̃-calculus [CURIEN–HERBELIN]

dual calculus [WADLER]

. . .



Denotational semantics

Correlation spaces
Coherent spaces (the model of linear logic)
A = (|A|,¨A): a set and a reflexive relation
`-monoids: N ` N ( N and ⊥( N

⊗-comonoids: P ( P ⊗ P and P ( 1

Control categories [SELINGER]
Additional constructors ⊥ A ` B

Pre-tensor
A

f
−→ C

B
g
−→ D

}

A ` B
f`g
−−→ C ` D

A `⊥ ' A BA ' B `⊥A

. . .
⊥ is not initial, ⊥⊥A

6' A but A / ⊥⊥A



Towards completeness

The completeness conjecture of correlation domains
Introduce a notion of totality
Failure: [QUATRINI]

Game semantics
Closer to the syntax (cf. syntax vs. semantics)
Focus on interaction
Full completeness for constructive classical logic
Faithfulness for constructive classical logic

(e.g. proof-nets)



Game semantics
-3From logic to games

polarization ⇒ clusters of connectives
successive moves of two players: Player and Opponent

Moves: “sub-formulas” (tree structure)
Game constructions

⊥ X A → B ¬A

X

B

A A

Strategies: a proof is a winning strategy for Player
such that. . .

Dynamics:
cut elimination by composition/interaction between strategies



Let’s play (1)

A → ( A → X ) → X

•

•

a

a

( ( A → ⊥ ) → ⊥ ) → A

a

•

•

a



Let’s play (2)

¬¬A → A

a
•
•
a

A → ¬¬A

•
•
a

a

¬¬A → ¬¬A

•
•
a

•
•
a

¬¬A → ¬¬A

•
•
•

•
a

a



Type isomorphisms

Equational characterization
Cartesian Closed Categories

[SOLOVIEV,BRUCE–LONGO,DI COSMO,. . . ]

(A × B) → C ' A → (B → C)

A → (B × C) ' (A → B) × (A → C)
. . .

Control categories
A ` (B × C) ' (A ` B) × (A ` C)

A → B ' ¬A ` B
. . .

Geometric characterization (using game semantics)
A ' B ⇐⇒ the corresponding trees are isomorphic



Second order quantification
Church style [DI COSMO,DE LATAILLADE]

∀X(A → B) ' A → ∀XB X /∈ A

∀X(A × B) ' ∀XA × ∀XB
. . .

Curry style [DE LATAILLADE]

∀XA ' A[∀XX/X ] X ∈+ A

∀X¬¬X → ¬¬∀XX

•

[∀Y Y /X ]•

•

•

[A/X ]a

[A/Y ]a

¬¬∀XX → ∀X¬¬X

[A/X ]•

•

•

•

a

[A/X ]a
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