A Token Machine for Full Geometry of
Interaction

(Extended Abstract)

Olivier LAURENT

Institut de Mathématiques de Luminy
163, avenue de Luminy - case 907
13288 MARSEILLE cedex 09 FRANCE

olaurent@iml .univ-mrs.fr

Abstract. We present an extension of the Interaction Abstract Machine
(IAM) [10, 4] to full Linear Logic with Girard’s Geometry of Interaction
(Gol) [6]. We propose a simplified way to interpret the additives and the
interaction between additives and exponentials by means of weights [7].
We describe the interpretation by a token machine which allows us to
recover the usual MELL case by forgetting all the additive information.

The Geometry of Interaction (Gol), introduced by Girard [5], is an inter-
pretation of proofs (programs) by bideterministic automata, turning the global
cut elimination steps (8-reduction) into local transitions [10, 4]. Because of its
local feature, the Gol has proved to be a useful tool for studying the theory and
implementation of optimal reduction of the A-calculus [8, 2]. It is also strongly
connected to some work on games semantics for Linear Logic and PCF ([1, 3]
for example). Maybe the most exciting use of the locality of Gol is the current
work, aiming at using it for implementing some parallel execution schemes [11].

Although the Gol has been very present in various works, its most popular
version only deals with the MELL fragment of Linear Logic (which is sufficient
for encoding the A-calculus though). Girard proposed an extension of Gol to the
additives [6], but his solution is quite technical (it makes an important use of an
equivalence relation and entails a complex interpretation of the exponentials),
which is probably the reason why it had not the same success as the MELL case.
A first difficulty is to manage the “non linearity” of the additive cut elimination
step (see below). A subtler problem comes from the interaction between additives
and exponentials; in particular we will see that the weakening rule becomes very
tricky to handle in presence of additives. Note that this is linked to the problem
(still open at the time of this writing) of finding a good proof-net syntax for full
LL.

In this paper, although we don’t claim to give the final word on the Gol for
LL, we propose an interpretation with an abstract machine, based on additive
weights [7]. This greatly simplifies Girard’s interpretation since we don’t have to
work up to isomorphism. We hope that this will prove to be a determining step
towards the extension to additives of optimal reduction, games, ...

Additive linearity. A naive look at the usual &/@ cut elimination step of MALL
shows that this reduction step is not so “linear”: the sub-proof 7y is completely

erased. -
m T 7I-A3AJ- - 3
"rA rnB A o ppr Tl
FILA& B FA AL @ B+ cut
! FT A ! cut FI,A

This is too drastic to be interpreted by the very local approach of Gol. To
“linearize” this cut elimination step, Girard introduced the b-rules [6], in the
calculus LL", which allow to keep the proof m» after reduction but marked with
a b symbol.

Soundness. By the modification of the additive reduction in LL", we get the
preservation of the Gol by b-reduction. Although an LL’-normal form is not an
LL-normal form (it still has some b-rules), one can easily extract the latter from
the former. This extraction procedure erases parts of the proof that had been
memorized along the b-reduction thus it doesn’t respect the Gol interpretation.
This is why we will only show a soundness result for LL-proofs of - 1 & 1.

Proofs of F 1 @ 1 give an encoding of booleans since there are exactly two
normal proofs of this sequent in LL. The restriction to these boolean results is
very drastic but sufficient, from a computational point of view, to distinguish
different results (see [5] for a longer discussion).

Without clearly decomposing LL cut elimination into these two steps (b-
reduction and extraction), the study of the modifications of the Gol interpreta-
tion during LL-reduction would be very complicated and the results very difficult
to express and to prove. Moreover this precise analysis allows us to introduce a
parallel version of the automaton which leads to simpler results in both steps
(Propositions 1 and 2). This parallel approach may probably also be used to
define Gol for the system LLP [9] for classical logic which contains generalized
structural rules.

Additives and weakening. The other main technical (and complicated) point is
the interaction between additives and exponentials, in particular the interaction
with weakening (or L). According to its erasing behavior, the usual interpreta-
tion of a weakened formula is empty. In an additive setting, this idea leads to an

inconsistency: . _
Bt SRS o
Fla1 Flal .
Flel, L Fla1, L F1 ,
Flol, L& L F1el
Fio1 cut

there is no way to know if the @; proof is “attach” to the left or to the right
part of the &, if L is empty. Thus the Gol interpretation of this proof doesn’t
depend on the value of 7 which is crucial since it determinates the boolean
corresponding to the normal form. To solve this problem, we have to modify the

weakening rule by attaching the weakened formula to a formula in the context
(which corresponds to encoding 1 by Ja(a ® al), see [6]) ensuring that an
explicit information in the Gol interpretation indicates which @ is in the left
and in the right.

Sequent calculus vs. proof-nets. The idea of Gol comes from the geometric repre-
sentation of proofs given by proof-nets [7]. However, the technology of proof-nets
for additives is not completely satisfactory, in particular because there is no good
cut elimination procedure. Moreover using proof-nets would require a definition
of b-proof-nets. For these reasons, we will interpret proofs in sequent calculus and
prove our results for this interpretation but it is easy to define the interpretation
of proof-nets while not talking about cut elimination.

The presentation is done in three distinct steps: first the MALL case, then we
add the constants and eventually we obtain the full case by adding the exponen-
tials. In this way, it is easier to see the modularity of the construction and to see
which part of the interpretation corresponds to which subpart of Linear Logic.
By forgetting the adequate constructions, we can easily obtain Gol for various
fragments of LL, in particular we recover the usual IAM [4] for MELL.

1 Sequent Calculus MALL®

To give the interpretation of proofs, we have to be very precise about the distinct
occurrences of formulas. This is why we introduce annotations with indexes in
the rules of the sequent calculus.

1.1 TUsual MALL Sequent Calculus
az FID,A FAL A

FA AL A cut
1L, A FALB -1y, A B
FTA A B FTAXB
FI,A FI,B FI,A @, FI,B ,
FT,A& B FI,A®B FI,A®B

1.2 b-Rules

We have to introduce a new symbol b, for marking some “partial” sequents in
proofs, this is not a formula and thus no connective can be applied on it.

b "Fl,Al I_FQ,b "Ag,b
I_F,b l_F,A S

b

The two »-premises of the s’-rule are used to memorize some sub-proofs
through the additive reduction step (see Sect. 1.4).

A proof of a sequent containing the symbol b is a kind of partial proof where
some sub-proof is missing.

Definition 1 (Weight). Given a set of elementary weights, i.e., boolean vari-
ables, a basic weight is an elementary weight p or a negation of an elementary
weight p and a weight is a product (conjunction) of basic weights.

As a convention, we use 1 for the empty product and 0 for a product where
p and p appear. We also replace p.p by p and p by p. With this convention we
say that the weight w depends on p when p or p appears in w.

We use the notations w(p) (resp. w(p)) if p (resp. p) appears in w and w(P)
if w doesn’t depend on p. The product of weights is denoted by w.w'.

We will consider weighted proofs, i.e., with a basic weight associated to each
&-rule and to each s’-rule. These two kinds of rules are called sided rules. For
a &-rule, the sub-proof of the left (resp. right) premise is called its left (resp.
right) side and for a s”-rule the sub-proof of F I, A; is the left side and the
sub-proofs of - I's,5» and F As, b are the right side.

A weight describes a choice for the &-rules of one of their two premises. It
corresponds to the notion of additive slice [7], that is the multiplicative proofs
obtained by projecting each & on one of its sides.

Definition 2 (Correct weighting). A weighted proof has a correct weighting
when two sided rules have a basic weight corresponding to the same elementary
weight only if they are in the left side and in the right side of a same sided rule
(i.e., an elementary weight never appears twice in the same additive slice of a

proof).

1.3 The p-Translation

We are only interested in proofs of LL sequents (without b), »-rules are used as
an intermediary step for the interpretation. This is why in the sequel we will
consider only LL” proofs of LL sequents.

There exists an easy way to transform such an LL” proof 7 into an LL one
7% called the §-translation: for LL-rules just change nothing and for each s’-rule
erase the right side and connect the left side to the conclusion.

1.4 Cut Elimination

For the LL” sequent calculus, the cut elimination procedure is the usual one
except for the additive step:

™ o _ T
FI,A FIuv.B F A, At)
FI3,A&B F Ay, At @ Bt
FTA cut
™ 7T% Up) ‘L b 7T32» b
FIL, A FALAL FI,,B FBLb A2 AL F A
F A, cut CTho cut - A cut

b

FI,A 5

For such a cut elimination step between a &-rule and a ®;-rule, we can
define a canonical weighting for the new proof from the one on the initial proof
by associating to the s’-rule the basic weight p if i = 1 and 5 if i = 2 where p is
the basic weight of the &-rule.

Due to this modified reduction step, MALL is a sub-system of MALL” which
is not stable by reduction.

Remark 1. This new additive step is now “really” linear if we consider sub-proofs
with their additive weight: before reduction we have p.m; + p.m2 + w3 and after
p.m1 + p.my + p.my + p.r3. Notice that the b-premises of the s’-rule are crucial for
this purpose: one for p.m> and the other one for p.m3.

We also have to define new commutative steps for the s*-rule:

1 Up) 3
"Fl,Al,Cl l_FQ,CQ,b "Ag,b b T4
F13,4,C ¥ Ex,ct ,
FIA Y e
l
™1 ﬂ-l} T2 ﬂ-z

FIL,ALC, R XLOR F 1y, Cob 5y, C , 5
T3, A5, 55 cut - T4, 5ab “ R A
FILAY §

and the corresponding one for a cut on a formula in A.
For the other cut elimination steps, the new weighting is easy to define; when
a sub-proof is duplicated, we preserve the same basic weights in the two copies.
We will now always consider proofs with correct weightings, noting that cor-
rectness is preserved by reduction.

Definition 3 (Quasi-normal form). A proof in LL* is said to be in quasi-
normal form if it cannot be reduced by any step described above.

Remark 2. A proof in quasi-normal form contains only cuts in which at least
one of the two occurrences of the cut formula has been introduced by a b axiom
rule and used only in cut-rules.

It is possible to define a general cut elimination procedure as in [6] for LL,
but it would be more complicated and useless because we can remark that the

g-translation of a proof of an LL sequent in quasi-normal form is a normal proof
in LL.

2 The Interaction Abstract Machine

We now define the Interaction Abstract Machine (IAM) for MALL". Forgetting
the additive informations gives back the multiplicative TAM [4].

2.1 Tokens and Machine

Definition 4 (Token). For the multiplicative-additive case, a token is a tuple
(m,a,w) where m and a are stacks (¢ will denote the empty stack) built on letters
{g9,d} (Girard’s notations corresponding to the french gauche and droite) and
w s a weight.

Definition 5 (Abstract machine). A state of the machine M, associated to
the proof m of LL” is F'(m,a,w) or F¥*(m,a,w) or § where F is an occurrence
of a formula appearing in the proof and the arrow indicates if the token (m,a,w)
is going upwards or downwards. () means that the machine stops.

The transitions of M, through the rules of m are described in Figs. 1 and 2.
I (resp. A) is used for one of the formulas of the multiset I' (resp. A), but
the same before and after the transition. If the result of a transition contains a
weight w = 0, we consider it as ().

Remark 3. In Fig. 2, changing the transition in the case A & B'(m, g.a, w(¥))
(resp. A & BT (m,d.a,w(§))) into A & BT(m, g.a,w(§)) — AT(m,a,w.p) (resp.
A & BY(m,d.a,w(p)) = BT(m,a,w.p)) would make no difference since this p
(resp. p) information is also added when going down through the &-rule.

2.2 Properties of the Machine

Definition 6 (Partial function on tokens). Let m be a proof and A one of
its conclusions, we define the partial function f. by:

(B, (m',a’,w")) if the computation on AT(m,a,w) ends
fr(A, (m,a,w)) = by BY(m/,a',w") whith B conclusion of T

0 otherwise

The partial function f, is undefined in two cases: either if the machine stops
inside the proof or if the execution doesn’t terminate.

Lemma 1. Let 7 be a proof, and w' and wy two weights s.t. w'.wy # 0.
fr(A, (m,a,w)) = (B, (m,d',w")) = f(A, (m,a,wwy)) = (B, (m',a',w" wy))

Theorem 1 (Soundness). If 7 is a proof in MALL® whose quasi-normal form
is o then for each pair formula-token j:

— if fr(j) =1 then fry(j) =1

- iffm)(j) :j, then fﬂ'(]) :j,

— if fz(4,(m,a,w)) = (B,(m/,d',w")) and fr (A, (m,a,w)) = 1 then there
exists wy s.t. fro (A, (M, a,wawp)) = (B, (m',a',w' wy)) with w'.wy # 0.

Moreover, if the execution in My is infinite, it is infinite in My, .

ar cut
AT (m,a,w) — ALl(m,a,w) At (m,a,w) — ALT(m,a,w)
AJ‘T(m,a,w) — AY(m,a,w) ALl(m,a,w) — AT(m,a,w)
' (m,a,w) — I'M(m,a,w)
AT (m, a, w) — Al(m,a,w)
I'Hm,a,w) — I'(m,a,w)
® At (m,a, w) — At(m,a,w)
A® B'(g.m,a,w) = AT (m,a,w)
A® B'(d.m,a,w) = B (m,a,w) »
A® B'(e,a,w) —0 A% BY(g.m,a,w) = AT(m,a,w)
At (m,a,w) — A® B*(g.m,a,w) AR B'(d.m,a,w) - B'(m,a,w)
B(m,a,w) — A®Bl(d.m,a,w) AR B'(g,a,w) =0
' (m,a,w) — F (m, a,w) Al(m,a, w) — A% BY(g.m,a,w)
AT (m,a,w) Al(m, a,w) BY(m,a,w) — A% BY(d.m,a,w)
I'H(m,a,w) — Fl(m, a,w) I'(m,a,w) — I'T(m,a,w)
Al (m,a,w) — At(m, a,w) I'Hm,a,w) — I'(m,a,w)
Fig. 1. Identity and multiplicative groups.
& D1
A& B'(m, g.a,w(p)) — AT(m,a,w(p)) A® B'(m,g.a,w) — A'(m,a,w)
A& BY(m, g.a,w(®)) = AT(m,a,w(¥)) A® BY(m,d.a,w) — 0
A& BY(m, g.a,w(p)) — 0 A® BY(m,e,w) — 0
A& BY(m,d.a,w(p)) = B'(m,a,w(p)) At(m,a,w) — A® BY(m,g.a,w)
A& B'(m,d.a,w(§)) = B"(m,a,w(y)) '(m,a,w) — I'T(m,a,w)
A& BT(m d.a,w(p)) = 0 r'}H(m,a,w) — I''(m,a,w)
A& B (m,e,w) =0
At (m,a,w) — A& BY(m, g.a,w.p)
BY(m,a,w) — A& BY(m,d.a,w.p)
Mma,wp) - m,a,wp) ¥
I'(m,a,w(p)) — I3 (m,a,w(p)) r'(m,a,w(p)) = I (m,a,w(p))
I (m,a, w(¥)) -0 r'(m,a,w(p) = I (m,a,w(p))
I'(m,a,w) — I''(m,a,w.p) I'"(m,a, w(y)) =0
I (m,a,w) S M mawp) Almawp) = Alimawp)
Al(m,a,w(p)) = Al(m,a,w(p))
AT (m, a,w(y)) =0
r'Hm,a,w) — I''(m,a,w.p)
b '} (m,a,w) — I''(m,a,w.p)
' (m,a,w) -0 Al (m,a,w) — AY(m,a,w.p)
Al (m, a,w) — At(m,a,w.p)

Fig. 2. Additive and » groups. (p is the basic weight associated to the &-rule or to the
s’-rule and the @, is easy to define from &)

The introduction of the weight wq corresponds to the transformation of 73
into p.m3 + p.m3 during additive cut elimination (see Remark 1). Before reduction
we don’t need any information about p to go in 73 but after reduction we have
to know if we go to p.m3 or to p.ms.

Proof. We have to prove that for each step of cut elimination the theorem is
true and then by an easy induction on the length of a normalization we obtain
the result.

We suppose that the cut-rule which we are eliminating is the last rule of the
proof m and we obtain a proof «'. If it is not the case, we just have to remark
that adding the same new rules at the end of 7 and 7’ is correct with respect to
the interpretation.

We only consider the case of the additive cut elimination step (figure in
Sect. 1.4) which is the most important one, the others are left to the reader.

We use the notation j = (I',t) or s = I'"(m, a,w) to say that the formula
we are talking about is in the multiset I" (idem for A, ...). Moreover f(I',t) =
(I,t") doesn’t necessarily mean that the formula is the same before and after
the computation.

Let p be the basic weight associated to the &-rule. We study the different
possible cases for j:

— if j = (T, (m,a,w(p))), we look at the sequence s1,$2,... (resp. si,sh,...)
of the states FT(m,a,w) in the conclusions of the sub-proofs 7, 7 and 73
(resp. 71, ma, m3 and 73) during the computation of M, (resp. M) on the
state associated to j. In fact these states will always be in the conclusions
of 71 and 73 (resp. m; and 73) with s; in I, more precisely:

e if 55,41 = F'(m,a,w) with F = Il or A, ssj10 = ALT(m’,a’,w’) with
fr (F, (mya,w)) = (A, (m',a’,w')) or se;12 doesn’t exist;
o if 59; = AJ-T(m,a,w), s2ip1 = AT(m',a',w') with fr, (AL, (m,a,w)) =
(A+, (m!,a',w")) or s3;41 doesn’t exist.
The same facts occur for the s} by replacing w3 with 3 so we have Vi, s; = s}.
If s1,82,... is infinite, s},s},... too. There are two different reasons for
81,82,... to be finite, if s, is the last state and is in the conclusions of
7i: either the evaluation of the corresponding machine M, is infinite (or
undefined at a step) on s, and the same thing occurs in 7’ or f,, on this
state gives a result j' in the context and f(j) = j' (idem in #').

— if j = (I',(m, a,w(p))), either fr,(j) = (I t') and fr(j) = (I} t') = fx (j) or
fra(G) = (B, ¥') and fr(j) =1 = fx (j);

—ifj= (Fv (m,a,w(p’))), fﬂ'(]) =1 and fﬁ’(]) =1

—if j = (A4, (m, a,w(p))), similar to the (I, (m, a, w(p))) case;

—if j = (4, (m,a,w(p))), either fr,(j) = (A,t') and fx(j) = (4,1') = f= (j)
or fr,(j) = (A*,t') and fx(j) =1 = fur (j);

— if j = (4, (m,a,w(¥))), f(j) =1 but fz(j) may be defined with fr(j) =
(F,(m',a’,w")) in this situation we have by Lemma 1 (noting that w'.p # 0
for a correct weighting) and by applying the case j = (A4, (m,a,w(p))),
frr (A, (m,ya,w.p)) = (F,(m',d,w'.p)) = fz(4,(m,a,w.p)). This case is

very important because it is characteristic of the fact that f; and f;» may
differ. 0

Corollary 1. If w is a weight s.t. for all elementary weight p of w, p € w or
B w then fx(F, (m, a,w)) = fry(F, (m, a,w)).

Theorem 2 (Termination). Let m be a proof, A a conclusion of ™ and t a
token, the execution of the machine on AT(t) terminates.

Proof. Let my be a quasi-normal form of 7. By Theorem 1, we have to prove that
the execution of the machine associated to my on AT(¢) terminates.

In 7, if the execution never uses the transition of a cut formula, either it
stops in a transition or it goes up to an axiom and then down to a conclusion so
it terminates. Moreover, by the definition of a quasi-normal form, the cut-rules
appearing in 7o are of the form:

FAL) ’
: —cut
FIA
FTb cut
and if the execution uses the transition on A in such a cut-rule, it stops in the
b-rule. Thus the evaluation is always finite in a quasi-normal form. O

2.3 The Parallel IAM

In order to complete some transitions on which the IAM stops, we can introduce
a parallel version of the machine for which states are formal sums of states of the
TAM with 0O for the empty sum. To define the parallel machine MP associated
to a proof 7, we modify some particular transitions and we replace 0 by 0:

&
T't(m,a,w(#) = I} (m,a,w.p) + I3 (m,a, w.p)
Sb
r't(m,a,w(p) = I{ (m,a,w.p) + I3 (m, a,w.p)
Al(m,a,w()) = Al(m, a,w.p) + AY(m, a,w.p)

We denote by fP the partial function associated to this machine and defined
like fr (Definition 6). To simplify the results (formal sums of pairs formula-
token), we use the following rewriting rule:

(A, (m,a,w.p)) + (4, (m,a,w.p)) — (4, (m,a,w))

Proposition 1 (Parallel soundness). If 7 is a proof whose quasi-normal form

is mo then f2 = fF .

When a weight information is missing, the parallel machine tries all the possi-

bilities thus it doesn’t need any starting information. This is why the requirement,
of an additional weight wq in Theorem 1 disappears.

3 Adding the Constants

3.1 Rules and Machine

. FLhLA - Ty,
F1 FT A, L FT,T

As explained in the introduction, we have to modify the L-rule by distin-
guishing a particular formula in the context.

We can extend the j-translation without any loss of its properties by replacing
each T-rule by the usual one W and by erasing everything above it.

For the multiplicative constants, the cut elimination is as usual. For the
additive constants, we obtain:

F Iy, A, T F I, Ab l_AQ,AJ_ ;
FI,A T, F AL At ; - FIv, A0 o
FTLAT e FLLAT

We extend the notion of token by using the letters {g,d, f},{} for the multi-
plicative stack and we add new transitions for the added rules (Fig. 3).

1 L
1" (m,a,w) — 14(m,a,w) At (m,a,w) — LY(f.m,a,w)
At(m,a,w) — LYm,a,w)
LT (fr.m, a,w) = Al(m, a,w)
T 1TWUm, a,w) = At(m,a,w)
T (m,a,w) = TH(m,a,w) 1"(m,a,w) —0 m# ft.m', .m’
I''(m,a,w) — IT(m,a,w) I'(m,a,w) — I'T(m,a,w)
't (m,a,w) = I'(m,a,w) rtm,a,w) — I'*(m,a,w)

Fig. 3. Constant group.

Theorem 1.a (Soundness continued). The Theorem 1 is still true in MALL
with constants.

3.2 Computation of Booleans

We want to compute results for the usual cut elimination procedure of LL. As
already explained, we have to restrict ourselves to the particular case of proofs
of F1@® 1 that give a notion of booleans.

Lemma 2. If 7 is a proof of -1, there exists w s.t. fr(1,(g,e,w)) = (1, (g,&,w)).
Lemma 3. If 7 is a proof of - 1 ® 1,b then, for any j, f=(j) =1.

Theorem 3. If m is a proof of F 1 ® 1 whose quasi-normal form is my then

Wg =_F1 ®; and

Flel

— either there exists w s.t. fr(1®1,(e,g,w)) =(1®1,(c,9,w)) and i =1
— or there exists w s.t. fr(1®1,(e,d,w)) = (1®1,(e,d,w)) and i =2.

Proof. We suppose that i = 1 and we make an induction on .

— If the last rule is &, it must be a ®; by normalization; we apply the Lemma 2
to the premise which gives us a weight w s.t. f(1® 1,(e,9,w)) = (1 ®
1, (g, g,w)). Moreover for any weight w', fr(1® 1, (e,d,w")) = 1.

— If the last rule is s°, let p be its basic weight. We can apply the induction
hypothesis to the sub-proof m of - 1®1 and we obtain a weight w s.t. fr (1®
L (e, 9,w)) = (1®1,(e,9,w)) so fr, (LB 1,(c,9,w.p)) = (1 &1, (e, 9,w.p))-
Moreover for any weight w', fr; (1® 1, (¢,d,w")) = 1 thus, by Lemma 3, we
also have fr, (181, (e,d,w")) = 1.

Finally we conclude by Theorem 1. O

We cannot assume that the weight w is empty for the evaluation of f, be-
cause, for some proofs, fr (A, (m,a,1)) =1 for any A, m and a (see the proof of
F 1@ 1 in the introduction, for example).

The parallel machine gives a solution for this problem since it doesn’t re-
quire any initial weight information. The weight may be built dynamically thus
starting with 1 is sufficient.

Proposition 2. If 7 is a proof of F 1 ® 1 whose quasi-normal form is m
then 71'3 = ﬁe% and either fP(1 ® 1,(g,9,1)) # 0 and i = 1 or

Fl1o1l
fP(1e1,(e,d, 1)) #0 and i = 2.

4 Exponentials
We have now to generalize some of our definitions of Sect. 1 to deal with the

following exponential rules. The interpretation is the one defined by Danos and
Regnier [4], accommodated with the additives and extended to the ?w-rule.

4.1 Sequent Calculus

LA ET,A v
Fer 1A © FT,74 -

F0LBL L, FDL?AG?4, 0 B4

F1,B,7A v FT,7A ¢ TFT,7A

The formula B in the context of the 7w-rule is used for the same purpose as
in the L-rule. We use a functorial promotion and a digging rule (??-rule) instead
of the usual promotion because it allows us to decompose precisely the Gol.

Definition 7 (Weight, Definition 1 continued). A copy address ¢ is a word
built on the letters {g,d}.

A basic weight is now a pair of an elementary weight p (or its negation p)
and a copy address ¢, and is denoted by p. (p.)-

In order to deal with the erasing of sub-proofs by the weakening cut elimi-
nation step, we will only consider proofs with no ? in conclusions. To prove the
preservation of the interpretation by reduction, we can restrict cut elimination
to the particular strategy reducing only exponential cuts with no context in the
l-rule.

In the ?¢ cut elimination step, we obtain two copies 7} and 77 of the proof
m of F A, In m] (resp. m}), we replace all the basic weights p. by p,.. (resp.
pd.c)-

4.2 Extending the Machine
Definition 8 (Exponential informations).
— Exponential signatures o and exponential stacks s are defined by:

ox=0|go|do|"oa|[s]"|[s]*
su=¢|os

We will use the notation [s] to talk about both [s]" and [s]V. N
— The copy address ¢ of an empone/n_ézﬁil signature o s defined by: O = &,
[s]=¢, g0 = 9.5, do =d.& and "o’ .0 =5 5.
— The copy address of an exponential stack is: € = e and 0.5 = 7.3.
— We define the predicate weak() on signatures by:
o weak(d) = false and weak([s]) = true
e weak(g.0) = weak(c) and weak(d.c) = weak(o)
e weak("o'7.0) = weak(c')

The weak() predicate tells if the leaf of the exponential branch described by
o is a Tu-rule.

Definition 9 (Token, Definition 4 continued). For the full case, a token is
a tuple (m,a,w,b,s) where b and s are exponential stacks. Moreover the language
of m is extended to {g,d, 1, {,|} and the language of a is extended to {g,d,|}
(1, 4 and | are only used for L and ?w).

Definition 10 (Type of a token). The type of a token (m,a,w,b,s) in a
formula of a proof is the pair (|b| —d,|s| —n) where |.| is the length of a stack, d
is the depth of the formula in the proof (i.e., the number of !-rules below it) and
n is the number of exponential connectives in the scope of which the subformula
described by m and a is (without looking at the right of any |, {t or | symbol).

In the transitions of the machine defined in Fig. 2, we replace everywhere p by
p; . since we have to take into account the stack b and to look at the dependency
with respect to p; , for example:

A& B'(m,g.a,w(p;,) = A'(m,a,w(p;,)

For the constants (Sect. 3.1), we have to refine the L-transitions (Fig. 4).

The new transitions of the token machine for exponential rules are described
in Fig. 5. Some transitions are implicit to simplify the description: if no tran-
sition appears for a state F*(m,a,w,b, s), it just corresponds to the transition
FY(m,a,w,b,s) — 0.

1
AT(m,a,w,b,s) - 1t
m,a,w,b,s) - 1t
fr.m, |.a,w,b,s) — Al

(f.m,|.a,w,b,s)
Ax(
L(
17(m, |.a,w, b, s) = A*(m,a,w,b, s)
L(
r(
ri(

U/'m’ |'a7 w7 b’ S)
m’ a’7 w’ b7 S)

T(m,a,w,b,s) —0 m # f.m',.m’ or a # |.a
m,a,w,b,s) = I|(m,a,w,b,s)
m,a,w,b,s) — I'(m,a,w,b, s)

Fig. 4. | -transitions (exponential case).

Lemma 4. If the type of the starting token is (p,q) with ¢ > 0, at any step of
the execution the type of the token is (p,q') with ¢' > 0.

Lemma 5. f.(F,(m,a,w,b,s)) = (F',(m',a’,w',b,s")), and zfg = by then
fx(F, (m,a,w,by,8)) = (F',(m',a’,w', by, s")).

Theorem 1.b (Soundness continued). The Theorem 1 is still true in LL°
for a proof without any 7 in its conclusions and a token of type (p,q) withp >0
and q > 0.

Proof. We keep the same notations as in the proof of Theorem 1. We will look
for each exponential cut at the sequence s1, s2,... (resp. s{,s5,...) of the states
FT(m,a,w,b,s) in the conclusions of the sub-proofs m; and m» during the com-
putation of M, (resp. M) on the state associated to j. With the notations given
below, we can remark that sa; (resp. so;11) will always be in the conclusions of
w1 (resp. my) and also for sb; and s, ;.

We only prove the digging case, the others are left to the reader.

Digging cut. In this case, we cannot prove Vi, s; = s; but only the weaker result
Vi,s; = F'(m,a,w,b,s) <= s. = F'(m,a,w,b',s) with b = ¥'. Lemma 5
proves that it doesn’t really matter.

o i

ca, them o S .

L £ T3 FUA C F Iy, 774t
FT CT cut

If S2i4+1 exists then:

— either $i;42 doesn’t exist because fr, is not defined on ss;41 or because
fra(82i41) € I,

—or fr,(s2i41) = (774, (m,a,w,b,s)) with s = 0.0’.s'" (Lemma 4) and
52540 = AT(m,a,w,(To'.0).b,s").

Remark that the stack b of so; is always of the shape ("o’ ".0).0'. If s9; exists
then:

!
'A"(m,a,w,b,0.5) = AT(m,a,w,o.b,s) —weak (o)
'A"(m,a,w,b,0.5) — !AY(m,a,w,b,0.s) weak (o)
At(m,a,w,0.b,5) — !AY(m,a,w,b,0.5)
I (m,a,w,b,0.5) = I''(m,a,w,o.b,s)
I'(m,a,w,0.b,s) — I (m,a,w,b,o.s)

?7d
?AY(m,a,w,b,0.5) = AT (m,a,w,b,s)
?AY(m,a,w,b,s) — 0 s#0.s

At (m,a,w,b,s) — ?AY(m, a,w,b,0.5)
I'(m,a,w,b;s) = If(m,a,w,b,s)
Fll(m’ a7 w’ b7 S) % Fl(m7 a7 w’ b7 S)

29
24T (m,a,w,b, ("o’ o).s) = ??7AT(m,a,w,b,0.0".5)
?AT(m,a, w,b,s) — 0 s# (To.0').8
7?7AY(m,a,w,b,0.0".s) = ?AY(m,a,w,b, (o' V.o).5)
' (m,a,w,b,s) — I'l(m,a,w,b,s)
I‘ll(m,a, w, b, s) — I''(m,a, w,b,s)
7c

?AY(m,a,w,b, (g.0).s) = ?2A:T(m,a,w,b,0.s)
?AY(m,a,w,b, (d.c).s) = ?2A>T(m,a,w,b,0.5)
24T (m,a,w,b, s) -0 s # (g.0).s',(d.o).s

2415 (m,a,w,b,0.8) — ?AY(m,a,w,b, (g.0).5)
245 (m,a,w,b,0.8) — ?AY(m,a,w,b, (d.o).s)
FT(m’ a7 w’ b7 S) % Fl'r(m’ a7 w’ b7 S)
I‘ll(m,a, w, b, s) — Fi(m,a, w, b, s)
Tw
B'(m,a,w,b, s) — 74 (|m, |.a,w, b, [s]" [e]7F ")
B} (m,a,w,b, s) — 244 m, |.a,w, b, [s]* []*F)

2AT(l.m, |.a,w, b, [s]".s") = Bl (m,a,w,b, s)
2AT(l.m, |.a,w, b, [s]*.s') = B*(m,a,w,b, s)

24T (m,a,w,b, s) -0 s # [s'].s" or m # |.m' or a # |.a’
FT(m’ a7 w’ b7 S) % I_vlT(m’ a7w7b7 S)
F]tL(m’ a7 w’ b7 S) % Fi(m’ a7w7b7 S)

Fig. 5. Exponential group. (in the ?w-transitions, k is the number of ? and ! in front
of 74 and [zs]ﬂk_1 is used to preserve a correct type of the token)

— either s9;41 doesn’t exist because f,, is not defined on sy,
—or fr(s2:) = (4,(m,a,w,b,s)) and, by Lemma 5, b = (To'".0).b' thus

_ 41t ! !
S2i41 = A~ (m,a,w,b',0.0".5).

We also have s, | = s2;41 and if s3; = At (m,a,w, ("o’ .0).b, s) then sh;, =

AT(m,a,w,0'.0.b,s) by Lemma 5 with ("z;’—;;).b — o' ob O

To conclude, we have to note that the Theorem 3, about computation for

booleans, is still true in the full case!

Acknowledgements. Thanks to Laurent Regnier for his support and to the ref-
erees for their comments about presentation.

References

[1]

2]

(3]

[4]

[5]

[6]

[7]

[9]
[10]

[11]

Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full abstraction
for PCF (extended abstract). In M. Hagiya and J. C. Mitchell, editors, Theoretical
Aspects of Computer Software, volume 789 of Lecture Notes in Computer Science,
pages 1-15. Springer, April 1994.

Andrea Asperti, Cecilia Giovannetti, and Andrea Naletto. The bologna optimal
higher-order machine. Journal of Functional Programming, 6(6):763-810, Novem-
ber 1996.

Vincent Danos, Hugo Herbelin, and Laurent Regnier. Games semantics and ab-
stract machines. In Proceedings of Logic In Computer Science, New Brunswick,
1996. IEEE Computer Society Press.

Vincent Danos and Laurent Regnier. Reversible, irreversible and optimal A-
machines. In J.-Y. Girard, M. Okada, and A. Scedrov, editors, Proceedings Linear
Logic Tokyo Meeting, volume 3 of Electronic Notes in Theoretical Computer Sci-
ence. Elsevier, 1996.

Jean-Yves Girard. Geometry of interaction I: an interpretation of system F. In
Ferro, Bonotto, Valentini, and Zanardo, editors, Logic Colloquium ’88. North-
Holland, 1988.

Jean-Yves Girard. Geometry of interaction III: accommodating the additives.
In J.-Y. Girard, Y. Lafont, and L. Regnier, editors, Advances in Linear Logic,
volume 222 of London Mathematical Society Lecture Note Series, pages 329-389.
Cambridge University Press, 1995.

Jean-Yves Girard. Proof-nets: the parallel syntax for proof-theory. In Ursini and
Agliano, editors, Logic and Algebra, New York, 1996. Marcel Dekker.

Georges Gonthier, Martin Abadi, and Jean-Jacques Lévy. The geometry of opti-
mal lambda reduction. In Proceedings of Principles of Programming Languages,
pages 15—26. ACM Press, 1992.

Olivier Laurent. Polarized proof-nets and Ap-calculus. To appear in Theoretical
Computer Science, 2001.

Tan Mackie. The geometry of interaction machine. In Proceedings of Principles
of Programming Languages, pages 198-208. ACM Press, January 1995.

Marco Pedicini and Francesco Quaglia. A parallel implementation for optimal
lambda-calculus reduction. In Proceedings of Principles and Practice of Declara-
tive Programming, 2000.

