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t. We present an extension of the Intera
tion Abstra
t Ma
hine(IAM) [10, 4℄ to full Linear Logi
 with Girard's Geometry of Intera
tion(GoI) [6℄. We propose a simpli�ed way to interpret the additives and theintera
tion between additives and exponentials by means of weights [7℄.We des
ribe the interpretation by a token ma
hine whi
h allows us tore
over the usual MELL 
ase by forgetting all the additive information.The Geometry of Intera
tion (GoI), introdu
ed by Girard [5℄, is an inter-pretation of proofs (programs) by bideterministi
 automata, turning the global
ut elimination steps (�-redu
tion) into lo
al transitions [10, 4℄. Be
ause of itslo
al feature, the GoI has proved to be a useful tool for studying the theory andimplementation of optimal redu
tion of the �-
al
ulus [8, 2℄. It is also strongly
onne
ted to some work on games semanti
s for Linear Logi
 and PCF ([1, 3℄for example). Maybe the most ex
iting use of the lo
ality of GoI is the 
urrentwork, aiming at using it for implementing some parallel exe
ution s
hemes [11℄.Although the GoI has been very present in various works, its most popularversion only deals with the MELL fragment of Linear Logi
 (whi
h is suÆ
ientfor en
oding the �-
al
ulus though). Girard proposed an extension of GoI to theadditives [6℄, but his solution is quite te
hni
al (it makes an important use of anequivalen
e relation and entails a 
omplex interpretation of the exponentials),whi
h is probably the reason why it had not the same su

ess as the MELL 
ase.A �rst diÆ
ulty is to manage the \non linearity" of the additive 
ut eliminationstep (see below). A subtler problem 
omes from the intera
tion between additivesand exponentials; in parti
ular we will see that the weakening rule be
omes verytri
ky to handle in presen
e of additives. Note that this is linked to the problem(still open at the time of this writing) of �nding a good proof-net syntax for fullLL. In this paper, although we don't 
laim to give the �nal word on the GoI forLL, we propose an interpretation with an abstra
t ma
hine, based on additiveweights [7℄. This greatly simpli�es Girard's interpretation sin
e we don't have towork up to isomorphism. We hope that this will prove to be a determining steptowards the extension to additives of optimal redu
tion, games, : : :



Additive linearity. A naive look at the usual &=� 
ut elimination step of MALLshows that this redu
tion step is not so \linear": the sub-proof �2 is 
ompletelyerased.�1` �;A �2` �;B &` �;A&B �3` �;A? �1` �;A? �B? 
ut` �;� ! �1` �;A �3` �;A? 
ut` �;�This is too drasti
 to be interpreted by the very lo
al approa
h of GoI. To\linearize" this 
ut elimination step, Girard introdu
ed the [-rules [6℄, in the
al
ulus LL[, whi
h allow to keep the proof �2 after redu
tion but marked witha [ symbol.Soundness. By the modi�
ation of the additive redu
tion in LL[, we get thepreservation of the GoI by [-redu
tion. Although an LL[-normal form is not anLL-normal form (it still has some [-rules), one 
an easily extra
t the latter fromthe former. This extra
tion pro
edure erases parts of the proof that had beenmemorized along the [-redu
tion thus it doesn't respe
t the GoI interpretation.This is why we will only show a soundness result for LL-proofs of ` 1� 1.Proofs of ` 1 � 1 give an en
oding of booleans sin
e there are exa
tly twonormal proofs of this sequent in LL. The restri
tion to these boolean results isvery drasti
 but suÆ
ient, from a 
omputational point of view, to distinguishdi�erent results (see [5℄ for a longer dis
ussion).Without 
learly de
omposing LL 
ut elimination into these two steps ([-redu
tion and extra
tion), the study of the modi�
ations of the GoI interpreta-tion during LL-redu
tion would be very 
ompli
ated and the results very diÆ
ultto express and to prove. Moreover this pre
ise analysis allows us to introdu
e aparallel version of the automaton whi
h leads to simpler results in both steps(Propositions 1 and 2). This parallel approa
h may probably also be used tode�ne GoI for the system LLP [9℄ for 
lassi
al logi
 whi
h 
ontains generalizedstru
tural rules.Additives and weakening. The other main te
hni
al (and 
ompli
ated) point isthe intera
tion between additives and exponentials, in parti
ular the intera
tionwith weakening (or ?). A

ording to its erasing behavior, the usual interpreta-tion of a weakened formula is empty. In an additive setting, this idea leads to anin
onsisten
y: 1` 1 �1` 1� 1 ?` 1� 1;? 1` 1 �2` 1� 1 ?` 1� 1;? &` 1� 1;?&? 1` 1 �i` 1� 1 
ut` 1� 1there is no way to know if the �1 proof is \atta
h" to the left or to the rightpart of the &, if ? is empty. Thus the GoI interpretation of this proof doesn'tdepend on the value of i whi
h is 
ru
ial sin
e it determinates the boolean
orresponding to the normal form. To solve this problem, we have to modify the



weakening rule by atta
hing the weakened formula to a formula in the 
ontext(whi
h 
orresponds to en
oding ? by 9�(� 
 �?), see [6℄) ensuring that anexpli
it information in the GoI interpretation indi
ates whi
h � is in the leftand in the right.Sequent 
al
ulus vs. proof-nets. The idea of GoI 
omes from the geometri
 repre-sentation of proofs given by proof-nets [7℄. However, the te
hnology of proof-netsfor additives is not 
ompletely satisfa
tory, in parti
ular be
ause there is no good
ut elimination pro
edure. Moreover using proof-nets would require a de�nitionof [-proof-nets. For these reasons, we will interpret proofs in sequent 
al
ulus andprove our results for this interpretation but it is easy to de�ne the interpretationof proof-nets while not talking about 
ut elimination.The presentation is done in three distin
t steps: �rst the MALL 
ase, then weadd the 
onstants and eventually we obtain the full 
ase by adding the exponen-tials. In this way, it is easier to see the modularity of the 
onstru
tion and to seewhi
h part of the interpretation 
orresponds to whi
h subpart of Linear Logi
.By forgetting the adequate 
onstru
tions, we 
an easily obtain GoI for variousfragments of LL, in parti
ular we re
over the usual IAM [4℄ for MELL.1 Sequent Cal
ulus MALL[To give the interpretation of proofs, we have to be very pre
ise about the distin
to

urren
es of formulas. This is why we introdu
e annotations with indexes inthe rules of the sequent 
al
ulus.1.1 Usual MALL Sequent Cal
ulusax` A;A? ` �1; A ` A?; �1 
ut` �;�` �1; A ` �1; B 
` �;�;A
 B ` �1; A;B P` �;A P B` �1; A ` �2; B &` �;A&B ` �1; A �1` �;A�B ` �1; B �2` �;A�B1.2 [-RulesWe have to introdu
e a new symbol [, for marking some \partial" sequents inproofs, this is not a formula and thus no 
onne
tive 
an be applied on it.[` �; [ ` �1; �1 ` �2; [ ` �2; [ s[` �;�The two [-premises of the s[-rule are used to memorize some sub-proofsthrough the additive redu
tion step (see Se
t. 1.4).A proof of a sequent 
ontaining the symbol [ is a kind of partial proof wheresome sub-proof is missing.



De�nition 1 (Weight). Given a set of elementary weights, i.e., boolean vari-ables, a basi
 weight is an elementary weight p or a negation of an elementaryweight �p and a weight is a produ
t (
onjun
tion) of basi
 weights.As a 
onvention, we use 1 for the empty produ
t and 0 for a produ
t wherep and �p appear. We also repla
e p:p by p and ��p by p. With this 
onvention wesay that the weight w depends on p when p or �p appears in w.We use the notations w(p) (resp. w(�p)) if p (resp. �p) appears in w and w(6p)if w doesn't depend on p. The produ
t of weights is denoted by w:w0.We will 
onsider weighted proofs, i.e., with a basi
 weight asso
iated to ea
h&-rule and to ea
h s[-rule. These two kinds of rules are 
alled sided rules. Fora &-rule, the sub-proof of the left (resp. right) premise is 
alled its left (resp.right) side and for a s[-rule the sub-proof of ` �1; �1 is the left side and thesub-proofs of ` �2; [ and ` �2; [ are the right side.A weight des
ribes a 
hoi
e for the &-rules of one of their two premises. It
orresponds to the notion of additive sli
e [7℄, that is the multipli
ative proofsobtained by proje
ting ea
h & on one of its sides.De�nition 2 (Corre
t weighting). A weighted proof has a 
orre
t weightingwhen two sided rules have a basi
 weight 
orresponding to the same elementaryweight only if they are in the left side and in the right side of a same sided rule(i.e., an elementary weight never appears twi
e in the same additive sli
e of aproof).1.3 The \-TranslationWe are only interested in proofs of LL sequents (without [), [-rules are used asan intermediary step for the interpretation. This is why in the sequel we will
onsider only LL[ proofs of LL sequents.There exists an easy way to transform su
h an LL[ proof � into an LL one�\ 
alled the \-translation: for LL-rules just 
hange nothing and for ea
h s[-ruleerase the right side and 
onne
t the left side to the 
on
lusion.1.4 Cut EliminationFor the LL[ sequent 
al
ulus, the 
ut elimination pro
edure is the usual oneex
ept for the additive step:�1` �1; A �2` �2; B &` �3; A&B �3` �1; A? �1` �2; A? �B? 
ut` �;�#�1` �1; A �13` �11; A? 
ut` �3; �2 �2` �2; B [` B?; [ 
ut` �4; [ �23` �21; A? [` A; [ 
ut` �3; [ s[` �;�



For su
h a 
ut elimination step between a &-rule and a �i-rule, we 
ande�ne a 
anoni
al weighting for the new proof from the one on the initial proofby asso
iating to the s[-rule the basi
 weight p if i = 1 and �p if i = 2 where p isthe basi
 weight of the &-rule.Due to this modi�ed redu
tion step, MALL is a sub-system of MALL[ whi
his not stable by redu
tion.Remark 1. This new additive step is now \really" linear if we 
onsider sub-proofswith their additive weight: before redu
tion we have p:�1 + �p:�2 + �3 and afterp:�1+ �p:�2+ p:�13+ �p:�23 . Noti
e that the [-premises of the s[-rule are 
ru
ial forthis purpose: one for �p:�2 and the other one for �p:�3.We also have to de�ne new 
ommutative steps for the s[-rule:�1` �1; �1; C1 �2` �2; C2; [ �3` �2; [ s[` �3; �3; C �4` �1; C? 
ut` �;�;�#�1` �1; �1; C1 �14` �1; C?1 
ut` �3; �3; �3 �2` �2; C2; [ �24` �2; C?2 
ut` �4; �4; [ �3` �2; [ s[` �;�;�and the 
orresponding one for a 
ut on a formula in �.For the other 
ut elimination steps, the new weighting is easy to de�ne; whena sub-proof is dupli
ated, we preserve the same basi
 weights in the two 
opies.We will now always 
onsider proofs with 
orre
t weightings, noting that 
or-re
tness is preserved by redu
tion.De�nition 3 (Quasi-normal form). A proof in LL[ is said to be in quasi-normal form if it 
annot be redu
ed by any step des
ribed above.Remark 2. A proof in quasi-normal form 
ontains only 
uts in whi
h at leastone of the two o

urren
es of the 
ut formula has been introdu
ed by a [ axiomrule and used only in 
ut-rules.It is possible to de�ne a general 
ut elimination pro
edure as in [6℄ for LL[,but it would be more 
ompli
ated and useless be
ause we 
an remark that the\-translation of a proof of an LL sequent in quasi-normal form is a normal proofin LL.2 The Intera
tion Abstra
t Ma
hineWe now de�ne the Intera
tion Abstra
t Ma
hine (IAM) for MALL[. Forgettingthe additive informations gives ba
k the multipli
ative IAM [4℄.



2.1 Tokens and Ma
hineDe�nition 4 (Token). For the multipli
ative-additive 
ase, a token is a tuple(m; a;w) where m and a are sta
ks (" will denote the empty sta
k) built on lettersfg; dg (Girard's notations 
orresponding to the fren
h gau
he and droite) andw is a weight.De�nition 5 (Abstra
t ma
hine). A state of the ma
hine M� asso
iated tothe proof � of LL[ is F "(m; a;w) or F #(m; a;w) or ; where F is an o

urren
eof a formula appearing in the proof and the arrow indi
ates if the token (m; a;w)is going upwards or downwards. ; means that the ma
hine stops.The transitions of M� through the rules of � are des
ribed in Figs. 1 and 2.� (resp. �) is used for one of the formulas of the multiset � (resp. �), butthe same before and after the transition. If the result of a transition 
ontains aweight w = 0, we 
onsider it as ;.Remark 3. In Fig. 2, 
hanging the transition in the 
ase A & B"(m; g:a; w(6p))(resp. A & B"(m; d:a; w(6p))) into A&B"(m; g:a; w(6p)) ! A"(m; a;w:p) (resp.A & B"(m; d:a; w(6p)) ! B"(m; a;w:�p)) would make no di�eren
e sin
e this p(resp. �p) information is also added when going down through the &-rule.2.2 Properties of the Ma
hineDe�nition 6 (Partial fun
tion on tokens). Let � be a proof and A one ofits 
on
lusions, we de�ne the partial fun
tion f� by:f�(A; (m; a;w)) = 8><>:(B; (m0; a0; w0)) if the 
omputation on A"(m; a;w) endsby B#(m0; a0; w0) whith B 
on
lusion of �" otherwiseThe partial fun
tion f� is unde�ned in two 
ases: either if the ma
hine stopsinside the proof or if the exe
ution doesn't terminate.Lemma 1. Let � be a proof, and w0 and w0 two weights s.t. w0:w0 6= 0.f�(A; (m; a;w)) = (B; (m0; a0; w0))) f�(A; (m; a;w:w0)) = (B; (m0; a0; w0:w0))Theorem 1 (Soundness). If � is a proof in MALL[ whose quasi-normal formis �0 then for ea
h pair formula-token j:{ if f�(j) = " then f�0(j) = "{ if f�0(j) = j0 then f�(j) = j0{ if f�(A; (m; a;w)) = (B; (m0; a0; w0)) and f�0(A; (m; a;w)) = " then thereexists w0 s.t. f�0(A; (m; a;w:w0)) = (B; (m0; a0; w0:w0)) with w0:w0 6= 0.Moreover, if the exe
ution in M� is in�nite, it is in�nite in M�0 .



ax 
utA"(m; a;w) ! A?#(m; a;w) A#(m; a;w) ! A?"(m; a;w)A?"(m; a;w) ! A#(m; a;w) A?#(m; a;w) ! A"(m;a;w)� "(m; a;w) ! � "1 (m;a;w)�"(m; a;w) ! �"1(m; a;w)� #1 (m; a;w) ! � #(m;a;w)
 �#1(m; a;w) ! �#(m; a;w)A
B"(g:m; a; w)! A"(m; a;w)A
B"(d:m; a; w)! B"(m; a;w) PA
B"("; a; w) ! ; A P B"(g:m; a;w) ! A"(m;a;w)A#(m; a;w) ! A
B#(g:m; a; w) A P B"(d:m; a; w) ! B"(m; a;w)B#(m; a;w) ! A
B#(d:m; a;w) A P B"("; a; w) ! ;� "(m; a;w) ! � "1 (m; a;w) A#(m; a;w) ! A P B#(g:m; a; w)�"(m; a;w) ! �"1(m; a;w) B#(m; a;w) ! A P B#(d:m; a; w)� #1 (m; a;w) ! � #(m; a;w) � "(m; a;w) ! � "1 (m;a;w)�#1(m; a;w) ! �#(m; a;w) � #1 (m; a;w) ! � #(m;a;w)Fig. 1. Identity and multipli
ative groups.& �1A&B"(m; g:a; w(p)) ! A"(m; a;w(p)) A�B"(m; g:a;w) ! A"(m; a;w)A&B"(m; g:a; w(6p))! A"(m; a;w(6p)) A�B"(m; d:a; w) ! ;A&B"(m; g:a; w(�p)) ! ; A�B"(m; "; w) ! ;A&B"(m; d:a; w(�p)) ! B"(m;a;w(�p)) A#(m; a;w) ! A�B#(m;g:a; w)A&B"(m; d:a; w(6p))! B"(m;a;w(6p)) � "(m; a;w) ! � "1 (m; a;w)A&B"(m; d:a; w(p)) ! ; � #1 (m; a;w) ! � #(m; a;w)A&B"(m; "; w) ! ;A#(m;a;w) ! A&B#(m; g:a;w:p)B#(m; a;w) ! A&B#(m; d:a; w:�p)� "(m;a;w(p)) ! � "1 (m; a;w(p)) s[� "(m;a;w(�p)) ! � "2 (m; a;w(�p)) � "(m; a;w(p)) ! � "1 (m; a;w(p))� "(m;a;w(6p)) ! ; � "(m; a;w(�p)) ! � "2 (m; a;w(�p))� #1 (m;a;w) ! � #(m; a;w:p) � "(m; a;w(6p)) ! ;� #2 (m;a;w) ! � #(m; a;w:�p) �"(m; a;w(p)) ! �"1(m; a;w(p))�"(m; a;w(�p)) ! �"2(m; a;w(�p))�"(m; a;w(6p)) ! ;� #1 (m; a;w) ! � #(m; a;w:p)[ � #2 (m; a;w) ! � #(m; a;w:�p)� "(m;a;w) ! ; �#1(m; a;w) ! �#(m; a;w:p)�#2(m; a;w) ! �#(m; a;w:�p)Fig. 2. Additive and [ groups. (p is the basi
 weight asso
iated to the &-rule or to thes[-rule and the �2 is easy to de�ne from �1)



The introdu
tion of the weight w0 
orresponds to the transformation of �3into p:�3+�p:�3 during additive 
ut elimination (see Remark 1). Before redu
tionwe don't need any information about p to go in �3 but after redu
tion we haveto know if we go to p:�3 or to �p:�3.Proof. We have to prove that for ea
h step of 
ut elimination the theorem istrue and then by an easy indu
tion on the length of a normalization we obtainthe result.We suppose that the 
ut-rule whi
h we are eliminating is the last rule of theproof � and we obtain a proof �0. If it is not the 
ase, we just have to remarkthat adding the same new rules at the end of � and �0 is 
orre
t with respe
t tothe interpretation.We only 
onsider the 
ase of the additive 
ut elimination step (�gure inSe
t. 1.4) whi
h is the most important one, the others are left to the reader.We use the notation j = (�; t) or s = � "(m; a;w) to say that the formulawe are talking about is in the multiset � (idem for �, : : : ). Moreover f(�; t) =(�; t0) doesn't ne
essarily mean that the formula is the same before and afterthe 
omputation.Let p be the basi
 weight asso
iated to the &-rule. We study the di�erentpossible 
ases for j:{ if j = (�; (m; a;w(p))), we look at the sequen
e s1; s2; : : : (resp. s01; s02; : : : )of the states F "(m; a;w) in the 
on
lusions of the sub-proofs �1, �2 and �3(resp. �1, �2, �13 and �23) during the 
omputation of M� (resp. M�0) on thestate asso
iated to j. In fa
t these states will always be in the 
on
lusionsof �1 and �3 (resp. �1 and �13) with s1 in �1, more pre
isely:� if s2i+1 = F "(m; a;w) with F = �1 or A, s2i+2 = A?"(m0; a0; w0) withf�1(F; (m; a;w)) = (A; (m0; a0; w0)) or s2i+2 doesn't exist;� if s2i = A?"(m; a;w), s2i+1 = A"(m0; a0; w0) with f�3(A?; (m; a;w)) =(A?; (m0; a0; w0)) or s2i+1 doesn't exist.The same fa
ts o

ur for the s0i by repla
ing �3 with �13 so we have 8i; si = s0i.If s1; s2; : : : is in�nite, s01; s02; : : : too. There are two di�erent reasons fors1; s2; : : : to be �nite, if sn is the last state and is in the 
on
lusions of�k: either the evaluation of the 
orresponding ma
hine M�k is in�nite (orunde�ned at a step) on sn and the same thing o

urs in �0 or f�k on thisstate gives a result j0 in the 
ontext and f�(j) = j0 (idem in �0).{ if j = (�; (m; a;w(�p))), either f�2(j) = (�; t0) and f�(j) = (�; t0) = f�0(j) orf�2(j) = (B; t0) and f�(j) = " = f�0(j);{ if j = (�; (m; a;w(6p))), f�(j) = " and f�0(j) = ";{ if j = (�; (m; a;w(p))), similar to the (�; (m; a;w(p))) 
ase;{ if j = (�; (m; a;w(�p))), either f�3(j) = (�; t0) and f�(j) = (�; t0) = f�0(j)or f�3(j) = (A?; t0) and f�(j) = " = f�0(j);{ if j = (�; (m; a;w(6p))), f�0(j) = " but f�(j) may be de�ned with f�(j) =(F; (m0; a0; w0)) in this situation we have by Lemma 1 (noting that w0:p 6= 0for a 
orre
t weighting) and by applying the 
ase j = (�; (m; a;w(p))),f�0(�; (m; a;w:p)) = (F; (m0; a0; w0:p)) = f�(�; (m; a;w:p)). This 
ase is



very important be
ause it is 
hara
teristi
 of the fa
t that f� and f�0 maydi�er. utCorollary 1. If w is a weight s.t. for all elementary weight p of �, p 2 w or�p 2 w then f�(F; (m; a;w)) = f�0(F; (m; a;w)).Theorem 2 (Termination). Let � be a proof, A a 
on
lusion of � and t atoken, the exe
ution of the ma
hine on A"(t) terminates.Proof. Let �0 be a quasi-normal form of �. By Theorem 1, we have to prove thatthe exe
ution of the ma
hine asso
iated to �0 on A"(t) terminates.In �0, if the exe
ution never uses the transition of a 
ut formula, either itstops in a transition or it goes up to an axiom and then down to a 
on
lusion soit terminates. Moreover, by the de�nition of a quasi-normal form, the 
ut-rulesappearing in �0 are of the form:...` �;A [` A?; [ 
ut... 
ut` �; [and if the exe
ution uses the transition on A in su
h a 
ut-rule, it stops in the[-rule. Thus the evaluation is always �nite in a quasi-normal form. ut2.3 The Parallel IAMIn order to 
omplete some transitions on whi
h the IAM stops, we 
an introdu
ea parallel version of the ma
hine for whi
h states are formal sums of states of theIAM with 0 for the empty sum. To de�ne the parallel ma
hine Mp� asso
iatedto a proof �, we modify some parti
ular transitions and we repla
e ; by 0:&� "(m; a;w(6p)) ! � "1 (m; a;w:p) + � "2 (m; a;w:�p)s[� "(m; a;w(6p)) ! � "1 (m; a;w:p) + � "2 (m; a;w:�p)�"(m; a;w(6p))! �"1(m; a;w:p) +�"2(m; a;w:�p)We denote by fp� the partial fun
tion asso
iated to this ma
hine and de�nedlike f� (De�nition 6). To simplify the results (formal sums of pairs formula-token), we use the following rewriting rule:(A; (m; a;w:p)) + (A; (m; a;w:�p)) ! (A; (m; a;w))Proposition 1 (Parallel soundness). If � is a proof whose quasi-normal formis �0 then fp� = fp�0 .When a weight information is missing, the parallel ma
hine tries all the possi-bilities thus it doesn't need any starting information. This is why the requirementof an additional weight w0 in Theorem 1 disappears.



3 Adding the Constants3.1 Rules and Ma
hine1` 1 ` �1; A1 ?` �;A;? ` �1; [ >` �;>As explained in the introdu
tion, we have to modify the ?-rule by distin-guishing a parti
ular formula in the 
ontext.We 
an extend the \-translation without any loss of its properties by repla
ingea
h >-rule by the usual one ` �;> and by erasing everything above it.For the multipli
ative 
onstants, the 
ut elimination is as usual. For theadditive 
onstants, we obtain:` �2; A1; [ >` �1; A;>1 ` �1; A? 
ut` �;�;> ! ` �2; A; [ ` �2; A? 
ut` �1; �1; [ >` �;�;>We extend the notion of token by using the letters fg; d;*;+g for the multi-pli
ative sta
k and we add new transitions for the added rules (Fig. 3).1 ?1"(m;a;w) ! 1#(m; a;w) A"(m; a;w) ! ?#(*:m; a; w)A#1(m; a;w) ! ?#(+:m; a; w)?"(*:m; a; w)! A"1(m; a;w)> ?"(+:m; a; w)! A#(m; a;w)>"(m; a;w) ! >#(m; a;w) ?"(m; a;w) ! ; m 6= *:m0;+:m0� "(m;a;w) ! � "1 (m; a;w) � "(m; a;w) ! � "1 (m; a;w)� #1 (m;a;w) ! � #(m; a;w) � #1 (m; a;w) ! � #(m; a;w)Fig. 3. Constant group.Theorem 1.a (Soundness 
ontinued). The Theorem 1 is still true in MALL[with 
onstants.3.2 Computation of BooleansWe want to 
ompute results for the usual 
ut elimination pro
edure of LL. Asalready explained, we have to restri
t ourselves to the parti
ular 
ase of proofsof ` 1� 1 that give a notion of booleans.Lemma 2. If � is a proof of `1, there exists w s.t. f�(1; ("; "; w)) = (1; ("; "; w)).Lemma 3. If � is a proof of ` 1� 1; [ then, for any j, f�(j) = ".Theorem 3. If � is a proof of ` 1 � 1 whose quasi-normal form is �0 then�\0 = 1` 1 �i` 1� 1 and



{ either there exists w s.t. f�(1� 1; ("; g; w)) = (1� 1; ("; g; w)) and i = 1{ or there exists w s.t. f�(1� 1; ("; d; w)) = (1� 1; ("; d; w)) and i = 2.Proof. We suppose that i = 1 and we make an indu
tion on �0.{ If the last rule is �k it must be a �1 by normalization; we apply the Lemma 2to the premise whi
h gives us a weight w s.t. f�(1 � 1; ("; g; w)) = (1 �1; ("; g; w)). Moreover for any weight w0, f�(1� 1; ("; d; w0)) = ".{ If the last rule is s[, let p be its basi
 weight. We 
an apply the indu
tionhypothesis to the sub-proof �00 of ` 1�1 and we obtain a weight w s.t. f�00(1�1; ("; g; w)) = (1 � 1; ("; g; w)) so f�0(1 � 1; ("; g; w:p)) = (1 � 1; ("; g; w:p)).Moreover for any weight w0, f�00(1� 1; ("; d; w0)) = " thus, by Lemma 3, wealso have f�0(1� 1; ("; d; w0)) = ".Finally we 
on
lude by Theorem 1. utWe 
annot assume that the weight w is empty for the evaluation of f� be-
ause, for some proofs, f�(A; (m; a; 1)) = " for any A, m and a (see the proof of` 1� 1 in the introdu
tion, for example).The parallel ma
hine gives a solution for this problem sin
e it doesn't re-quire any initial weight information. The weight may be built dynami
ally thusstarting with 1 is suÆ
ient.Proposition 2. If � is a proof of ` 1 � 1 whose quasi-normal form is �0then �\0 = 1` 1 �i` 1� 1 and either fp�(1 � 1; ("; g; 1)) 6= 0 and i = 1 orfp�(1� 1; ("; d; 1)) 6= 0 and i = 2.4 ExponentialsWe have now to generalize some of our de�nitions of Se
t. 1 to deal with thefollowing exponential rules. The interpretation is the one de�ned by Danos andRegnier [4℄, a

ommodated with the additives and extended to the ?w -rule.4.1 Sequent Cal
ulus ` �;A !` ?� ; !A ` �1; A ?d` �; ?A` �1; B1 ?w` �;B; ?A ` �1; ?A1; ?A2 ?
` �; ?A ` �1; ??A ??` �; ?AThe formula B in the 
ontext of the ?w-rule is used for the same purpose asin the ?-rule. We use a fun
torial promotion and a digging rule (??-rule) insteadof the usual promotion be
ause it allows us to de
ompose pre
isely the GoI.De�nition 7 (Weight, De�nition 1 
ontinued). A 
opy address 
 is a wordbuilt on the letters fg; dg.A basi
 weight is now a pair of an elementary weight p (or its negation �p)and a 
opy address 
, and is denoted by p
 (�p
).



In order to deal with the erasing of sub-proofs by the weakening 
ut elimi-nation step, we will only 
onsider proofs with no ? in 
on
lusions. To prove thepreservation of the interpretation by redu
tion, we 
an restri
t 
ut eliminationto the parti
ular strategy redu
ing only exponential 
uts with no 
ontext in the!-rule.In the ?
 
ut elimination step, we obtain two 
opies �11 and �21 of the proof�1 of ` !A. In �11 (resp. �21), we repla
e all the basi
 weights p
 by pg:
 (resp.pd:
).4.2 Extending the Ma
hineDe�nition 8 (Exponential informations).{ Exponential signatures � and exponential sta
ks s are de�ned by:� ::= � j g:� j d:� j p�q:� j [s℄* j [s℄+s ::= " j �:sWe will use the notation [s℄ to talk about both [s℄* and [s℄+.{ The 
opy address e� of an exponential signature � is de�ned by: e� = ",f[s℄ = ", fg:� = g:e�, fd:� = d:e� and p̂�0q:� = e�0:e�.{ The 
opy address of an exponential sta
k is: e" = " and f�:s = e�:es.{ We de�ne the predi
ate weak() on signatures by:� weak(�) = false and weak([s℄) = true� weak(g:�) = weak(�) and weak(d:�) = weak(�)� weak(p�0q:�) = weak(�0)The weak() predi
ate tells if the leaf of the exponential bran
h des
ribed by� is a ?w-rule.De�nition 9 (Token, De�nition 4 
ontinued). For the full 
ase, a token isa tuple (m; a;w; b; s) where b and s are exponential sta
ks. Moreover the languageof m is extended to fg; d;*;+; jg and the language of a is extended to fg; d; jg(*, + and j are only used for ? and ?w).De�nition 10 (Type of a token). The type of a token (m; a;w; b; s) in aformula of a proof is the pair (jbj � d; jsj �n) where j:j is the length of a sta
k, dis the depth of the formula in the proof (i.e., the number of !-rules below it) andn is the number of exponential 
onne
tives in the s
ope of whi
h the subformulades
ribed by m and a is (without looking at the right of any j, * or + symbol).In the transitions of the ma
hine de�ned in Fig. 2, we repla
e everywhere p bypeb:
 sin
e we have to take into a

ount the sta
k b and to look at the dependen
ywith respe
t to peb:
, for example:A&B"(m; g:a; w(peb:
))! A"(m; a;w(peb:
))For the 
onstants (Se
t. 3.1), we have to re�ne the ?-transitions (Fig. 4).The new transitions of the token ma
hine for exponential rules are des
ribedin Fig. 5. Some transitions are impli
it to simplify the des
ription: if no tran-sition appears for a state F l(m; a;w; b; s), it just 
orresponds to the transitionF l(m; a;w; b; s)! ;.



?A"(m; a;w; b; s) ! ?#(*:m; j:a; w; b; s)A#1(m; a;w; b; s) ! ?#(+:m; j:a; w; b; s)?"(*:m; j:a; w; b; s)! A"1(m; a;w; b; s)?"(+:m; j:a; w; b; s)! A#(m; a;w; b; s)?"(m; a;w; b; s) ! ; m 6= *:m0;+:m0 or a 6= j:a0� "(m; a;w; b; s) ! � "1 (m; a;w; b; s)� #1 (m; a;w; b; s) ! � #(m; a;w; b; s)Fig. 4. ?-transitions (exponential 
ase).Lemma 4. If the type of the starting token is (p; q) with q � 0, at any step ofthe exe
ution the type of the token is (p; q0) with q0 � 0.Lemma 5. f�(F; (m; a;w; b; s)) = (F 0; (m0; a0; w0; b; s0)), and if eb = eb1 thenf�(F; (m; a;w; b1; s)) = (F 0; (m0; a0; w0; b1; s0)).Theorem 1.b (Soundness 
ontinued). The Theorem 1 is still true in LL[for a proof without any ? in its 
on
lusions and a token of type (p; q) with p � 0and q � 0.Proof. We keep the same notations as in the proof of Theorem 1. We will lookfor ea
h exponential 
ut at the sequen
e s1; s2; : : : (resp. s01; s02; : : : ) of the statesF "(m; a;w; b; s) in the 
on
lusions of the sub-proofs �1 and �2 during the 
om-putation ofM� (resp.M�0) on the state asso
iated to j. With the notations givenbelow, we 
an remark that s2i (resp. s2i+1) will always be in the 
on
lusions of�1 (resp. �2) and also for s02i and s02i+1.We only prove the digging 
ase, the others are left to the reader.Digging 
ut. In this 
ase, we 
annot prove 8i; si = s0i but only the weaker result8i; si = F "(m; a;w; b; s) () s0i = F "(m; a;w; b0; s) with eb = eb0. Lemma 5proves that it doesn't really matter.�1` A !` !A �2` �1; ??A? ??` �2; ?A? 
ut` � ! �1` A !` !A !` !!A �2` �1; ??A? 
ut` �If s2i+1 exists then:{ either s2i+2 doesn't exist be
ause f�2 is not de�ned on s2i+1 or be
ausef�2(s2i+1) 2 �1,{ or f�2(s2i+1) = (??A?; (m; a;w; b; s)) with s = �:�0:s0 (Lemma 4) ands2i+2 = A"(m; a;w; (p�0q:�):b; s0).Remark that the sta
k b of s2i is always of the shape (p�0q:�):b0. If s2i existsthen:



!!A"(m;a;w; b; �:s) ! A"(m; a;w; �:b; s) :weak(�)!A"(m;a;w; b; �:s) ! !A#(m;a;w; b; �:s) weak(�)A#(m; a;w; �:b; s) ! !A#(m;a;w; b; �:s)?� "(m; a;w; b; �:s) ! � "(m; a;w; �:b; s)� #(m; a;w; �:b; s) ! ?� #(m;a;w; b; �:s)?d?A"(m; a;w; b;�:s)! A"(m;a;w; b; s)?A"(m; a;w; b; s) ! ; s 6= �:s0A#(m; a;w; b; s) ! ?A#(m; a;w; b;�:s)� "(m; a;w; b; s) ! � "1 (m;a;w; b; s)� #1 (m; a;w; b; s) ! � #(m;a;w; b; s)???A"(m; a;w; b; (p�0q:�):s) ! ??A"(m; a;w; b; �:�0:s)?A"(m; a;w; b; s) ! ; s 6= (p�q:�0):s0??A#(m;a;w; b; �:�0:s) ! ?A#(m;a;w; b; (p�0q:�):s)� "(m; a;w; b; s) ! � "1 (m; a;w; b; s)� #1 (m; a;w; b; s) ! � #(m; a;w; b; s)?
?A"(m; a;w; b; (g:�):s)! ?A1"(m; a;w; b; �:s)?A"(m; a;w; b; (d:�):s)! ?A2"(m; a;w; b; �:s)?A"(m; a;w; b; s) ! ; s 6= (g:�):s0; (d:�):s0?A1#(m; a;w; b; �:s) ! ?A#(m;a;w; b; (g:�):s)?A2#(m; a;w; b; �:s) ! ?A#(m;a;w; b; (d:�):s)� "(m; a;w; b; s) ! � "1 (m; a;w; b; s)� #1 (m; a;w; b; s) ! � #(m; a;w; b; s)?wB"(m; a;w; b; s) ! ?A#(j:m; j:a; w; b; [s℄*:["℄*k�1)B#1(m; a;w; b; s) ! ?A#(j:m; j:a; w; b; [s℄+:["℄+k�1)?A"(j:m; j:a; w; b; [s℄*:s0) ! B"1 (m; a;w; b; s)?A"(j:m; j:a; w; b; [s℄+:s0) ! B#(m; a;w; b; s)?A"(m; a;w; b; s) ! ; s 6= [s0℄:s00 or m 6= j:m0 or a 6= j:a0� "(m; a;w; b; s) ! � "1 (m; a;w; b; s)� #1 (m; a;w; b; s) ! � #(m; a;w; b; s)Fig. 5. Exponential group. (in the ?w-transitions, k is the number of ? and ! in frontof ?A and ["℄*k�1 is used to preserve a 
orre
t type of the token)



{ either s2i+1 doesn't exist be
ause f�1 is not de�ned on s2i,{ or f�1(s2i) = (A; (m; a;w; b; s)) and, by Lemma 5, b = (p�0q:�):b0 thuss2i+1 = A?"(m; a;w; b0; �:�0:s).We also have s02i+1 = s2i+1 and if s2i = A"(m; a;w; (p�0q:�):b; s) then s02i =A"(m; a;w; �0:�:b; s) by Lemma 5 with ^(p�0q:�):b = �̂0:�:b. utTo 
on
lude, we have to note that the Theorem 3, about 
omputation forbooleans, is still true in the full 
ase!A
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