
A Token Mahine for Full Geometry ofInteration(Extended Abstrat)Olivier LAURENTInstitut de Math�ematiques de Luminy163, avenue de Luminy - ase 90713288 MARSEILLE edex 09 FRANCEolaurent�iml.univ-mrs.frAbstrat. We present an extension of the Interation Abstrat Mahine(IAM) [10, 4℄ to full Linear Logi with Girard's Geometry of Interation(GoI) [6℄. We propose a simpli�ed way to interpret the additives and theinteration between additives and exponentials by means of weights [7℄.We desribe the interpretation by a token mahine whih allows us toreover the usual MELL ase by forgetting all the additive information.The Geometry of Interation (GoI), introdued by Girard [5℄, is an inter-pretation of proofs (programs) by bideterministi automata, turning the globalut elimination steps (�-redution) into loal transitions [10, 4℄. Beause of itsloal feature, the GoI has proved to be a useful tool for studying the theory andimplementation of optimal redution of the �-alulus [8, 2℄. It is also stronglyonneted to some work on games semantis for Linear Logi and PCF ([1, 3℄for example). Maybe the most exiting use of the loality of GoI is the urrentwork, aiming at using it for implementing some parallel exeution shemes [11℄.Although the GoI has been very present in various works, its most popularversion only deals with the MELL fragment of Linear Logi (whih is suÆientfor enoding the �-alulus though). Girard proposed an extension of GoI to theadditives [6℄, but his solution is quite tehnial (it makes an important use of anequivalene relation and entails a omplex interpretation of the exponentials),whih is probably the reason why it had not the same suess as the MELL ase.A �rst diÆulty is to manage the \non linearity" of the additive ut eliminationstep (see below). A subtler problem omes from the interation between additivesand exponentials; in partiular we will see that the weakening rule beomes verytriky to handle in presene of additives. Note that this is linked to the problem(still open at the time of this writing) of �nding a good proof-net syntax for fullLL. In this paper, although we don't laim to give the �nal word on the GoI forLL, we propose an interpretation with an abstrat mahine, based on additiveweights [7℄. This greatly simpli�es Girard's interpretation sine we don't have towork up to isomorphism. We hope that this will prove to be a determining steptowards the extension to additives of optimal redution, games, : : :



Additive linearity. A naive look at the usual &=� ut elimination step of MALLshows that this redution step is not so \linear": the sub-proof �2 is ompletelyerased.�1` �;A �2` �;B &` �;A&B �3` �;A? �1` �;A? �B? ut` �;� ! �1` �;A �3` �;A? ut` �;�This is too drasti to be interpreted by the very loal approah of GoI. To\linearize" this ut elimination step, Girard introdued the [-rules [6℄, in thealulus LL[, whih allow to keep the proof �2 after redution but marked witha [ symbol.Soundness. By the modi�ation of the additive redution in LL[, we get thepreservation of the GoI by [-redution. Although an LL[-normal form is not anLL-normal form (it still has some [-rules), one an easily extrat the latter fromthe former. This extration proedure erases parts of the proof that had beenmemorized along the [-redution thus it doesn't respet the GoI interpretation.This is why we will only show a soundness result for LL-proofs of ` 1� 1.Proofs of ` 1 � 1 give an enoding of booleans sine there are exatly twonormal proofs of this sequent in LL. The restrition to these boolean results isvery drasti but suÆient, from a omputational point of view, to distinguishdi�erent results (see [5℄ for a longer disussion).Without learly deomposing LL ut elimination into these two steps ([-redution and extration), the study of the modi�ations of the GoI interpreta-tion during LL-redution would be very ompliated and the results very diÆultto express and to prove. Moreover this preise analysis allows us to introdue aparallel version of the automaton whih leads to simpler results in both steps(Propositions 1 and 2). This parallel approah may probably also be used tode�ne GoI for the system LLP [9℄ for lassial logi whih ontains generalizedstrutural rules.Additives and weakening. The other main tehnial (and ompliated) point isthe interation between additives and exponentials, in partiular the interationwith weakening (or ?). Aording to its erasing behavior, the usual interpreta-tion of a weakened formula is empty. In an additive setting, this idea leads to aninonsisteny: 1` 1 �1` 1� 1 ?` 1� 1;? 1` 1 �2` 1� 1 ?` 1� 1;? &` 1� 1;?&? 1` 1 �i` 1� 1 ut` 1� 1there is no way to know if the �1 proof is \attah" to the left or to the rightpart of the &, if ? is empty. Thus the GoI interpretation of this proof doesn'tdepend on the value of i whih is ruial sine it determinates the booleanorresponding to the normal form. To solve this problem, we have to modify the



weakening rule by attahing the weakened formula to a formula in the ontext(whih orresponds to enoding ? by 9�(� 
 �?), see [6℄) ensuring that anexpliit information in the GoI interpretation indiates whih � is in the leftand in the right.Sequent alulus vs. proof-nets. The idea of GoI omes from the geometri repre-sentation of proofs given by proof-nets [7℄. However, the tehnology of proof-netsfor additives is not ompletely satisfatory, in partiular beause there is no goodut elimination proedure. Moreover using proof-nets would require a de�nitionof [-proof-nets. For these reasons, we will interpret proofs in sequent alulus andprove our results for this interpretation but it is easy to de�ne the interpretationof proof-nets while not talking about ut elimination.The presentation is done in three distint steps: �rst the MALL ase, then weadd the onstants and eventually we obtain the full ase by adding the exponen-tials. In this way, it is easier to see the modularity of the onstrution and to seewhih part of the interpretation orresponds to whih subpart of Linear Logi.By forgetting the adequate onstrutions, we an easily obtain GoI for variousfragments of LL, in partiular we reover the usual IAM [4℄ for MELL.1 Sequent Calulus MALL[To give the interpretation of proofs, we have to be very preise about the distintourrenes of formulas. This is why we introdue annotations with indexes inthe rules of the sequent alulus.1.1 Usual MALL Sequent Calulusax` A;A? ` �1; A ` A?; �1 ut` �;�` �1; A ` �1; B 
` �;�;A
 B ` �1; A;B P` �;A P B` �1; A ` �2; B &` �;A&B ` �1; A �1` �;A�B ` �1; B �2` �;A�B1.2 [-RulesWe have to introdue a new symbol [, for marking some \partial" sequents inproofs, this is not a formula and thus no onnetive an be applied on it.[` �; [ ` �1; �1 ` �2; [ ` �2; [ s[` �;�The two [-premises of the s[-rule are used to memorize some sub-proofsthrough the additive redution step (see Set. 1.4).A proof of a sequent ontaining the symbol [ is a kind of partial proof wheresome sub-proof is missing.



De�nition 1 (Weight). Given a set of elementary weights, i.e., boolean vari-ables, a basi weight is an elementary weight p or a negation of an elementaryweight �p and a weight is a produt (onjuntion) of basi weights.As a onvention, we use 1 for the empty produt and 0 for a produt wherep and �p appear. We also replae p:p by p and ��p by p. With this onvention wesay that the weight w depends on p when p or �p appears in w.We use the notations w(p) (resp. w(�p)) if p (resp. �p) appears in w and w(6p)if w doesn't depend on p. The produt of weights is denoted by w:w0.We will onsider weighted proofs, i.e., with a basi weight assoiated to eah&-rule and to eah s[-rule. These two kinds of rules are alled sided rules. Fora &-rule, the sub-proof of the left (resp. right) premise is alled its left (resp.right) side and for a s[-rule the sub-proof of ` �1; �1 is the left side and thesub-proofs of ` �2; [ and ` �2; [ are the right side.A weight desribes a hoie for the &-rules of one of their two premises. Itorresponds to the notion of additive slie [7℄, that is the multipliative proofsobtained by projeting eah & on one of its sides.De�nition 2 (Corret weighting). A weighted proof has a orret weightingwhen two sided rules have a basi weight orresponding to the same elementaryweight only if they are in the left side and in the right side of a same sided rule(i.e., an elementary weight never appears twie in the same additive slie of aproof).1.3 The \-TranslationWe are only interested in proofs of LL sequents (without [), [-rules are used asan intermediary step for the interpretation. This is why in the sequel we willonsider only LL[ proofs of LL sequents.There exists an easy way to transform suh an LL[ proof � into an LL one�\ alled the \-translation: for LL-rules just hange nothing and for eah s[-ruleerase the right side and onnet the left side to the onlusion.1.4 Cut EliminationFor the LL[ sequent alulus, the ut elimination proedure is the usual oneexept for the additive step:�1` �1; A �2` �2; B &` �3; A&B �3` �1; A? �1` �2; A? �B? ut` �;�#�1` �1; A �13` �11; A? ut` �3; �2 �2` �2; B [` B?; [ ut` �4; [ �23` �21; A? [` A; [ ut` �3; [ s[` �;�



For suh a ut elimination step between a &-rule and a �i-rule, we ande�ne a anonial weighting for the new proof from the one on the initial proofby assoiating to the s[-rule the basi weight p if i = 1 and �p if i = 2 where p isthe basi weight of the &-rule.Due to this modi�ed redution step, MALL is a sub-system of MALL[ whihis not stable by redution.Remark 1. This new additive step is now \really" linear if we onsider sub-proofswith their additive weight: before redution we have p:�1 + �p:�2 + �3 and afterp:�1+ �p:�2+ p:�13+ �p:�23 . Notie that the [-premises of the s[-rule are ruial forthis purpose: one for �p:�2 and the other one for �p:�3.We also have to de�ne new ommutative steps for the s[-rule:�1` �1; �1; C1 �2` �2; C2; [ �3` �2; [ s[` �3; �3; C �4` �1; C? ut` �;�;�#�1` �1; �1; C1 �14` �1; C?1 ut` �3; �3; �3 �2` �2; C2; [ �24` �2; C?2 ut` �4; �4; [ �3` �2; [ s[` �;�;�and the orresponding one for a ut on a formula in �.For the other ut elimination steps, the new weighting is easy to de�ne; whena sub-proof is dupliated, we preserve the same basi weights in the two opies.We will now always onsider proofs with orret weightings, noting that or-retness is preserved by redution.De�nition 3 (Quasi-normal form). A proof in LL[ is said to be in quasi-normal form if it annot be redued by any step desribed above.Remark 2. A proof in quasi-normal form ontains only uts in whih at leastone of the two ourrenes of the ut formula has been introdued by a [ axiomrule and used only in ut-rules.It is possible to de�ne a general ut elimination proedure as in [6℄ for LL[,but it would be more ompliated and useless beause we an remark that the\-translation of a proof of an LL sequent in quasi-normal form is a normal proofin LL.2 The Interation Abstrat MahineWe now de�ne the Interation Abstrat Mahine (IAM) for MALL[. Forgettingthe additive informations gives bak the multipliative IAM [4℄.



2.1 Tokens and MahineDe�nition 4 (Token). For the multipliative-additive ase, a token is a tuple(m; a;w) where m and a are staks (" will denote the empty stak) built on lettersfg; dg (Girard's notations orresponding to the frenh gauhe and droite) andw is a weight.De�nition 5 (Abstrat mahine). A state of the mahine M� assoiated tothe proof � of LL[ is F "(m; a;w) or F #(m; a;w) or ; where F is an ourreneof a formula appearing in the proof and the arrow indiates if the token (m; a;w)is going upwards or downwards. ; means that the mahine stops.The transitions of M� through the rules of � are desribed in Figs. 1 and 2.� (resp. �) is used for one of the formulas of the multiset � (resp. �), butthe same before and after the transition. If the result of a transition ontains aweight w = 0, we onsider it as ;.Remark 3. In Fig. 2, hanging the transition in the ase A & B"(m; g:a; w(6p))(resp. A & B"(m; d:a; w(6p))) into A&B"(m; g:a; w(6p)) ! A"(m; a;w:p) (resp.A & B"(m; d:a; w(6p)) ! B"(m; a;w:�p)) would make no di�erene sine this p(resp. �p) information is also added when going down through the &-rule.2.2 Properties of the MahineDe�nition 6 (Partial funtion on tokens). Let � be a proof and A one ofits onlusions, we de�ne the partial funtion f� by:f�(A; (m; a;w)) = 8><>:(B; (m0; a0; w0)) if the omputation on A"(m; a;w) endsby B#(m0; a0; w0) whith B onlusion of �" otherwiseThe partial funtion f� is unde�ned in two ases: either if the mahine stopsinside the proof or if the exeution doesn't terminate.Lemma 1. Let � be a proof, and w0 and w0 two weights s.t. w0:w0 6= 0.f�(A; (m; a;w)) = (B; (m0; a0; w0))) f�(A; (m; a;w:w0)) = (B; (m0; a0; w0:w0))Theorem 1 (Soundness). If � is a proof in MALL[ whose quasi-normal formis �0 then for eah pair formula-token j:{ if f�(j) = " then f�0(j) = "{ if f�0(j) = j0 then f�(j) = j0{ if f�(A; (m; a;w)) = (B; (m0; a0; w0)) and f�0(A; (m; a;w)) = " then thereexists w0 s.t. f�0(A; (m; a;w:w0)) = (B; (m0; a0; w0:w0)) with w0:w0 6= 0.Moreover, if the exeution in M� is in�nite, it is in�nite in M�0 .



ax utA"(m; a;w) ! A?#(m; a;w) A#(m; a;w) ! A?"(m; a;w)A?"(m; a;w) ! A#(m; a;w) A?#(m; a;w) ! A"(m;a;w)� "(m; a;w) ! � "1 (m;a;w)�"(m; a;w) ! �"1(m; a;w)� #1 (m; a;w) ! � #(m;a;w)
 �#1(m; a;w) ! �#(m; a;w)A
B"(g:m; a; w)! A"(m; a;w)A
B"(d:m; a; w)! B"(m; a;w) PA
B"("; a; w) ! ; A P B"(g:m; a;w) ! A"(m;a;w)A#(m; a;w) ! A
B#(g:m; a; w) A P B"(d:m; a; w) ! B"(m; a;w)B#(m; a;w) ! A
B#(d:m; a;w) A P B"("; a; w) ! ;� "(m; a;w) ! � "1 (m; a;w) A#(m; a;w) ! A P B#(g:m; a; w)�"(m; a;w) ! �"1(m; a;w) B#(m; a;w) ! A P B#(d:m; a; w)� #1 (m; a;w) ! � #(m; a;w) � "(m; a;w) ! � "1 (m;a;w)�#1(m; a;w) ! �#(m; a;w) � #1 (m; a;w) ! � #(m;a;w)Fig. 1. Identity and multipliative groups.& �1A&B"(m; g:a; w(p)) ! A"(m; a;w(p)) A�B"(m; g:a;w) ! A"(m; a;w)A&B"(m; g:a; w(6p))! A"(m; a;w(6p)) A�B"(m; d:a; w) ! ;A&B"(m; g:a; w(�p)) ! ; A�B"(m; "; w) ! ;A&B"(m; d:a; w(�p)) ! B"(m;a;w(�p)) A#(m; a;w) ! A�B#(m;g:a; w)A&B"(m; d:a; w(6p))! B"(m;a;w(6p)) � "(m; a;w) ! � "1 (m; a;w)A&B"(m; d:a; w(p)) ! ; � #1 (m; a;w) ! � #(m; a;w)A&B"(m; "; w) ! ;A#(m;a;w) ! A&B#(m; g:a;w:p)B#(m; a;w) ! A&B#(m; d:a; w:�p)� "(m;a;w(p)) ! � "1 (m; a;w(p)) s[� "(m;a;w(�p)) ! � "2 (m; a;w(�p)) � "(m; a;w(p)) ! � "1 (m; a;w(p))� "(m;a;w(6p)) ! ; � "(m; a;w(�p)) ! � "2 (m; a;w(�p))� #1 (m;a;w) ! � #(m; a;w:p) � "(m; a;w(6p)) ! ;� #2 (m;a;w) ! � #(m; a;w:�p) �"(m; a;w(p)) ! �"1(m; a;w(p))�"(m; a;w(�p)) ! �"2(m; a;w(�p))�"(m; a;w(6p)) ! ;� #1 (m; a;w) ! � #(m; a;w:p)[ � #2 (m; a;w) ! � #(m; a;w:�p)� "(m;a;w) ! ; �#1(m; a;w) ! �#(m; a;w:p)�#2(m; a;w) ! �#(m; a;w:�p)Fig. 2. Additive and [ groups. (p is the basi weight assoiated to the &-rule or to thes[-rule and the �2 is easy to de�ne from �1)



The introdution of the weight w0 orresponds to the transformation of �3into p:�3+�p:�3 during additive ut elimination (see Remark 1). Before redutionwe don't need any information about p to go in �3 but after redution we haveto know if we go to p:�3 or to �p:�3.Proof. We have to prove that for eah step of ut elimination the theorem istrue and then by an easy indution on the length of a normalization we obtainthe result.We suppose that the ut-rule whih we are eliminating is the last rule of theproof � and we obtain a proof �0. If it is not the ase, we just have to remarkthat adding the same new rules at the end of � and �0 is orret with respet tothe interpretation.We only onsider the ase of the additive ut elimination step (�gure inSet. 1.4) whih is the most important one, the others are left to the reader.We use the notation j = (�; t) or s = � "(m; a;w) to say that the formulawe are talking about is in the multiset � (idem for �, : : : ). Moreover f(�; t) =(�; t0) doesn't neessarily mean that the formula is the same before and afterthe omputation.Let p be the basi weight assoiated to the &-rule. We study the di�erentpossible ases for j:{ if j = (�; (m; a;w(p))), we look at the sequene s1; s2; : : : (resp. s01; s02; : : : )of the states F "(m; a;w) in the onlusions of the sub-proofs �1, �2 and �3(resp. �1, �2, �13 and �23) during the omputation of M� (resp. M�0) on thestate assoiated to j. In fat these states will always be in the onlusionsof �1 and �3 (resp. �1 and �13) with s1 in �1, more preisely:� if s2i+1 = F "(m; a;w) with F = �1 or A, s2i+2 = A?"(m0; a0; w0) withf�1(F; (m; a;w)) = (A; (m0; a0; w0)) or s2i+2 doesn't exist;� if s2i = A?"(m; a;w), s2i+1 = A"(m0; a0; w0) with f�3(A?; (m; a;w)) =(A?; (m0; a0; w0)) or s2i+1 doesn't exist.The same fats our for the s0i by replaing �3 with �13 so we have 8i; si = s0i.If s1; s2; : : : is in�nite, s01; s02; : : : too. There are two di�erent reasons fors1; s2; : : : to be �nite, if sn is the last state and is in the onlusions of�k: either the evaluation of the orresponding mahine M�k is in�nite (orunde�ned at a step) on sn and the same thing ours in �0 or f�k on thisstate gives a result j0 in the ontext and f�(j) = j0 (idem in �0).{ if j = (�; (m; a;w(�p))), either f�2(j) = (�; t0) and f�(j) = (�; t0) = f�0(j) orf�2(j) = (B; t0) and f�(j) = " = f�0(j);{ if j = (�; (m; a;w(6p))), f�(j) = " and f�0(j) = ";{ if j = (�; (m; a;w(p))), similar to the (�; (m; a;w(p))) ase;{ if j = (�; (m; a;w(�p))), either f�3(j) = (�; t0) and f�(j) = (�; t0) = f�0(j)or f�3(j) = (A?; t0) and f�(j) = " = f�0(j);{ if j = (�; (m; a;w(6p))), f�0(j) = " but f�(j) may be de�ned with f�(j) =(F; (m0; a0; w0)) in this situation we have by Lemma 1 (noting that w0:p 6= 0for a orret weighting) and by applying the ase j = (�; (m; a;w(p))),f�0(�; (m; a;w:p)) = (F; (m0; a0; w0:p)) = f�(�; (m; a;w:p)). This ase is



very important beause it is harateristi of the fat that f� and f�0 maydi�er. utCorollary 1. If w is a weight s.t. for all elementary weight p of �, p 2 w or�p 2 w then f�(F; (m; a;w)) = f�0(F; (m; a;w)).Theorem 2 (Termination). Let � be a proof, A a onlusion of � and t atoken, the exeution of the mahine on A"(t) terminates.Proof. Let �0 be a quasi-normal form of �. By Theorem 1, we have to prove thatthe exeution of the mahine assoiated to �0 on A"(t) terminates.In �0, if the exeution never uses the transition of a ut formula, either itstops in a transition or it goes up to an axiom and then down to a onlusion soit terminates. Moreover, by the de�nition of a quasi-normal form, the ut-rulesappearing in �0 are of the form:...` �;A [` A?; [ ut... ut` �; [and if the exeution uses the transition on A in suh a ut-rule, it stops in the[-rule. Thus the evaluation is always �nite in a quasi-normal form. ut2.3 The Parallel IAMIn order to omplete some transitions on whih the IAM stops, we an introduea parallel version of the mahine for whih states are formal sums of states of theIAM with 0 for the empty sum. To de�ne the parallel mahine Mp� assoiatedto a proof �, we modify some partiular transitions and we replae ; by 0:&� "(m; a;w(6p)) ! � "1 (m; a;w:p) + � "2 (m; a;w:�p)s[� "(m; a;w(6p)) ! � "1 (m; a;w:p) + � "2 (m; a;w:�p)�"(m; a;w(6p))! �"1(m; a;w:p) +�"2(m; a;w:�p)We denote by fp� the partial funtion assoiated to this mahine and de�nedlike f� (De�nition 6). To simplify the results (formal sums of pairs formula-token), we use the following rewriting rule:(A; (m; a;w:p)) + (A; (m; a;w:�p)) ! (A; (m; a;w))Proposition 1 (Parallel soundness). If � is a proof whose quasi-normal formis �0 then fp� = fp�0 .When a weight information is missing, the parallel mahine tries all the possi-bilities thus it doesn't need any starting information. This is why the requirementof an additional weight w0 in Theorem 1 disappears.



3 Adding the Constants3.1 Rules and Mahine1` 1 ` �1; A1 ?` �;A;? ` �1; [ >` �;>As explained in the introdution, we have to modify the ?-rule by distin-guishing a partiular formula in the ontext.We an extend the \-translation without any loss of its properties by replaingeah >-rule by the usual one ` �;> and by erasing everything above it.For the multipliative onstants, the ut elimination is as usual. For theadditive onstants, we obtain:` �2; A1; [ >` �1; A;>1 ` �1; A? ut` �;�;> ! ` �2; A; [ ` �2; A? ut` �1; �1; [ >` �;�;>We extend the notion of token by using the letters fg; d;*;+g for the multi-pliative stak and we add new transitions for the added rules (Fig. 3).1 ?1"(m;a;w) ! 1#(m; a;w) A"(m; a;w) ! ?#(*:m; a; w)A#1(m; a;w) ! ?#(+:m; a; w)?"(*:m; a; w)! A"1(m; a;w)> ?"(+:m; a; w)! A#(m; a;w)>"(m; a;w) ! >#(m; a;w) ?"(m; a;w) ! ; m 6= *:m0;+:m0� "(m;a;w) ! � "1 (m; a;w) � "(m; a;w) ! � "1 (m; a;w)� #1 (m;a;w) ! � #(m; a;w) � #1 (m; a;w) ! � #(m; a;w)Fig. 3. Constant group.Theorem 1.a (Soundness ontinued). The Theorem 1 is still true in MALL[with onstants.3.2 Computation of BooleansWe want to ompute results for the usual ut elimination proedure of LL. Asalready explained, we have to restrit ourselves to the partiular ase of proofsof ` 1� 1 that give a notion of booleans.Lemma 2. If � is a proof of `1, there exists w s.t. f�(1; ("; "; w)) = (1; ("; "; w)).Lemma 3. If � is a proof of ` 1� 1; [ then, for any j, f�(j) = ".Theorem 3. If � is a proof of ` 1 � 1 whose quasi-normal form is �0 then�\0 = 1` 1 �i` 1� 1 and



{ either there exists w s.t. f�(1� 1; ("; g; w)) = (1� 1; ("; g; w)) and i = 1{ or there exists w s.t. f�(1� 1; ("; d; w)) = (1� 1; ("; d; w)) and i = 2.Proof. We suppose that i = 1 and we make an indution on �0.{ If the last rule is �k it must be a �1 by normalization; we apply the Lemma 2to the premise whih gives us a weight w s.t. f�(1 � 1; ("; g; w)) = (1 �1; ("; g; w)). Moreover for any weight w0, f�(1� 1; ("; d; w0)) = ".{ If the last rule is s[, let p be its basi weight. We an apply the indutionhypothesis to the sub-proof �00 of ` 1�1 and we obtain a weight w s.t. f�00(1�1; ("; g; w)) = (1 � 1; ("; g; w)) so f�0(1 � 1; ("; g; w:p)) = (1 � 1; ("; g; w:p)).Moreover for any weight w0, f�00(1� 1; ("; d; w0)) = " thus, by Lemma 3, wealso have f�0(1� 1; ("; d; w0)) = ".Finally we onlude by Theorem 1. utWe annot assume that the weight w is empty for the evaluation of f� be-ause, for some proofs, f�(A; (m; a; 1)) = " for any A, m and a (see the proof of` 1� 1 in the introdution, for example).The parallel mahine gives a solution for this problem sine it doesn't re-quire any initial weight information. The weight may be built dynamially thusstarting with 1 is suÆient.Proposition 2. If � is a proof of ` 1 � 1 whose quasi-normal form is �0then �\0 = 1` 1 �i` 1� 1 and either fp�(1 � 1; ("; g; 1)) 6= 0 and i = 1 orfp�(1� 1; ("; d; 1)) 6= 0 and i = 2.4 ExponentialsWe have now to generalize some of our de�nitions of Set. 1 to deal with thefollowing exponential rules. The interpretation is the one de�ned by Danos andRegnier [4℄, aommodated with the additives and extended to the ?w -rule.4.1 Sequent Calulus ` �;A !` ?� ; !A ` �1; A ?d` �; ?A` �1; B1 ?w` �;B; ?A ` �1; ?A1; ?A2 ?` �; ?A ` �1; ??A ??` �; ?AThe formula B in the ontext of the ?w-rule is used for the same purpose asin the ?-rule. We use a funtorial promotion and a digging rule (??-rule) insteadof the usual promotion beause it allows us to deompose preisely the GoI.De�nition 7 (Weight, De�nition 1 ontinued). A opy address  is a wordbuilt on the letters fg; dg.A basi weight is now a pair of an elementary weight p (or its negation �p)and a opy address , and is denoted by p (�p).



In order to deal with the erasing of sub-proofs by the weakening ut elimi-nation step, we will only onsider proofs with no ? in onlusions. To prove thepreservation of the interpretation by redution, we an restrit ut eliminationto the partiular strategy reduing only exponential uts with no ontext in the!-rule.In the ? ut elimination step, we obtain two opies �11 and �21 of the proof�1 of ` !A. In �11 (resp. �21), we replae all the basi weights p by pg: (resp.pd:).4.2 Extending the MahineDe�nition 8 (Exponential informations).{ Exponential signatures � and exponential staks s are de�ned by:� ::= � j g:� j d:� j p�q:� j [s℄* j [s℄+s ::= " j �:sWe will use the notation [s℄ to talk about both [s℄* and [s℄+.{ The opy address e� of an exponential signature � is de�ned by: e� = ",f[s℄ = ", fg:� = g:e�, fd:� = d:e� and p̂�0q:� = e�0:e�.{ The opy address of an exponential stak is: e" = " and f�:s = e�:es.{ We de�ne the prediate weak() on signatures by:� weak(�) = false and weak([s℄) = true� weak(g:�) = weak(�) and weak(d:�) = weak(�)� weak(p�0q:�) = weak(�0)The weak() prediate tells if the leaf of the exponential branh desribed by� is a ?w-rule.De�nition 9 (Token, De�nition 4 ontinued). For the full ase, a token isa tuple (m; a;w; b; s) where b and s are exponential staks. Moreover the languageof m is extended to fg; d;*;+; jg and the language of a is extended to fg; d; jg(*, + and j are only used for ? and ?w).De�nition 10 (Type of a token). The type of a token (m; a;w; b; s) in aformula of a proof is the pair (jbj � d; jsj �n) where j:j is the length of a stak, dis the depth of the formula in the proof (i.e., the number of !-rules below it) andn is the number of exponential onnetives in the sope of whih the subformuladesribed by m and a is (without looking at the right of any j, * or + symbol).In the transitions of the mahine de�ned in Fig. 2, we replae everywhere p bypeb: sine we have to take into aount the stak b and to look at the dependenywith respet to peb:, for example:A&B"(m; g:a; w(peb:))! A"(m; a;w(peb:))For the onstants (Set. 3.1), we have to re�ne the ?-transitions (Fig. 4).The new transitions of the token mahine for exponential rules are desribedin Fig. 5. Some transitions are impliit to simplify the desription: if no tran-sition appears for a state F l(m; a;w; b; s), it just orresponds to the transitionF l(m; a;w; b; s)! ;.



?A"(m; a;w; b; s) ! ?#(*:m; j:a; w; b; s)A#1(m; a;w; b; s) ! ?#(+:m; j:a; w; b; s)?"(*:m; j:a; w; b; s)! A"1(m; a;w; b; s)?"(+:m; j:a; w; b; s)! A#(m; a;w; b; s)?"(m; a;w; b; s) ! ; m 6= *:m0;+:m0 or a 6= j:a0� "(m; a;w; b; s) ! � "1 (m; a;w; b; s)� #1 (m; a;w; b; s) ! � #(m; a;w; b; s)Fig. 4. ?-transitions (exponential ase).Lemma 4. If the type of the starting token is (p; q) with q � 0, at any step ofthe exeution the type of the token is (p; q0) with q0 � 0.Lemma 5. f�(F; (m; a;w; b; s)) = (F 0; (m0; a0; w0; b; s0)), and if eb = eb1 thenf�(F; (m; a;w; b1; s)) = (F 0; (m0; a0; w0; b1; s0)).Theorem 1.b (Soundness ontinued). The Theorem 1 is still true in LL[for a proof without any ? in its onlusions and a token of type (p; q) with p � 0and q � 0.Proof. We keep the same notations as in the proof of Theorem 1. We will lookfor eah exponential ut at the sequene s1; s2; : : : (resp. s01; s02; : : : ) of the statesF "(m; a;w; b; s) in the onlusions of the sub-proofs �1 and �2 during the om-putation ofM� (resp.M�0) on the state assoiated to j. With the notations givenbelow, we an remark that s2i (resp. s2i+1) will always be in the onlusions of�1 (resp. �2) and also for s02i and s02i+1.We only prove the digging ase, the others are left to the reader.Digging ut. In this ase, we annot prove 8i; si = s0i but only the weaker result8i; si = F "(m; a;w; b; s) () s0i = F "(m; a;w; b0; s) with eb = eb0. Lemma 5proves that it doesn't really matter.�1` A !` !A �2` �1; ??A? ??` �2; ?A? ut` � ! �1` A !` !A !` !!A �2` �1; ??A? ut` �If s2i+1 exists then:{ either s2i+2 doesn't exist beause f�2 is not de�ned on s2i+1 or beausef�2(s2i+1) 2 �1,{ or f�2(s2i+1) = (??A?; (m; a;w; b; s)) with s = �:�0:s0 (Lemma 4) ands2i+2 = A"(m; a;w; (p�0q:�):b; s0).Remark that the stak b of s2i is always of the shape (p�0q:�):b0. If s2i existsthen:



!!A"(m;a;w; b; �:s) ! A"(m; a;w; �:b; s) :weak(�)!A"(m;a;w; b; �:s) ! !A#(m;a;w; b; �:s) weak(�)A#(m; a;w; �:b; s) ! !A#(m;a;w; b; �:s)?� "(m; a;w; b; �:s) ! � "(m; a;w; �:b; s)� #(m; a;w; �:b; s) ! ?� #(m;a;w; b; �:s)?d?A"(m; a;w; b;�:s)! A"(m;a;w; b; s)?A"(m; a;w; b; s) ! ; s 6= �:s0A#(m; a;w; b; s) ! ?A#(m; a;w; b;�:s)� "(m; a;w; b; s) ! � "1 (m;a;w; b; s)� #1 (m; a;w; b; s) ! � #(m;a;w; b; s)???A"(m; a;w; b; (p�0q:�):s) ! ??A"(m; a;w; b; �:�0:s)?A"(m; a;w; b; s) ! ; s 6= (p�q:�0):s0??A#(m;a;w; b; �:�0:s) ! ?A#(m;a;w; b; (p�0q:�):s)� "(m; a;w; b; s) ! � "1 (m; a;w; b; s)� #1 (m; a;w; b; s) ! � #(m; a;w; b; s)??A"(m; a;w; b; (g:�):s)! ?A1"(m; a;w; b; �:s)?A"(m; a;w; b; (d:�):s)! ?A2"(m; a;w; b; �:s)?A"(m; a;w; b; s) ! ; s 6= (g:�):s0; (d:�):s0?A1#(m; a;w; b; �:s) ! ?A#(m;a;w; b; (g:�):s)?A2#(m; a;w; b; �:s) ! ?A#(m;a;w; b; (d:�):s)� "(m; a;w; b; s) ! � "1 (m; a;w; b; s)� #1 (m; a;w; b; s) ! � #(m; a;w; b; s)?wB"(m; a;w; b; s) ! ?A#(j:m; j:a; w; b; [s℄*:["℄*k�1)B#1(m; a;w; b; s) ! ?A#(j:m; j:a; w; b; [s℄+:["℄+k�1)?A"(j:m; j:a; w; b; [s℄*:s0) ! B"1 (m; a;w; b; s)?A"(j:m; j:a; w; b; [s℄+:s0) ! B#(m; a;w; b; s)?A"(m; a;w; b; s) ! ; s 6= [s0℄:s00 or m 6= j:m0 or a 6= j:a0� "(m; a;w; b; s) ! � "1 (m; a;w; b; s)� #1 (m; a;w; b; s) ! � #(m; a;w; b; s)Fig. 5. Exponential group. (in the ?w-transitions, k is the number of ? and ! in frontof ?A and ["℄*k�1 is used to preserve a orret type of the token)



{ either s2i+1 doesn't exist beause f�1 is not de�ned on s2i,{ or f�1(s2i) = (A; (m; a;w; b; s)) and, by Lemma 5, b = (p�0q:�):b0 thuss2i+1 = A?"(m; a;w; b0; �:�0:s).We also have s02i+1 = s2i+1 and if s2i = A"(m; a;w; (p�0q:�):b; s) then s02i =A"(m; a;w; �0:�:b; s) by Lemma 5 with ^(p�0q:�):b = �̂0:�:b. utTo onlude, we have to note that the Theorem 3, about omputation forbooleans, is still true in the full ase!Aknowledgements. Thanks to Laurent Regnier for his support and to the ref-erees for their omments about presentation.Referenes[1℄ Samson Abramsky, Radha Jagadeesan, and Pasquale Malaaria. Full abstrationfor PCF (extended abstrat). In M. Hagiya and J. C. Mithell, editors, TheoretialAspets of Computer Software, volume 789 of Leture Notes in Computer Siene,pages 1{15. Springer, April 1994.[2℄ Andrea Asperti, Ceilia Giovannetti, and Andrea Naletto. The bologna optimalhigher-order mahine. Journal of Funtional Programming, 6(6):763{810, Novem-ber 1996.[3℄ Vinent Danos, Hugo Herbelin, and Laurent Regnier. Games semantis and ab-strat mahines. In Proeedings of Logi In Computer Siene, New Brunswik,1996. IEEE Computer Soiety Press.[4℄ Vinent Danos and Laurent Regnier. Reversible, irreversible and optimal �-mahines. In J.-Y. Girard, M. Okada, and A. Sedrov, editors, Proeedings LinearLogi Tokyo Meeting, volume 3 of Eletroni Notes in Theoretial Computer Si-ene. Elsevier, 1996.[5℄ Jean-Yves Girard. Geometry of interation I: an interpretation of system F . InFerro, Bonotto, Valentini, and Zanardo, editors, Logi Colloquium '88. North-Holland, 1988.[6℄ Jean-Yves Girard. Geometry of interation III: aommodating the additives.In J.-Y. Girard, Y. Lafont, and L. Regnier, editors, Advanes in Linear Logi,volume 222 of London Mathematial Soiety Leture Note Series, pages 329{389.Cambridge University Press, 1995.[7℄ Jean-Yves Girard. Proof-nets: the parallel syntax for proof-theory. In Ursini andAgliano, editors, Logi and Algebra, New York, 1996. Marel Dekker.[8℄ Georges Gonthier, Martin Abadi, and Jean-Jaques L�evy. The geometry of opti-mal lambda redution. In Proeedings of Priniples of Programming Languages,pages 15{26. ACM Press, 1992.[9℄ Olivier Laurent. Polarized proof-nets and ��-alulus. To appear in TheoretialComputer Siene, 2001.[10℄ Ian Makie. The geometry of interation mahine. In Proeedings of Priniplesof Programming Languages, pages 198{208. ACM Press, January 1995.[11℄ Maro Pediini and Franeso Quaglia. A parallel implementation for optimallambda-alulus redution. In Proeedings of Priniples and Pratie of Delara-tive Programming, 2000.


