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Abstract

The intuitionistic sequent calculus (at most one formula on the right-hand side of sequents)
comes with a natural dual system: the dual-intuitionistic sequent calculus (at most one for-
mula on the left-hand side). We explain how the duality between these two systems exactly
corresponds to the intensively studied duality between call-by-value systems and call-by-name
systems for classical logic.

Relying on the uniqueness of the computational behaviour underlying these four logics (in-
tuitionistic, dual-intuitionistic, call-by-value classical and call-by-name classical), we define a
generic syntax of nets which can be used for any of these logics.

Starting from Griffin’s work [Gri90], the question of finding logical foundations of control op-
erators in functional programming languages has been intensively studied. We focus on one par-
ticular line of work dealing with classical logical systems with a deterministic cut elimination
procedure, translations into intuitionistic logic, linear logic analysis, constructions of denotational
models, ... [Gir91a, Par92, LRS93, DJS97, SR98, HS02, Sel01].

An important by-product of these developments is the understanding of a duality between the
call-by-name and the call-by-value evaluation procedures for classical logic [Fil89, Sel01].

In the present work, we try to clarify the relations between Gentzen’s sequent calculus for
classical logic, intuitionistic logic, call-by-name systems for classical logic (such as LKT [DJS95]),
call-by-value systems for classical logic (such as LKQ [DJS95]), dual-intuitionistic logic [Cze77], ...
The material presented here is not particularly new, but we think putting all the ingredients
together (in particular for dual-intuitionistic logic which is usually not present in the picture) helps
to understand the deep relations they have. The heart of this being the existence of only one

computational behaviour corresponding to the cut elimination procedures of all the considered
systems.

Uniqueness of computation in this setting allows us to introduce a common graphical syntax
for all the presented systems. Taking inspiration from the work on polarized proof-nets [Lau03]
for linear logic, we introduce id-nets (i.e. intuitionistic/dual-intuitionistic nets) which have the
nice properties of proof-nets (such as a simple confluent and strongly normalizing cut-elimination
procedure, the quotient of the irrelevant permutations of rules of the sequent calculus, ...) and
which can be read both as a syntax for intuitionistic logic and for dual-intuitionistic logic.
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We base our presentation of classical logic on the systems LKQ and LKT [DJS95], but a lot
of other possibilities would have done the job as well (see for example [Par92, Lev99, CH00]). It
is clear that the systems studied here have strong relations with linear logic [Gir87] and with the
linear logic analysis of classical logic. However we try to avoid linear logic in this paper in order to
make it readable by people not completely aware of linear logic developments.

1 Intuitionistic and dual-intuitionistic logics

The two basic systems we are going to study in this paper are intuitionistic logic and dual-
intuitionistic logic. The duality between these two systems is the heart of the present work.

1.1 Implication-free intuitionistic logic

There is no particular need to present the intuitionistic sequent calculus. We just focus on some
particular choices we make in the system LJ0.

First, at the level of formulas, we consider all the propositional connectives but implication!
This is a key restriction. The possibility of recovering implication is discussed in Section 3.1, but
this only gives restricted rules for this connective and there is no reasonable way to do more without
breaking strong properties of the systems. Due to this restriction, the intuitionistic system we use
is not as strongly related with the λ-calculus as usual. This explains the name LJ0, to avoid possible
confusions with LJ in which implication is usually the core connective.

The grammar of formulas is:

A ::= X | ¬A | A ∧ A | A ∨ A | ⊤ | ⊥

Sequents are of the shape Γ ⊢ Π, with a finite multiset of formulas Γ on the left-hand side and
at most one formula on the right-hand side Π (Π is either empty or reduced to a unique formula).

Rules are then the usual rules for such formulas and such sequents in intuitionistic logic (see
Table 1).

ax
A ⊢ A

Γ ⊢ A A,∆ ⊢ Π
cut

Γ,∆ ⊢ Π
Γ ⊢ Π

wkL
Γ, A ⊢ Π

Γ, A,A ⊢ Π
ctrL

Γ, A ⊢ Π

Γ, A ⊢
¬R

Γ ⊢ ¬A
Γ ⊢ A

¬L
Γ,¬A ⊢

Γ ⊢ A ∆ ⊢ B
∧R

Γ,∆ ⊢ A ∧ B
Γ, A,B ⊢ Π

∧L
Γ, A ∧ B ⊢ Π

⊤R
⊢ ⊤

Γ ⊢ Π
⊤L

Γ,⊤ ⊢ Π

Γ ⊢ A
∨R

Γ ⊢ A ∨ B
Γ ⊢ B

∨R
Γ ⊢ A ∨ B

Γ, A ⊢ Π Γ, B ⊢ Π
∨L

Γ, A ∨ B ⊢ Π

⊥L
Γ,⊥ ⊢ Π

Table 1: Intuitionistic sequent calculus LJ0
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1.2 Dual-intuitionistic logic

While the intuitionistic restriction of the classical sequent calculus with at most one formula on the
right-hand side of sequents is very common, the naive symmetric restriction (which is obviously
well behaved with respect to cut elimination since the intuitionistic restriction is) is not so popular.
One can find an explicit study of the induced system in [Cze77]. We use the name LD0 for the
slight variation we present here.

Formulas are the same as for LJ0:

A ::= X | ¬A | A ∧ A | A ∨ A | ⊤ | ⊥

Sequents now have at most one formula on the left-hand side: Π ⊢ Γ (Π is either empty or
restricted to one formula, and Γ is a finite multiset of formulas).

The rules of LD0 are presented in Table 2.

ax
A ⊢ A

Π ⊢ Γ, A A ⊢ ∆
cut

Π ⊢ Γ,∆
Π ⊢ Γ

wkR
Π ⊢ Γ, A

Π ⊢ Γ, A,A
ctrR

Π ⊢ Γ, A

A ⊢ Γ
¬R

⊢ Γ,¬A
⊢ Γ, A

¬L
¬A ⊢ Γ

Π ⊢ Γ, A,B
∨R

Π ⊢ Γ, A ∨ B
A ⊢ Γ B ⊢ ∆

∨L
A ∨ B ⊢ Γ,∆

Π ⊢ Γ
⊥R

Π ⊢ Γ,⊥
⊥L

⊥ ⊢

Π ⊢ Γ, A Π ⊢ Γ, B
∧R

Π ⊢ Γ, A ∧ B
A ⊢ Γ

∧L
A ∧ B ⊢ Γ

B ⊢ Γ
∧L

A ∧ B ⊢ Γ

⊤R
Π ⊢ Γ,⊤

Table 2: Dual-intuitionistic sequent calculus LD0

1.3 Duality

The perfect symmetry between the systems LJ0 and LD0 leads to a duality between them expressed
through the following translation:

X = X ¬A = ¬A

A ∧ B = A ∨ B A ∨ B = A ∧ B

⊤ = ⊥ ⊥ = ⊤

Proposition 1 (Duality)

• A = A

• Γ ⊢LJ0
Π if and only if Π ⊢LD0

Γ

A kind of summary of this duality is presented in Table 3.
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LJ0 LD0

∧ ↔ ∨
⊤ ↔ ⊥
¬ ↔ ¬
∨ ↔ ∧
⊥ ↔ ⊤

Γ ⊢ Π ↔ Π ⊢ Γ

Table 3: Duality summarized

2 Translations of classical logic

We now move to classical logic and to the question of the expressiveness of LJ0 and LD0.
In order to show that there are direct translations of call-by-value classical logic into LJ0 and of

call-by-name classical logic into LD0, we rely on the systems LKQ and LKT presented in [DJS95].
These two systems provide us with a logical presentation of these two evaluation procedures (call-
by-value with LKQ and call-by-name with LKT, see [Oga98]). This is one particular choice, a lot
of other “equivalent” possibilities would work as well (see for example [Par92, Lev99, CH00] which
describe pairs of dual systems for call-by-value and call-by-name classical logics).

2.1 Call-by-value

The system LKQ was originally introduced with the connectives → and ∀. It might be surprising
that none of them appears in the system we present here. The point is that LKQ was designed from
an analysis in linear logic which also gives the rules below when applied to the other propositional
connectives. This justifies the name LKQ here. We discuss how the rules for implication can be
recovered in Section 3.1 and the same for universal quantification in Section 5.2.

As for LJ0 and LD0, formulas are obtained from all the propositional connectives (but implica-
tion):

A ::= X | ¬A | A ∧ A | A ∨ A | ⊤ | ⊥

Sequents have the particular shape Γ ⊢ ∆ ; Π, where Γ and ∆ are finite multisets of formulas
and Π contains at most one formula.

The rules of LKQ are given in Table 4.
We recall a key result of [DJS95] showing that LKQ is as expressive as LK.

Proposition 2 (Classical provability of LKQ)

• Γ ⊢LKQ ∆ ; Π =⇒ Γ ⊢LK ∆,Π

• Γ ⊢LK ∆ =⇒ Γ ⊢LKQ ∆ ;

Proof: The first implication is immediate.

The second one is proved in [DJS95] for the connectives → and ∀ by means of linear logic. A
direct translation in the spirit of Girard’s LC [Gir91a] is also possible. A key case is given by
the rule:
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ax
A ⊢ ; A

Γ ⊢ ∆ ; A A,Γ′ ⊢ ∆′ ; Π
cut

Γ,Γ′ ⊢ ∆,∆′ ; Π

Γ ⊢ ∆, A ; Π A,Γ′ ⊢ ∆′ ;
cut

Γ,Γ′ ⊢ ∆,∆′ ; Π

Γ ⊢ ∆ ; A
der

Γ ⊢ ∆, A ;

Γ ⊢ ∆ ; Π
wkL

Γ, A ⊢ ∆ ; Π

Γ ⊢ ∆ ; Π
wkR

Γ ⊢ ∆, A ; Π

Γ, A,A ⊢ ∆ ; Π
ctrL

Γ, A ⊢ ∆ ; Π

Γ ⊢ ∆, A,A ; Π
ctrR

Γ ⊢ ∆, A ; Π

Γ, A ⊢ ∆ ;
¬R

Γ ⊢ ∆ ; ¬A

Γ ⊢ A,∆ ; Π
¬L

Γ,¬A ⊢ ∆ ; Π

Γ ⊢ ∆ ; A
∨R

Γ ⊢ ∆ ; A ∨ B

Γ ⊢ ∆ ; B
∨R

Γ ⊢ ∆ ; A ∨ B

Γ, A ⊢ ∆ ; Π Γ, B ⊢ ∆ ; Π
∨L

Γ, A ∨ B ⊢ ∆ ; Π

Γ ⊢ ∆ ; A Γ′ ⊢ ∆′ ; B
∧R

Γ,Γ′ ⊢ ∆,∆′ ; A ∧ B

Γ, A,B ⊢ ∆ ; Π
∧L

Γ, A ∧ B ⊢ ∆ ; Π

⊥L
Γ,⊥ ⊢ ∆ ; Π

⊤R
⊢ ; ⊤

Γ ⊢ ∆ ; Π
⊤L

Γ,⊤ ⊢ ∆ ; Π

Table 4: The sequent calculus LKQ

Γ ⊢ A,∆ Γ′ ⊢ B,∆′

∧R
Γ,Γ′ ⊢ A ∧ B,∆,∆′

which is translated as:

Γ ⊢ A,∆ ;

Γ′ ⊢ B,∆′ ;

ax
A ⊢ ; A

ax
B ⊢ ; B

∧R
A,B ⊢ ; A ∧ B

der
A,B ⊢ A ∧ B ;

cut
Γ′, A ⊢ A ∧ B,∆′ ;

cut
Γ,Γ′ ⊢ A ∧ B,∆,∆′ ;

An important point is the possibility to put the two cut rules in the opposite order [Gir91a].

The other cases are left to the reader. �

We now give a translation of LKQ into LJ0. Together with the previous proposition, this shows
how LJ0 can represent LK proofs.

Proposition 3 (From LKQ to LJ0)
If Γ ⊢LKQ ∆ ; Π then Γ,¬∆ ⊢LJ0

Π.

Proof: We give the translation of each rule of LKQ:

ax
A ⊢ A
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Γ,¬∆ ⊢ A A,Γ′,¬∆′ ⊢ Π
cut

Γ,Γ′,¬∆,¬∆′ ⊢ Π

A,Γ′,¬∆′ ⊢
¬R

Γ′,¬∆′ ⊢ ¬A Γ,¬∆,¬A ⊢ Π
cut

Γ,Γ′,¬∆,¬∆′ ⊢ Π

Γ,¬∆ ⊢ A
¬L

Γ,¬∆,¬A ⊢

Γ,¬∆ ⊢ Π
wkL

A,Γ,¬∆ ⊢ Π

Γ,¬∆ ⊢ Π
wkL

Γ,¬∆,¬A ⊢ Π

A,A,Γ,¬∆ ⊢ Π
ctrL

A,Γ,¬∆ ⊢ Π

Γ,¬∆,¬A,¬A ⊢ Π
ctrL

Γ,¬∆,¬A ⊢ Π

A,Γ,¬∆ ⊢
¬R

Γ,¬∆ ⊢ ¬A
Γ,¬∆,¬A ⊢

Γ,¬∆ ⊢ A
∨R

Γ,¬∆ ⊢ A ∨ B

Γ,¬∆ ⊢ B
∨R

Γ,¬∆ ⊢ A ∨ B

A,Γ,¬∆ ⊢ Π B,Γ,¬∆ ⊢ Π
∨L

A ∨ B,Γ,¬∆ ⊢ Π

Γ,¬∆ ⊢ A Γ′,¬∆′ ⊢ B
∧R

Γ,Γ′,¬∆,¬∆′ ⊢ A ∧ B

A,B,Γ,¬∆ ⊢ Π
∧L

A ∧ B,Γ,¬∆ ⊢ Π

⊥L
⊥,Γ,¬∆ ⊢ Π

⊤R
⊢ ⊤

Γ,¬∆ ⊢ Π
⊤L

⊤,Γ,¬∆ ⊢ Π

�

Example 1

By composing Proposition 2 and Proposition 3, the rule:

Γ ⊢ A,∆ Γ′ ⊢ B,∆′

∧R
Γ,Γ′ ⊢ A ∧ B,∆,∆′

is translated as:

Γ,¬A,¬∆ ⊢

Γ′,¬B,¬∆′ ⊢

ax
A ⊢ A

ax
B ⊢ B

∧R
A,B ⊢ A ∧ B

¬L
A,B,¬(A ∧ B) ⊢

¬R
A,¬(A ∧ B) ⊢ ¬B

cut
Γ′, A,¬(A ∧ B),¬∆′ ⊢

¬R
Γ′,¬(A ∧ B),¬∆′ ⊢ ¬A

cut
Γ,Γ′,¬(A ∧ B),¬∆,¬∆′ ⊢

2.2 Call-by-name

We now look at LKT as a logical system for call-by-name classical logic.
Formulas are the same as for LKQ:

A ::= X | ¬A | A ∧ A | A ∨ A | ⊤ | ⊥
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Sequents have the particular shape Π ; Γ ⊢ ∆, where Γ and ∆ are finite multisets of formulas
and Π contains at most one formula.

The rules of LKT are given in Table 5.

ax
A ; ⊢ A

Π ; Γ ⊢ ∆, A A ; Γ′ ⊢ ∆′

cut
Π ; Γ,Γ′ ⊢ ∆,∆′

; Γ ⊢ ∆, A Π ; A,Γ′ ⊢ ∆′

cut
Π ; Γ,Γ′ ⊢ ∆,∆′

A ; Γ ⊢ ∆
der

; A,Γ ⊢ ∆

Π ; Γ ⊢ ∆
wkL

Π ; Γ, A ⊢ ∆

Π ; Γ ⊢ ∆
wkR

Π ; Γ ⊢ ∆, A

Π ; Γ, A,A ⊢ ∆
ctrL

Π ; Γ, A ⊢ ∆

Π ; Γ ⊢ ∆, A,A
ctrR

Π ; Γ ⊢ ∆, A

Π ; Γ, A ⊢ ∆
¬R

Π ; Γ ⊢ ¬A,∆

; Γ ⊢ A,∆
¬L

¬A ; Γ ⊢ ∆

Π ; Γ ⊢ A,B,∆
∨R

Π ; Γ ⊢ A ∨ B,∆

A ; Γ ⊢ ∆ B ; Γ′ ⊢ ∆′

∨L
A ∨ B ; Γ,Γ′ ⊢ ∆,∆′

Π ; Γ ⊢ A,∆ Π ; Γ ⊢ B,∆
∧R

Π ; Γ ⊢ A ∧ B,∆

A ; Γ ⊢ ∆
∧L

A ∧ B ; Γ ⊢ ∆

B ; Γ ⊢ ∆
∧L

A ∧ B ; Γ ⊢ ∆

Π ; Γ ⊢ ∆
⊥R

Π ; Γ ⊢ ⊥,∆
⊥L

⊥ ; ⊢
⊤R

Π ; Γ ⊢ ⊤,∆

Table 5: The sequent calculus LKT

The symmetry between sequents in LKQ and LKT gives a duality stressed in [DJS95].

Proposition 4 (Duality between LKQ and LKT)
Through the duality of Section 1.3, LKQ and LKT are dual systems:

Γ ⊢LKQ ∆ ; Π ⇐⇒ Π ; ∆ ⊢LKT Γ

Proof: Studied for the connectives → and ∀ through linear logic in [DJS95]. Easy inductive
checking left to the reader. �

From [DJS95], one knows that LKT has the expressive power of LK.

Proposition 5 (Classical provability of LKT)

• Π ; Γ ⊢LKT ∆ =⇒ Π,Γ ⊢LK ∆

• Γ ⊢LK ∆ =⇒ ; Γ ⊢LKT ∆

We end this section with a translation of the classical system LKT into LD0.

Proposition 6 (From LKT to LD0)
If Π ; Γ ⊢LKT ∆ then Π ⊢LD0

¬Γ,∆.
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Proof: This can be obtained from Proposition 3 by duality. �

Putting together all the previous results, we have shown that the call-by-value/call-by-name
duality of classical logic stressed in [Fil89, Sel01] is in exact correspondence with the left/right
duality of intuitionistic/dual-intuitionistic logics (see Figure 1).

LKQ LKT

LJ0 LD0

Proposition 4

Proposition 1

Proposition 6Proposition 3
DUALITY

LK

Proposition 5Proposition 2

Figure 1: Dualities

The translation of call-by-name classical logic into LJ0 described in [LRS93] can be decomposed
in our setting into the translation from LKT to LD0 followed by the duality embedding LD0 into
LJ0.

2.3 Comparing provabilities

Concerning the various systems studied above, it was shown in [Cze77] that there is no loss of
provability by moving from LK to LD0. We can extend this result to a complete comparison of the
provabilities of LK, LJ0 and LD0.

Proposition 7 (Provabilities)
The following statements are equivalents:

LK LJ0 LD0

⊢ A ⇐⇒ ⊢ A

⇐⇒ ¬A ⊢ ⇐⇒ ¬A ⊢ ⇐⇒ ¬A ⊢

⇐⇒ ⊢ ¬¬A ⇐⇒ ⊢ ¬¬A ⇐⇒ ⊢ ¬¬A

Proof: We prove enough implications:

• ⊢LK A ⇐⇒ ¬A ⊢LK ⇐⇒ ⊢LK ¬¬A.

• ⊢LK A =⇒ ¬A ⊢LJ0
by translation through LKQ (Propositions 2 and 3).

• ¬A ⊢LJ0
=⇒ ⊢LJ0

¬¬A.
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• ⊢LJ0
¬¬A =⇒ ⊢LK ¬¬A by inclusion.

• ⊢LK A =⇒ ⊢LD0
A by translation through LKT (Propositions 5 and 6).

• ⊢LD0
A =⇒ ¬A ⊢LD0

=⇒ ⊢LD0
¬¬A.

• ⊢LD0
¬¬A =⇒ ⊢LK ¬¬A by inclusion. �

In particular, ⊢LK A ⇐⇒ ⊢LJ0
¬¬A is Glivenko’s theorem [Gli29].

3 Extensions and restrictions

We discuss some of the possible variations on the systems of the previous section.

3.1 Implication and difference

The implication connective which is often at the heart of logical systems is omitted in the above
presentations. We can find in [DJS95] the appropriate rules for LKQ and LKT. They come from
considerations related with linear logic. In order to preserve duality, we also add the subtraction

connective [Cro01].
We extend LKQ:

Γ, A ⊢ B,∆ ;
→ R

Γ ⊢ ∆ ; A → B

Γ ⊢ ∆ ; A Γ′, B ⊢ ∆′ ;
→ L

Γ,Γ′, A → B ⊢ ∆,∆′ ;

Γ ⊢ ∆ ; A Γ′, B ⊢ ∆′ ;
−R

Γ,Γ′ ⊢ ∆,∆′ ; A − B

Γ, A ⊢ B,∆ ; Π
−L

Γ, A − B ⊢ ∆ ; Π

These rules are precisely those which can be derived from the definitions A → B ≡ ¬(A∧¬B) and
A − B ≡ A ∧ ¬B.

We also extend LKT:

Π ; Γ, A ⊢ B,∆
→ R

Π ; Γ ⊢ A → B,∆

; Γ ⊢ A,∆ B ; Γ′ ⊢ ∆′

→ L
A → B ; Γ,Γ′ ⊢ ∆,∆′

; Γ ⊢ A,∆ B ; Γ′ ⊢ ∆′

−R
; Γ,Γ′ ⊢ A − B,∆,∆′

; Γ, A ⊢ B,∆
−L

A − B ; Γ ⊢ ∆

These rules are precisely those which can be derived from the definitions A → B ≡ ¬A ∨ B and
A − B ≡ ¬(¬A ∨ B).

In order to preserve Proposition 3, LJ0 is extended with the following new rules:

Γ, A,¬B ⊢
→ R

Γ ⊢ A → B

Γ ⊢ A ∆, B ⊢
→ L

Γ,∆, A → B ⊢

Γ ⊢ A ∆, B ⊢
−R

Γ,∆ ⊢ A − B

Γ, A,¬B ⊢ Π
−L

Γ, A − B ⊢ Π

Of course, they also correspond to A → B ≡ ¬(A∧ ¬B) and A−B ≡ A ∧ ¬B. These rules do not
define the usual intuitionistic connectives. In particular (→ L) is a restriction of the usual rule and
(→ R) is more general than the usual one. As a consequence, the provable sequents of LJ0 using
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→ are not the usual intuitionistic ones: ⊢ ¬¬A → A is provable in LJ0 and A,A → B ⊢ B is not

provable in general in LJ0.
In the same spirit, we extend LD0:

Π ⊢ ¬A,B,Γ
→ R

Π ⊢ A → B,Γ

⊢ A,Γ B ⊢ ∆
→ L

A → B ⊢ Γ,∆

⊢ A,Γ B ⊢ ∆
−R

⊢ A − B,Γ,∆

⊢ ¬A,B,Γ
−L

A − B ⊢ Γ

This corresponds to A → B ≡ ¬A ∨ B and A − B ≡ ¬(¬A ∨ B).
The duality of Section 1.3 is then extended with:

A → B = B − A A − B = B → A

All these definitions allow us to preserve Propositions 1, 2, 3, 4, 5, 6 and 7.

Example 2 (Peirce’s law)
The classical sequent (A → B) → A ⊢ A corresponds to Peirce’s law. We consider the refinement
(A → B) → A ; ⊢ A in LKT. The dual sequent in LKQ is A ⊢ ; A− (B −A). Using A− (B−A) ≡
A ∧ ¬(B ∧ ¬A) ≡ A ∧ (B → A) in LKQ, it is equivalent to A ⊢ ; A ∧ (B → A). Associated proofs
are:

ax
A ; ⊢ A

der
; A ⊢ A

wkR
; A ⊢ B,A

→ R
; ⊢ A → B,A

ax
A ; ⊢ A

→ L
(A → B) → A ; ⊢ A,A

ctrR
(A → B) → A ; ⊢ A

ax
A ⊢ ; A

ax
A ⊢ ; A

der
A ⊢ A ;

wkL
A,B ⊢ A ;

→ R
A ⊢ ; B → A

∧R
A,A ⊢ ; A ∧ (B → A)

ctrL
A ⊢ ; A ∧ (B → A)

The corresponding translations in LD0 and LJ0 are:

ax
A ⊢ A

¬R
⊢ ¬A,A

wkR
⊢ ¬A,B,A

→ R
⊢ A → B,A

ax
A ⊢ A

→ L
(A → B) → A ⊢ A,A

ctrR
(A → B) → A ⊢ A

ax
A ⊢ A

ax
A ⊢ A

¬L
A,¬A ⊢

wkL
A,B,¬A ⊢

→ R
A ⊢ B → A

∧R
A,A ⊢ A ∧ (B → A)

ctrL
A ⊢ A ∧ (B → A)

3.2 Multiplicative fragments

Following the terminology of linear logic, the connectives ∧ and ⊤ of LJ0 as well as the connectives
∨ and ⊥ of LD0 are called multiplicative. The connectives ∨ and ⊥ of LJ0 as well as the connectives
∧ and ⊤ of LD0 are called additive. The multiplicative fragments MLJ0 and MLD0 of LJ0 and LD0

are obtained by removing the additive connectives.
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It is possible to justify that this restriction is not too strong in an important number of cases.
Indeed, the formulas ¬(A ∨ B) and ¬A ∧ ¬B are equivalent in LJ0:

ax
A ⊢ A

∨R
A ⊢ A ∨ B

¬L
A,¬(A ∨ B) ⊢

¬R
¬(A ∨ B) ⊢ ¬A

ax
B ⊢ B

∨R
A ⊢ A ∨ B

¬L
B,¬(A ∨ B) ⊢

¬R
¬(A ∨ B) ⊢ ¬B

∧R
¬(A ∨ B),¬(A ∨ B) ⊢ ¬A ∧ ¬B

ctrL
¬(A ∨ B) ⊢ ¬A ∧ ¬B

ax
A ⊢ A

¬L
A,¬A ⊢

wkL
A,¬A,¬B ⊢

ax
B ⊢ B

¬L
B,¬B ⊢

wkL
B,¬A,¬B ⊢

∨L
A ∨ B,¬A,¬B ⊢

¬R
¬A,¬B ⊢ ¬(A ∨ B)

∧L
¬A ∧ ¬B ⊢ ¬(A ∨ B)

This is not only an equivalence but even a syntactical isomorphism [Lau05]. In the same spirit, ¬⊥
and ⊤ are equivalent. This means that formulas of LJ0 such that all the additive connectives are
under the scope of at least one negation can be studied in MLJ0 without any loss of precision.

Dually, ¬(A ∧ B) and ¬A ∨ ¬B and ¬⊤ and ⊥ are equivalent in LD0.

3.3 Reversal

Another way of constraining our systems is to restrict structural rules. It will be used in Sections 4.6
and 5.1.

We consider the following restrictions of the contraction, weakening and right negation rules in
LJ0:

Γ ⊢ Π
wkL

Γ,X ⊢ Π
Γ ⊢ Π

wkL
Γ,¬A ⊢ Π

Γ,X,X ⊢ Π
ctrL

Γ,X ⊢ Π

Γ,¬A,¬A ⊢ Π
ctrL

Γ,¬A ⊢ Π

¬Γ,Ξ, A ⊢
¬R

¬Γ,Ξ ⊢ ¬A

with Ξ containing only propositional variables. The reason for taking negation into account in this
restriction comes once again from linear logic (and is important with respect to cut elimination)
and all this is related with the ρ-constraint of [QTdF96, LQTdF05]. This constraint is a logical
way of imposing that proofs use the reversibility of the left logical rules (except ¬L) of LJ0: these
logical rules are applied as late as possible (from a top down point of view) in the constrained
system.

The restricted system is called LJ
ρ
0
, and there is no loss of provability through this restriction.

Proposition 8 (Reversal in LJ0)
Γ ⊢ Π is provable in LJ0 if and only if it is provable in LJ

ρ
0
.

Proof: We prove by induction on A that any occurrence of a contraction or weakening rule on
A with main connective ∧, ∨, ⊤ or ⊥ can be replaced by occurrences of this rule applied to
strict sub-formulas of A:

Γ, A ∧ B,A ∧ B ⊢ Π
ctrL

Γ, A ∧ B ⊢ Π
7→

Γ, A ∧ B, A ∧ B ⊢ Π

ax
A ⊢ A

ax
B ⊢ B

∧R
A, B ⊢ A ∧ B

cut
Γ, A, B, A ∧ B ⊢ Π

ax
A ⊢ A

ax
B ⊢ B

∧R
A, B ⊢ A ∧ B

cut
Γ, A, B, A, B ⊢ Π

ctrL
Γ, A, B, B ⊢ Π

ctrL
Γ, A, B ⊢ Π

∧L
Γ, A ∧ B ⊢ Π

11



Γ, A ∨ B,A ∨ B ⊢ Π
ctrL

Γ, A ∨ B ⊢ Π
7→

Γ, A ∨ B, A ∨ B ⊢ Π

ax

A ⊢ A
∨R

A ⊢ A ∨ B
cut

Γ, A, A ∨ B ⊢ Π

ax

A ⊢ A
∨R

A ⊢ A ∨ B
cut

Γ, A, A ⊢ Π

ctrL
Γ, A ⊢ Π

Γ, A ∨ B, A ∨ B ⊢ Π

ax

B ⊢ B
∨R

B ⊢ A ∨ B
cut

Γ, B, A ∨ B ⊢ Π

ax

B ⊢ B
∨R

B ⊢ A ∨ B
cut

Γ, B, B ⊢ Π

ctrL
Γ, B ⊢ Π

∨L
Γ, A ∨ B ⊢ Π

Γ,⊤,⊤ ⊢ Π
ctrL

Γ,⊤ ⊢ Π
7→

Γ,⊤,⊤ ⊢ Π
⊤R

⊢ ⊤
cut

Γ,⊤ ⊢ Π
⊤R

⊢ ⊤
cut

Γ ⊢ Π
⊤L

Γ,⊤ ⊢ Π

Γ,⊥,⊥ ⊢ Π
ctrL

Γ,⊥ ⊢ Π
7→ ⊥L

Γ,⊥ ⊢ Π

Γ ⊢ Π
wkL

Γ, A ∧ B ⊢ Π
7→

Γ ⊢ Π
wkL

Γ, A ⊢ Π
wkL

Γ, A, B ⊢ Π
∧L

Γ, A ∧ B ⊢ Π

Γ ⊢ Π
wkL

Γ, A ∨ B ⊢ Π
7→

Γ ⊢ Π
wkL

Γ, A ⊢ Π

Γ ⊢ Π
wkL

Γ, B ⊢ Π
∨L

Γ, A ∨ B ⊢ Π

Γ ⊢ Π
wkL

Γ,⊤ ⊢ Π
7→ Γ ⊢ Π

⊤L
Γ,⊤ ⊢ Π

Γ ⊢ Π
wkL

Γ,⊥ ⊢ Π
7→ ⊥L

Γ,⊥ ⊢ Π

The right negation rule is treated in a similar way. �

In a symmetric way, we can restrict contraction, weakening and left negation rules in LD0 to
define LD

ρ
0
:

Π ⊢ Γ
wkR

Π ⊢ Γ,X
Π ⊢ Γ

wkR
Π ⊢ Γ,¬A

Π ⊢ Γ,X,X
ctrR

Π ⊢ Γ,X

Π ⊢ Γ,¬A,¬A
ctrR

Π ⊢ Γ,¬A

⊢ ¬Γ,Ξ, A
¬L

¬A ⊢ ¬Γ,Ξ

with Ξ containing only propositional variables.
Again, there is no loss of provability.

Proposition 9 (Reversal in LD0)
Π ⊢ Γ is provable in LD0 if and only if it is provable in LD

ρ
0
.

Proof: By duality, from Proposition 8. �

We define the systems MLJ
ρ
0

and MLD
ρ
0

as the multiplicative restrictions of LJ
ρ
0

and LD
ρ
0
, or

equivalently as the reversed versions of MLJ0 and MLD0.
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4 Nets

We define a graphical syntax incarnating the duality between LJ0 and LD0 without making a specific
choice between them. The notion of id-nets we introduce is strongly inspired from polarized proof-
nets [Lau03, LTdF04].

We choose a presentation of id-nets in the spirit of Lafont’s interaction nets [Laf90]. However
id-nets are not true interaction nets (at least cells with more than one principal port are required).

It is well known, in the theory of proof-nets for linear logic, that dealing with the multiplicative
connectives only is much easier than the introduction of the additive connectives which induce
more global behaviours. This is why we concentrate on the multiplicative fragments of LJ0 and
LD0. Moreover we have explained in Section 3.2 how the restriction to multiplicative connectives
is often harmless. A possible treatment of the additive connectives will be shortly addressed in
Section 5.1.

4.1 Definitions

Since we want our nets to be fair with both LJ0 and LD0, we use a specific grammar for formulas
appearing on edges of nets. We also prefer the terminology type rather than formula to make clear
the distinction.

Types are built with the connectives ◦, I and ¬:

A ::= X | ¬A | A ◦ A | I

A partial directed graph is a directed graph in which some edges can be without source or
without target (or without source nor target). A root in a partial directed graph is an edge without
source. A leaf is an edge without target.

In order to build our id-nets which are partial directed graphs with edges labelled with types, we
will rely on a given set of kinds of nodes with a given label which specifies: the number of incoming
edges, the number of outgoing edges, and the constraints relating the types labelling these edges.

There are seven basic kinds of nodes:
• ◦-up: one incoming edge and two outgoing edges, the type of the incoming edge is A ◦B if A

is the type of the first outgoing edge and B is the type of the second one.

• I-up: one incoming edge of type I and no outgoing edge.

• ◦-dn: two incoming edges and one outgoing edge, the type of the outgoing edge is A ◦B if A
is the type of the first incoming edge and B is the type of the second one.

• I-dn: no incoming edge and one outgoing edge of type I.

• C-dn: two incoming edges and one outgoing edge, the three edges have the same type.

• W-dn: no incoming edge and one outgoing edge, with no particular constraint on the type of
the edge.

• ¬-dn: no incoming edge and two outgoing edges, the type of the first outgoing edge is A if
the type of the second one is ¬A.

The graphical representations of these basic kinds of nodes are given in Figure 2.

Definition 1 (Id-nets)
Id-nets and kinds of nodes are defined in a mutually recursive way.
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I-up

B

◦-up

A

IA ◦ B

A

C-dn

A

A

W-dn

A

¬-dn
A ¬A

...

R-bx

A1 An

A B

A ◦ B

◦-dn I-dn

I

¬A

Figure 2: Kinds of nodes (with active ports)

A partial directed acyclic graph, built with basic kinds of nodes and with edges labelled with
types respecting the constraints associated with the basic kinds of nodes, and with exactly one root
or one node of kind ¬-dn, is an id-net with depth 0.

If R is an id-net with leaves typed with A1, ..., An, A and no root, R-bx is a kind of node (called
a box kind) with one incoming edge with type ¬A and n outgoing edges with types A1, ..., An (see
Figure 2).

A partial directed acyclic graph R, built with kinds of nodes (either basic or box) and with
edges labelled with types respecting the constraints associated with the kinds of nodes, and with
exactly one root or one node of kind ¬-dn, is an id-net with depth d + 1 (where d is the maximal
depth of the id-nets Rb such that R contains an Rb-bx node).

Proof-nets are often defined in two steps: first a notion of proof-structure and then a notion
of correctness criterion selecting valid proof-structures [Gir87]. Since we have no use of proof-
structures here, we have done everything in one step. The underlying notion of correctness cri-
terion [Lau03] can be found in the acyclicity requirement and in the constraint on the number of
roots and ¬-dn nodes.

We use the notation *-dn for any of ◦-dn, I-dn, C-dn or W-dn. We use the notation *-up for any
of ◦-up, I-up or R-bx.

We define the notion of active source or target of edges by looking at the kind of the associated
node:

• The target of the incoming edge of a *-up node is active.

• The source of the outgoing edge of a *-dn node is active.

• The source of the second outgoing edge of a ¬-dn node is active.

• The sources of the outgoing edges of an R-bx node are active.

• The other sources or targets are passive.
An edge is a cut edge if both its source and its target are active (in particular both the source and
the target must exist). An edge is an axiom edge if both its source and its target are passive (they
may not exist).

An example of id-net is given in Figure 3.
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◦-up

R-bx

C-dn

A

A

¬(B ◦ ¬A)

A

A ◦ ¬(B ◦ ¬A)

with R =

◦-dn

W-dn

B

¬-dn

A

¬A

B ◦ ¬A

Figure 3: Peirce’s id-net

4.2 Translations

We define translations of MLJ0 and MLD0 into id-nets allowing us to show how id-nets can represent
in one setting both sequent calculi.

4.2.1 MLJ0

A proof in MLJ0 of the sequent Γ ⊢ Π is translated as an id-net with root corresponding to Π (no
root if Π is empty) and leaves corresponding to Γ. This is done by induction on the proof:

• An ax-rule introducing A ⊢ A is translated as a single (axiom) edge (without source nor
target) typed with A.

• If R1 is the translation of a proof π1 of Γ ⊢ A and R2 is the translation of a proof π2 of
A,∆ ⊢ Π, the proof obtained from π1 and π2 by adding a cut-rule is translated as the id-net
obtained by identifying the root (typed A) in R1 with the leaf typed A in R2.

• If R is the translation of a proof π of Γ ⊢ Π, the proof obtained from π by adding a weakening
rule is translated by adding a W-dn node to R.

• If R is the translation of a proof π of Γ, A,A ⊢ Π, the proof obtained from π by adding a
contraction rule is translated by adding a C-dn node to R with incoming edges the two leaves
of R corresponding to A and A.

• If R is the translation of a proof π of Γ, A ⊢ , the proof obtained from π by adding a right
negation rule is translated as the id-net reduced to an R-bx node.

• If R is the translation of a proof π of Γ ⊢ A, the proof obtained from π by adding a left
negation rule is translated by adding a ¬-dn node to R with first outgoing edge the root of
R and second outgoing edge a new leaf of the whole id-net.

• If R1 is the translation of a proof π1 of Γ ⊢ A and R2 is the translation of a proof π2 of
∆ ⊢ B, the proof obtained from π1 and π2 by adding a right conjunction rule is translated as
the id-net obtained by adding a ◦-up node with outgoing edges the roots of R1 and R2.
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• If R is the translation of a proof π of Γ, A,B ⊢ Π, the proof obtained from π by adding a
left conjunction rule is translated by adding a ◦-dn node to R with incoming edges the two
leaves of R corresponding to A and B.

• A right ⊤ rule is translated as an id-net reduced to a I-up node.

• If R is the translation of a proof π of Γ ⊢ Π, the proof obtained from π by adding a left ⊤
rule is translated by adding a I-dn node to R.

4.2.2 MLD0

A proof in MLD0 of the sequent Π ⊢ Γ is translated as an id-net with root corresponding to Π (no
root if Π is empty) and leaves corresponding to Γ. This is done by induction on the proof in a very
similar way as for MLJ0. We only give the key ingredients:

• An ax-rule introducing A ⊢ A is translated as a single (axiom) edge (without source nor
target) typed with A.

• If R1 is the translation of a proof π1 of Π ⊢ Γ, A and R2 is the translation of a proof π2 of
A ⊢ ∆, the proof obtained from π1 and π2 by adding a cut-rule is translated as the id-net
obtained by identifying the leaf typed A in R1 with the root (typed A) in R2.

• The weakening rule is translated by using a W-dn node.

• The contraction rule is translated by using a C-dn node.

• The right negation rule is translated by using a ¬-dn node.

• The left negation rule is translated by using an R-bx node.

• The right disjunction rule is translated by using a ◦-dn node.

• The left disjunction rule is translated by using a ◦-up node.

• The right ⊥ rule is translated by using a I-dn node.

• The left ⊥ rule is translated by using a I-up node.

4.2.3 Duality

A crucial intrinsic property of the two translations above is that two dual proofs in MLJ0 and MLD0

are translated as the same id-net.

Example 3 (Peirce’s id-net)
For the following two dual proofs of in LJ0 and LD0 (see Example 2 for comments about these
proofs):

ax
A ⊢ A

ax
A ⊢ A

¬L
A,¬A ⊢

wkL
A,B,¬A ⊢

∧L
A,B ∧ ¬A ⊢

¬R
A ⊢ ¬(B ∧ ¬A)

∧R
A,A ⊢ A ∧ ¬(B ∧ ¬A)

ctrL
A ⊢ A ∧ ¬(B ∧ ¬A)

ax
A ⊢ A

ax
A ⊢ A

¬R
⊢ ¬A,A

wkR
⊢ B,¬A,A

∨R
⊢ B ∨ ¬A,A

¬L
¬(B ∨ ¬A) ⊢ A

∨L
A ∨ ¬(B ∨ ¬A) ⊢ A,A

ctrR
A ∨ ¬(B ∨ ¬A) ⊢ A

the common associated id-net is given in Figure 3.
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4.3 Sequentializations

Starting from a given id-net, it is possible to recover both an MLJ0 proof and an MLD0 proof.
Moreover they are dual to each other.

4.3.1 MLJ0

We first introduce a specific kind of id-net: up trees. They are defined inductively: an edge is an
up tree, a I-up node with its incoming edge is an up tree, an R-bx node with its incoming and
outgoing edges is an up tree, and one gets an up tree by branching the roots of two up trees on the
outgoing edges of a ◦-up node. An up tree is always an id-net.

In an id-net, an edge is always the root of an up tree (the up tree reduced to the edge). We call
the up tree of an edge, the maximal up tree (with respect to inclusion) having this edge as root.

Lemma 1

A directed path, starting from an edge whose target is a *-dn node and going to a leaf of the id-net,

either crosses a cut or is such that the source of its last edge is a *-dn node.

We now extract a proof of Γ ⊢ Π in MLJ0 from an id-net R with root Π and leaves Γ. This is
done by induction on the size of R. The size of an id-net is its number of nodes at all depths (i.e.
the number of nodes of the graph — at depth 0 — plus the sizes of the id-nets of the box nodes).

• If there is a leaf of R with source a ◦-dn, I-dn, C-dn or W-dn, we remove this node, we still
have an id-net.

On the MLJ0 side, it corresponds to a left conjunction rule, a left ⊤ rule, a contraction rule
or a weakening rule.

• Otherwise, if there is a cut edge, we consider a maximal one in the id-net (i.e. such that
there is no path in the directed graph going from this cut edge to another one). We split this
edge into a new root and a new leaf. We show that we obtain two components (which are
both id-nets). We look at the leaves of the up tree of the cut edge. They cannot have a *-dn
node as target otherwise, by Lemma 1, we would contradict the absence of leaf with source a
*-dn node or the maximality of the cut edge. This means that the nodes and edges reachable
from the target of the cut edge exactly constitute an up tree not connected to the rest of the
id-net.

By induction hypothesis, we have proofs in MLJ0 corresponding to the two id-nets. We just
have to add a cut rule between them.

• Otherwise, if there is a ¬-dn node, its second outgoing edge is a leaf: its target cannot be a
*-up node otherwise we have a cut edge, and it cannot be a *-dn node by Lemma 1 as before.
We remove the ¬-dn node and we still have an id-net.

On the MLJ0 side, it corresponds to a left negation rule.

• Otherwise, the id-net is an up tree: the id-net has a root (since it does not contain ¬-dn
nodes) and we consider the up tree of the root. The leaves of this up tree are leaves of the id-
net otherwise we could apply Lemma 1 again. The id-net is reduced to this up tree otherwise
we have a node not reachable from the root thus reachable from a I-dn or W-dn node. This is
impossible without cut edges nor *-dn nodes as sources of leaves, by Lemma 1. We now look
at the up tree. If the up tree is reduced to an edge, it is the translation of an ax-rule. If the up
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tree is reduced to a I-up node, it is the translation of a right ⊤ rule. If the up tree is reduced
to an R-bx node, by induction hypothesis, we can build a proof of MLJ0 corresponding to R.
The whole id-net is the translation of the proof obtained by adding a right negation rule to
the proof associated with R. If the root of the up tree has target a ◦-up node, we remove it,
we obtain two up trees. By induction hypothesis, these two up trees correspond to proofs in
MLJ0, to which we just have to add a right conjunction rule.

4.3.2 MLD0

We can also extract a proof of Π ⊢ Γ in MLD0 from an id-net R with root Π and leaves Γ. The
procedure follows the same decomposition of the id-net as for MLJ0:

• If there is a leaf with source a ◦-dn, I-dn, C-dn or W-dn, we get a right disjunction rule, a
right ⊥ rule, a contraction rule or a weakening rule in MLD0.

• If there is a cut edge, we get a cut rule in MLD0.

• If there is a ¬-dn node, we get a right negation rule in MLD0.

• If the id-net is reduced to an edge, we get an ax-rule in MLD0.

• If the id-net is reduced to a I-up node, we get a left ⊥ rule in MLD0.

• If the id-net is reduced to an R-bx node, we get a left negation rule in MLD0.

• If the id-net is an up tree with root having a ◦-up node as target, we get a left disjunction
rule in MLD0.

By applying sequentializations towards MLJ0 and towards MLD0 from the same id-net, and by
choosing nodes in the same order, one gets dual proofs.

4.4 Cut elimination

A crucial property of sequent calculi is cut elimination. A major advantage of the proof-net ap-
proach to proof systems is to provide simplified cut elimination procedures where commutative
steps almost disappear.

Given any cut edge in an id-net, we define a way to rewrite it by a cut elimination step. These
steps are described in Figure 4.

By using the proofs of [Lau03], one can show that cut elimination is confluent and strongly

normalizing in id-nets.

4.5 Axiom expansion

Another nice transformation of id-nets is axiom expansion which turns an id-net into one with all
axiom edges typed with propositional variables.

The corresponding rewriting steps are presented in Figure 5.
It is very easy to see, by induction on the types, that axiom expansion applied to axiom edges

always terminates and never introduces cut edges since, by definition of an axiom edge, its source
and target are not active.

On the sequent calculus side, this corresponds to being able to restrict ax-rules to the introduc-
tion of X ⊢ X.
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Figure 4: Cut elimination steps
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Figure 5: Axiom expansion steps

4.6 Embedding in essential nets

In the literature on proof-nets, one finds two main correctness criteria based on directed graphs.
The first one has been introduced by Lamarche [Lam94] for intuitionistic linear logic. The second
one is for polarized linear logic [Lau99] and is the one we are relying on for id-nets.

We prove here how these two criteria can be related1 through a translation of id-nets (using the
polarized directed criterion) into essential nets [Lam94] (using the intuitionistic directed criterion).

We use a slight modification of essential nets using explicit boxes. This has no impact on the
heart of the correctness criteria: they mainly deal with the multiplicative structure.

The formulas used for typing essential structures are formulas of unit-free intuitionistic multi-
plicative exponential linear logic. They are given by two dual classes: output formulas and input

formulas.
O ::= X | O ⊗ O | I �O | !O
I ::= X⊥ | I � I | O ⊗ I | ?I

Essential structures are partial directed graphs built from the nodes of Figure 6. An essential
structure is required to have no root and exactly one of its leaves which is of output type. Moreover
each ?w-node n is the target of an additional untyped edge called a jump coming from a node which
is not reachable by a directed path starting from n. Finally, as for id-nets, with each !-node with
outgoing edges typed ?Γ and !O is associated an essential structure with leaves typed ?Γ and O.

Based on the output/input polarities of formulas, we define a new orientation on the edges of
essential structures by reversing the orientation of edges typed with output formulas. The new
orientation is called the polarized orientation.

Trails of an essential structure S are paths starting from the output leaf of S in the partial
directed graph obtained from S by: deleting edges with target an output �-node (i.e. a �-node
with outgoing edge of output type) — the source of such a deleted edge is called a sink [MO00];

1Thanks to F. Lamarche who asked me if such a relation exists in 1998 and to L. Strassburger who asked it again

ten years later in 2008 at LMRC-08. I am now able to answer them positively.
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Figure 6: Essential nodes

by considering jumps as normal edges (directed towards the ?w-node); and by using the polarized
orientation for the other (typed) edges.

We now give the correctness criterion of essential nets [Lam94, MO00] which selects “valid”
essential structures.

Definition 2 (Essential net)
An essential structure is an essential net if:

• The set of its trails is finite.

• Each node belongs to a trail.

• Each trail reaching a sink goes (previously) through the target of its outgoing edge.

• The previous three conditions are recursively satisfied in the essential structures associated
with the !-nodes.

In order to define a translation of id-nets into essential nets, we consider id-nets corresponding
to the multiplicative reversed systems MLJ

ρ
0

and MLD
ρ
0

without unit (⊤ or ⊥).
We choose a propositional variable R of intuitionistic linear logic and we translate types by

output formulas:

X∗ = !X (A ◦ B)∗ = A∗ ⊗ B∗ (¬A)∗ = !(A∗⊥ �R)

An id-net with root of type A and leaves of types Γ is translated as an essential structure with
leaves typed Γ∗⊥, A∗. An id-net without root and with leaves of types Γ is translated as an essential
structure with leaves typed Γ∗⊥, R.

Starting from an id-net, we work by induction on its depth (see Definition 1):
• We translate each ◦-up node as a ⊗-node, and we reverse the orientation of its incoming and

outgoing edges.

• We translate each ◦-dn node as a �-node, each C-dn node as a ?c-node and each W-dn node
as a ?w-node, without changing the orientation of edges.

• Given an R-bx node, by induction hypothesis, R is translated as an essential structure R∗

with leaves typed Γ∗⊥, A∗⊥, R if R has leaves typed Γ, A. The essential structure S is obtained
from R∗ by adding a �-node to it:
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...
Γ∗⊥ � RA

∗⊥

R∗

A
∗⊥ �R

We translate the R-bx node as a !-node with outgoing edges typed Γ∗⊥, !(A∗⊥ �R), and S is
the essential structure associated with it. This entails that we reverse the orientation of the
incoming edge of the R-bx node.

• We translate each ¬-dn node as the following graph:

⊗

ax

R

?d

R
⊥A∗

?(A∗ ⊗ R⊥)

A∗ ⊗ R⊥

thus we reverse the first outgoing edge, which becomes an incoming edge of the ⊗-node.

• We translate each cut edge as a cut-node with two incoming edges with sources the source
and the target of the original edge.

• We translate each axiom edge as an ax-node with two outgoing edges with targets the source
and the target of the original edge.

Since some edges are reversed and some are not, it may seem contradictory. We have to check
that the orientation of edges in the translation is properly defined. Edges with an orientation which
could be both reversed and preserved are:

• edges which have a ◦-up node or a ¬-dn node (first outgoing edge of the node) as source and
a *-dn node as target, and these are axiom edges, which are in fact translated as a pair of
edges having the same ax-node as source (thus no contradiction);

• edges which have a *-dn node or a ¬-dn node (second outgoing edge of the node) as source
and a *-up node as target, and these are cut edges, which are in fact translated as a pair of
edges having the same cut-node as target (thus no contradiction).

The obtained partial graph has no root, the only possibilities would be a leaf of the id-net which
has a ◦-up node as source or which is the first outgoing edge of a ¬-dn node, or a root of the id-net
which has a *-dn node as target, but all these edges are axiom edges and thus do not generate roots
in the obtained partial graph.

Concerning the leaves of the obtained partial graph: they correspond to the roots and leaves of
the id-net plus one leaf of type R for each ¬-dn node of the id-net. In particular, there is exactly
one leaf of output type.

Finally, let n be the target of the last edge of the maximal path obtained by starting from the
output leaf and by always going up through the second incoming edge of the reached node (it stops
when reaching a node with less than two incoming edges):
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⊗�
O

⊗

n

The node n is an ax-node or a !-node. Jumps are put from n to all the ?w-nodes of the essential
structure.

Example 4 (Peirce’s essential net)
The essential net corresponding to the id-net of Figure 3 is:

?w ?d

ax

ax

!

?c ⊗

!X

!X ⊗ !((?Y ⊥ � ?(!X ⊗ R⊥))�R)?X⊥

?X⊥

?X⊥

!((?Y ⊥ � ?(!X ⊗ R⊥))�R)

� ⊗

?Y ⊥

!X ⊗ R⊥

?(!X ⊗ R
⊥)

ax

R⊥
!X

�
R

(?Y ⊥ � ?(!X ⊗ R⊥))�R

?X⊥

?Y ⊥ � ?(!X ⊗ R⊥)

where the essential net associated with the !-node is represented above it in the dashed box.

Proposition 10 (Correctness)
The translation of an id-net is an essential net.

Proof: The key remark is that a trail of the essential structure R∗ associated with the id-net R is
exactly a path in the directed partial graph G obtained from R by adding edges corresponding
to jumps. All these jump edges are starting from the same node n, where n is obtained from
the root (or from the first output edge of the ¬-dn node) by always going to the second
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outgoing edge of the reached ◦-up node and by stopping when reaching a node which is not
a ◦-up node (or a leaf, and then n is the source of this leaf). Indeed the polarized orientation
on R∗ corresponds to the orientation of edges in R.

We work by induction on the depth of the id-net.

The set of trails is infinite if and only if at least one of them is cyclic. Jumps have no impact
on cycles in G. We immediately obtain the acyclicity of trails of R∗ from the acyclicity of R.

Nodes of the id-net without incoming edge are ¬-dn nodes and W-dn nodes. If R has a root
it is translated as the output leaf of R∗. If R has a ¬-dn node, all the nodes coming from
the translation of this node belong to trails. Next, the node n which is source of the jumps
belongs to a trail. From the fact that, in G, all the nodes without incoming edge (and the
unique node with a root as source if it exists) are reachable by a path corresponding to a
trail, we easily conclude that all the nodes are.

In R∗, there is no sink!

Finally, we consider an essential structure S associated with a !-node. Let S0 be the essential
structure obtained from S by removing the output �-node above the output leaf, S0 is the
translation of an id-net thus an essential net, by induction hypothesis. The trails of S are
obtained from the trails of S0 by prefixing all of them with the additional �-node. Since the
only sink in S is the source of the input incoming edge of the �-node, it is easy to check that
S is an essential net. �

It is easy to see that replacing each !-node with its associated essential net followed by appro-
priate unary !-nodes and ¡-nodes gives back the original syntax of essential nets in [Lam94].

To conclude, from the point of view developed in this section, Proposition 10 shows how the
correctness criterion of polarized proof-nets can be considered as a particular case of the correctness
criterion of essential nets.

5 Additional directions

We end this paper with the short presentation of how it would be possible to extend the work on
id-nets to the additive connectives and of how to go beyond propositional logic.

5.1 Nets with additive connectives

Following the work in [LTdF04], we define slices as id-nets built with four new basic kinds of nodes:
• �1-up: one incoming edge and one outgoing edge, the type of the incoming edge is A � B if A

is the type of the outgoing edge.

• �2-up: one incoming edge and one outgoing edge, the type of the incoming edge is A � B if B
is the type of the outgoing edge.

• �1-dn: one incoming edge and one outgoing edge, the type of the outgoing edge is A � B if A
is the type of the incoming edge.

• �2-dn: one incoming edge and one outgoing edge, the type of the outgoing edge is A � B if B
is the type of the incoming edge.
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A

�1-up

A � B

�2-dn

A � B

B

�1-dn

A � B

A

�2-up

A � B

B

Figure 7: Additive kinds of nodes (with active ports)

The graphical representations of these new basic kinds of nodes are given in Figure 7.
Types are extended with two new connectives:

A ::= . . . | A � A | J

An additive id-net is a set of slices with root and leaves with the same types satisfying two
specific properties:

• enough slices: mainly at least one slice for each boolean valuation with domain the set of
occurrences of � in the types of the leaves (but also taking into account the presence of J,
dependencies between occurrences and scopes of ¬), see [LTdF04, Lau02];

• not too many slices: no more than one slice for each valuation.
The disjunction of LJ0 is translated as � and ⊥ as J. The additive rules of LJ0 are translated

in the following way:
• If R is the translation of a proof π of Γ ⊢ A, the proof obtained from π by adding the first

right disjunction rule is translated by adding a �1-up node to each element of R with outgoing
edge the root (corresponding to A).

• If R is the translation of a proof π of Γ ⊢ B, the proof obtained from π by adding the second
right disjunction rule is translated by adding a �2-up node to each element of R with outgoing
edge the root (corresponding to B).

• If R1 is the translation of a proof π1 of Γ, A ⊢ Π and R2 is the translation of a proof π2 of
Γ, B ⊢ Π, the proof obtained from π1 and π2 by adding a left disjunction rule is translated
as the additive id-net obtained by adding a �1-dn node to each element of R1 with incoming
edge the leaf of type A and by adding the a �2-dn node to each element of R2 with incoming
edge the leaf of type B, and by finally taking the union of the two obtained sets of slices.

• A left ⊥ rule is translated as the empty set of slices.
We work in a dual way with LD0 (∧ translated as � and ⊤ as J):
• The first left conjunction rule is translated by using �1-up nodes.

• The second left conjunction rule is translated by using �2-up nodes.

• The right conjunction rule is translated by using �1-dn and �2-dn nodes, and by taking the
union of the two sets of slices.

• A right ⊤ rule is translated as the empty set of slices.
This approach allows us to define id-nets for the cut-free sub-systems of the reversed restrictions

LJ
ρ
0

and LD
ρ
0

(see Section 3.3) with expanded axioms. The appropriate way of re-introducing cuts
is to start from two cut-free id-nets, to add a cut between them and to apply the required cut
elimination steps until reaching a cut-free id-net. It is not guaranteed that intermediate steps are
valid nets. However this describes a big-step cut elimination procedure for id-nets with additive
connectives (see [LTdF04] for more details).
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5.2 Quantifiers

We have only worked with propositional systems, but there is no particular problem in adding (first
or second order) quantifiers. We just have to do it properly, as for implication and difference (see
Section 3.1).

We extend the rules of LJ0 with:

Γ,¬A ⊢
∀R

Γ ⊢ ∀α.A

α /∈ Γ

Γ, A[Φ/α] ⊢
∀L

Γ,∀α.A ⊢

Γ ⊢ A[Φ/α]
∃R

Γ ⊢ ∃α.A

Γ, A ⊢ Π
∃L

Γ,∃α.A ⊢ Π

α /∈ Γ,Π

While the rules for ∃ are the natural ones, the rules for ∀ correspond to the encoding ∀α.A ≡ ¬∃α¬A.
We extend the rules of LD0 with:

Π ⊢ Γ, A
∀R

Π ⊢ Γ,∀α.A

α /∈ Γ,Π

A[Φ/α] ⊢ Γ
∀L

∀α.A ⊢ Γ

⊢ Γ, A[Φ/α]
∃R

⊢ Γ,∃α.A

⊢ ¬A,Γ
∃L

∃α.A ⊢ Γ

α /∈ Γ

The rules for ∃ correspond to ∃α.A ≡ ¬∀α¬A.
The rules for the universal quantifier in LKQ are given in [DJS95]. We add the rules for the

existential quantifier.

Γ ⊢ ∆, A ;
∀R

Γ ⊢ ∆ ; ∀α.A

α /∈ Γ,∆

Γ, A[Φ/α] ⊢ ∆ ;
∀L

Γ,∀α.A ⊢ ∆ ;

Γ ⊢ ∆ ; A[Φ/α]
∃R

Γ ⊢ ∆ ; ∃α.A

Γ, A ⊢ ∆ ; Π
∃L

Γ,∃α.A ⊢ ∆ ; Π

α /∈ Γ,∆,Π

The same for LKT:

Π ; Γ ⊢ ∆, A
∀R

Π ; Γ ⊢ ∆,∀α.A

α /∈ Γ,∆,Π

A[Φ/α] ; Γ ⊢ ∆
∀L

∀α.A ; Γ ⊢ ∆

; Γ ⊢ ∆, A[Φ/α]
∃R

; Γ ⊢ ∆,∃α.A

; Γ, A ⊢ ∆
∃L

∃α.A ; Γ ⊢ ∆

α /∈ Γ,∆

It is also possible to extend id-nets with quantifiers by following the method of [Gir91b, Lau02].

Acknowledgements

I would like to thank Pierre-Louis Curien for his helpful comments on this work.

References

[CH00] Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In Proceedings

of the International Conference on Functional Programming, volume 35(9) of ACM

SIGPLAN Notices, pages 233–243. Association for Computing Machinery, ACM Press,
September 2000.

[Cro01] Tristan Crolard. Subtractive logic. Theoretical Computer Science, 254(1–2):151–185,
March 2001.

[Cze77] Johannes Czermak. A remark on Gentzen’s calculus of sequents. Notre Dame Journal

of Formal Logic, 18(3):471–474, July 1977.

26



[DJS95] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. LKQ and LKT: Sequent
calculi for second order logic based upon dual linear decompositions of classical impli-
cation. In Jean-Yves Girard, Yves Lafont, and Laurent Regnier, editors, Advances in

Linear Logic, volume 222 of London Mathematical Society Lecture Note Series, pages
211–224. Cambridge University Press, 1995.

[DJS97] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. A new deconstructive
logic: linear logic. Journal of Symbolic Logic, 62(3):755–807, September 1997.

[Fil89] Andrzej Filinski. Declarative continuations and categorical duality. Master’s thesis,
computer science department, University of Copenhagen, August 1989. DIKU Report
89/11.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[Gir91a] Jean-Yves Girard. A new constructive logic: classical logic. Mathematical Structures

in Computer Science, 1(3):255–296, 1991.

[Gir91b] Jean-Yves Girard. Quantifiers in linear logic II. In Corsi and Sambin, editors, Nuovi

problemi della logica e della filosofia della scienza, pages 79–90, Bologna, 1991. CLUEB.

[Gir99] Jean-Yves Girard, editor. Typed Lambda Calculi and Applications ’99, volume 1581 of
Lecture Notes in Computer Science. Springer, April 1999.

[Gli29] Valerii Glivenko. Sur quelques points de la logique de M. Brouwer. Bulletins de la
classe des sciences, Académie Royale de Belgique, 1929.

[Gri90] Timothy Griffin. A formulae-as-types notion of control. In Proceedings of the 1990

Principles of Programming Languages Conference [IEE90], pages 47–58.

[HS02] Martin Hofmann and Thomas Streicher. Completeness of continuation models for
lambda-mu-calculus. Information and Computation, 179(2):332–355, December 2002.

[IEE90] IEEE. Proceedings of the 1990 Principles of Programming Languages Conference. IEEE
Computer Society Press, 1990.

[Laf90] Yves Lafont. Interaction nets. In Proceedings of the 1990 Principles of Programming

Languages Conference [IEE90], pages 95–108.

[Lam94] François Lamarche. Proof nets for intuitionistic linear logic I: Essential nets. Prelimi-
nary report, April 1994.

[Lau99] Olivier Laurent. Polarized proof-nets: proof-nets for LC (extended abstract). In Girard
[Gir99], pages 213–227.

[Lau02] Olivier Laurent. Étude de la polarisation en logique. Thèse de doctorat, Université
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