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Abstract. We define a notion of polarization in linear logic (LL) com-
ing from the polarities of Jean-Yves Girard’s classical sequent calculus
LC [4]. This allows us to define a translation between the two systems.
Then we study the application of this polarization constraint to proof-
nets for full linear logic described in [7]. This yields an important simpli-
fication of the correctness criterion for polarized proof-nets. In this way
we obtain a system of proof-nets for LC.

The study of cut-elimination takes an important place in proof-theory. Much
work is spent to deal with commutation of rules for cut-elimination in sequent
calculi. The introduction of proof-nets (see [7] for instance) solves commutation
problems and allows us to define a clear notion of reduction and complexity.

In [4], Jean-Yves Girard defines the sequent calculus LC using polarities. LC
is a refinement of LK with a deterministic cut-elimination. J.-Y. Girard leaves
open the following problem about the syntax:

“Find a better syntaz (which would be to L C what typed A-calculus is to LJ)
Jor normalization [...]. A kind of proof-nets could be the solution, and the fact
that proof-nets are not available for full linear logic could be compensated by the
fact that only certain linear configurations are used.”

In this paper we address this problem but the situation is now slightly dif-
ferent since proof-nets for full linear logic are given in [7]. In these proof-nets,
the boxes for additives are replaced by weights on the nodes giving less sequen-
tialization information. To use these proof-nets, we will first define a translation
from LC to the fragment LLP of LL defined by restricting to polarized formu-
las. The “particular linear configurations” of LC correspond to the polarization
of LLP.

We then turn to the study of proof-structures for LLP and show that the
restriction to polarized formulas induces a natural orientation, the orientation
of polarization, which 1s respected by the paths of LL’s correctness condition
(Orientation Lemma). This yields a striking simplification of the correctness
condition which allows us to get rid of the notion of switches. In particular it
turns out to be cubic in the size of polarized proof-nets whereas the LL condition
is immediately seen to be exponential.



1 Classical Logic: LC

Gentzen’s classical sequent calculus LK has well known problems, such as the
lack of a denotational semantics and the non determinism of cut-elimination.
J.-Y. Girard proposed in [4] the calculus LC as a refinement of LK to solve
these defects. The key point 1s the introduction of polarities for formulas. Let us
just remind the syntax.

1.1 Formulas and Polarity

The formulas of LC are built from the atomic formulas and the constants V'
and F' by using the connectives A, V, =, 3 and V. For each formula, we define its
polarity: atomic formulas, V' and F' are positive; as for the compound formulas
we use the following table:
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In the sequel, P and ) will stand for positive formulas and N and M for
negative ones.

1.2 Rules of the Sequent Calculus LC

To limit the number of rules, we will use one-sided sequents. The formulas will be
defined modulo the De Morgan’s laws. The sequents for LC are written & I'; IT
where I' (the body) is a multi-set of formulas and IT (the stoup) is either empty
or a unique positive formula.

Then the sequent calculus is defined by the following rules:
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2 Linear Logic with Polarities

We can give a translation from LC to LL using the definition of the denotational
semantics described in [4]. More precisely, we will define a polarized fragment
of LL and we will show in which way it corresponds to LC. We start with the
definition of two polarized fragments of LL.

The first notion of polarization for LL splits the connectives into reversible
and non reversible ones.

Definition 1 (Polarized formula). We define in the same time the positive
(denoted by P, Q) and negative (denoted by M, N) formulas, starting from a set
of atoms (denoted by A, B):

Pu=1A | PoP|P&P |3xP|1]0]|IN
Nu=?AL [NB®N|N&N|VaN | L|T|?P

A polarized formula is either a positive one or a negative one.

The second notion of polarization is more precise and corresponds to LC’s
polarities. It will be used for studying translations between LC and LL.

Definition 2 (Strictly polarized formula). We define in the same time the
strictly positive (denoted by P, Q) and strictly negative (denoted by M, N)
formulas, starting from a set of atoms (denoted by A, B):

Pu=1A | PP |POWN|NQP| PP |FP |F2!N|1]0
Ni=?AT | NN | NRIP|PIN | N&EN |VeN [Ve?P | L| T

A strictly polarized formula is P, N, 7P or \N.

Definition 3 (LLP and LLP¢). The fragment LLP (resp. LLP.) of LL is
obtained by restricting to polarized (resp. strictly polarized) formulas and by
adding the constraint that the T-rule must introduce at most one positive for-
mula.

LLPc is a fragment of LLP (strictly polarized formulas are polarized) so
all the results we will prove on LLP (about proof-nets,...) will be also true for
LLP..

The constraint on the T-rule is needed in particular for the next proposition.

Proposition 1. If & I' is provable in LLP then I' has at most one positive
formula.

3 Translations between LC and LLP¢

We now prove the similarity of the two systems by defining two translations
between L C and LL. More precisely these translations show that LC and LLP¢
are almost isomorphic.



Definition 4. LC™" is the fragment of L C which refuses:

— structural rules on negative non atomic formulas;

— negative non atomic formulas in the context of the negative premise of:
e negative cut-rule,
o ®-rule between a negative and a positive formula,
e d-rule on a negative formula.

Every proof of LC can be transformed into a proof of LC™" by commuting
some reversible rules with structural ones so we have no loss of provability in
LC™Y. A study of these commutations of reversible rules has been done in a

similar case by M. Quatrini and L. Tortora de Falco in [9] for translation of
LKg;ﬁ into LL.

3.1 LC* — LLP¢

Definition 5. The translation G — G* from LC™ into LLP. is defined on
formulas by:

A = 1A (=P) = pet
Ve = 1 re = 0
(PAQ)* = P*©Q* (N AM)* = N* & M*
(PAN)* = P* @ IN® (N AP)* =IN*@ P*
(JxP)* = JxP* (FeN)* = FJzIN°®

Given a sequent of LC, we can split the body into two parts: positive for-
mulas and negative formulas, - I'; [T = = '™, I'T: II. Then we can define the
translation on sequents: (- I'=, 't I1)* =+ ['=* 2(I'+)* 1I°.

The translation of proofs s defined rule by rule by introducing promotion
rules on the negative premise before negatiwe cut, before N between a positive
and a negative formula and before 3 for a negative formula. For example here is
the case of the negative cut:

FI—, T, N; F=aN A" AT T
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Remark 1. An empty stoup corresponds to a 71" context in LL, i.e. to a correct
context for promotion.

LC accepts structural rules on non atomic negative formulas which are not
translated by 7G formulas in LL. A solution is to add the constraints of LC"™V
to LC as we have done, but another one is to introduce cuts for the translation
of these rules. This has been done with linear isomorphisms in Danos-Joinet-

Schellinx [1].



3.2 LLP¢ — LC*V

Definition 6. The translation G — G* from LLP: into LC™" is defined on
strictly polarized formulas by:

(14 = A (V) = N~
1* = V 0* = r
PoQ) =P AQ" Po Q) =P VO
(P @IN)* = P* AN™ (IN @ P)* = N'* A P*
(FzP)* = FaP* (FzN)* = FaN*
(PJ')* — —(P*

By Proposition 1, a sequent = I' of LLP¢ can be written = I'', IT where II
is the unique strictly positive formula of I' (if it exists). Then the translation is
given on sequents by: (= I, I1)* =+ '™ IT*.

There 1s no problem for the translation of proofs, we just have to precise the
translation of the promotion rule:

T *

™
R
Feraw) P

Remark 2. This particular translation corresponds to the fact that a promotion
is always followed by another rule: a cut-rule, a ®-rule or a 3-rule. So promotion
rules can be erased by the translation.

The translations (.)* and (.)* are almost inverse of each other, more precisely:

— If G is a formula of LC™ G** = G.

If P is a strictly positive formula of LLP¢, P** = P and (?P)** = P.

— If AV is a strictly negative formula of LLP¢, N** = A and (INV)** = V.
For the sequents: (- I'; I1)*" =+ I'; 1T and (F I')** =+ T

— If 7 is a proof in LC*Y, n*" = 7.

However the converse is wrong for proofs: 7** # 7 because LLP¢ is more
flexible about the position of promotions. In the following example, the first
LL proof puts weakening in between the promotion and its associated F-rule
whereas the third one, being translated from LC, has glued the promotion with
the 3-rule.

F 1A, 74L F 1A, 74L
F 74, 744 Co4A F A 745
714, 1741 : oA A+ F7BY 714240
; AN F A, A; AN , 1A,
F 7B, 714, 1744 F—B,—A, A; F 7Bt 714,174

F 2B 1A, Jel7 AL F =B, A; Je—A F 2B 1A, Jel7 AL



4 Proof-Nets

Proof-nets have been introduced in [3] for the multiplicative case and then ex-
tended in [5] and [7] to full linear logic.

4.1 Proof-Structure
The following definitions come from [7] with just some modifications.

Definition 7 (Weight). Given a set of elementary weights, i.e. boolean vari-
ables, (denoted by p, q,...), a weight is a product (conjunction) of elementary
weights p and of negations of elementary weights p.

As a convention, we use 1 for the empty product and 0 for a product where
p and p appear. We also replace p.p by p. With this convention we say that the
weight w depends on p when p or p appears in w.

A proof-structure is an oriented graph with pending edges, for which each
edge is associated with an LL formula, constructed on the following set of nodes
respecting the following typing constraints. The orientation is from top to bot-
tom.

o et W Y Y 6 6 Y

A®B AZ®B A&B A@®B A@B

Rty e e
@ @ Ay Ay

To avoid confusion with the other orientation that we will introduce later,
this orientation will be called the geographic orientation and we will refer to it
by the terms: top, bottom, above, bellow, to go up, to go down, premise of a node
(edge just above the node), conclusion of a node (edge just bellow the node),. ..

A unary node is a node with only one premise and a binary node 1s a node
with two premises. The C-nodes must have at least two premises.

In such a graph:

— we associate an elementary weight to each &-node called its eigen weight;

— the variable used in the quantification of a V-node is called its eigen variable;

— we associate a non empty set of nodes (different from cut) to each L-node
and 7w-node. These are called the jumps of the node.

Eigen weights and eigen variables are supposed to be different.

We associate a weight to each node with the constraint that if two nodes
have a common edge, they must have the same weight except if the edge 1s a
premise of a &-node or of a C-node (additive contraction). In these particular
cases the weight changes:



— if w is the weight of a &-node and p is its eigen weight then w does not
depend on p and its premise nodes must have weights w.p and w.p;

— if w 1s the weight of a C-node and wy, ..., w, are the weights of its premise
nodes then we must have w = wy + ...+ w, and wyw; = 0,Vi £ j.

Then we can define the following notions:

— A node L with weight w is said to depend on p if w depends on p or if L is
a C-node and one of the weights just above it depends on p.

— A node L is said to depend on an eigen variable z if x is free in the formula
assoclated to the conclusion of L or if L is a 3;-node and z 1s free in ¢.

A proof-structure must also satisfy the following properties:

— a conclusion node (i.e. a node with pending edge) has weight 1;

— eigen variables are not free in the formulas associated to pending edges;

— if w is the weight of a &-node with eigen weight p and w’ is a weight de-
pending on p and appearing in the proof-structure then w’ < w;

— if w is the weight of a V-node with eigen variable z and w’ is the weight of
a node depending on x then v’ < w;

— if w is the weight of a 1-node or of a ?7w-node and w’ is the weight of one of
its jumps then w < w’.

With this definition we have a notion of proof-structures for full linear logic.
Now to make it clear, let us look at the example of a proof-structure for A B —o

A® B:

4.2 Sequentialization and Correctness

An important point in the study of proof-nets is the problem of correctness
criterions that is the problem to know whether a proof-structure is a proof.
More technically, can you inductively deconstruct a proof-structure?

There exist different correctness criterions for multiplicative proof-structures
like [3] or [2] which lead to the criterion of [7] for the full case. We present here
this general criterion.

Definition 8 (Sequentialization of a proof-structure). The relation “L
sequentializes R into £ is defined for each possible L. R is a proof-structure, £
15 a set of proof-structures and L s a conclusion node of R or a cut.

— ax, !, 1, T:if L is the only node of R then L sequentializes R into 0;



— cut, ®: if it 1s possible to split the graph obtained by erasing L into two
proof-structures R1 and Ry then L sequentializes R into {R1,Ra};

— X, By, Po, 7d, Tc, Tw, ¥, I, L: if when we erase L in R, we obtain a
proof-structure Rq then L sequentializes R into {Ro};

— &: let p be the eigen weight of L. The graph Rq (resp. R1) is obtained by

giving to p the value 0 (resp. 1) and just keeping nodes with non zero weights

and identifying the unary C-nodes to the node just above. If Ry (resp. R1)

is a proof-structure then L sequentializes R into {Ro, R1};

C: a C-node never sequentializes a proof-structure.

Definition 9 (Sequentializable proof-structure). A proof-structure R is
said to be sequentializable «f one of its nodes sequentializes R into a set of
sequentializable proof-structures or into the empty set.

Definition 10 (Valuation). A valuation ¢ for a proof-structure R is a func-
tion from the set of the eigen weights of R into {0,1}. Such a valuation can
easily be seen as a function defined on the set of all the weights of R.

Definition 11 (Slice). Given a valuation ¢ of a proof-structure R, the slice
©(R) is the proof-structure obtained from R by keeping only the nodes with
weights w such that o(w) = 1 and the edges bellow a kept node and by identifying
the unary C-nodes with the upper node. A slice s not really a proof-structure
according to definition of the Sect. 4.1 because unary &-nodes appear.

Definition 12 (Switch). Given a valuation ¢ of a proof-structure R, a switch
S of R s defined as a non oriented graph constructed with the nodes and the
edges of p(R) with the modifications:

— for each B- or Tec-node, we keep only one premise;

— for each &-node L, we erase the premise appearing in ¢(R) and we add an
edge, called dependency edge, from a node depending on L to L (this may
change nothing);

— for each ¥Y-node L, we erase the premise and we add an edge, called de-
pendency edge, from a node depending on its eigen variable to L (this may
change nothing);

— for each Tw- or L-node L, we add an edge, called jamp edge, from a jump
of L to L.

Definition 13 (Proof-net). A proof-structure is a proof-net if all its switches
are acyclic and connected.

Theorem 1 (Sequentialization — J.-Y. Girard in [7]). A proof-structure is
sequentializable iff it 1s a proof-net.

5 Polarized Proof-Nets

Now we restrict proof-nets to the polarized case. This strong constraint will allow
us to define a new and simpler correctness criterion.



Definition 14 (Polarized proof-structure). A polarized proof-structure is
a proof-structure made only of polarized formulas and with the constraint that
at most one of the formulas associated to the conclusions of a T-node can be
postlive.

In other words, a polarized proof-structure is a proof-structure typed by
LLP. As LLP¢ is a fragment of LLP, all the following results will give a notion
of proof-nets for LC through the translations in Sect. 3.

Definition 15 (Edges). We give here some new lerminology on edges in a
polarized proof-structure:

— a positive (resp. negative) edge is an edge with a positive (resp. negative)
formula;

— a principal edge in a switch s an edge already appearing in the proof-
structure; a switching edge s either a dependency edge or a jump edge. For
switching edges, we extend the polarization and the geographic orientation
by considering them negative and oriented towards the corresponding &-, V-,
Tw- or L-node.

In the sequel, we will distinguish between two C-nodes: the Ct-node with
positive premises and conclusion and the C™ -node with negative ones.

Definition 16 (Positive and negative nodes). A positive node is a node
with positive edges, that is ®, ®, CT, 3 and 1, and a negative node is a node
with negative edges, that is ¥, &, C~, 7¢, Tw, ¥ and L.

5.1 Towards Specific Criterions

The key point for the simplification of the correctness criterion in the case of
polarized proof-nets is the existence of a specific orientation in these proof-nets
as shown in Lemma 2. The use of this orientation allows us to forget the notion
of switch and then also the notion of slice.

The idea of orientation linked to polarization in proof-nets has already been
used. For example Frangois Lamarche proposed in [8] a criterion for proof-nets
for intuitionistic linear logic with Danos-Regnier polarities.

We define a new orientation on proof-structures, the orientation of polariza-
tion (or p-orientation): positive edges are oriented upwardly and negative edges
downwardly. We will talk about this orientation using the terms: to arriwe to, to
come from, incident edge, emergent edge,. . .

Lemma 1. In a switch of a polarized proof-structure, a node has at most one
wmnctdent edge. Positive and negative nodes have exactly one incident edge.

Proof. We study each node:

— the only nodes with incident switching edges are &, ¥, 7w and L and by the
definition of a switch these nodes have exactly one incident edge in a switch
(either a premise or a switching edge);



— %@~ and 7c-nodes have just one premise in a switch so just one incident edge;
— positive nodes, ax, cut and ! have only principal edges in a switch and the
only incident one is their positive conclusion (negative premise for cut);

— ?d-nodes have only emergent edges;

— T-nodes with a positive conclusion are like ! and those with only negative
conclusions have no incident edges;

— there are no C-nodes in a switch. a

Lemma 2 (Orientation lemma). A non bouncing path in a switch of a po-
larized proof-structure starting accordingly to the p-orientation always respects
this orientation.

Proof. We prove the result by induction on the length of the path, the case of
length 0 being given by the starting hypothesis. Now when the path arrives to
a new node, this is only possible through the incident edge so when the path
continues it must be by another edge, thus an emergent one (by Lemma 1) since
it does not bounce. a

Lemma 3. A non oriented cycle in a switch of a polarized proof-structure s
p-oriented.

Definition 17 (Correction graph). The correction graph of a proof-structure
R is the oriented graph obtained by putting on R the p-orientation and by adding
some new edges:

— from each node depending on an eigen weight to the corresponding &-node;
— from each node depending on an eigen variable to the corresponding Y-node;
— from the jumps to the nodes they are associated to.

Lemma 4. If there is a (non oriented) cycle in a switch of a proof-structure
then there 1s a p-oriented cycle in its correction graph.

Definition 18 (Initial and final nodes). In a correction graph, a node is
initial (resp. final) if all the edges starting from (resp. arriving to) it are pending
edges.

Remark 3. A final node is a conclusion node so its weight is always 1. A 7d-node
1s always initial.

5.2 Weak Criterion

We give here our first criterion for polarized proof-nets, which is simpler than
the general one but equivalent. To obtain this result we still need to use the
notion of slices.

Definition 19 (Slice of a correction graph). A slice of a correction graph
G 1s the sub-graph of G made only of the nodes and the edges of a slice of the
proof-structure (in other terms it is the correction graph of the slice).



Theorem 2 (Correctness criterion). A polarized proof-structure has all its
switches acyclic and connected iff all the slices of its correction graph are acyclic
(with orientation), contain exactly one initial node and all the nodes of the slice
are p-accessible from the initial one (in this case we say that the correction graph
is weakly correct ).

Proof. By Theorem 1, a proof-structure with all its switches acyclic and con-
nected 1s sequentializable and by an easy induction, a sequentializable polarized
proof-structure has a weakly correct correction graph. Conversely if the correc-
tion graph is weakly correct, switches cannot contain any cycle by Lemma 4.

To finish, we can prove by induction on the sum X' of the lengths of all the
paths from the initial node 7 of the slice to a fixed node s that in all the switches
of this slice there is a path between ¢ and s.

— If ¥ =0 then s = ¢.

— If ¥ = n+1, s is not an initial node in the slice. We choose a switch §,
there exist a node s’ and an edge a from s’ to s such that a appears in 8
(by definition of a switch we always keep such an edge). Then by induction
hypothesis on s’, there is a path in § between 7 and s’ which can be extended
with a into a path between ¢ and s. a

We can apply to our polarized proof-structures all the results of the general
case given in [7] about sequentialization, cut-elimination,.. .

5.3 Strong Criterion

Following the same direction we obtain a second and most important criterion
which allows us to forget also slices.

Definition 20 (Strong correctness criterion). The correction graph of a
polarized proof-structure is strongly correct if it is acyclic and if for all pair of
dustinet inatial nodes with weights w; and w;: w;.w; = 0.

Theorem 3 (Strong criterion and weak criterion). 4 strongly correct cor-
rection graph is weakly correct.

Proof. No problem for acyclicity because a slice of a correction graph has less
edges than the correction graph itself. Then by acyclicity of the slices we have
at least one initial node in each slice. But also at most one because taking a slice
does not create any initial node (a negative node is never initial and the other
ones cannot lose the node under their conclusion) so the condition on initial
nodes of the correction graph is sufficient.

For accessibility of nodes, we prove by induction on the sum X of the lengths
of all the paths from an initial node to a fixed node s that s is p-accessible by
the initial node in each slice where it appears:

— if X = 0 then s is initial;



— if X = n+ 1 then in a slice where s appears either it is initial and there 1s no
problem or there is another node s with an edge from s’ to s. By induction
hypothesis s’ is accessible from the initial node in every slice where it appears.
Thus in the slice we are looking at, s’ is accessible and also s by adding the
edge to a path arriving to s’. a

The converse is wrong, some proof-structures are weakly correct but rejected
by the strong criterion because some cycles may come from the interactions
between different slices. However we keep enough proof-structures to have proof-
nets for all proofs of sequent calculus and the strong criterion is preserved by
cut-elimination. We will see this in the Sects. 5.5 and 5.6.

5.4 Sequentialization

We will now give a proof of sequentializability of strongly correct proof-nets
different from the one consisting in using the proof for the general criterion by
Theorems 3, 2 and then 1.

Definition 21 (Positive tree). 4 positive tree of a correction graph is a non
empty connected set of positive nodes and positive edges mazximal for inclusion.

A positive tree A is terminal when for each positive edge a of the correction
graph if there is a path from A to a then a is in A.

Theorem 4 (Sequentialization). A polarized proof-net is sequentializable.

Proof. The first point is to sequentialize by all negative final nodes. We prove
that if a -, &-, 7c-, Tw-, L- or ¥-node is final then it sequentializes the proof-
net. We remark that ®-, @;, 3-, Ct-, C~-, 7d- and cut-nodes are never final. So
we have to sequentialize a proof-net with only ax, !, T and 1-nodes as final ones.

Lemma 5. If the only final nodes of a polarized proof-net are ax, !, T and 1
then from each non final node there exists a path to a terminal positive tree.

Definition 22 (Cut positive tree). 4 positive tree is said to be cut if it has
a cut-node hereditary above it.

Proof (Theorem 4 — continued). Given a proof-net with only ax, !, T and 1-nodes
as final ones, by Lemma 5 it contains a terminal positive tree. If there is no nodes
under this tree, it can be sequentialized. Otherwise this is a cut positive tree and
we show by terminality of the tree that the cut-node under it sequentializes the
proof-net. a

Proposition 2. The criterion given by Theorem | has a cubic complexity in the
size of the proof-net (i.e. the number of its nodes).



5.5 Translation from Sequent Calculus

To show that the strong criterion keep enough proof-structures we have to define
a translation from LLP to polarized proof-structures and to prove the correct-
ness of the proof-structures built in this way.

When we talked about sequentialization we used proof-structures with !-
nodes just seen as generalized axioms but to talk about the translation of proofs
and about cut-elimination, we need to refine our definition of proof-structure.

Definition 23 (Proof-structure and proof-net with boxes). We define a
proof-structure with boxes by induction, it is:

— either a proof-structure with no !-nodes,
— or a proof-structure together with a proof-structure with boxes of conclusions
A, 7By, ...,7B, associated to each !-node of conclusions 'A,7Bq,...,7B,.

We can define in the same way proof-nets with boxes from proof-nets.

In the sequel we will use the term proof-structure (resp. proof-net) instead
of proof-structure (resp. proof-net) with boxes.

Definition 24 (Translation of proofs). We define the translation from LLP
to polarized proof-structures by induction on the size of the proof:

— &: by induction we obtain two polarized proof-structures Ry and Ro from
the two proofs of the premises of the &-rule. We choose a new elementary
weight p and multiply all the weights of R1 by p and all the weights of Ro
by p. Then we add a &-node (with eigen weight p) between the two pending
edges corresponding to the formulas used by the & and a C-node for each
pair of formulas of the context coming from R1 and Rz;

— !: the new proof-structure is just a single !-node introducing the conclusions
1A 7By,...,7B, of the rule and the proof-structure associated to it is the
one obtained at the previous step with conclusions A,7B1,...,7By;

— ?w: we just add a Tw-node to the proof-structure R of the previous step with
a set of jumps constituted of all the conclusion nodes of R ;

— 1: same as Tw;

no problem for the other rules.

Theorem 5. The previous translation is in fact from LLP to polarized proof-
nets.

5.6 Cut Elimination

Definition 25 (Reduction step). The different cut-elimination steps are the
following ones:

— Axiom cut: we erase the ax- and cut-nodes and replace them by an edge, the
Jumps coming from the ax-node are moved to the other node above the cut.



— Multiplicative cut: we erase the ¥ and the ®, the cut is duplicated between
the two pairs of premises. All the jumps are duplicated and moved up.

— Additive cut: if the ®-node is a ®1-node (resp. ®z-node) we erase in the
proof-structure all the nodes with null weights when p =1 (resp. p=10) and
the cut moves up as the jumps.

w.p w.p w

— Dereliction cut: the box is opened and the cut moves up as the jumps.

— Contraction cut: the !-node is duplicated and also the cut to be put between
each premise of the Tc and a box. New 7c-nodes are put between the pairs of
conclusions of the !. Jumps from the | and from the 7c¢ are duplicated.

— Weakening cut: we just erase the boxr and put new Tw-nodes above its con-
clusions. The jumps of these new nodes are the jumps of the cut one.

— Commutative exponential cut: the box with the cut -node comes into the
other one and the other !-node is extended with the conclusions of the first
one. All the jumps coming from the two !-nodes are put on the second one.

— Quantifier cut: we erase the two nodes ¥V and 3;, the cut goes up as the jumps.
In all the proof-structure we make the substitution of x by t.

/2]
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— Multiplicative constant cut: we erase the three nodes: 1, 1 and cut. The
gumps starting from them are duplicated and moved to the jumps of L.

The cases of a cut with a T- or a C-node are still to be studied. A solution
for the additive contraction is proposed in [7] but is not uniform with the other
reduction steps. However with the restriction on the steps defined above, we have
the same result as in [7]:

Theorem 6. A proof-net without T-node and without &-connectives in the for-
mulas assoctated to its pending edges, which cannot be reduce by any step de-
seribed above, is in normal form (i.e. without cut-node).

This has been already proved by J.-Y. Girard for the multiplicative-additive
case but we give here a really different proof using the p-orientation.



Proof. If the proof-net contains no &-nodes, all the weights are 1 and there are
no problems. Otherwise let . be a terminal &-node, that is with no paths to
another &-node. By the hypothesis, there must be a cut-node (hereditary) under
L. Then this cut-node can be reduced by terminality of L. a

Theorem 7 (Cut-elimination). Strong correciness is preserved by the cul-
elimination procedure.

Proof. The steps are well defined in a proof-net (z is not free in N1[t/,] for the
quantifier step by acyclicity). Then each step preserves the strong criterion. O

Conclusion

The polarization constraint, coming from L C, gives a system of proof-nets with a
correctness criterion which is really simpler than the one in the general case [7].
Through the translation between LC and LLP, this gives proof-nets for the
sequent calculus LC, solving our starting problem.

The last section of this paper is devoted to cut-elimination where the problem
of commutative additive contraction appears. A full solution has still to be found.

Much work is now possible such as an extension of our approach to second
order quantifiers; the study of a geometry of interaction or of a game seman-
tics for such proof-nets, the continuation of this work towards the intuitionistic
polarities as defined in [6],...
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