
Polarized Proof-Nets: Proof-Nets for LC(Extended Abstract)Olivier LaurentInstitut de Math�ematiques de LuminyCNRS-Marseille, Franceolaurent@iml.univ-mrs.frAbstract. We de�ne a notion of polarization in linear logic (LL) com-ing from the polarities of Jean-Yves Girard's classical sequent calculusLC [4]. This allows us to de�ne a translation between the two systems.Then we study the application of this polarization constraint to proof-nets for full linear logic described in [7]. This yields an important simpli-�cation of the correctness criterion for polarized proof-nets. In this waywe obtain a system of proof-nets for LC.The study of cut-elimination takes an important place in proof-theory. Muchwork is spent to deal with commutation of rules for cut-elimination in sequentcalculi. The introduction of proof-nets (see [7] for instance) solves commutationproblems and allows us to de�ne a clear notion of reduction and complexity.In [4], Jean-Yves Girard de�nes the sequent calculus LC using polarities. LCis a re�nement of LK with a deterministic cut-elimination. J.-Y. Girard leavesopen the following problem about the syntax:\Find a better syntax (which would be to LC what typed �-calculus is to LJ)for normalization [. . . ]. A kind of proof-nets could be the solution, and the factthat proof-nets are not available for full linear logic could be compensated by thefact that only certain linear con�gurations are used."In this paper we address this problem but the situation is now slightly dif-ferent since proof-nets for full linear logic are given in [7]. In these proof-nets,the boxes for additives are replaced by weights on the nodes giving less sequen-tialization information. To use these proof-nets, we will �rst de�ne a translationfrom LC to the fragment LLP of LL de�ned by restricting to polarized formu-las. The \particular linear con�gurations" of LC correspond to the polarizationof LLP.We then turn to the study of proof-structures for LLP and show that therestriction to polarized formulas induces a natural orientation, the orientationof polarization, which is respected by the paths of LL's correctness condition(Orientation Lemma). This yields a striking simpli�cation of the correctnesscondition which allows us to get rid of the notion of switches. In particular itturns out to be cubic in the size of polarized proof-nets whereas the LL conditionis immediately seen to be exponential.



1 Classical Logic: LCGentzen's classical sequent calculus LK has well known problems, such as thelack of a denotational semantics and the non determinism of cut-elimination.J.-Y. Girard proposed in [4] the calculus LC as a re�nement of LK to solvethese defects. The key point is the introduction of polarities for formulas. Let usjust remind the syntax.1.1 Formulas and PolarityThe formulas of LC are built from the atomic formulas and the constants Vand F by using the connectives ^, _, :, 9 and 8. For each formula, we de�ne itspolarity : atomic formulas, V and F are positive; as for the compound formulaswe use the following table:A B A ^B A _B :A 9xA 8xA+ + + + � + �� + + � + + �+ � + �� � � �In the sequel, P and Q will stand for positive formulas and N and M fornegative ones.1.2 Rules of the Sequent Calculus LCTo limit the number of rules, we will use one-sided sequents. The formulas will bede�ned modulo the De Morgan's laws. The sequents for LC are written ` � ;�where � (the body) is a multi-set of formulas and � (the stoup) is either emptyor a unique positive formula.Then the sequent calculus is de�ned by the following rules:` :P ;P ` � ;P ` :P;�;�` �;�;� ` �;N ; ` :N;�;�` �;�;�` � ;P` �; P ; ` � ;�` �;A;� ` �;A;A;�` �;A;�`;V ` �;:F ;�` � ;P ` �;Q` �;�;P ^Q ` � ;P ` �;N ;` �;�;P ^N ` �;M ; ` �;Q` �;�;M ^Q` �;M ;� ` �;N ;�` �;M ^N ;�` �;A;B;�` �;A _B;�A _B negative ` � ;P` � ;P _Q ` � ;Q` � ;P _Q` �;A;�` �; 8xA;� x =2 �;� ` �;N [t=x];` � ; 9xN ` � ;P [t=x]` � ; 9xP



2 Linear Logic with PolaritiesWe can give a translation from LC to LL using the de�nition of the denotationalsemantics described in [4]. More precisely, we will de�ne a polarized fragmentof LL and we will show in which way it corresponds to LC. We start with thede�nition of two polarized fragments of LL.The �rst notion of polarization for LL splits the connectives into reversibleand non reversible ones.De�nition 1 (Polarized formula). We de�ne in the same time the positive(denoted by P, Q) and negative (denoted by M, N) formulas, starting from a setof atoms (denoted by A, B):P ::= !A j P 
 P j P � P j 9xP j 1 j 0 j !NN ::= ?A? j N P N j N &N j 8xN j ? j > j ?PA polarized formula is either a positive one or a negative one.The second notion of polarization is more precise and corresponds to LC'spolarities. It will be used for studying translations between LC and LL.De�nition 2 (Strictly polarized formula). We de�ne in the same time thestrictly positive (denoted by P, Q) and strictly negative (denoted by M, N )formulas, starting from a set of atoms (denoted by A, B):P ::= !A j P 
 P j P 
 !N j !N 
 P j P � P j 9xP j 9x!N j 1 j 0N ::= ?A? j N P N j N P ?P j ?P P N j N &N j 8xN j 8x?P j ? j >A strictly polarized formula is P, N , ?P or !N .De�nition 3 (LLP and LLPc). The fragment LLP (resp. LLPc) of LL isobtained by restricting to polarized (resp. strictly polarized) formulas and byadding the constraint that the >-rule must introduce at most one positive for-mula.LLPc is a fragment of LLP (strictly polarized formulas are polarized) soall the results we will prove on LLP (about proof-nets,. . . ) will be also true forLLPc.The constraint on the >-rule is needed in particular for the next proposition.Proposition 1. If ` � is provable in LLP then � has at most one positiveformula.3 Translations between LC and LLPcWe now prove the similarity of the two systems by de�ning two translationsbetween LC and LL. More precisely these translations show that LC and LLPcare almost isomorphic.



De�nition 4. LCrev is the fragment of LC which refuses:{ structural rules on negative non atomic formulas;{ negative non atomic formulas in the context of the negative premise of:� negative cut-rule,� 
-rule between a negative and a positive formula,� 9-rule on a negative formula.Every proof of LC can be transformed into a proof of LCrev by commutingsome reversible rules with structural ones so we have no loss of provability inLCrev. A study of these commutations of reversible rules has been done in asimilar case by M. Quatrini and L. Tortora de Falco in [9] for translation ofLK�;�pol into LL.3.1 LCrev ! LLPcDe�nition 5. The translation G 7! G� from LCrev into LLPc is de�ned onformulas by: A� = !A (:P )� = P �?V � = 1 F � = 0(P ^Q)� = P � 
Q� (N ^M )� = N� &M�(P ^N )� = P � 
 !N� (N ^ P )� = !N� 
 P �(9xP )� = 9xP � (9xN )� = 9x!N�Given a sequent of LC, we can split the body into two parts: positive for-mulas and negative formulas, ` � ;� = ` ��; �+;�. Then we can de�ne thetranslation on sequents: (` ��; �+;�)� = ` ���; ?(�+)�;��.The translation of proofs is de�ned rule by rule by introducing promotionrules on the negative premise before negative cut, before ^ between a positiveand a negative formula and before 9 for a negative formula. For example here isthe case of the negative cut:` ��; �+; N ; ` :N;��;�+;�` ��;��; �+;�+;�#` ���; ?(�+)�; N�` ���; ?(�+)�; !N� ` ?(:N )�;���; ?(�+)�;��` ���;���; ?(�+)�; ?(�+)�;��Remark 1. An empty stoup corresponds to a ?� context in LL, i.e. to a correctcontext for promotion.LC accepts structural rules on non atomic negative formulas which are nottranslated by ?G formulas in LL. A solution is to add the constraints of LCrevto LC as we have done, but another one is to introduce cuts for the translationof these rules. This has been done with linear isomorphisms in Danos-Joinet-Schellinx [1].



3.2 LLPc ! LCrevDe�nition 6. The translation G 7! G� from LLPc into LCrev is de�ned onstrictly polarized formulas by:(!A)� = A (!N )� = N �1� = V 0� = F(P 
Q)� = P� ^Q� (P � Q)� = P� _Q�(P 
 !N )� = P� ^N � (!N 
P)� = N � ^ P�(9xP)� = 9xP� (9x!N )� = 9xN �(P?)� = :P�By Proposition 1, a sequent ` � of LLPc can be written ` � 0;� where �is the unique strictly positive formula of � (if it exists). Then the translation isgiven on sequents by: (` � 0;�)� = ` � 0�;��.There is no problem for the translation of proofs, we just have to precise thetranslation of the promotion rule:0BBB@ �...` ?�;N` ?�; !N1CCCA� = ��...` � �;N �;Remark 2. This particular translation corresponds to the fact that a promotionis always followed by another rule: a cut-rule, a 
-rule or a 9-rule. So promotionrules can be erased by the translation.The translations (:)� and (:)� are almost inverse of each other, more precisely:{ If G is a formula of LCrev, G�� = G.{ If P is a strictly positive formula of LLPc, P�� = P and (?P)�� = P.{ If N is a strictly negative formula of LLPc, N �� = N and (!N )�� = N .{ For the sequents: (` � ;�)�� = ` � ;� and (` � )�� = ` � .{ If � is a proof in LCrev, ��� = �.However the converse is wrong for proofs: ��� 6= � because LLPc is more
exible about the position of promotions. In the following example, the �rstLL proof puts weakening in between the promotion and its associated 9-rulewhereas the third one, being translated from LC, has glued the promotion withthe 9-rule.` !A; ?A?` ?!A; ?A?` ?!A; !?A?` ?B?; ?!A; !?A?` ?B?; ?!A; 9x!?A? �! ` :A;A` :A;A;` :B;:A;A;` :B;A; 9x:A �! ` !A; ?A?` ?!A; ?A?` ?B?; ?!A; ?A?` ?B?; ?!A; !?A?` ?B?; ?!A; 9x!?A?



4 Proof-NetsProof-nets have been introduced in [3] for the multiplicative case and then ex-tended in [5] and [7] to full linear logic.4.1 Proof-StructureThe following de�nitions come from [7] with just some modi�cations.De�nition 7 (Weight). Given a set of elementary weights, i.e. boolean vari-ables, (denoted by p, q,. . . ), a weight is a product (conjunction) of elementaryweights p and of negations of elementary weights �p.As a convention, we use 1 for the empty product and 0 for a product wherep and �p appear. We also replace p:p by p. With this convention we say that theweight w depends on p when p or �p appears in w.A proof-structure is an oriented graph with pending edges, for which eachedge is associated with an LL formula, constructed on the following set of nodesrespecting the following typing constraints. The orientation is from top to bot-tom.
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ax cut! >A A? A?A ABABA B A B A AA
A
B PAPB &A&B �1A�B �2A�B C1 ? > A1 An A!A ?A1 ?An A?d?A ?A ?A ?A?A?c ?w 8 9tA[t=x]9xA8xA1 ?To avoid confusion with the other orientation that we will introduce later,this orientation will be called the geographic orientation and we will refer to itby the terms: top, bottom, above, bellow, to go up, to go down, premise of a node(edge just above the node), conclusion of a node (edge just bellow the node),. . .A unary node is a node with only one premise and a binary node is a nodewith two premises. The C-nodes must have at least two premises.In such a graph:{ we associate an elementary weight to each &-node called its eigen weight ;{ the variable used in the quanti�cation of a 8-node is called its eigen variable;{ we associate a non empty set of nodes (di�erent from cut) to each ?-nodeand ?w-node. These are called the jumps of the node.Eigen weights and eigen variables are supposed to be di�erent.We associate a weight to each node with the constraint that if two nodeshave a common edge, they must have the same weight except if the edge is apremise of a &-node or of a C-node (additive contraction). In these particularcases the weight changes:



{ if w is the weight of a &-node and p is its eigen weight then w does notdepend on p and its premise nodes must have weights w:p and w:�p;{ if w is the weight of a C-node and w1; : : : ; wn are the weights of its premisenodes then we must have w = w1 + : : :+wn and wiwj = 0; 8i 6= j.Then we can de�ne the following notions:{ A node L with weight w is said to depend on p if w depends on p or if L isa C-node and one of the weights just above it depends on p.{ A node L is said to depend on an eigen variable x if x is free in the formulaassociated to the conclusion of L or if L is a 9t-node and x is free in t.A proof-structure must also satisfy the following properties:{ a conclusion node (i.e. a node with pending edge) has weight 1;{ eigen variables are not free in the formulas associated to pending edges;{ if w is the weight of a &-node with eigen weight p and w0 is a weight de-pending on p and appearing in the proof-structure then w0 � w;{ if w is the weight of a 8-node with eigen variable x and w0 is the weight ofa node depending on x then w0 � w;{ if w is the weight of a ?-node or of a ?w-node and w0 is the weight of one ofits jumps then w � w0.With this de�nition we have a notion of proof-structures for full linear logic.Now to make it clear, let us look at the example of a proof-structure for A�B (A�B: Ap 1�p1 CA�B &A?&B?�paxaxp �� BA�BA�B A? B?4.2 Sequentialization and CorrectnessAn important point in the study of proof-nets is the problem of correctnesscriterions that is the problem to know whether a proof-structure is a proof.More technically, can you inductively deconstruct a proof-structure?There exist di�erent correctness criterions for multiplicative proof-structureslike [3] or [2] which lead to the criterion of [7] for the full case. We present herethis general criterion.De�nition 8 (Sequentialization of a proof-structure). The relation \Lsequentializes R into E" is de�ned for each possible L. R is a proof-structure, Eis a set of proof-structures and L is a conclusion node of R or a cut.{ ax, !, 1, >: if L is the only node of R then L sequentializes R into ;;



{ cut, 
: if it is possible to split the graph obtained by erasing L into twoproof-structures R1 and R2 then L sequentializes R into fR1;R2g;{ P, �1, �2, ?d, ?c, ?w, 8, 9, ?: if when we erase L in R, we obtain aproof-structure R0 then L sequentializes R into fR0g;{ &: let p be the eigen weight of L. The graph R0 (resp. R1) is obtained bygiving to p the value 0 (resp. 1) and just keeping nodes with non zero weightsand identifying the unary C-nodes to the node just above. If R0 (resp. R1)is a proof-structure then L sequentializes R into fR0;R1g;{ C: a C-node never sequentializes a proof-structure.De�nition 9 (Sequentializable proof-structure). A proof-structure R issaid to be sequentializable if one of its nodes sequentializes R into a set ofsequentializable proof-structures or into the empty set.De�nition 10 (Valuation). A valuation ' for a proof-structure R is a func-tion from the set of the eigen weights of R into f0; 1g. Such a valuation caneasily be seen as a function de�ned on the set of all the weights of R.De�nition 11 (Slice). Given a valuation ' of a proof-structure R, the slice'(R) is the proof-structure obtained from R by keeping only the nodes withweights w such that '(w) = 1 and the edges bellow a kept node and by identifyingthe unary C-nodes with the upper node. A slice is not really a proof-structureaccording to de�nition of the Sect. 4.1 because unary &-nodes appear.De�nition 12 (Switch). Given a valuation ' of a proof-structure R, a switchS of R is de�ned as a non oriented graph constructed with the nodes and theedges of '(R) with the modi�cations:{ for each P- or ?c-node, we keep only one premise;{ for each &-node L, we erase the premise appearing in '(R) and we add anedge, called dependency edge, from a node depending on L to L (this maychange nothing);{ for each 8-node L, we erase the premise and we add an edge, called de-pendency edge, from a node depending on its eigen variable to L (this maychange nothing);{ for each ?w- or ?-node L, we add an edge, called jump edge, from a jumpof L to L.De�nition 13 (Proof-net). A proof-structure is a proof-net if all its switchesare acyclic and connected.Theorem 1 (Sequentialization { J.-Y. Girard in [7]). A proof-structure issequentializable i� it is a proof-net.5 Polarized Proof-NetsNow we restrict proof-nets to the polarized case. This strong constraint will allowus to de�ne a new and simpler correctness criterion.



De�nition 14 (Polarized proof-structure). A polarized proof-structure isa proof-structure made only of polarized formulas and with the constraint thatat most one of the formulas associated to the conclusions of a >-node can bepositive.In other words, a polarized proof-structure is a proof-structure typed byLLP. As LLPc is a fragment of LLP, all the following results will give a notionof proof-nets for LC through the translations in Sect. 3.De�nition 15 (Edges). We give here some new terminology on edges in apolarized proof-structure:{ a positive (resp. negative) edge is an edge with a positive (resp. negative)formula;{ a principal edge in a switch is an edge already appearing in the proof-structure; a switching edge is either a dependency edge or a jump edge. Forswitching edges, we extend the polarization and the geographic orientationby considering them negative and oriented towards the corresponding &-, 8-,?w- or ?-node.In the sequel, we will distinguish between two C-nodes: the C+-node withpositive premises and conclusion and the C�-node with negative ones.De�nition 16 (Positive and negative nodes). A positive node is a nodewith positive edges, that is 
, �, C+, 9 and 1, and a negative node is a nodewith negative edges, that is P, &, C�, ?c, ?w, 8 and ?.5.1 Towards Speci�c CriterionsThe key point for the simpli�cation of the correctness criterion in the case ofpolarized proof-nets is the existence of a speci�c orientation in these proof-netsas shown in Lemma 2. The use of this orientation allows us to forget the notionof switch and then also the notion of slice.The idea of orientation linked to polarization in proof-nets has already beenused. For example Fran�cois Lamarche proposed in [8] a criterion for proof-netsfor intuitionistic linear logic with Danos-Regnier polarities.We de�ne a new orientation on proof-structures, the orientation of polariza-tion (or p-orientation): positive edges are oriented upwardly and negative edgesdownwardly. We will talk about this orientation using the terms: to arrive to, tocome from, incident edge, emergent edge,. . .Lemma 1. In a switch of a polarized proof-structure, a node has at most oneincident edge. Positive and negative nodes have exactly one incident edge.Proof. We study each node:{ the only nodes with incident switching edges are &, 8, ?w and ? and by thede�nition of a switch these nodes have exactly one incident edge in a switch(either a premise or a switching edge);



{ P- and ?c-nodes have just one premise in a switch so just one incident edge;{ positive nodes, ax, cut and ! have only principal edges in a switch and theonly incident one is their positive conclusion (negative premise for cut);{ ?d-nodes have only emergent edges;{ >-nodes with a positive conclusion are like ! and those with only negativeconclusions have no incident edges;{ there are no C-nodes in a switch. utLemma 2 (Orientation lemma). A non bouncing path in a switch of a po-larized proof-structure starting accordingly to the p-orientation always respectsthis orientation.Proof. We prove the result by induction on the length of the path, the case oflength 0 being given by the starting hypothesis. Now when the path arrives toa new node, this is only possible through the incident edge so when the pathcontinues it must be by another edge, thus an emergent one (by Lemma 1) sinceit does not bounce. utLemma 3. A non oriented cycle in a switch of a polarized proof-structure isp-oriented.De�nition 17 (Correction graph). The correction graph of a proof-structureR is the oriented graph obtained by putting on R the p-orientation and by addingsome new edges:{ from each node depending on an eigen weight to the corresponding &-node;{ from each node depending on an eigen variable to the corresponding 8-node;{ from the jumps to the nodes they are associated to.Lemma 4. If there is a (non oriented) cycle in a switch of a proof-structurethen there is a p-oriented cycle in its correction graph.De�nition 18 (Initial and �nal nodes). In a correction graph, a node isinitial (resp. �nal) if all the edges starting from (resp. arriving to) it are pendingedges.Remark 3. A �nal node is a conclusion node so its weight is always 1. A ?d-nodeis always initial.5.2 Weak CriterionWe give here our �rst criterion for polarized proof-nets, which is simpler thanthe general one but equivalent. To obtain this result we still need to use thenotion of slices.De�nition 19 (Slice of a correction graph). A slice of a correction graphG is the sub-graph of G made only of the nodes and the edges of a slice of theproof-structure (in other terms it is the correction graph of the slice).



Theorem 2 (Correctness criterion). A polarized proof-structure has all itsswitches acyclic and connected i� all the slices of its correction graph are acyclic(with orientation), contain exactly one initial node and all the nodes of the sliceare p-accessible from the initial one (in this case we say that the correction graphis weakly correct).Proof. By Theorem 1, a proof-structure with all its switches acyclic and con-nected is sequentializable and by an easy induction, a sequentializable polarizedproof-structure has a weakly correct correction graph. Conversely if the correc-tion graph is weakly correct, switches cannot contain any cycle by Lemma 4.To �nish, we can prove by induction on the sum � of the lengths of all thepaths from the initial node i of the slice to a �xed node s that in all the switchesof this slice there is a path between i and s.{ If � = 0 then s = i.{ If � = n + 1, s is not an initial node in the slice. We choose a switch S,there exist a node s0 and an edge a from s0 to s such that a appears in S(by de�nition of a switch we always keep such an edge). Then by inductionhypothesis on s0, there is a path in S between i and s0 which can be extendedwith a into a path between i and s. utWe can apply to our polarized proof-structures all the results of the generalcase given in [7] about sequentialization, cut-elimination,. . .5.3 Strong CriterionFollowing the same direction we obtain a second and most important criterionwhich allows us to forget also slices.De�nition 20 (Strong correctness criterion). The correction graph of apolarized proof-structure is strongly correct if it is acyclic and if for all pair ofdistinct initial nodes with weights wi and wj: wi:wj = 0.Theorem 3 (Strong criterion and weak criterion). A strongly correct cor-rection graph is weakly correct.Proof. No problem for acyclicity because a slice of a correction graph has lessedges than the correction graph itself. Then by acyclicity of the slices we haveat least one initial node in each slice. But also at most one because taking a slicedoes not create any initial node (a negative node is never initial and the otherones cannot lose the node under their conclusion) so the condition on initialnodes of the correction graph is su�cient.For accessibility of nodes, we prove by induction on the sum � of the lengthsof all the paths from an initial node to a �xed node s that s is p-accessible bythe initial node in each slice where it appears:{ if � = 0 then s is initial;



{ if � = n+1 then in a slice where s appears either it is initial and there is noproblem or there is another node s0 with an edge from s0 to s. By inductionhypothesis s0 is accessible from the initial node in every slice where it appears.Thus in the slice we are looking at, s0 is accessible and also s by adding theedge to a path arriving to s0. utThe converse is wrong, some proof-structures are weakly correct but rejectedby the strong criterion because some cycles may come from the interactionsbetween di�erent slices. However we keep enough proof-structures to have proof-nets for all proofs of sequent calculus and the strong criterion is preserved bycut-elimination. We will see this in the Sects. 5.5 and 5.6.5.4 SequentializationWe will now give a proof of sequentializability of strongly correct proof-netsdi�erent from the one consisting in using the proof for the general criterion byTheorems 3, 2 and then 1.De�nition 21 (Positive tree). A positive tree of a correction graph is a nonempty connected set of positive nodes and positive edges maximal for inclusion.A positive tree A is terminal when for each positive edge a of the correctiongraph if there is a path from A to a then a is in A.Theorem 4 (Sequentialization). A polarized proof-net is sequentializable.Proof. The �rst point is to sequentialize by all negative �nal nodes. We provethat if a P-, &-, ?c-, ?w-, ?- or 8-node is �nal then it sequentializes the proof-net. We remark that 
-, �i, 9-, C+-, C�-, ?d- and cut-nodes are never �nal. Sowe have to sequentialize a proof-net with only ax, !, > and 1-nodes as �nal ones.Lemma 5. If the only �nal nodes of a polarized proof-net are ax, !, > and 1then from each non �nal node there exists a path to a terminal positive tree.De�nition 22 (Cut positive tree). A positive tree is said to be cut if it hasa cut-node hereditary above it.Proof (Theorem 4 { continued). Given a proof-net with only ax, !, > and 1-nodesas �nal ones, by Lemma 5 it contains a terminal positive tree. If there is no nodesunder this tree, it can be sequentialized. Otherwise this is a cut positive tree andwe show by terminality of the tree that the cut-node under it sequentializes theproof-net. utProposition 2. The criterion given by Theorem 4 has a cubic complexity in thesize of the proof-net (i.e. the number of its nodes).



5.5 Translation from Sequent CalculusTo show that the strong criterion keep enough proof-structures we have to de�nea translation from LLP to polarized proof-structures and to prove the correct-ness of the proof-structures built in this way.When we talked about sequentialization we used proof-structures with !-nodes just seen as generalized axioms but to talk about the translation of proofsand about cut-elimination, we need to re�ne our de�nition of proof-structure.De�nition 23 (Proof-structure and proof-net with boxes). We de�ne aproof-structure with boxes by induction, it is:{ either a proof-structure with no !-nodes,{ or a proof-structure together with a proof-structure with boxes of conclusionsA; ?B1; : : : ; ?Bn associated to each !-node of conclusions !A; ?B1; : : : ; ?Bn.We can de�ne in the same way proof-nets with boxes from proof-nets.In the sequel we will use the term proof-structure (resp. proof-net) insteadof proof-structure (resp. proof-net) with boxes.De�nition 24 (Translation of proofs). We de�ne the translation from LLPto polarized proof-structures by induction on the size of the proof:{ &: by induction we obtain two polarized proof-structures R1 and R2 fromthe two proofs of the premises of the &-rule. We choose a new elementaryweight p and multiply all the weights of R1 by p and all the weights of R2by �p. Then we add a &-node (with eigen weight p) between the two pendingedges corresponding to the formulas used by the & and a C-node for eachpair of formulas of the context coming from R1 and R2;{ !: the new proof-structure is just a single !-node introducing the conclusions!A; ?B1; : : : ; ?Bn of the rule and the proof-structure associated to it is theone obtained at the previous step with conclusions A; ?B1; : : : ; ?Bn;{ ?w: we just add a ?w-node to the proof-structure R of the previous step witha set of jumps constituted of all the conclusion nodes of R;{ ?: same as ?w;no problem for the other rules.Theorem 5. The previous translation is in fact from LLP to polarized proof-nets.5.6 Cut EliminationDe�nition 25 (Reduction step). The di�erent cut-elimination steps are thefollowing ones:{ Axiom cut: we erase the ax- and cut-nodes and replace them by an edge, thejumps coming from the ax-node are moved to the other node above the cut.



{ Multiplicative cut: we erase the P and the 
, the cut is duplicated betweenthe two pairs of premises. All the jumps are duplicated and moved up.
 Pcut cut cut{ Additive cut: if the �-node is a �1-node (resp. �2-node) we erase in theproof-structure all the nodes with null weights when p = 1 (resp. p = 0) andthe cut moves up as the jumps.&w �1w p = 1cut cutw:p w:�p w w ww w{ Dereliction cut: the box is opened and the cut moves up as the jumps.{ Contraction cut: the !-node is duplicated and also the cut to be put betweeneach premise of the ?c and a box. New ?c-nodes are put between the pairs ofconclusions of the !. Jumps from the ! and from the ?c are duplicated.{ Weakening cut: we just erase the box and put new ?w-nodes above its con-clusions. The jumps of these new nodes are the jumps of the cut one.{ Commutative exponential cut: the box with the cut !-node comes into theother one and the other !-node is extended with the conclusions of the �rstone. All the jumps coming from the two !-nodes are put on the second one.{ Quanti�er cut: we erase the two nodes 8 and 9t, the cut goes up as the jumps.In all the proof-structure we make the substitution of x by t.8 9t8xN 9xN? [t=x]cut cutN?[t=x] N [t=x] N?[t=x][t=x]N{ Multiplicative constant cut: we erase the three nodes: 1, ? and cut. Thejumps starting from them are duplicated and moved to the jumps of ?.The cases of a cut with a >- or a C-node are still to be studied. A solutionfor the additive contraction is proposed in [7] but is not uniform with the otherreduction steps. However with the restriction on the steps de�ned above, we havethe same result as in [7]:Theorem 6. A proof-net without >-node and without &-connectives in the for-mulas associated to its pending edges, which cannot be reduce by any step de-scribed above, is in normal form (i.e. without cut-node).This has been already proved by J.-Y. Girard for the multiplicative-additivecase but we give here a really di�erent proof using the p-orientation.



Proof. If the proof-net contains no &-nodes, all the weights are 1 and there areno problems. Otherwise let L be a terminal &-node, that is with no paths toanother &-node. By the hypothesis, there must be a cut-node (hereditary) underL. Then this cut-node can be reduced by terminality of L. utTheorem 7 (Cut-elimination). Strong correctness is preserved by the cut-elimination procedure.Proof. The steps are well de�ned in a proof-net (x is not free in N?[t=x] for thequanti�er step by acyclicity). Then each step preserves the strong criterion. utConclusionThe polarization constraint, coming fromLC, gives a system of proof-nets with acorrectness criterion which is really simpler than the one in the general case [7].Through the translation between LC and LLP, this gives proof-nets for thesequent calculus LC, solving our starting problem.The last section of this paper is devoted to cut-eliminationwhere the problemof commutative additive contraction appears. A full solution has still to be found.Much work is now possible such as an extension of our approach to secondorder quanti�ers, the study of a geometry of interaction or of a game seman-tics for such proof-nets, the continuation of this work towards the intuitionisticpolarities as de�ned in [6],. . .References[1] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. Computational isomor-phisms in classical logic (extended abstract). In Jean-Yves Girard, Mitsu Okada,and Andr�e Scedrov, editors, Proceedings Linear Logic '96 Tokyo Meeting, volume 3of Electronic Notes in Theoretical Computer Science. Elsevier, Amsterdam, 1996.[2] Vincent Danos and Laurent Regnier. The structure of multiplicatives. Archive forMathematical Logic, 28:181{203, 1989.[3] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1{102, 1987.[4] Jean-Yves Girard. A new constructive logic : classical logic. Mathematical Struc-tures in Computer Science, 1(3):255{296, 1991.[5] Jean-Yves Girard. Quanti�ers in linear logic II. In Corsi and Sambin, editors,Nuovi problemi della logica e della �loso�a della scienza, pages 79{90, Bologna,1991. CLUEB.[6] Jean-Yves Girard. On the unity of logic. Annals of Pure and Applied Logic, 59:201{217, 1993.[7] Jean-Yves Girard. Proof-nets : the parallel syntax for proof-theory. In Ursini andAgliano, editors, Logic and Algebra, New York, 1996. Marcel Dekker.[8] Fran�cois Lamarche. From proof nets to games (extended abstract). In Jean-YvesGirard, Mitsu Okada, and Andr�e Scedrov, editors, Proceedings Linear Logic '96Tokyo Meeting, volume 3 of Electronic Notes in Theoretical Computer Science.Elsevier, Amsterdam, 1996.[9] Myriam Quatrini and Lorenzo Tortora de Falco. Polarisation des preuves classiqueset renversement. Compte Rendu de l'Acad�emie des Sciences de Paris, 323:113{116,1996.


