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The focalization property of linear logic has been discovered by Jean-Marc Andreoli [And90]
in the beginning of the 90’s. It is one of the main properties of Linear Logic that appeared after
the original paper of Jean-Yves Girard [Gir87]. This property is proved in various papers [And90,
Gir91, DJS97] but, as far as we know never for the usual LL sequent calculus (or with an intricate
induction in Andreoli’s thesis, which is replaced here by a cut elimination property).

The proof we give is a compilation of the previous proofs and proof techniques, our goal is just
to give a complete presentation of a proof of this property which appears to be more and more
important in the current research in Linear Logic [Gir91, DJS97, Gir01, Lau02].

We decompose the usual focalization property into two technically different steps: weak focal-
ization (the decompositions of two positive formulas are not interleaved, see LL,.) and reversing
(negative rules are applied as late as possible from a top-down point of view, see LLg,.).

1 Linear Logic and the focalization property

Formulas of Linear Logic are given by the usual grammar:

A= X | A9A | A®A | 1 | 0 | 14
| XL | ABA | A&A | L | T | 74

We split this grammar into two sub-classes: positive formulas and negative formulas.

P = X | A®A | A¢A | 1 | 0 | !A
N == Xt | ARA | A&A | L | T | 24
In the sequel:
e A B, ... denote arbitrary formulas;

e P. @, R denote positive formulas;
e N, M, L denote negative formulas;

e X, X1 .. are called atoms or atomic formulas.



We consider the usual rules of Linear Logic [Gir87]:

— FT,A FA AT .
AL A CTA cu
FTAB FT,A FA,B
FT,A¥ B FT,A,A® B
FTA FTB FrA -r.B
FT,A& B FT,AeB FT,Ae B °
- ET o
-1 S T
FA FTA A FT74,74
FTL A T4 4 T, 74 Y T4 ¢

The main connectives of positive (resp. negative) formulas are called positive connectives (resp.
negative connectives), that is X, ®, @, 1, 0 and ! (resp. X+, ®, &, L, T and ?). The rules
introducing positive (resp. negative) connectives are called positive rules (resp. negative rules).

A positive (resp. negative) formula is strictly positive (resp. strictly negative) if its main con-
nective is not ! (resp. 7). A positive (resp. negative) connective is strictly positive (resp. strictly
negative) if it is not ! (resp. 7). A positive (resp. negative) rule is strictly positive (resp. strictly
negative) if it is not introducing a !A formula (resp. 7A formula).

Definition 1 (Main positive tree)
If A is a formula, its main positive tree T+ (A) is defined by:

T+(A) is a (possibly empty) tree whose nodes are ®, @ (with arity at most 2) and !, 1, 0 or X
(with arity 0).

Definition 2 (Weakly +-focalized proof)

A proof 7 in LL is weakly +-focalized if it is cut-free and, for any subproof 7’ of 7 with conclusion
kT, A, the only positive rules of ' between two rules introducing connectives of 7+ (A) are rules
introducing connectives of 71 (A).

Definition 3 (Strongly +-focalized proof)

A proof 7 in LL is strongly +-focalized if it is cut-free and, for any subproof 7’ of m with conclusion
kT, A, the only rules of 7’ between two rules introducing connectives of 7 (A) are rules introducing
connectives of T (A).



Definition 4 (Reversed proof)
A proof 7 in LL is reversed if, for any subproof «’ of = with conclusion - I', N with N a strictly
negative non-atomic formula, the last rule of 7’ is a strictly negative rule.

Definition 5 (Focalized proof)
A proof 7 in LL is focalized if it is both strongly -+-focalized and reversed.

Remark: Various systems for classical logic related with focalization constraints have been in-
troduced. In particular Girard’s LC [Gir91] corresponds to weak +-focalization, Danos-Joinet-
Schellinx’s LK" [DJS97] corresponds to strong -+-focalization and Quatrini-Tortora de Falco’s

LK"? [QTdF96] corresponds to focalization since their p-constraint is a reversing constraint.

2 Weakly Focalized Linear Logic

2.1 Sequent calculus LL,,

A sequent of LLg,. has the shape F I'; II where I' is a multi-set of formulas and II is either empty
or contains a unique positive formula.
The rules are a linear logic version of the rules of Girard’s LC [Gir91]:

PP T p. Joe
FT: P FA,PLII out FT,P; 10 - A, PL: .
FT,A; I b FT.A; I n-cu
FLABTL FDiP o FAQ
FT,A®B; 11 FT,A; PRQ
FL; P HA, M, ® FI,N; FA;Q FI,N; FA,M,;
FT,A Pa M FT,LA;N®Q FT,LA,No M
FT,A:TI  FT,B: 11
FT,A& B; 10
FIT; P ® FI,N; ® FI;Q & FI,M; ®
-T;P&D FT;NeB FT AeQ ° FT; Ao M °
1 FII0 - T
il 7I—F,L;HL FD,T; 10
L A; HI; P FI,N;
! —=551d ——=5 — 1d
T 1A FT,7P; FT,7N;
FTTI 1,724,274 T
T =5 = lw ?c
FT,7A4; 10 FT,74; 10



2.2 Expansion of axioms

Given a positive formula P, the sequent - P1; P is provable in LL;. by means of the az rule.
Moreover, if P is not atomic, it is also possible to give a proof based only on azx rules applied to
the sub-formulas of P (and thus, by an easy induction, to the atomic sub-formulas of P):

PP RQTQ
EPLQLPRQ.

FPERQE PRQ

FM; Mt
I—PJ‘;P I—M,ML;
FPE M. PoM

foc

Pt P FQT:Q
1 D2
FPsPoQ _ FQLPOQ
FPE&Qt  PaQ
=M M+
n T foc
FP-: P M, M-
1 D2
FPiPeM *ﬂ@@@M&
FPr& ML PeM
,kill
Fl;1
Pt P foc
- Pt P
?d
FrPh Py
F2pl:1p

FN; Nt

- N,N*t;

FQt;Q “

FNLRQL: N®Q

FN; Nt M Mt

NN T

FNL ML NeoM

FNLRML, NoM

FN; Nt
T foc 1
EN,N"; FRQTQ
2
FNTNOQ FQLNOQ o
FNL&QL; NaQ
FN; Nt M Mt
——— foc foc
FN,Nt; =M, Mt
1 D2
PN NeM FMINeM
FNt&ME, N M
i
FN; Nt
?d
FINDNG
FINLIN

2.3 Embedding of LL (weak +-focalization)

The translation (.)® of LL into LLg. does not modify formulas, translates the sequent - I" as - T';

and acts on proofs by adding a lot of cut rules:

axr

+PL P

FT,P - A, Pt
FT,A

cut

FT,A,B
FT,A% B

axr

S

FD,P; A PL
FT,A;

n-cut

FIT',A B;
FTLARX B;



FI,P FAQ
FT,A,P®Q

FOLN  FAQ
FTLALN®Q

by

FT,N  FAM

FT,LAN®M

T, A

FI,P;

axr axr
Pt P FQTQ
FPL QY PRQ
foc
FPH QN PRQ; ;
n-cu
FAPLPRQ;

FAQ;

FI',N;

n-cut

FTLAPRQ;

— aT
FN; Nt
——— foc —av
FN, N QT Q
FNLQLNGQ
FNYL QN N®Q;
n-cut
FA N N®Q;

FAQ;

FT,N;

FT.AN®Q: n-cut

— AT — AT
FN; Nt FM; Mt
———— foc —— foc
FN,N*t; FALM¢;®
FNL Mt NeoM
T T foc
FNY MY N®M; .
n-cu
FAN-N®M:

HA,M;

-T,B

FT,A& B

FT, P

FT,Pa B

FT.AN®M: n-cut

FT,A; FT,B;
FT,A& B;

&

—— ax
Fpt; P
-PL;PaB
FP-. P B:;

@1
foc

FT,P;

) )

FT.P 0B n-cut
i £ 1
I—N;NJ‘ s
— JOC
FN,Nt;

n &1
FN-; N®B foc
FN+-. N@B;

FI',N;

FT. NGB n-cut

— 1

;1
F1; foc

FT;

FT. L T

FIL, T, T



HL A

? [ S
7:;5’,‘31 |~ P4
o oA 1
— AT
1.
|—F,P 2 ﬁf)d
Troep 't 7 kDP. EPLYP
FT,7P; n-eu
FT,N FT,N;
—=5 1d ~ —=5v — 1d
FT,?N FT,7N;
S P Fr
FT,?7A ° FT,74; Y
FT,?74,7A FT,?74,74;
—=5 5 ‘¢ ~ — =5 ‘¢
FT,7A FT,74;

2.4 Focalization in LL;,,

If 7 is a proof in LLg, then 7° is the LL proof obtained by erasing all the “;” in the sequents.
Proposition 1 (Cut-free weak +-focalization)
If w is a cut-free proof of = 1'; 11 in LLg. then ©° is a weakly +-focalized proof of = T',11 in LL.

Corollary 1.1 (Weak +-focalization)
If = T is provable in LL, - I is provable with a weakly +-focalized proof.

PRrOOF: Starting from a proof 7 of - I', we translate it into the proof 7® of H I'; in LLg.. Using
the cut elimination property given in appendix A (corollary 5.2), this leads to a cut-free proof
7 of FT'; in LLy,. By proposition 1, (7*)° is a weakly +-focalized proof of - T"in LL. O

3 Focalized Linear Logic

3.1 Sequent calculus LL;,,

In the spirit of [Gir01], we define a sub-system LL,. of LL,. in which the strictly negative formulas
in the context of positive rules must be atomic. We consider a cut-free version of the system since
it is sufficient for the present development (cut elimination is performed in LLg,.).

There are two kinds of sequents: =P, N ; and - P, ?T, X+ ; P where X' contains only negative
atoms. In order to simplify the notations we will write = P, A ; II for either a sequent with IT empty
or a sequent with I = P and N = 7T, X' *.

———a FPom, P foc

RXT X - P, 7T, XL P,
FP,N,A, B;
FP.N,A% B,



P, X; P FP’,?FQX/%Q@ PN, X; P FPL X M

=P, P X X PR Q =P, P, X X P M
FPTLX, N, RPN X Q o FPLLX,N; R X M o
=P, P, T X X NeQ - PP, XL X N e M
PN, A; -P,N,B; %
FP,N,A& B;
P, X P . P, T, X N o
P XL PaB FP. T XL NeB
FP,m, X Q o FP, T, X M ; .
FP T XL AsQ FP T XL AaM
1 -P,N; —_— T
FL A FP,m, Xt P 0 P, X N o
Erry 1A FP, 0, Xt 2Py FP, 0, XL NG
P A FPTL XY TA A
- P, x4 - P, xL 74, ¢

3.2 Embedding of LL,,.

We embed proofs of LL,,. of sequents of the shape - I'"; into LLg,.. We proceed in two steps by first
showing that LLg.. sequents (that is of the shape - P, N'; or - P, 7T, X1 ; P) provable in LLy,, are
provable in LLg,. enriched with the two rules:

P, Xt P ) P, T, XL 74,74 P
Fpral A p " P, XL 74 P

Tc

The size of a sequent F I'; is the sum of the sizes of the formulas of I' plus one. The size of a
sequent - I'; P is the sum of the sizes of the formulas of I" plus the size of P.

We consider a cut-free proof with expanded axioms (according to section 2.2). We proceed by
induction on the size of the final sequent. We look at the last rule of the proof. The non trivial
cases are the foc rules and 7d rules on positive formulas (called a positive 7d rule), the other rules
are immediately valid in LLg.. (in our restricted case where their conclusion is an LLg,. sequent).

We only consider the foc rule (the case of the positive 7d rule is very similar). If the context is
of the shape P, ?T", X, the rule is valid in LLg,.. Otherwise this context contains a formula with
main connective %, &, 1L or T:

e If we have a context of the shape I') A % B, using the required proof of section 2.2 without
the dashed rule, we build:



e
FT,A®B;P +AB;A-@B*t
FT,A B; P f
FT,A4,B,P; 1%

p-cut

By induction hypothesis, after cut elimination and expansion of axioms in LLg,, this proof
gives a proof 7’ of LLp,.. We conclude with:

FI,A B, P;
FT,AXB,P;

2

e If we have a context of the shape I'; A & B, in the same way we build:

T
FT,A&B; P FA;At@ Bt
FT,A; P p-cut
T4 P
and
T
FT,A&B; P FB;AeBt
FT,B; P prout
—— == foc
FT,B,P;

After cut elimination and expansion of axioms, we apply the induction hypothesis and we
conclude with:

FT,A P, FT,B,P;
FIA& B, P,

e If we have a context of the shape I', 1, we build:

T

FI,L; P | et
TP b
Fo,p; 1

After cut elimination and expansion of axioms, we apply the induction hypothesis and we
conclude with:

FIL, P,
FT, L, P;

e If we have a context of the shape I', T, we can immediately use the LLg,. proof:

FT.T.P: |



We now have to eliminate the additional 7w and 7c¢ rules. We show by induction on the size of
the proof that if - P, 7T, X+ ; P (resp. F P, N ;) is provable in LLg,. with the two additional rules
then - P, 7T, X+ P (resp. - P, N ;) is provable in LLy, with ?T" < ?T" (where ?I" < ?T" means
that for each formula ?7A in 7T there is at least an occurrence of ?A in ?T", or equivalently that we
have an inclusion of the underlying sets).

If the last rule is not one of the two additional rules and neither a foc rule nor a positive 7d
rule, we translate the rule by itself. Otherwise:

o If the last rule is a foc rule or a positive ?d rule, we apply the corresponding rule and we
apply the required ?w and ?¢ rules to move from ?I" to 7T".

e In the case of the added ?w rule, by induction hypothesis, - P, 2T, X1 ; P is provable in LLyg,.
with ?I” < 7T, thus we have the result since 7T < 7T, 7A.

e In the case of the added ?¢ rule, by induction hypothesis, - P, 7T, X1 ; P is provable in LLg,.
with 7TV < 7T",7A, 7 A, thus we have the result since 7T < 7T", 7 A.

This shows that if - I'; is provable in LL,., then it is also provable in LLg,,.

3.3 Focalization in LL;,,

w.n

If 7 is a proof in LLg,, then 7° is the LL proof obtained by erasing all the “;” in the sequents.

Proposition 2 (Cut-free focalization)
If 7 is a cut-free proof of = P, N ; Il in LLg, then 7° is a focalized proof of = P,N,II in LL.

Corollary 2.1 (Focalization)
If =T is provable in LL, - T is provable with a focalized proof.

PRrROOF: Starting from a proof w of - I', we translate it into the proof 7#® of - I'; in LL. and then
into a cut-free proof 7’ of - I'; in LLy,.. By proposition 2, 7’° is a focalized proof of - I' in
LL. O

Remark: It is possible to define the embedding of LL proofs into LL,. directly (without using LLq,.
as an intermediary step). We have chosen to decompose it into two steps in order to show that
the key property is weak +-focalization. Strong +-focalization is then obtained through reversing
which is in general easy to do.

4 Additional remarks

4.1 Decomposition of exponentials

The attentive reader has certainly remarked that an hidden decomposition of the exponential
connectives underlies the whole text (as suggested by Girard [Gir01]):

1A = 144 74 ="1hA

with A negative and bA positive, and 4+ and T are used as the same connectives of LLlﬁ1 (see
appendix A.2.1).



The corresponding rules in LLg, would be:

7 A; f FI'; P b FI',N; b
7T, 1A ; T, bP T bN
FI,A; . FIL; P 4 FI,N; 1
FT; A FT, TP FT,TNV;

However it is difficult to give a meaning to A (resp. bA) under any other connective than
(resp. T).

4.2 Quantifiers

Our method can perfectly be extended to quantification (of any order) by adding JaA (resp. VaA)
in positive (resp. negative) formulas and the following rules in LLy,.:

FI; P 5 FI,N; 5 FI,A;II v
FT'; daP FI;daN FI,VaA; Il
with o free neither in I' nor in II in the V rule.
The corresponding rules in LLg,. are:
P, X P . FP, T, XL N FP.N,A; v
P, XL JaP FP, 0, XL 3aN =P,N,YaA;

with « free neither in P nor in A in the V rule.
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A Cut elimination in LL

foc

A.1 Cut elimination steps

Key steps
— aX
1. 1.
FP’Pmpfff’P’Hp-wt = FLPY
— A
. 1.
FRPkF.;P,Pp_CUt > FD; P
7I_F;P foc FT: P A, PL:
}—P,P; FA,PL; ~ ’ ’ ’ p-c’u,t
FT.A PJ_. n-cut FF,A,PL;
FT; P FA:Q FE P QT T 5
FT,A; P®Q FE PR QLII
FT,A, 2 10 p-cut
FAQ  FEPLQLT
~ ~T; P FAE P I
FT,AE; 11 preut
FT. P FAM: FE PL M T
FT.A:PaM  © FEpPimMmim
FT,A,=2; 10 p-cut
FA,M; FE, PE M ;
n-cu
~ FT; P FAE P IT
FT,AE; 1 preut
FT,N;  FAM; FENL M I
FTA:NoM  ° FE NIz ML
FT,A, = 10 p-cut
A, M; FE N ML .
n-cu
~ FT,N; FAE N IO
FT.AE I n-eut
: A, P TI FA,BL:II
LR T & FT; P A PHT
FI'; P& B FAP-& BT ~ p-cut
! T AT ! ! p-cut FITLAGIT
: FANLTI FA B+ IO
_COLNS o) T & FILN;  FANS T
FT': N®B FAN-&B-; 11 ~ n-cut
T AT p-cut FI,AGIL

11



T I

;1

FT. L

et FTG I
FI:I0
. vl
Fmy; o FANT FILN; R A N
FT;IN R AN p-cut ~ T A p-cut
T, A o
7. P A, P
SLP T2l gy F0,P; AP
;1P - A, 7Pt p-cut ~ T A n-cut
T, A i T
? . FAII
Frn! TARmLE Y - AL,
S }—‘TA'H" L p-cut T, A TT v
FL A, |
9T A- FAL?AL 24111 FOrLA: FI0; 1A T R APAL AL TT
1 B N ’ ) ) 2 ’ )
Fr A FA7AL S e~ R IAC FUAPAT T
S, A T preut ST AT !
BN
Left commutative p-steps
+FT,A B; P FT,A,B; P FAPL:II cut
FT,A%B; P AP FT.A A B 11 P
FT,A, A% B; I P FT.A AN B: 10
"L AP FDB P
FT,A&B:; P AP TT cut
FT,A A& B 10 P
FT,A; P A PHII oy LB P A, P II
- FT.A, A 1T P FT.A, B I
FT,A, A& B; I
-I; P FT; P FAPH I
FT,1; P AP T - FT,A; 10 p-cut
9 9 ) bl p-CUt 9 5 J_
FT,A, L I FT,A, L; I
TT,T;P | AP = T
: ’I—FAT'H’ — p-cut ~ FTLA, T II
Fr; P, FI; P FA P ;
FT.74.p ‘¥ FAPbI L FT, A T pred
FT,A7A; 0 i

)
FT,A?A; 11 Y



FL7A A P FI,?A,7A; P FAPL: I ;
FrrA; P ¢ FAPH T Frarazan U
FT,A,74; 11 b FT.A7A T ¢

Right commutative p-steps
AP P FO; P FAPH P
‘P rapLp; " - FT,A; P peut
b) ) b 7p_cut )y = fOC
FT,A, P, FT,A, P,
FAA B, P T FT; P FAABPL I ot
FrsP EAA¥BPLT FT,A A, B 10 P
FT,A AN B 10 L FT,A A% B 10
FAPH P FESQ FIO; P FAPH P
FT; P FAEPL PR FT,A; P et =g .
-CU
FT,AZ: P o0 P FT.AZ: P oQ
FA, P N; FE5Q FT; P FAPLN; ot
FT; P ~AEPLNeQ FT,AN; P FE5Q
FT,AZ. N®Q b FT,AZ. N®Q
FA,N; FEPLQ FI; P FEPLQ .
-CU
T P FAZEPL:N®Q ; AN FRE;Q@) P
FT.AE: N®Q pred FT,AZ;N®Q
FAPY N, FEM; Iy P FA PN .
T P FAEPLNeM v FT,AN; pret FEM;
FT.AE.NoM pred FT,AE;NoM
FAPL AT I—A,PL,B;H&
FT: P FA P A&B;TI ut
FT,A A& B; I P
FT: P FAPL AT PR i FA,P- B; 11 eut
~ FT.A, A 11 P FTAB p
FT,A A& B; 11
AP P FD; P FA PP
&1 p-cut
;P bFAPYLPeB FTA P
FT.A: P o B b FT,A: PP aB
A, Pt N; FT; P FAPLN;
FT:P +FAPLNoB 1t - "TAN: p-eut
FT,A: N B pred FTLA:Nao B

13



FA,PL:TI N
FT; P A, P LTI oul ~
FT.A, L 10 p
-
FT:; P FA,T,PL: 11 eul
FT,A, T 10 P
F?A,7AL B |
o 1A F2A,2AL: 1B ~
7T, 7A; 1B p-cut
FA,PL: P 24
FT; P FAPLPG ~
FT,A, 7P ; p-cut
A, PY N 2
Fr;P FAPLOING T
FT.A,7N - pmct
FA,PH T
FT: P I—A,P%?A;H’wt ~
FT.A, 74 10 pret
FA,PL 74,74 11 )
T P FA PL AT ‘Ct -
FT. A 7A; 10 p-ct
Commutative n-steps
FI,P; P foc
T, P P'; - A, Pt ~
FT,A, P n-cut
FT,A,B,P; 10 5
FT,A® B,P; 11 A, P, . s
FT,AA¥B; 10 el
FT,P; P I—A;Q@
FI,AP; PP®Q F=, Pt ; ~
FT.AZ: P @0 el
FI,P,N; I—A;Q®
FI,A,P; N®Q F =, Pt e
n-cut

FD,LAZ, N®Q

14

FI'; P

FA, P II

p-cut

-0 1A

FT.A: T
FT.A LT+

FT,A, T IO

F?A,7AL B

T

p-cut

FI; P

- 7T, ?A, B;
F7T,7A; 1B -

FA PP

p-cul

FT,A; P
FT,A, 7P,

FT: P FA,PL N:

7d

p-cut

FI; P

FT,A/N;

FT,A, 7N ;

A, PLTI

7d

p-cut

FT,A; I

FT,A7A; 1T

FT: P FAPL 2474, 10

Tw

p-cut

FT,A,7A,7A4; 1T

FT,A7A; 1

FT,P; P

A, Py

rc

n-cut

FT,A; P

FT,A P

FT,A,B,P; 11

foc

FA, Pt
n-cut

FT,A, A, B 1

»

FT,A AR B, 11

-T,P; P

-Z, Pt

n-cut

FT,

—_
—
—

.P/

FA;Q

FT,P,N;

FT,AZ: PP eQ

FT,

[1]

N

-E, Pt

n-cut

FAQ

FIDLAZ, N®Q

&

®



FIT,N; FAP;Q FAP;Q I—E,PJ‘;

FT,A,P; N®Q ® I—E,PL; e eut ~> FI',N; FAE; Q ® n-cut
FT,AZ;: N®Q FILAE; N®Q
FTPN:  FAM:
FT,AP; NoM FZ, Pt .
FT,LAE. N M et
FT,P,N; F =, P, .
- FT,2,N; et LA M o
FT,AE; No M
FTPAST FTRBIT
FILP,A& B 11 FA,PL: ;
FT,A A& B 10 et
FT,P,A; 10 - A, Pt . FT,P,B; Il FA, Pt .
- FTLAAG T e ~rABm T
FI,A A& B; 10
-I,P; P FI,P; PP FA P .
FT,P; PaB ' kAP ; ~ FT AP & e
n-cu
FT,A. Po B FT,A. P& B
FT,P, N ; o FT,P,N; - A, P .
FLPNGB L FAPL AN,
FT,A;NoB b FI,LA;NeB
_Fnpesi FDLPi I AP
FT,P, L 10 - A, PL . FT,A; I n-cut
FTLA, L 1 n-cu FLLA L0+
TP T | kAP SER——
’ ’I—’FAT'H . — n-cut ~ FI,A T II
FLE P FLLP P FA P ;
FLLPTP T RAPY kA T
FT,A, 7P et FT,A7P;
FLAN; L FT,P,N; FA P
FT,P,?N; A, Pt .7 F0LANG et
FT,A,7N; n-cu FT,A,0N; 4
R PIL FD,P; I AP
FT.P7A. 1 'Y kA PL . FTLAGT n-cut
FT,A A 11 oy FT,A2A T Y
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FT,P,7A,7A; 11 FI,P,7A,2A; 11+ A, Pt
FT,P?2A 11 ¢ FA,PL s FT,A,7A,7A; 10

FT,A7A; 10 n-cut FTAA T C

n-cut

A.2 Cut elimination property

A.2.1 LLTY

The system LLlﬁ1 is obtained from LL by “restricting” formulas to the following grammar:
P == X | PP | P®P | 1 | 0 | IN | IN
N == X+t | N®N | N&N | L | T | ?2P | TP

with the following rules for the T and 4 connectives:

FNN T, P
N AN T, 1P

where A is a multi-set of negative formulas.

A.2.2 LLP

The system LLP is obtained from LL by restricting formulas to the following grammar:

P = X | PP | PP | 1 | 0 | IN
N == X+ | N®N | N&N | L | T | ?P
with the following generalizations of the exponential rules:
FN,N FT,P FT FT,N,N
— | ——>55 (d v v lw — ‘¢
FN,IN FT,?P FT,N FT,N

where N is a multi-set of negative formulas.

Proposition 3 (Strong normalization)
There is no infinite sequence of reductions in LLP if we forbid commutations of cuts.

PRrROOF: Such a sequence of reductions can only contain finitely many steps between two steps
that correspond to a reduction step in proof-nets. Thus by strong normalization for proof-
nets [Lau02] we can conclude. O

Corollary 3.1 (Cut elimination)
If = T is provable in LLP, then - I' is provable without the cut rule.
A.2.3 Simulations

The translation (.)' of Linl into LLP is obtained by replacing {N by !N and TP by ?P and the two
lifting rules by promotion and dereliction.

Lemma 1 (Polarized formulas)
If A is a positive (resp. negative) formula in L
LLP.

L’N

o1 then A" is a positive (resp. negative) formula in
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Proposition 4 (One-to-one simulation)
If ™ reduces to 7' in LLZ;L1 by one step of reduction then 7 reduces to " in LLP by one step of
reduction.

Corollary 4.1 (Strong normalization)
There is no infinite sequence of reductions in LLEi1 if we forbid commutations of cuts.

Corollary 4.2 (Cut elimination)
If =T is provable in LLIil, then FT' is provable without the cut rule.

The translation (.)" of LL, into LLlil is obtained by adding to formulas exactly the required
liftings to get a polarized formula, and by translating the sequent - P, N ; II by + PT N7 II".
In particular (/P % 1)" = T11PT 2 11.

Proposition 5 (Strict simulation)
If 7 reduces to @' in LLy, by one step of reduction then ' reduces to ©'" in LLIIi1 by at least one
step of reduction.

Corollary 5.1 (Strong normalization)
There is no infinite sequence of reductions in Ll if we forbid commutations of cuts.

Corollary 5.2 (Cut elimination)
If = T'; 11 is provable in LLg,, then F 1'; II is provable without the cut rules.

ProOOF: We consider a cut rule without any cut above it. We look at the two different cases:

e If it is a n-cut, we look at the rule above the premise - I', P; II. If the rule above it
introduces P, it is either a foc rule or a T rule and we apply the corresponding key step
(and the n-cut becomes a p-cut) or commutative n-step. Otherwise this rule cannot be
an az rule, a 1 rule or a ! rule and we can apply the corresponding commutative n-step.

e If it is a p-cut, we first look at the premise - I"; P. If P is not a main formula, we can
apply a left commutative p-step. If P is a main formula and P is not, we can apply
the corresponding right commutative p-step (notice that the rule above P+ cannot be a
1 rule). We just have to verify that we can apply the right commutative p-step in the
case of a ! rule above PT: since P is main, the rule above it is either an az rule or a
I rule and we can apply the reduction step. If both P and P are main, we apply the
corresponding key step.

So that, either the proof is cut-free or a reduction step can be applied, and we conclude by
strong normalization. O
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