A Proof of the Focusing Property of Linear Logic

Olivier LAURENT

Laboratoire de l'Informatique du Parallélisme (UMR 5668)
Université de Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1
46, allée d'Italie - 69364 Lyon cedex 07 - FRANCE
Olivier.Laurent@ens-lyon.fr

May 5, 2004 — revised September 13, 2017

The focusing property of linear logic has been discovered by J.-M. Andreoli [And90, And92] in the beginning of the 90's. It is one of the main properties of Linear Logic that appeared after the original paper of J.-Y. Girard [Gir87]. This property is proved in various papers [And90, Gir91, DJS97]¹ but, as far as we know never for the usual LL sequent calculus (or with an intricate induction in Andreoli's thesis, which is replaced here by a cut elimination property).

The proof we give is a compilation of the previous proofs and proof techniques, our goal is just to give a complete presentation of a proof of this property which appears to be more and more important in the current research in Linear Logic [Gir91, DJS97, Gir01, Lau02].

We decompose the usual focusing property into two technically different steps: weak focusing (the decompositions of two positive formulas are not interleaved, see LL_{foc}) and reversing (negative rules are applied as late as possible from a top-down point of view, see LL_{Foc}).

1 Linear Logic and the Focusing Property

Formulas of (propositional) Linear Logic are given by the usual grammar:

We split this grammar into two sub-classes: positive formulas and negative formulas.

In the sequel:

- A, B, ... denote arbitrary formulas;
- P, Q, R denote positive formulas;
- N, M, L denote negative formulas;

¹Around the time we were writing the first version of this note, A. Saurin also worked on focusing with a different approach. We take the opportunity of this revision to add a reference to his work [MS07].

• X, X^{\perp}, \dots are called atoms or atomic formulas.

We consider the usual rules of Linear Logic [Gir87]:

The main connectives of positive (resp. negative) formulas are called *positive connectives* (resp. negative connectives), that is X, \otimes , \oplus , 1, 0 and ! (resp. X^{\perp} , \Im , &, \bot , \top and ?). The rules introducing positive (resp. negative) connectives are called *positive rules* (resp. negative rules).

A positive (resp. negative) formula is *strictly positive* (resp. *strictly negative*) if its main connective is not! (resp.?). A positive (resp. negative) rule is *strictly positive* (resp. *strictly negative*) if it is not introducing a !A formula (resp. ?A formula).

Definition 1 (Main Positive Tree)

If A is a formula, its main positive tree $\mathcal{T}^+(A)$ is defined by:

$$\mathcal{T}^{+}(N) = \emptyset$$

$$\mathcal{T}^{+}(X) = X$$

$$\mathcal{T}^{+}(A \otimes B) = \mathcal{T}^{+}(A) \otimes \mathcal{T}^{+}(B)$$

$$\mathcal{T}^{+}(A \oplus B) = \mathcal{T}^{+}(A) \oplus \mathcal{T}^{+}(B)$$

$$\mathcal{T}^{+}(1) = 1$$

$$\mathcal{T}^{+}(0) = 0$$

$$\mathcal{T}^{+}(!A) = !$$

 $\mathcal{T}^+(A)$ is a (possibly empty) tree whose nodes are \otimes , \oplus (with arity at most 2) and !, 1, 0 or X (with arity 0).

Definition 2 (Weakly +-Focused Proof)

A proof π in LL is weakly +-focused if it is cut-free and, for any subproof π' of π with conclusion $\vdash \Gamma, A$, the only positive rules of π' between two rules introducing connectives of $\mathcal{T}^+(A)$ are rules introducing connectives of $\mathcal{T}^+(A)$.

Definition 3 (Strongly +-Focused Proof)

A proof π in LL is strongly + -focused if it is cut-free and, for any subproof π' of π with conclusion $\vdash \Gamma, A$, the only rules of π' between two rules introducing connectives of $\mathcal{T}^+(A)$ are rules introducing connectives of $\mathcal{T}^+(A)$.

Definition 4 (Reversed Proof)

A proof π in LL is reversed if, for any subproof π' of π with conclusion $\vdash \Gamma, N$ with N a strictly negative non-atomic formula, the last rule of π' is a strictly negative rule (i.e. a \Re , &, \bot or \top rule).

Definition 5 (Focused Proof)

A proof π in LL is *focused* if it is both strongly +-focused and reversed.

Remark: Various systems for classical logic related with focusing constraints have been introduced. In particular Girard's LC [Gir91] corresponds to weak +-focusing, Danos-Joinet-Schellinx's LK^{η} [DJS97] corresponds to strong +-focusing and Quatrini-Tortora de Falco's LK^{η,ρ} [QTdF96] corresponds to focusing since their ρ -constraint is a reversing constraint.

2 Weakly Focused Linear Logic

2.1 Sequent Calculus LL_{foc}

A sequent of LL_foc has the shape $\vdash \Gamma$; Π where Γ is a multi-set of formulas and Π is either empty or contains a unique positive formula.

The rules are a linear logic version of the rules of Girard's LC [Gir91]:

2.2 Expansion of Axioms

Given a positive formula P, the sequent $\vdash P^{\perp}$; P is provable in LL_{foc} by means of the ax rule. Moreover, if P is not atomic, it is also possible to give a proof based only on ax rules applied to the sub-formulas of P (and thus, by an easy induction, to the atomic sub-formulas of P):

$$\frac{ | P^{\perp}; P - P^{\perp}; Q |}{ | P^{\perp}, Q^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}, Q^{\perp}; P \otimes Q |}{ | P^{\perp}, Q^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}; P - P^{\perp}, Q^{\perp}; P \otimes Q |}{ | P^{\perp}, Q^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}; P - P^{\perp}, M^{\perp}; P \otimes M |}{ | P^{\perp}, M^{\perp}; P \otimes M |} \otimes \\ \frac{| P^{\perp}; P - P^{\perp}, M^{\perp}; P \otimes M |}{ | P^{\perp}, P^{\perp}, P \otimes M |} \otimes \\ \frac{| P^{\perp}; P - P^{\perp}; P \otimes Q |}{ | P^{\perp}, P^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}; P - P^{\perp}; P \otimes Q \otimes}{ | P^{\perp}, P^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}; P - P^{\perp}; P \otimes Q \otimes}{ | P^{\perp}, P^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}; P - P^{\perp}; P \otimes Q \otimes}{ | P^{\perp}, P^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}; P \otimes Q \otimes}{ | P^{\perp}, P^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}; P \otimes Q \otimes}{ | P^{\perp}, P^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}; P \otimes Q \otimes}{ | P^{\perp}, P^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}; P \otimes Q \otimes}{ | P^{\perp}, P^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}; P \otimes Q \otimes}{ | P^{\perp}, P^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}; P \otimes Q \otimes}{ | P^{\perp}, P^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}; P \otimes Q \otimes}{ | P^{\perp}, P^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}; P \otimes Q \otimes}{ | P^{\perp}; P^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}; P \otimes Q \otimes}{ | P^{\perp}; P^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}; P \otimes Q \otimes}{ | P^{\perp}; P^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}; P \otimes Q \otimes}{ | P^{\perp}; P^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}; P \otimes Q \otimes}{ | P^{\perp}; P^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}; P \otimes Q \otimes}{ | P^{\perp}; P^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}; P \otimes Q \otimes}{ | P^{\perp}; P^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}; P \otimes Q \otimes}{ | P^{\perp}; P^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}; P \otimes Q \otimes}{ | P^{\perp}; P^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}; P \otimes Q \otimes}{ | P^{\perp}; P^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}; P \otimes Q \otimes}{ | P^{\perp}; P^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}; P \otimes Q \otimes}{ | P^{\perp}; P^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}; P \otimes Q \otimes}{ | P^{\perp}; P^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}; P \otimes Q \otimes}{ | P^{\perp}; P^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}; P \otimes Q \otimes}{ | P^{\perp}; P^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}; P \otimes Q \otimes}{ | P^{\perp}; P^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}; P \otimes Q \otimes}{ | P^{\perp}; P^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}; P \otimes Q \otimes}{ | P^{\perp}; P^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}; P \otimes Q \otimes}{ | P^{\perp}; P^{\perp}; P^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}; P \otimes Q \otimes}{ | P^{\perp}; P^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}; P \otimes Q \otimes}{ | P^{\perp}; P^{\perp}; P^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp}; P \otimes Q \otimes}{ | P^{\perp}; P^{\perp}; P^{\perp}; P \otimes Q |} \otimes \\ \frac{| P^{\perp};$$

Similarly it is possible to restrict the application of the \top rule to the case where the context Γ does not contain any formula of the shape A ? B, A & B or \bot . This is proved by induction on the sum of the sizes of formulas in Γ , using the expansions:

$$\frac{\overline{\vdash \Gamma, A, B, \top; \Pi} \; \top}{\vdash \Gamma, A \; ? \; B, \top; \Pi} \; ? \qquad \frac{\overline{\vdash \Gamma, A, \top; \Pi} \; \top \; \overline{\vdash \Gamma, B, \top; \Pi} \; \top}{\vdash \Gamma, A \; \& \; B, \top; \Pi} \; \& \qquad \frac{\overline{\vdash \Gamma, \top; \Pi} \; \top}{\vdash \Gamma, \bot, \top; \Pi} \; \bot$$

Lemma 1 (Reversibility)

Let π be a proof in LL_{foc} with expanded axioms and expanded \top rules.

• If the conclusion of π is $\vdash \Gamma$, $A \otimes B$; Π , there exists a smaller (with respect to the number of rules) proof of $\vdash \Gamma$, A, B; Π .

- If the conclusion of π is $\vdash \Gamma, \bot; \Pi$, there exists a smaller proof of $\vdash \Gamma; \Pi$.
- If the conclusion of π is $\vdash \Gamma$, A & B; Π , there exist smaller proofs of $\vdash \Gamma$, A; Π and $\vdash \Gamma$, B; Π .

2.3 Embedding of LL (Weak +-Focusing)

The translation (.) of LL into LL_{foc} does not modify formulas, translates the sequent $\vdash \Gamma$ as $\vdash \Gamma$; and acts on proofs by adding a lot of cuts:

$$\frac{\vdash \Gamma}{\vdash \Gamma, \bot} \bot \qquad \rightsquigarrow \qquad \frac{\vdash \Gamma;}{\vdash \Gamma, \bot;} \bot$$

$$\frac{\vdash \Gamma, \top}{\vdash \Gamma, \top} \top \qquad \rightsquigarrow \qquad \frac{\vdash \Gamma, \top;}{\vdash \Gamma, \top;} \top$$

$$\frac{\vdash ?\Gamma, A}{\vdash ?\Gamma, !A} ! \qquad \rightsquigarrow \qquad \frac{\vdash ?\Gamma, A;}{\vdash ?\Gamma, !A;} \frac{!}{foc}$$

$$\frac{\vdash \Gamma, P}{\vdash \Gamma, ?P} ?d \qquad \rightsquigarrow \qquad \frac{\vdash P^{\bot}; P}{\vdash P^{\bot}, ?P;} \frac{ax}{n \cdot cut}$$

$$\frac{\vdash \Gamma, N}{\vdash \Gamma, ?N} ?d \qquad \rightsquigarrow \qquad \frac{\vdash \Gamma, N;}{\vdash \Gamma, ?N;} ?d$$

$$\frac{\vdash \Gamma, N}{\vdash \Gamma, ?A} ?w \qquad \rightsquigarrow \qquad \frac{\vdash \Gamma, N;}{\vdash \Gamma, ?A;} ?w$$

$$\frac{\vdash \Gamma, ?A, ?A}{\vdash \Gamma, ?A} ?c \qquad \rightsquigarrow \qquad \frac{\vdash \Gamma, ?A, ?A;}{\vdash \Gamma, ?A;} ?c$$

2.4 Focusing in LL_{foc}

If π is a proof in LL_{foc} then π° is the LL proof obtained by erasing all the ";" in the sequents.

Proposition 1 (Cut-Free Weak +-Focusing)

If π is a cut-free proof of $\vdash \Gamma$; Π in LL_{foc} then π° is a weakly +-focused proof of $\vdash \Gamma$, Π in LL .

Corollary 1.1 (Weak +-Focusing)

If $\vdash \Gamma$ is provable in LL, $\vdash \Gamma$ is provable with a weakly +-focused proof.

PROOF: Starting from a proof π of $\vdash \Gamma$, we translate it into the proof π^{\bullet} of $\vdash \Gamma$; in LL_{foc} . Using the cut elimination property given in Appendix A (Corollary 5.2), this leads to a cut-free proof $\pi^{\bullet\prime}$ of $\vdash \Gamma$; in LL_{foc} . By Proposition 1, $(\pi^{\bullet\prime})^{\circ}$ is a weakly +-focused proof of $\vdash \Gamma$ in LL .

3 Focused Linear Logic

3.1 Sequent Calculus LL_{Foc}

In the spirit of [Gir01], we define a sub-system LL_Foc of LL_foc in which the strictly negative formulas in the context of positive rules must be atomic. We consider a cut-free version of the system since it is sufficient for the present development (cut elimination is performed in LL_foc).

There are two kinds of sequents: $\vdash \mathcal{P}, \mathcal{N}$; and $\vdash \mathcal{P}, ?\Gamma, \mathcal{X}^{\perp}$; P where \mathcal{P} contains positive formulas only, \mathcal{N} contains negative formulas only, and \mathcal{X}^{\perp} contains negative atoms only. In order to simplify the notations we will write $\vdash \mathcal{P}, \mathcal{N}$; Π for either a sequent with Π empty or a sequent

with $\Pi = P$ and $\mathcal{N} = ?\Gamma, \mathcal{X}^{\perp}$.

3.2 Embedding of LL_{foo}

Let us first define the relation $\Gamma' \leq \Gamma$ on multi-sets by: any element A in Γ' also belongs to Γ (or equivalently, we have an inclusion of the underlying sets (or supports) of Γ' and Γ).

Lemma 2 (Exponential Inclusion)

If $\vdash \mathcal{P}, \mathcal{N}, ?\Gamma'$; is provable in LL_{Foc} and $\Gamma' \leq \Gamma$ then $\vdash \mathcal{P}, \mathcal{N}, ?\Gamma$; is provable in LL_{Foc} .

We want to embed proofs of LL_{foc} of sequents of the shape $\vdash \Gamma$; into LL_{Foc} . We consider a cut-free proof π with expanded axioms (according to Section 2.2). We proceed by induction on the size (number of rules) of π by showing simultaneously:

- if the conclusion of π is $\vdash \Gamma$; then it is also provable in $\mathsf{LL}_{\mathsf{Foc}}$;
- if the conclusion of π is $\vdash \mathcal{P}, ?\Gamma, \mathcal{X}^{\perp}; P$ then $\vdash \mathcal{P}, ?\Gamma', \mathcal{X}^{\perp}; P$ is provable in LL_{Foc} for some $\Gamma' \leq \Gamma;$

• if the conclusion of π is $\vdash \mathcal{P}, \mathcal{N}$; P and \mathcal{N} contains at least one non-atomic non-? formula, then both $\vdash \mathcal{P}, \mathcal{N}, P$; and $\vdash \mathcal{P}, \mathcal{N}, ?P$; are provable in LL_{Foc} .

We look at the last rule of the proof. The key cases are the foc rules and ?d rules on positive formulas (called a positive ?d rule). We only consider the foc rule (the case of the positive ?d rule is very similar). By induction hypothesis, either we have $\vdash \mathcal{P}, ?\Gamma, \mathcal{X}^{\perp}; P$ in $\mathsf{LL}_{\mathsf{foc}}$ thus $\vdash \mathcal{P}, ?\Gamma', \mathcal{X}^{\perp}; P$ is provable in $\mathsf{LL}_{\mathsf{Foc}}$ with $\Gamma' \leq \Gamma$, and we apply a foc rule and Lemma 2, or we have $\vdash \mathcal{P}, \mathcal{N}; P$ and \mathcal{N} contains at least one non-atomic non-? formula and we directly have $\vdash \mathcal{P}, \mathcal{N}, P$; in $\mathsf{LL}_{\mathsf{Foc}}$.

In order to turn a proof of $\vdash \mathcal{P}, \mathcal{N}; P$ in $\mathsf{LL}_{\mathsf{foc}}$ into a proof of $\vdash \mathcal{P}, \mathcal{N}, P;$ in $\mathsf{LL}_{\mathsf{Foc}}$, we use Lemma 1 and the induction hypothesis which, when \mathcal{N} becomes of the shape $?\Gamma, \mathcal{X}^{\perp}$, requires to use a *foc* rule and Lemma 2.

3.3 Focusing in LL_{Foc}

If π is a proof in LL_{Foc} then π° is the LL proof obtained by erasing all the ";" in the sequents.

Proposition 2 (Cut-Free Focusing)

If π is a cut-free proof of $\vdash \mathcal{P}, \mathcal{N}$; Π in LL_{Foc} then π° is a focused proof of $\vdash \mathcal{P}, \mathcal{N}, \Pi$ in LL .

Corollary 2.1 (Focusing)

If $\vdash \Gamma$ is provable in LL, $\vdash \Gamma$ is provable with a focused proof.

PROOF: Starting from a proof π of $\vdash \Gamma$, we translate it into the proof π^{\bullet} of $\vdash \Gamma$; in LL_{foc} and then into a cut-free proof π' of $\vdash \Gamma$; in LL_{Foc} . By Proposition 2, π'° is a focused proof of $\vdash \Gamma$ in LL .

Remark: It is possible to define the embedding of LL proofs into LL_{Foc} directly (without using LL_{foc} as an intermediary step). We have chosen to decompose it into two steps in order to show that the key property is weak + -focusing. Strong +-focusing is then obtained through reversing which is in general easy to do.

4 Additional Remarks

4.1 Decomposition of Exponentials

The attentive reader has certainly remarked that an hidden decomposition of the exponential connectives underlies the whole text (as suggested by Girard [Gir01]):

$$!A = \downarrow \sharp A$$
 $?A = \uparrow \flat A$

with $\sharp A$ negative and $\flat A$ positive, and \downarrow and \uparrow are used as the corresponding connectives of $\mathsf{LL}^{\uparrow\downarrow}_{\mathsf{pol}}$ (see Appendix A.2.1).

The associated rules in LL_{foc} would be:

$$\begin{array}{cccc} \frac{\vdash ?\Gamma, A;}{\vdash ?\Gamma, \sharp A;} \sharp & & \frac{\vdash \Gamma; P}{\vdash \Gamma; \flat P} \flat & & \frac{\vdash \Gamma, N;}{\vdash \Gamma; \flat N} \flat \\ \\ \frac{\vdash \Gamma, A;}{\vdash \Gamma; \downarrow A} \downarrow & & \frac{\vdash \Gamma; P}{\vdash \Gamma, \uparrow P;} \uparrow & & \frac{\vdash \Gamma, N;}{\vdash \Gamma, \uparrow N;} \uparrow \end{array}$$

However it is difficult to give a meaning to $\sharp A$ (resp. $\flat A$) under any other connective than \downarrow (resp. \uparrow).

4.2 Quantifiers

Our method can perfectly be extended to quantification (of any order) by adding $\exists \alpha A$ (resp. $\forall \alpha A$) in positive (resp. negative) formulas and the following rules in $\mathsf{LL}_{\mathsf{foc}}$:

$$\frac{\vdash \Gamma; P}{\vdash \Gamma; \exists \alpha P} \exists \qquad \frac{\vdash \Gamma, N;}{\vdash \Gamma; \exists \alpha N} \exists \qquad \frac{\vdash \Gamma, A; \Pi}{\vdash \Gamma, \forall \alpha A; \Pi} \forall$$

with α free neither in Γ nor in Π in the \forall rule.

The corresponding rules in LL_{Foc} are:

$$\frac{\vdash \mathcal{P}, ?\Gamma, \mathcal{X}^{\perp}; P}{\vdash \mathcal{P}, ?\Gamma, \mathcal{X}^{\perp}; \exists \alpha P} \exists \qquad \frac{\vdash \mathcal{P}, ?\Gamma, \mathcal{X}^{\perp}, N;}{\vdash \mathcal{P}, ?\Gamma, \mathcal{X}^{\perp}; \exists \alpha N} \exists \qquad \frac{\vdash \mathcal{P}, \mathcal{N}, A;}{\vdash \mathcal{P}, \mathcal{N}, \forall \alpha A;} \forall$$

with α free neither in \mathcal{P} nor in \mathcal{N} in the \forall rule.

References

- [And90] Jean-Marc Andreoli. Proposition pour une synthèse des paradigmes de la programmation logique et de la programmation par objets. Thèse de doctorat, Université Paris VI, June 1990.
- [And92] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. *Journal of Logic and Computation*, 2(3):297–347, 1992.
- [DJS97] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. A new deconstructive logic: linear logic. *Journal of Symbolic Logic*, 62(3):755–807, September 1997.
- [Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
- [Gir91] Jean-Yves Girard. A new constructive logic: classical logic. *Mathematical Structures in Computer Science*, 1(3):255–296, 1991.
- [Gir01] Jean-Yves Girard. Locus solum: From the rules of logic to the logic of rules. *Mathematical Structures in Computer Science*, 11(3):301–506, June 2001.
- [Lau02] Olivier Laurent. Étude de la polarisation en logique. Thèse de doctorat, Université Aix-Marseille II, March 2002.
- [MS07] Dale Miller and Alexis Saurin. From proofs to focused proofs: A modular proof of focalization in linear logic. In Jacques Duparc and Thomas A. Henzinger, editors, Computer Science Logic, volume 4646 of Lecture Notes in Computer Science, pages 405–419. Springer, 2007.
- [QTdF96] Myriam Quatrini and Lorenzo Tortora de Falco. Polarisation des preuves classiques et renversement. Comptes Rendus de l'Académie des Sciences de Paris, 323:113–116, 1996.

A Cut Elimination in LL_{foc}

A.1 Cut Elimination Steps

Key Steps

$$\frac{\frac{\vdash \Gamma;\Pi}{\vdash \Gamma;\Pi} \stackrel{\vdash}{\perp} \frac{\Gamma;\Pi}{\vdash \Gamma;\Pi} \stackrel{\vdash}{\perp}}{\vdash \Gamma;\Pi} \stackrel{\vdash}{\rightarrow} \frac{\Gamma;\Pi}{\vdash \Gamma;\Pi} \stackrel{\vdash}{\rightarrow} \frac{\Gamma;\Pi}{\rightarrow} \frac{\Gamma;\Pi}{\vdash \Gamma;\Pi} \stackrel{\vdash}{\rightarrow} \frac{\Gamma;\Pi}{\rightarrow} \frac{\Gamma;\Pi}{\vdash \Gamma;\Pi} \stackrel{\vdash}{\rightarrow} \frac{\Gamma;\Pi}{\rightarrow} \frac{\Gamma;\Pi}{\vdash \Gamma;\Pi} \stackrel{\vdash}{\rightarrow} \frac{\Gamma;\Pi}{\vdash \Gamma;\Pi}$$

Left Commutative p-Steps

$$\frac{\vdash \Gamma,?A,?A\,;\,P}{\vdash \Gamma,?A\,;\,P}\,?c \qquad \vdash \Delta,P^\perp\,;\,\Pi}{\vdash \Gamma,\Delta,?A\,;\,\Pi}\,p\text{-}cut \qquad \leadsto \qquad \frac{\vdash \Gamma,?A,?A\,;\,P \qquad \vdash \Delta,P^\perp\,;\,\Pi}{\vdash \Gamma,\Delta,?A\,;\,\Pi}\,?c}{\vdash \Gamma,\Delta,?A\,;\,\Pi}\,?c$$

Right Commutative p-Steps

$$\frac{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; P'} foc}{\vdash \vdash \Gamma, \Delta, P';} foc}{\vdash \vdash \Gamma, \Delta, P';} foc} \longrightarrow \frac{\vdash \Gamma; P \xrightarrow{\vdash \Delta, A}, P' \vdots P'}{\vdash \Gamma, \Delta, P';} foc}{\vdash \Gamma, \Delta, P';} foc} \longrightarrow \frac{\vdash \Gamma; P \xrightarrow{\vdash \Delta, A}, B, P^{\perp}; \Pi}{\vdash \Gamma, \Delta, A} p-cut}{\vdash \Gamma, \Delta, A} \xrightarrow{\vdash B} p-cut} \longrightarrow \frac{\vdash \Gamma; P \xrightarrow{\vdash \Delta, A}, B, P^{\perp}; \Pi}{\vdash \Gamma, \Delta, A} \xrightarrow{\vdash B} p-cut}{\vdash \Gamma, \Delta, A} \xrightarrow{\vdash B} \xrightarrow{\vdash \Gamma} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, A}, B; \Pi} y-cut} \longrightarrow \frac{\vdash \Gamma; P \xrightarrow{\vdash \Delta, A}, B; \Pi}{\vdash \Gamma, \Delta, A} \xrightarrow{\vdash B} p-cut}{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; P' \otimes Q}} p-cut} \longrightarrow \frac{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; P'} p-cut}{\vdash \Gamma, \Delta, E; P' \otimes Q} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; N}; p-cut}}{\vdash \Gamma, \Delta, E; P' \otimes Q} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; N}; p-cut}} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; N \otimes Q}} p-cut} \longrightarrow \frac{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; N}; p-cut}{\vdash \Gamma, \Delta, E; N \otimes Q} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; N}; p-cut}} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; N \otimes M}} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; N \otimes M}} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; N \otimes M}} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; N \otimes M}} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; N \otimes M}} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; P' \oplus B}} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; P' \oplus B}} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; P' \oplus B}} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; P' \oplus B}} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; P' \oplus B}} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; P' \oplus B}} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; P' \oplus B}} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; P' \oplus B}} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; P' \oplus B}} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; P' \oplus B}} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; P' \oplus B}} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; P' \oplus B}} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; P' \oplus B}} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; P' \oplus B}} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; P' \oplus B}} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; P' \oplus B}} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; P' \oplus B}} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; P' \oplus B}} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; P' \oplus B}} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; P' \oplus B}} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; P' \oplus B}} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; P' \oplus B}} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; P' \oplus B}} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; P' \oplus B}} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; P' \oplus B}} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; P' \oplus B}} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; P' \oplus B}} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; P' \oplus B}} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp}; P' \oplus B}} p-cut} \xrightarrow{\vdash \Gamma; P \xrightarrow{\vdash \Delta, P^{\perp$$

Commutative *n*-Steps

$$\frac{\frac{\vdash \Gamma, P; P'}{\vdash \Gamma, P, P';} foc}{\vdash \Gamma, P, P';} foc} \vdash \Delta, P^{\perp}; n\text{-}cut \qquad \longrightarrow \qquad \frac{\frac{\vdash \Gamma, P; P'}{\vdash \Gamma, \Delta, P';} foc}{\frac{\vdash \Gamma, A, B, P; \Pi}{\vdash \Gamma, A, B'} } n\text{-}cut} \qquad \longrightarrow \qquad \frac{\frac{\vdash \Gamma, A, B, P; \Pi}{\vdash \Gamma, A, B'} foc}{\frac{\vdash \Gamma, A, B, P; \Pi}{\vdash \Gamma, A, A' B'; \Pi}} n\text{-}cut} \qquad \longrightarrow \qquad \frac{\frac{\vdash \Gamma, P; P'}{\vdash \Gamma, A, A' B'; \Pi}}{\frac{\vdash \Gamma, P; P'}{\vdash \Gamma, A, A' B'; \Pi}} n\text{-}cut} \qquad \longrightarrow \qquad \frac{\frac{\vdash \Gamma, P; P'}{\vdash \Gamma, A, A' B'; \Pi}}{\frac{\vdash \Gamma, P; P'}{\vdash \Gamma, A, A' B'; \Pi}} n\text{-}cut} \qquad \longrightarrow \qquad \frac{\frac{\vdash \Gamma, P; P'}{\vdash \Gamma, A, A' B'; \Pi}}{\frac{\vdash \Gamma, P; P'}{\vdash \Gamma, A, A' B'; \Pi}} n\text{-}cut} \vdash \Delta; Q \otimes \frac{\vdash \Gamma, P, N; \qquad \vdash \Sigma, P^{\perp};}{\vdash \Gamma, A, E; N \otimes Q}} \otimes \frac{\vdash \Gamma, P, N; \qquad \vdash \Sigma, P^{\perp};}{\vdash \Gamma, A, E; N \otimes Q}} \otimes \frac{\vdash \Gamma, P, N; \qquad \vdash \Sigma, P^{\perp};}{\vdash \Gamma, A, E; N \otimes Q}} \otimes \frac{\vdash \Gamma, P, N; \qquad \vdash \Sigma, P^{\perp};}{\vdash \Gamma, A, E; N \otimes Q}} \otimes \frac{\vdash \Gamma, P, N; \qquad \vdash \Sigma, P^{\perp};}{\vdash \Gamma, A, E; N \otimes Q}} \otimes \frac{\vdash \Gamma, P, N; \qquad \vdash \Sigma, P^{\perp};}{\vdash \Gamma, A, E; N \otimes Q}} \otimes \frac{\vdash \Gamma, P, N; \qquad \vdash \Sigma, P^{\perp};}{\vdash \Gamma, A, E; N \otimes Q}} \otimes \frac{\vdash \Gamma, P, N; \qquad \vdash \Sigma, P^{\perp};}{\vdash \Gamma, A, E; N \otimes Q}} \otimes \frac{\vdash \Gamma, P, N; \qquad \vdash \Sigma, P^{\perp};}{\vdash \Gamma, A, E; N \otimes Q}} \otimes \frac{\vdash \Gamma, P, N; \qquad \vdash \Sigma, P^{\perp};}{\vdash \Gamma, A, E; N \otimes Q}} \otimes \frac{\vdash \Gamma, P, N; \qquad \vdash \Sigma, P^{\perp};}{\vdash \Gamma, A, E; N \otimes Q}} \otimes \frac{\vdash \Gamma, P, N; \qquad \vdash \Sigma, P^{\perp};}{\vdash \Gamma, A, E; N \otimes Q}} \otimes \frac{\vdash \Gamma, P, N; \qquad \vdash \Sigma, P^{\perp};}{\vdash \Gamma, A, E; N \otimes Q}} \otimes \frac{\vdash \Gamma, P, N; \qquad \vdash \Sigma, P^{\perp};}{\vdash \Gamma, A, E; N \otimes Q}} \otimes \frac{\vdash \Gamma, P, N; \qquad \vdash \Sigma, P^{\perp};}{\vdash \Gamma, A, E; N \otimes Q}} \otimes \frac{\vdash \Gamma, P, N; \qquad \vdash \Sigma, P^{\perp};}{\vdash \Gamma, A, E; N \otimes Q}} \otimes \frac{\vdash \Gamma, P, N; \qquad \vdash \Sigma, P^{\perp};}{\vdash \Gamma, A, E; N \otimes Q}} \otimes \frac{\vdash \Gamma, P, N; \qquad \vdash \Sigma, P^{\perp};}{\vdash \Gamma, A, E; N \otimes Q}} \otimes \frac{\vdash \Gamma, P, N; \qquad \vdash \Sigma, P^{\perp};}{\vdash \Gamma, A, E; N \otimes Q}} \otimes \frac{\vdash \Gamma, P, N; \qquad \vdash \Sigma, P^{\perp};}{\vdash \Gamma, A, E; N \otimes Q}} \otimes \frac{\vdash \Gamma, P, N; \qquad \vdash \Sigma, P^{\perp};}{\vdash \Gamma, A, E; N \otimes Q}} \otimes \frac{\vdash \Gamma, P, N; \qquad \vdash \Sigma, P^{\perp};}{\vdash \Gamma, E, P, E;} \otimes \frac{\vdash \Gamma, P, N;}{\vdash \Gamma, E, P, E;} \otimes \frac{\vdash \Gamma, P, N;}{\vdash \Gamma, E, P}} \otimes \frac{\vdash \Gamma, P, N;}{\vdash \Gamma, E, P}} \otimes \frac{\vdash \Gamma, P, N;}{\vdash \Gamma, E, P}} \otimes \frac{\vdash \Gamma, P, P, P;}{\vdash \Gamma, E, P}} \otimes \frac{\vdash \Gamma, P, P, P, P;}{\vdash \Gamma, E, P}} \otimes \frac{\vdash \Gamma, P, P, P;}{\vdash \Gamma, E, P}} \otimes \frac{\vdash \Gamma, P, P, P;}{\vdash \Gamma, E, P}} \otimes \frac{\vdash \Gamma, P, P, P;}{\vdash \Gamma, E, P}} \otimes \frac{\vdash \Gamma, P, P, P, P;}{\vdash \Gamma, E, P}} \otimes \frac{\vdash \Gamma, P, P, P, P;}{\vdash \Gamma, E, P}} \otimes \frac{\vdash \Gamma, P, P, P, P, P, P;}{\vdash \Gamma, E, P}} \otimes \frac{\vdash \Gamma, P, P, P, P, P, P, P;}{\vdash \Gamma, E, P}} \otimes \frac{\vdash \Gamma, P, P, P, P, P, P}}{\vdash \Gamma, P, P,$$

$$\begin{array}{c} +\Gamma,N; \quad \vdash \Delta,P;Q \\ \hline +\Gamma,\Delta,P;N\otimes Q \\ \hline +\Gamma,\Delta,P;N\otimes Q \\ \hline \end{array} \xrightarrow{} +\Gamma,\Delta,P;N\otimes Q \\ \hline \end{array} \xrightarrow{} +\Gamma,\Delta,P;N\otimes M \xrightarrow{} +\Sigma,P^{\perp}; \\ \hline +\Gamma,\Delta,P;N\otimes M \xrightarrow{} +\Sigma,P^{\perp}; \\ \hline +\Gamma,\Delta,P;N\otimes M \xrightarrow{} +\Gamma,\Delta,P;N\otimes M \\ \hline \end{array} \xrightarrow{} +\Gamma,P,N; \quad \vdash \Delta,M; \\ \hline \times \xrightarrow{} +\Gamma,D,X;N\otimes M \xrightarrow{} +\Sigma,P^{\perp}; \\ \hline +\Gamma,P,A;\Pi \rightarrow \Gamma,P,B;\Pi \\ \hline +\Gamma,P,A\otimes B;\Pi \xrightarrow{} +\Gamma,P,A;\Pi \rightarrow D,P^{\perp}; \\ \hline +\Gamma,P,A\otimes B;\Pi \xrightarrow{} +\Gamma,P,A;\Pi \rightarrow D,P^{\perp}; \\ \hline +\Gamma,P,P,P' \mapsto B \xrightarrow{} \oplus 1 \rightarrow D,P^{\perp}; \\ \hline +\Gamma,P,P' \mapsto P' \oplus B \xrightarrow{} +\Delta,P^{\perp}; \\ \hline +\Gamma,P,P;N' \mapsto P,D,N; \xrightarrow{} +\Sigma,P' \mapsto D,D^{\perp}; \\ \hline +\Gamma,P,P;N' \mapsto P,D,N; \xrightarrow{} +\Sigma,P' \mapsto D,D^{\perp}; \\ \hline +\Gamma,P,P;\Pi \rightarrow D,P^{\perp}; \\ \hline +\Gamma,P,P;\Pi \rightarrow D,D^{\perp}; \\ \hline +\Gamma,P,N; \rightarrow D,D^{\perp}; \\ \hline$$

A.2 Cut Elimination Property

A.2.1 $\mathsf{LL}^{\uparrow\downarrow}_{\mathsf{pol}}$

The system $LL_{pol}^{\uparrow\downarrow}$ is obtained from LL by "restricting" formulas to the following grammar:

with the following rules for the \uparrow and \downarrow connectives:

$$\frac{\vdash \mathcal{N}, N}{\vdash \mathcal{N}, \downarrow N} \downarrow \qquad \qquad \frac{\vdash \Gamma, P}{\vdash \Gamma, \uparrow P} \uparrow$$

where \mathcal{N} is a multi-set of negative formulas.

A.2.2 LLP

The system LLP is obtained from LL by restricting formulas to the following grammar:

with the following generalizations of the exponential rules:

$$\frac{\vdash \mathcal{N}, N}{\vdash \mathcal{N}, !N} \; ! \qquad \qquad \frac{\vdash \Gamma, P}{\vdash \Gamma, ?P} \; ?d \qquad \qquad \frac{\vdash \Gamma}{\vdash \Gamma, N} \; ?w \qquad \qquad \frac{\vdash \Gamma, N, N}{\vdash \Gamma, N} \; ?c$$

where \mathcal{N} is a multi-set of negative formulas of LLP.

Proposition 3 (Strong Normalization)

There is no infinite sequence of reductions in LLP if we forbid commutations of cuts with cuts.

PROOF: Such a sequence of reductions can only contain finitely many steps between two steps that correspond to a reduction step in proof-nets. Thus by strong normalization for proofnets [Lau02] we can conclude.

Corollary 3.1 (Cut Elimination)

If $\vdash \Gamma$ is provable in LLP, then $\vdash \Gamma$ is provable without the cut rule.

A.2.3 Simulations

The translation (.)! of $\mathsf{LL}^{\uparrow\downarrow}_{\mathsf{pol}}$ into LLP is obtained by replacing $\downarrow N$ by !N and $\uparrow P$ by ?P and the two lifting rules by promotion and dereliction.

Lemma 3 (Polarized Formulas)

If A is a positive (resp. negative) formula in $LL^{\uparrow\downarrow}_{pol}$ then $A^!$ is a positive (resp. negative) formula in LLP.

Proposition 4 (One-to-One Simulation)

If π reduces to π' in $LL_{pol}^{\uparrow\downarrow}$ by one step of reduction then $\pi^!$ reduces to $\pi'^!$ in LLP by one step of reduction.

Corollary 4.1 (Strong Normalization)

There is no infinite sequence of reductions in $LL_{pol}^{\uparrow\downarrow}$ if we forbid commutations of cuts with cuts.

Corollary 4.2 (Cut Elimination)

If $\vdash \Gamma$ is provable in $\mathsf{LL}^{\uparrow\downarrow}_{\mathsf{pol}}$, then $\vdash \Gamma$ is provable without the cut rule.

The translation $(.)^{\uparrow}$ of LL_{foc} into $\mathsf{LL}_{pol}^{\uparrow\downarrow}$ is obtained by adding to formulas exactly the required liftings to get a polarized formula, and by translating the sequent $\vdash \mathcal{P}, \mathcal{N}; \Pi$ by $\vdash \uparrow \mathcal{P}^{\uparrow}, \mathcal{N}^{\uparrow}, \Pi^{\uparrow}$. In particular $(!P \, \Im \, 1)^{\uparrow} = \uparrow ! \uparrow P^{\uparrow} \, \Im \, \uparrow 1$.

Proposition 5 (Strict Simulation)

If π reduces to π' in LL_{foc} by one step of reduction then π^{\uparrow} reduces to π'^{\uparrow} in $LL_{pol}^{\uparrow\downarrow}$ by at least one step of reduction.

Corollary 5.1 (Strong Normalization)

There is no infinite sequence of reductions in LL_{foc} if we forbid commutations of cuts with cuts.

Corollary 5.2 (Cut Elimination)

If $\vdash \Gamma$; Π is provable in LL_{foc} , then $\vdash \Gamma$; Π is provable without cuts.

PROOF: We consider a cut without any cut above it. We look at the two different cases:

- If it is a n-cut, we look at the rule above the premise $\vdash \Gamma, P$; Π . If the rule above it introduces P, it is either a foc rule or a \top rule and we apply the corresponding key step (and the n-cut becomes a p-cut) or commutative n-step. Otherwise this rule cannot be an ax rule, a 1 rule or a! rule and we can apply the corresponding commutative n-step.
- If it is a p-cut, we first look at the premise $\vdash \Gamma$; P. If P is not a main formula, we can apply a left commutative p-step. If P is a main formula and P^{\perp} is not, we can apply the corresponding right commutative p-step (notice that the rule above P^{\perp} cannot be a 1 rule). We just have to verify that we can apply the right commutative p-step in the case of a! rule above P^{\perp} : since P is main, the rule above it is either an ax rule or a! rule and we can apply the reduction step. If both P and P^{\perp} are main, we apply the corresponding key step.

So that, either the proof is cut-free or a reduction step can be applied, and we conclude by strong normalization. \Box