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The focusing property of linear logic has been discovered by J.-M. Andreoli [And90, And92]
in the beginning of the 90’s. It is one of the main properties of Linear Logic that appeared after
the original paper of J.-Y. Girard [Gir87]. This property is proved in various papers [And90,
Gir91, DJS97]! but, as far as we know never for the usual LL sequent calculus (or with an intricate
induction in Andreoli’s thesis, which is replaced here by a cut elimination property).

The proof we give is a compilation of the previous proofs and proof techniques, our goal is just
to give a complete presentation of a proof of this property which appears to be more and more
important in the current research in Linear Logic [Gir91, DJS97, Gir01, Lau02].

We decompose the usual focusing property into two technically different steps: weak focusing
(the decompositions of two positive formulas are not interleaved, see LL,.) and reversing (negative
rules are applied as late as possible from a top-down point of view, see LLg,.).

1 Linear Logic and the Focusing Property
Formulas of (propositional) Linear Logic are given by the usual grammar:

A = X | ARA | AoA | 1 | 0 | A
| Xt | ABA | A&KA | L | T | 74

We split this grammar into two sub-classes: positive formulas and negative formulas.

P = X | AA | Aq¢A | 1 | 0 | !A
N == Xt | ABA | A&A | L | T | 24
In the sequel:
e A, B, ... denote arbitrary formulas;

e P. @, R denote positive formulas;

e N, M, L denote negative formulas;

! Around the time we were writing the first version of this note, A. Saurin also worked on focusing with a different
approach. We take the opportunity of this revision to add a reference to his work [MS07].



e X, X1 .. are called atoms or atomic formulas.

We consider the usual rules of Linear Logic [Gir87]:

———az FT,A A, AT .
A A FT.A cu
"LAB FT,A  FAB
FT.AN B FT.A A2 B
"rAFLB rA B
FT,A& B FT,AeB ' FT,AeB °
-1 TrL L T
FA T4, Fr FT24,%24
FT A T4 4 FT,74 Y T4 ¢

The main connectives of positive (resp. negative) formulas are called positive connectives (resp.
negative connectives), that is X, ®, @, 1, 0 and ! (resp. X+, %, &, L, T and ?). The rules
introducing positive (resp. negative) connectives are called positive rules (resp. negative rules).

A positive (resp. negative) formula is strictly positive (resp. strictly negative) if its main con-
nective is not ! (resp. 7). A positive (resp. negative) rule is strictly positive (resp. strictly negative)
if it is not introducing a !A formula (resp. 7A formula).

Definition 1 (Main Positive Tree)
If A is a formula, its main positive tree T (A) is defined by:

THN) =10

THX)=X
THA®B)=T"(A) T (B)
THA@eB) =T (4A)aT"(B)

TH1) =1

TH(0)=0

|

T+(A) is a (possibly empty) tree whose nodes are ®, @ (with arity at most 2) and !, 1, 0 or X
(with arity 0).

Definition 2 (Weakly +-Focused Proof)

A proof 7 in LL is weakly +-focused if it is cut-free and, for any subproof #’ of m with conclusion
F T, A, the only positive rules of 7’ between two rules introducing connectives of 7 (A) are rules
introducing connectives of 71 (A).

Definition 3 (Strongly +-Focused Proof)

A proof 7 in LL is strongly +-focused if it is cut-free and, for any subproof 7’ of © with conclusion
T, A, the only rules of 7’ between two rules introducing connectives of 7 (A) are rules introducing
connectives of T (A).



Definition 4 (Reversed Proof)
A proof 7 in LL is reversed if, for any subproof 7’ of m with conclusion + I'y N with N a strictly
negative non-atomic formula, the last rule of 7’ is a strictly negative rule (i.e. a %, &, L or T rule).

Definition 5 (Focused Proof)
A proof 7 in LL is focused if it is both strongly +-focused and reversed.

Remark: Various systems for classical logic related with focusing constraints have been intro-
duced. In particular Girard’s LC [Gir91] corresponds to weak +-focusing, Danos-Joinet-Schellinx’s
LK" [DJS97] corresponds to strong +-focusing and Quatrini-Tortora de Falco’s LK% [QTdF96]
corresponds to focusing since their p-constraint is a reversing constraint.

2 Weakly Focused Linear Logic

2.1 Sequent Calculus LL,,

A sequent of LLg, has the shape F I'; Il where I' is a multi-set of formulas and II is either empty
or contains a unique positive formula.
The rules are a linear logic version of the rules of Girard’s LC [Gir91]:

FpPL P T p. Joc
Fr;P FAPLIT FT,P; I A P .
FT.A; I b FT.A; I n-cu
FLABTL FDiP o FAQ
FT,A®B; 11 FT,A; PRQ
FL; P FA, M, ® FI,N; FA;Q FI,N; FA,M,;
FT,A, Pa M FT,A;N®Q FT,LA, No M
FT,A:TI  FT,B: 11
FT,A& B; 10
FI; P ® FI,N; ® FI;Q & FI,M; ®
FT;P&B FT;N®oB FT;AeQ ° FT; Ao M °
1 FI;I0 - T
il 7I—F,L;HL FD,T; 10
L A; HI; P FI,N;
T ! —=55 d ——=5 — 1d
T 1A FT,7P; FT,7N;
FTTI 1,724,274 T
T =5 = fw 7c
FT,7A4; 10 FT,74; 10



2.2 Expansion of Axioms

Given a positive formula P, the sequent F P1; P is provable in LL;. by means of the az rule.
Moreover, if P is not atomic, it is also possible to give a proof based only on azx rules applied to

the sub-formulas of P (and thus, by an easy induction, to the atomic sub-formulas of P):

PP FQTIQ
FPHQN PeQ
FPL3RQY; PRQ

FM; Mt

FPL P M ML
FPt MY PoM
FPER ML P M

foc

- N,Nt;

FN; Nt

foc

—RhQ
FNL QN NeQ
FNERQE;N®Q

FN; Nt M M+

A L v yau
) ) ) ) ®

FNL MY No M
FN-®M-, No M

N N - N; Nt
FP-; P FQ—;Q ———Joc i
n T D2 FN,N—; FQ—;Q
FPLPaQ FQL PoQ T T
CPle ol PO & FNt;NeQ I—Q;N@Q&
’ FNL&QT; NoQ
M ; Mt FN; Nt =M Mt
——— foc —— foc ———— foc
FpPt; P M, M*; FN,N*t; M, M*;
n 1 T D2 T 1 T D2
FPL,POM FMLt, PeM N FNt;NoM FMY, Neo M N
FPr& M PeM FNt&M-; N M
1
F;1 — T
Tl t oo
FpPt; P
ffoc FN; Nt
- PL P; —
————17d F?NL N
k2Pt P ——1
%! I—?NJ"!N
F7pt P ’

Similarly it is possible to restrict the application of the T rule to the case where the context I"
does not contain any formula of the shape A% B, A& B or 1. This is proved by induction on the
sum of the sizes of formulas in I', using the expansions:

T = |

T

FT,A, B, T; 10

FT,A T, 10

-

FI,B, T;1I FT, T 11

FT,A® B, T, 0

Lemma 1 (Reversibility)

FT,A&B, T, 0

FTL LTI T

Let w be a proof in LLg, with expanded axioms and expanded T rules.

e [f the conclusion of w is F T, A% B; 11, there exists a smaller (with respect to the number of

rules) proof of 1T, A, B; I



o [If the conclusion of m is +T', L; II, there exists a smaller proof of +1'; II.
o Ifthe conclusion of w is = ', A& B ; 11, there exist smaller proofs of F T, A; Il and +T', B; I1.

2.3 Embedding of LL (Weak +-Focusing)
The translation (.)® of LL into LLg,. does not modify formulas, translates the sequent T as F T';

and acts on proofs by adding a lot of cuts:

— aX — aX
ol 7 FpPt P
FT,P - A, Pt . . FT,P; FA,PL: .
FT,A cu FT,A; n-cu
FLAB o FLAB;
FT,A® B FT,AB B;
axr axr
Pty P FQT:Q
FT,P FAQ FP1Q7 PRQ
’ T ® > T AL foc
FT,A,P®RQ FAQ; FP-,Q,PRQ; e out
T, P; FAPLPRQ; .
FT,AP®Q; et
— ar
FOLN;  FQNQ .
LN FAQ FL,QH NeQ foc
“haNe FAQ:  FLQEN®Q:
FTLAN®Q; n-cu
TN LALLM FI,N; FA, M,
FT,AN® M ~ LASNOM
FD,AN® M ;
"rA FLB FrA; FTB;
FT,A& B FT,A& B;
— aX
Pt P
-T,P -pL.pap
T pap Ot e . oc
-I.PeB TP, FPLPoB; ) t
FT,P® B; n-cu
FT,N;
FT,N — g
Ty @ ¢ FLiNGB
’ FI,No B,
— 1
— F 1
F1 1 foc



ET T

T 7 Fro t
FT,T |~ FLoT; !
9 .
T, A ﬁ
vt T DA g
o - 7T, 1A
— aX
1.
-, P EPTP
Frop T kDP  EPLYP
FT,7P; el
FT,N FT,N;
———5 1d ~ —— 5o 1d
FT,7N FT,7N;
Fr - A 0
FT,74 Y FT,74; Y
FT,74,74 FT,24,2A;
— (1~ oa _IcC ~ {1+~ oa. _!cC
FT,7A FT,74;

2.4 Focusing in LL,,

W

If 7 is a proof in LLg, then 7° is the LL proof obtained by erasing all the “;” in the sequents.

Proposition 1 (Cut-Free Weak +-Focusing)
If m is a cut-free proof of = 1'; 11 in LLg, then w° is a weakly +-focused proof of + I',1I in LL.

Corollary 1.1 (Weak +-Focusing)
If =T is provable in LL, F T is provable with a weakly +-focused proof.

PrOOF: Starting from a proof m of F I', we translate it into the proof 7® of - T'; in LL¢,.. Using
the cut elimination property given in Appendix A (Corollary 5.2), this leads to a cut-free
proof 7* of +T'; in LLg.. By Proposition 1, (7*')° is a weakly +-focused proof of + T"in
LL. O

3 Focused Linear Logic

3.1 Sequent Calculus LLg,

In the spirit of [Gir01], we define a sub-system LLg,. of LL,. in which the strictly negative formulas
in the context of positive rules must be atomic. We consider a cut-free version of the system since
it is sufficient for the present development (cut elimination is performed in LLg,.).

There are two kinds of sequents: + P,N; and + P,?T, X+ ; P where P contains positive
formulas only, N contains negative formulas only, and X contains negative atoms only. In order
to simplify the notations we will write = P, N ; II for either a sequent with IT empty or a sequent



with II = P and N = 7T, X+

oz FP,T, Xt P foc
FXE X - P, T, XL, P
l_P)N7A7B; ?X
PN, A% B;
FPLAL P RPN Q FP XL P RPN M
FP, P, X X PeQ PP X X P M
FPMALN,  EPLNATQ FPMAL N P AT M
- PP, T X X NeQ - P, P, I X X N o M
PN A FPN,B;
FP.N,A& B;
P, X P . P, T, X N
FP.T. XL PaB FP. XL NeB
P, AL Q o P, X M o
2 2
P AL A Q P AL A M
1 PN — T
F A FPLXL P, SR XL NG
Erry 1A FP, 0, Xt 2Py FP, 0, XL NG
P A FPTL XY TA A
P at7a; Y - P T, L 24, C

3.2 Embedding of LL,,.

Let us first define the relation I < T' on multi-sets by: any element A in T" also belongs to T" (or
equivalently, we have an inclusion of the underlying sets (or supports) of IV and T).

Lemma 2 (Exponential Inclusion)
If =P,N,?T: is provable in LLg,, and TV < T then = P,N,?T; is provable in LLg..

We want to embed proofs of LLg,. of sequents of the shape F I'; into LLg,,. We consider a
cut-free proof m with expanded axioms (according to Section 2.2). We proceed by induction on the
size (number of rules) of m by showing simultaneously:

e if the conclusion of 7 is FI'; then it is also provable in LLg,,;

e if the conclusion of 7 is F P,?T, X+ ; P then F P,?I’, X+ P is provable in LLg,. for some
I <T;



e if the conclusion of 7 is = P, N ; P and N contains at least one non-atomic non-? formula,
then both =P ,N,P; and + P,N,?P; are provable in LLg,..

We look at the last rule of the proof. The key cases are the foc rules and 7d rules on positive
formulas (called a positive 7d rule). We only consider the foc rule (the case of the positive 7d
rule is very similar). By induction hypothesis, either we have F P,?T',X*; P in Ll thus

F P, X+, P is provable in LLg,. with IY < T, and we apply a foc rule and Lemma 2, or
we have = P, N; P and N contains at least one non-atomic non-? formula and we directly have
FP,N,P; in LLg..

In order to turn a proof of + P, N ; P in LL,, into a proof of + P, N,P; in LLg,., we use
Lemma 1 and the induction hypothesis which, when A becomes of the shape ?T", X, requires to
use a foc rule and Lemma 2.

3.3 Focusing in LLg,

W

If 7 is a proof in LLg, then 7° is the LL proof obtained by erasing all the “;” in the sequents.

Proposition 2 (Cut-Free Focusing)
If w is a cut-free proof of & P,N ;I in LLg, then w° is a focused proof of = P, N, 11 in LL.

Corollary 2.1 (Focusing)
If =T s provable in LL, T is provable with a focused proof.

ProOOF: Starting from a proof m of + I', we translate it into the proof 7* of FI'; in LLy,. and
then into a cut-free proof #’ of + I'; in LLg.. By Proposition 2, 7’° is a focused proof of
FT in LL. O

Remark: It is possible to define the embedding of LL proofs into LL,. directly (without using LL;,.
as an intermediary step). We have chosen to decompose it into two steps in order to show that the
key property is weak +-focusing. Strong +-focusing is then obtained through reversing which is in
general easy to do.

4 Additional Remarks

4.1 Decomposition of Exponentials

The attentive reader has certainly remarked that an hidden decomposition of the exponential
connectives underlies the whole text (as suggested by Girard [Gir01]):

1A = LA 24 = A

with A4 negative and bA positive, and + and T are used as the corresponding connectives of Lng1
(see Appendix A.2.1).
The associated rules in LL;,. would be:

S A wrip FTLN
BV T;bP T bN
FTLA FTiP FT,N;
FT; 1A FI,1P; T, TN;

8



However it is difficult to give a meaning to A (resp. bA) under any other connective than
(resp. T).
4.2 Quantifiers

Our method can perfectly be extended to quantification (of any order) by adding JaA (resp. VaA)
in positive (resp. negative) formulas and the following rules in LLg,.:

FIL; P 5 FT,N; 5 FT,A;II v
FI'; JaP FI;daN FI,VaA; Il
with « free neither in I' nor in II in the V rule.
The corresponding rules in LLg,. are:
P, X P . FP, T, XL N . FP,N,A; v
P, 0, XL JaP P, XL JaN FP,N,VaA;

with « free neither in P nor in N in the V rule.
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A Cut Elimination in LL

foc

A.1 Cut Elimination Steps

Key Steps
— ar
1. 1.
- ’PI—F Pi'_l?P ,Hp-cut ~ I, P I
— A
. 1.
'_F’PI_F.:,P’PP-CW o FD:; P
7|_F;P foc FT: P A, PL:
FF,P; }—A,Pl; s ’ ’ ? p-cut
FT.A PJ_. n-cut l_FaA>PJ-;
FT; P FA:Q X, Pt Qb I x5
FT,A; P®Q Fe,PtRQ; IO eut
FT.A, S 10 b
FAQ PR P QI
~ FT:; P FAY P IT ot
FT,A, 5 1 p
FT: P FAM; Y, P M T
FT,A; P M ®© FY, PR ML T cut
FT.A, S 10 p
A, M; FY,PE M T .
n-cu
~ FT; P FAY P II cul
FT,A, % 10 b
FT,N;  FAM; Y, NE M T
FTLA:No M ° Fu NimxMmiin ot
FT,A, S 10 b
A, M; FY,NL M T .
n-cu
~ FT,N; FAYS NI .
FT,A Y T0 f-cu
: A, P TI FA,BL:TI
LR ST & FI; P A PHT
FI'; Po B FA P-& BT ~ p-cut
! T AT ! ! p-cut FD,A;IL
FT,N; FANLTI FA,BL: 11 N
FI;NeB ' FANL-& B TI ~ FL, N I_A’N;Hn—cut
’ T AT ! L p-cut FT,A;II
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FIG IO

;1 FI,L;II ~ FI;II
FT; 0 p-eut
7T, N ; FA; N*
PN T2, FI0L,N; R A; N
T IN A PN ~ 5 p-cut
T A p-cut FIT, A
? . - A, P
SV T2 gy FTL, P, F AP
Fors P FA 7P, ~ 5 - n-cut
AT A p-cut A
A Fgffilnﬂ 7w - cam
(4 ) ! ; e = w
CTLAL p-cut 0, AT
F7,Aq |
FoT. A- A ?AL 24 T oL A FT 1A T R A AT AL T p-cut
TG4 FA?AR T Y e A FamAPAL T
BN p-cut FITOT AT p
F0,A T C
Left Commutative p-Steps
FT,A B:; P FT,A,B; P FAPL:II eut
FT,AXB; P FAPL T FT.A A B 11 b
FT,A AR B 10 P FT,A, AR B; I
FTLA:P FDBiP
FT,A&B:; P FA P TT eut
FT,A A& B 10 b
FT,A; P A, P II ot LB P A, P TI out
~ FT,A, A I p FTABT p
FT,A A& B; 1T
Frip FI; P A PL I .
FT. 1. P FaphT FT,A; I pret
FT. A, LT p FT A LT+
FTLT P kAPhTo e T
FT,A, T 10 p 22 1
Lo P, FI; P FA P ;
LA P Y FAPh T FT, A T pret
FT. A, 7A; 10 pret

)
FT,A?A; 11 Y



FT,7A,7A5 P FT,74,74: P FA,PL: 10 ;
FrrA P ¢ raAPhTo - Frarazam U
FT,A 74 1T p FTLA7A. 1 ¢

Right Commutative p-Steps
A, PP FI; P FA PP
‘P A PP — FT.A; P p-eut
) ) b ’p—C’ut )y = fOC
FT,A, P, FT,A, P,
FAJA B, P 1T FT: P  FAABPLTI ot
FT:P  FAARB PLTI . FT,A A B; 10 p
FT.A AR B 10 p-ed FT,A AR B 11
FAPH P ES;Q FI; P FA PP
FT; P AN PL PR “T,A; P’ p-eut FEiQ
-CU
FTAY: P oQ P FT.AS: P o0
FAPEN, R Q FT; P FAPLN; ;
-CU
FT; P AR PLNRQ FT,AN; P F2Q
FT,LA Y, N2Q pred FT,A S, NeQ
FAN; X, PLQ FT; P B, P Q ;
-CU
T P FASPENRQ AN FT.%; Q b
FT,AS, N®Q bret FT,A S N®Q
FA, PN X, M ;P +FAPLN: ;
-CU
T, P FASPLNeM FT,A,N; b FRM:
FTAY: N@ M p-eu FT.AY: No M
FAPL AT I—A,PL,B;H&
FT: P FA P A&B;TI eut
FT,A A& B; I b
FT: P FAPL AT oy FLP FA,PL B IO out
~ FT. A, A 1T p FTAB P
FT,A, A& B; 1
FA PP FD; P EAPH P
“TiP FAPLPeB - FT,A; P p-eut
b b ) @ p—Cut 7’/ @1
FT,A; P oB FT,A, P& B
A, PY N FT; P FAPLN;
FT:P FAPL. NeB lt - "TAN: p-eut
FT,A: N@ B ped FTLA:Nao B

12



FA P T FT; P FAPHT

_cut
FDi P FAPL LT FT A I pred
FT,A, 1L 10 pret FT,A, L 10
T
. 1. -
FTiPEATPLT L T AT T
FT,A, T 10
I—?A,?AL,B;' FT: 1A F?A,7AL, B; .
F0 1A F?A7AL 1B ~ 7T, 7A, B ped
- 7T, 7A; B p-eut T 7A; B
FA PP FD; P AP P
7d p-cut
FT; P FA PP . FT,A; P o
FT,A, 7P ; pret FT,A, 7P
A, PN FT; P  FAPLN;
?d p-cut
FT; P FAPLN; L7 FLAN:
FT,A, 7N ; preu FT,A,7N;

A, P TI ) FI; P FAPL: I eut
~TiP rAPhrAm t a7
FT,A,74; 10 ped FT,A7A 11 Y

FAPL7A7A5 T FDi P EAPL2AATL
T P A, PL7AC T ‘Ct s FT,A,7A,7A; 11 P
FT,A,7A; 1 p-cu FT,A?A; 11 ¢
Commutative n-Steps
FI,P; P foc FI,P; PP FA P ;
-T,P,P'; - A, P . LA e
FT,A, P et FT,A, P,

FT,A B, P; 11 2 FT,A B,P; 11 FA,PL: .
FT,A¥B,P; 1 A, Pt . FTAABT el
FT,AAX B 10 foc FT,A A% B 11
FT,P; P I—A;Q@ FT,P; P Fx, P .
FT,AP; P 2Q -y, Pl . FT,%; P/ e FAQ

-CU
FTLA,S; P oQ " FT,AD; P oQ
T, P N; FA;Q FT,P,N: P,
& n n-cut
FT,LAP; N®Q F3, P ; ~ FT,%,N; FA;Q -
et FTLAY: N®Q

FTLAY, N®Q

13



FT,N; FAP;Q FAP;Q I—E,PJ‘;

FT.AP, NoQ ° FELPY RN Favig T
FT,A %, N®Q FT,LAY: N®Q

FT,P,N; FAM;

‘T AP, NoM © 3P
FTAS . NoM

n-cut

FT,P,N: X, Pt .
~ FT,2, N, Ut A M

FTLAS; N M @
FTPATL RDPBII
FILP,A& B 11 FA,PL: ;
FI,A A& B IO n-cu
FT,P,A; 11 FA,PL; . FT,P,B: 1l FA,PL: .
> FT,A AT n-cu FTAB focd
FI,A A& B; 10
-T,P; P FI,P; PP FA P .
FT,P.PoB | FAPL: P FTAGP et
FT.A;: P& B FT,A. P& B
FLLAN; o FT,P,N;  FA P t
FLPNeB — EAPY FTAN,
FT,A; N& B FT,LA;NeB
FrPsI FT,P;IT AP
T, P, L 1 - A, PL L FT.A T n-cut
FT.A LTI n-cu FT.A LT -
FT,P T, | FA P R ——
—rraTm et T PLAT
FT,P; P 2 FL,P; PP EA P .
~T,P 7P " FA P . FLAP e
FT,A, 7P et FT,A 7P
I, PN ; 24 FT,P,N; FA, P
FT.PN: ¢ LA Pl , v FTAN,
CT.ALIN n-cu FT.A N @
Fropim FL,P;IT AP
FT.P7A T Y RA PL R Fr A e
FT,A7A; 11 el FT,A7A 0 Y

14



FT,P,7A,7A; 11 FI,P,7A,2A; 11+ A, Pt
FT,P?A; 10 ¢ FAPL, s FT,A,7A,7A; 10

FT.A7A: 11 n-cut FTAA T C

n-cut

A.2 Cut Elimination Property
A2 LU

pol

The system LL™ is obtained from LL by “restricting” formulas to the following grammar:

pol
P == X | PP | P®P | 1 | 0 | IN | IN
N == X+t | N®N | N&N | L | T | ?2P | TP

with the following rules for the T and 4 connectives:

FNN T, P
N AN T, 1P

where A is a multi-set of negative formulas.

A.2.2 LLP

The system LLP is obtained from LL by restricting formulas to the following grammar:

P = X | PP | PP | 1 | 0 | IN
N == X+ | N®N | N&N | L | T | ?pP
with the following generalizations of the exponential rules:
FN,N FT,P FT FT,N,N
— | ——>55 (d —F v lw — ‘¢
FN,IN FT,?P FT,N FT,N

where N is a multi-set of negative formulas of LLP.

Proposition 3 (Strong Normalization)
There is no infinite sequence of reductions in LLP if we forbid commutations of cuts with cuts.

PRrROOF: Such a sequence of reductions can only contain finitely many steps between two steps
that correspond to a reduction step in proof-nets. Thus by strong normalization for proof-
nets [Lau02] we can conclude. O

Corollary 3.1 (Cut Elimination)
If =T s provable in LLP, then + T' is provable without the cut rule.
A.2.3 Simulations

The translation (.)' of Linl into LLP is obtained by replacing {N by !N and TP by ?P and the two
lifting rules by promotion and dereliction.

Lemma 3 (Polarized Formulas)
If A is a positive (resp. negative) formula in LL
LLP.

™

o1 then A" is a positive (resp. negative) formula in
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Proposition 4 (One-to-One Simulation)
If ™ reduces to 7' in LLZ;L1 by one step of reduction then 7 reduces to " in LLP by one step of
reduction.

Corollary 4.1 (Strong Normalization)

There is no infinite sequence of reductions in LLE¢

ol

if we forbid commutations of cuts with cuts.

Corollary 4.2 (Cut Elimination)
If =T is provable in LLgil, then F T s provable without the cut rule.

The translation (.)" of LL, into LLli1 is obtained by adding to formulas exactly the required
liftings to get a polarized formula, and by translating the sequent + P, A ; Il by + tPT N II".
In particular (/P % 1)" = T11PT 2 11.

Proposition 5 (Strict Simulation)
If 7 reduces to @' in LLy, by one step of reduction then ' reduces to ©'" in LLE1 by at least one
step of reduction.

Corollary 5.1 (Strong Normalization)
There is no infinite sequence of reductions in Ll if we forbid commutations of cuts with cuts.

Corollary 5.2 (Cut Elimination)
If +1'; 11 is provable in LLg,, then FT'; II is provable without cuts.

PrOOF: We consider a cut without any cut above it. We look at the two different cases:

o If it is a n-cut, we look at the rule above the premise + I', P; II. If the rule above it
introduces P, it is either a foc rule or a T rule and we apply the corresponding key step
(and the n-cut becomes a p-cut) or commutative n-step. Otherwise this rule cannot be
an az rule, a 1 rule or a ! rule and we can apply the corresponding commutative n-step.

e If it is a p-cut, we first look at the premise + I'; P. If P is not a main formula, we can
apply a left commutative p-step. If P is a main formula and P is not, we can apply
the corresponding right commutative p-step (notice that the rule above P+ cannot be a
1 rule). We just have to verify that we can apply the right commutative p-step in the
case of a ! rule above PT: since P is main, the rule above it is either an az rule or a
I rule and we can apply the reduction step. If both P and P are main, we apply the
corresponding key step.

So that, either the proof is cut-free or a reduction step can be applied, and we conclude by
strong normalization. O
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