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Some existing works :

the focused inverse (forward) method by K. Chaudhuri

llprover (http://bach.istc.kobe-u.ac.jp/llprover/) (without
focusing, implemented in Prolog)

another prover (https://gitlab.com/vcvpaiva/FLL-Prover)
(backward method, implemented in Maude)
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two different logical systems (LL and ILL)

two different proof methods (backward and forward)

proof certificates using Coq and the Yalla library (only
available for the backward method)

LATEX code of proofs (only available for the backward method)

more details on
https://github.com/wujuihsuan2016/LL prover

Jui-Hsuan Wu APLL: A focusing-based automated prover for linear logic
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Our backward proof search consists of

starting from the goal sequent,

applying the rules backwards, and

using the corresponding focused proof system

In LLF, there are two kinds of sequents : ` Θ : Γ ⇑ L and
` Θ : Γ ⇓ F

Theorem 1 Proving ` ∆ in LL is equivalent to proving ` · : · ⇑ ∆
in LLF.

Jui-Hsuan Wu APLL: A focusing-based automated prover for linear logic
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Some rules:

>
` Θ : Γ ⇑ L,>

` Θ : · ⇑ F
!

` Θ : · ⇓ !F

` Θ : Γ ⇑ L,F ` Θ : Γ ⇑ L,G
&

` Θ : Γ ⇑ L,F & G

` Θ : Γ ⇓ F1 ⊕1` Θ : Γ ⇓ F1 ⊕ F2

` Θ : Γ ⇓ F ` Θ : Γ′ ⇓ G
⊗

` Θ : Γ, Γ′ ⇓ F ⊗ G

` Θ : Γ ⇓ F
D1` Θ : Γ,F ⇑

` Θ,F : Γ ⇓ F
D2` Θ,F : Γ ⇑

(F is not a negative literal)

` Θ : Γ,S ⇑ L
R ⇑

` Θ : Γ ⇑ L,S
(S is not asynchronous)

` Θ : Γ ⇑ N
R ⇓

` Θ : Γ ⇓ N
(N is neither synchronous nor a positive atom)

Jui-Hsuan Wu APLL: A focusing-based automated prover for linear logic
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Control of the D2 rule

The main factor that slows down the algorithm : the D2 rule

Problem : the classic recursive depth-first design will choose
the same formula every time we apply the D2 rule

Solution : choose the formula in a round-robin style

Implementation : a list of candidates select d2 and an integer
max d2

Jui-Hsuan Wu APLL: A focusing-based automated prover for linear logic
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Order of branches

In rules such as & or ⊗, there are two branches to prove.

whynot-height wnh(F ) of a formula F :
wnh(1) = wnh(0) = wnh(>) = wnh(⊥) = wnh(X ) =
wnh(X⊥) = 0 where X is an atom.

wnh(?F ) = 1 + wnh(F ),wnh(!F ) = wnh(F ),wnh(F � G ) =
max(wnh(F ),wnh(G )), ∀� ∈ {⊗,⊕,&,`}
By choosing the branch with smaller whynot-height, we are
likely to visit the branch that can be proved (or disproved)
faster than the other one.

Jui-Hsuan Wu APLL: A focusing-based automated prover for linear logic
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Forward proof search: the focused
inverse method
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Idea : keep a database (set) of intermediate sequents and generate
new provable sequents and add them into the database.
Main issue:

How to use the stored sequents to generate new sequents?

How to minimize the number of ”useless” sequents?

Jui-Hsuan Wu APLL: A focusing-based automated prover for linear logic
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Definition (forward sequents): A forward sequent has one of the
following forms:

Θ ; [Γ]0 (strong)

Θ ; [Γ]1 (weak)

Intuitively, weak sequents are used to deal with arbitrary linear
zones.
Ex: the conclusion of the >R of ILLF can be expressed by Θ ; [·]1
and even by · ; [·]1

Jui-Hsuan Wu APLL: A focusing-based automated prover for linear logic
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Definition (subsumption or ”weaker than”):
We define the subsumption relation between forward sequents as
follows,

(Θ ; [Γ]0) ≺ (Θ′ ; [Γ]0) if Θ ⊆ Θ′

(Θ ; [Γ]1) ≺ (Θ′ : [Γ′]w ) if Θ ⊆ Θ′ and Γ ⊆ Γ′

Jui-Hsuan Wu APLL: A focusing-based automated prover for linear logic
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Definition (Additive composition):
Given two linear contexts with weakness flag, [Γ]w and [Γ′]w ′ , we
define their additive composition as follows:

[Γ]w + [Γ′]w ′ =


[Γ]0 if w = w ′ = 0 and Γ = Γ′

[Γ]0 if w = 0, w ′ = 1 and Γ′ ⊆ Γ

[Γ′]0 if w = 1, w ′ = 0 and Γ ⊆ Γ′

[Γ t Γ′]1 if w = w ′ = 1

where Γ t Γ′ denotes the least upper bound of Γ and Γ′.
Note that this function is partial.

Jui-Hsuan Wu APLL: A focusing-based automated prover for linear logic
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Definition (Multiplicative composition):
Given two linear contexts with weakness flag, [Γ]w and [Γ′]w ′ , we
define their multiplicative composition as follows:
[Γ]w × [Γ′]w ′ = [Γ ∪ Γ′]w∨w ′

Here, Γ ∪ Γ′ denotes the sum of the multisets Γ and Γ′.

Definition (Insertion):
Given a linear context with weakness flag [Γ]w and a proposition A,
we define the result context after insertion of A as follows:
[Γ]w ,A = [Γ,A]w

Jui-Hsuan Wu APLL: A focusing-based automated prover for linear logic
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Derived rules of the forward calculus:

s1 s2 · · · sn (foc(P)[s1 · s2 · · · sn] ↪→ Θ ; D)
foc

Θ ; D,P

s1 s2 · · · sn (foc(A)[s1 · s2 · · · sn] ↪→ Θ ; D)
?foc

Θ,A ; D

Jui-Hsuan Wu APLL: A focusing-based automated prover for linear logic
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Focal phase:

foc(A)[Σ1] ↪→ Θ1 ; D1 foc(B)[Σ2] ↪→ Θ2 ; D2 ⊗F
foc(A⊗ B)[Σ1 · Σ2] ↪→ Θ1,Θ2 ; D1 × D2

foc(Ai )[Σ] ↪→ s
⊕Fi

foc(A1 ⊕ A2)[Σ] ↪→ s

act(· ; · ; A)[Σ] ↪→ Θ ; [·]w
!F

foc(!A)[Σ] ↪→ Θ ; [·]0

1F
foc(1)[·] ↪→ · ; [·]0

init
foc(X )[·] ↪→ · ; [X⊥]0

act(· ; · ; L)[Σ] ↪→ s
FA

foc(L)[Σ] ↪→ s
where L is asynchronous

Jui-Hsuan Wu APLL: A focusing-based automated prover for linear logic
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Active phase:

act(Θ ; Γ ; L,A)[Σ1] ↪→ Θ1 ; D1 act(Θ ; Γ ; L,B)[Σ2] ↪→ Θ2 ; D2
&A

act(Θ ; Γ ; L,A & B)[Σ1 · Σ2] ↪→ Θ1,Θ2 ; D1 + D2

act(Θ ; Γ ; L,A,B)[Σ] ↪→ s `A
act(Θ ; Γ ; L,A` B)[Σ] ↪→ s

>A
act(Θ ; Γ ; L,>)[Σ] ↪→ · ; [·]1

act(Θ ; Γ ; L,Ai )[Σ] ↪→ Θ′ ; [Γ′]1 `Ai
act(Θ ; Γ ; L,A1 ` A2)[Σ] ↪→ Θ′ ; [Γ′]1

act(Θ ∪ {A} ; Γ ; L)[Σ] ↪→ s
?A

act(Θ ; Γ ; L, ?A)[Σ] ↪→ s

Jui-Hsuan Wu APLL: A focusing-based automated prover for linear logic
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Active phase:

act(Θ ; Γ ; L)[Σ] ↪→ s
⊥A

act(Θ ; Γ ; L,⊥)[Σ] ↪→ s

act(Θ ; Γ,R ; L)[Σ] ↪→ s
act

act(Θ ; Γ ; L,R)[Σ] ↪→ s
where R is synchronous

match
act(Θ ; Γ ; ·)[Θ,Θ′ ; Γ, Γ′] ↪→ Θ′ ; Γ′

Jui-Hsuan Wu APLL: A focusing-based automated prover for linear logic
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Theorem (completeness):
If ` Θ : Γ ⇑ · is provable, then either

Θ′ ; [Γ]0 is provable for some Θ′ ⊆ Θ, or

Θ′ ; [Γ′]1 is provable for some Θ′ ⊆ Θ and Γ′ ⊆ Γ.

Theorem (soundness):
If Θ ; [Γ]0 is provable, then ` Θ : Γ ⇑ · is provable.
If Θ ; [Γ]1 is provable, then ` Θ : Γ′ ⇑ · is provable for every Γ′ ⊇ Γ.

Jui-Hsuan Wu APLL: A focusing-based automated prover for linear logic
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The first issue in the implementation is to enumerate the
propositions for which we need to derive inference rules. We first
define two functions a (active) and f (focal) inductively:

f (X ) = X f (X−) = ∅ f (!A) = a(A)
f (?A) = a(?A)

f (A⊗ B) = f (A⊕ B) = f (A)
⋃
f (B)

f (A & B) = f (A` B) = a(A & B) = a(A` B)

f (1) = f (0) = f (>) = f (⊥) = ∅
a(X ) = {X} a(X−) = {X−} a(!A) = !A

⋃
f (A)

a(?A) = {A?}
⋃

f (A)

a(A⊗B) = {A⊗B}
⋃
f (A⊗B) a(A⊕B) = {A⊕B}

⋃
f (A⊕B)

a(A & B) = a(A` B) = a(A)
⋃
a(B)

a(1) = a(0) = a(>) = a(⊥) = ∅
Jui-Hsuan Wu APLL: A focusing-based automated prover for linear logic
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Definition (frontier): Given a goal sequent Θ ; Γ ⇑ ·, its frontier
contains:

all (top-level) propositions in Θ and Γ

f(A) for all A in Θ and Γ.

Theorem:
In any backward focused proof, all sequents of the form Θ ; Γ ⇑ ·
consists only of frontier propositions of the goal sequent.

Jui-Hsuan Wu APLL: A focusing-based automated prover for linear logic
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Our implementation is quite simple:
For every frontier proposition, we consider all possible (multi-)lists
we can form by using the sequents in the database and apply one
of the derived rules (foc or ?foc). Note that we should set a bound
on the number of copies of the same sequent we can have in these
(multi-)lists. Hence, the completeness is not preserved but the
soundness is.

Jui-Hsuan Wu APLL: A focusing-based automated prover for linear logic
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An implementation technique about the unrestricted context (the
?foc rule) : if the proposition A? considered occurs in the
unrestricted zone of the goal sequent Θ0 ; Γ0, then it need not to
be added into the unrestricted zone in the conclusion.

In the intuitionistic case, there is a foc+ rule of the following form:

s1 s2 · · · sn (foc+(Q)[s1 · s2 · · · sn] ↪→ Θ ; D −→ ·)
foc+

Θ ; D −→ Q

If every occurrence of Q in the goal sequent is of the form !kQ,
then we can directly add !kQ into the conclusion.

Jui-Hsuan Wu APLL: A focusing-based automated prover for linear logic
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Most of the tests are gathered from
https://github.com/carlosolarte/Benchmarking-Linear-
Logic/tree/master/TPTP which are obtained by translation
from intuitionistic logic to linear logic.

In general, the inverse (forward) method works faster than the
backward method. In some cases, the former works worse
because of the redundancy of the database of sequents.

Jui-Hsuan Wu APLL: A focusing-based automated prover for linear logic
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A web interface for the prover under construction
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Proof extraction (Coq export and Latex export) for the
forward method.

Extend benchmark tests and give more detailed analysis of the
excution times.

Define new Coq tactics in order to reduce the compile time.

Use additional criteria to accelerate the unprovable cases.

Jui-Hsuan Wu APLL: A focusing-based automated prover for linear logic
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