
Yalla
Yet Another deep embedding of Linear Logic in Coq

Machine Proofs of Linear Logic

Olivier LAURENT

CNRS – Lyon – France

Olivier.Laurent@ens-lyon.fr

December 18, 2018

Olivier.Laurent@ens-lyon.fr


Computer-Assisted Linear Logic
An Ecosystem

prover

interactive

formalized

meta−theory

prover

automatic

interfaces

graphical

interface

web

certifies

operates on proofs

provides proofs

provides proofs

provides formulas

applications

benchmarks

provides proofs

kernel



Yalla



Representation of Linear Logic Proofs
The Inductive Type

Inductive ll P : list formula → Type :=
| ax r : ∀ X, ll P (covar X :: var X :: nil)
| ex r : ∀ l1 l2, ll P l1 → PCperm Type (pperm P) l1 l2 → ll P l2
| ex wn r : ∀ l1 lw lw’ l2, ll P (l1 ++ map wn lw ++ l2) →

Permutation Type lw lw’ → ll P (l1 ++ map wn lw’ ++ l2)
| mix0 r {f : pmix0 P = true} : ll P nil
| mix2 r {f : pmix2 P = true} : ∀ l1 l2, ll P l1 → ll P l2 → ll P (l2 ++ l1)
| one r : ll P (one :: nil)
| bot r : ∀ l, ll P l → ll P (bot :: l)
| tens r : ∀ A B l1 l2, ll P (A :: l1) → ll P (B :: l2) → ll P (tens A B :: l2 ++ l1)
| parr r : ∀ A B l, ll P (A :: B :: l) → ll P (parr A B :: l)
| top r : ∀ l, ll P (top :: l)
| plus r1 : ∀ A B l, ll P (A :: l) → ll P (aplus A B :: l)
| plus r2 : ∀ A B l, ll P (A :: l) → ll P (aplus B A :: l)
| with r : ∀ A B l, ll P (A :: l) → ll P (B :: l) → ll P (awith A B :: l)
| oc r : ∀ A l, ll P (A :: map wn l) → ll P (oc A :: map wn l)
| de r : ∀ A l, ll P (A :: l) → ll P (wn A :: l)
| wk r : ∀ A l, ll P l → ll P (wn A :: l)
| co r : ∀ A l, ll P (wn A :: wn A :: l) → ll P (wn A :: l)
| cut r {f : pcut P = true} : ∀ A l1 l2, ll P (dual A :: l1) → ll P (A :: l2) → ll P (l2 ++ l1)
| gax r : ∀ a, ll P (projT2 (pgax P) a).



Representation of Linear Logic Proofs
Parameters

Inductive ll P : list formula → Type :=
| ax r : ∀ X, ll P (covar X :: var X :: nil)
| ex r : ∀ l1 l2, ll P l1 → PCperm Type (pperm P) l1 l2 → ll P l2
| ex wn r : ∀ l1 lw lw’ l2, ll P (l1 ++ map wn lw ++ l2) →

Permutation Type lw lw’ → ll P (l1 ++ map wn lw’ ++ l2)
| mix0 r {f : pmix0 P = true} : ll P nil
| mix2 r {f : pmix2 P = true} : ∀ l1 l2, ll P l1 → ll P l2 → ll P (l2 ++ l1)
| one r : ll P (one :: nil)
| bot r : ∀ l, ll P l → ll P (bot :: l)
| tens r : ∀ A B l1 l2, ll P (A :: l1) → ll P (B :: l2) → ll P (tens A B :: l2 ++ l1)
| parr r : ∀ A B l, ll P (A :: B :: l) → ll P (parr A B :: l)
| top r : ∀ l, ll P (top :: l)
| plus r1 : ∀ A B l, ll P (A :: l) → ll P (aplus A B :: l)
| plus r2 : ∀ A B l, ll P (A :: l) → ll P (aplus B A :: l)
| with r : ∀ A B l, ll P (A :: l) → ll P (B :: l) → ll P (awith A B :: l)
| oc r : ∀ A l, ll P (A :: map wn l) → ll P (oc A :: map wn l)
| de r : ∀ A l, ll P (A :: l) → ll P (wn A :: l)
| wk r : ∀ A l, ll P l → ll P (wn A :: l)
| co r : ∀ A l, ll P (wn A :: wn A :: l) → ll P (wn A :: l)
| cut r {f : pcut P = true} : ∀ A l1 l2, ll P (dual A :: l1) → ll P (A :: l2) → ll P (l2 ++ l1)
| gax r : ∀ a, ll P (projT2 (pgax P) a).



Representation of Linear Logic Proofs
Non Commutativity

Inductive ll P : list formula → Type :=
| ax r : ∀ X, ll P (covar X :: var X :: nil)
| ex r : ∀ l1 l2, ll P l1 → PCperm Type (pperm P) l1 l2 → ll P l2
| ex wn r : ∀ l1 lw lw’ l2, ll P (l1 ++ map wn lw ++ l2) →

Permutation Type lw lw’ → ll P (l1 ++ map wn lw’ ++ l2)
| mix0 r {f : pmix0 P = true} : ll P nil
| mix2 r {f : pmix2 P = true} : ∀ l1 l2, ll P l1 → ll P l2 → ll P (l2 ++ l1)
| one r : ll P (one :: nil)
| bot r : ∀ l, ll P l → ll P (bot :: l)
| tens r : ∀ A B l1 l2, ll P (A :: l1) → ll P (B :: l2) → ll P (tens A B :: l2 ++ l1)
| parr r : ∀ A B l, ll P (A :: B :: l) → ll P (parr A B :: l)
| top r : ∀ l, ll P (top :: l)
| plus r1 : ∀ A B l, ll P (A :: l) → ll P (aplus A B :: l)
| plus r2 : ∀ A B l, ll P (A :: l) → ll P (aplus B A :: l)
| with r : ∀ A B l, ll P (A :: l) → ll P (B :: l) → ll P (awith A B :: l)
| oc r : ∀ A l, ll P (A :: map wn l) → ll P (oc A :: map wn l)
| de r : ∀ A l, ll P (A :: l) → ll P (wn A :: l)
| wk r : ∀ A l, ll P l → ll P (wn A :: l)
| co r : ∀ A l, ll P (wn A :: wn A :: l) → ll P (wn A :: l)
| cut r {f : pcut P = true} : ∀ A l1 l2, ll P (dual A :: l1) → ll P (A :: l2) → ll P (l2 ++ l1)
| gax r : ∀ a, ll P (projT2 (pgax P) a).



Hiding Parameters

Recommendations
define your own inductive

“inject” it in an instance of ll
import / use results from the library

Various Templates Provided
Inductive mell : list formula → Type :=
| ax r : ∀ X, mell (covar X :: var X :: nil)
| ex r : ∀ l1 l2, mell l1 → Permutation Type l1 l2 → mell l2
| mix r : ∀ l1 l2, mell l1 → mell l2 → mell (l1 ++ l2)
| tens r : ∀ A B l1 l2, mell (A :: l1) → mell (B :: l2) → mell (tens A B :: l1 ++ l2)
| parr r : ∀ A B l, mell (A :: B :: l) → mell (parr A B :: l)
| oc r : ∀ A l, mell (A :: map wn l) → mell (oc A :: map wn l)
| de r : ∀ A l, mell (A :: l) → mell (wn A :: l)
| wk r : ∀ A l, mell l → mell (wn A :: l)
| co r : ∀ A l, mell (wn A :: wn A :: l) → mell (wn A :: l).

Fixpoint mell2ll : formula → formulas.formula

Definition pfrag mell := mk pfrag false NoAxioms false true true.
cut axioms mix0 mix2 perm

Lemma mell2mellfrag : ∀ l, mell l ↔ ll pfrag mell (map mell2ll l).



Representation of Linear Logic Proofs
Computational Content

Inductive ll P : list formula → Type :=
| ax r : ∀ X, ll P (covar X :: var X :: nil)
| ex r : ∀ l1 l2, ll P l1 → PCperm Type (pperm P) l1 l2 → ll P l2
| ex wn r : ∀ l1 lw lw’ l2, ll P (l1 ++ map wn lw ++ l2) →

Permutation Type lw lw’ → ll P (l1 ++ map wn lw’ ++ l2)
| mix0 r {f : pmix0 P = true} : ll P nil
| mix2 r {f : pmix2 P = true} : ∀ l1 l2, ll P l1 → ll P l2 → ll P (l2 ++ l1)
| one r : ll P (one :: nil)
| bot r : ∀ l, ll P l → ll P (bot :: l)
| tens r : ∀ A B l1 l2, ll P (A :: l1) → ll P (B :: l2) → ll P (tens A B :: l2 ++ l1)
| parr r : ∀ A B l, ll P (A :: B :: l) → ll P (parr A B :: l)
| top r : ∀ l, ll P (top :: l)
| plus r1 : ∀ A B l, ll P (A :: l) → ll P (aplus A B :: l)
| plus r2 : ∀ A B l, ll P (A :: l) → ll P (aplus B A :: l)
| with r : ∀ A B l, ll P (A :: l) → ll P (B :: l) → ll P (awith A B :: l)
| oc r : ∀ A l, ll P (A :: map wn l) → ll P (oc A :: map wn l)
| de r : ∀ A l, ll P (A :: l) → ll P (wn A :: l)
| wk r : ∀ A l, ll P l → ll P (wn A :: l)
| co r : ∀ A l, ll P (wn A :: wn A :: l) → ll P (wn A :: l)
| cut r {f : pcut P = true} : ∀ A l1 l2, ll P (dual A :: l1) → ll P (A :: l2) → ll P (l2 ++ l1)
| gax r : ∀ a, ll P (projT2 (pgax P) a).



Curry-Howard

Sequents as Multisets

which Church Boolean is this?
JA,AK ` A

JAK ` A → A
J K ` A → A → A

Sequents as Lists

A ` A
A,A ` A

A ` A → A
` A → A → A

A ` A
A,A ` A

ex (12)
A,A ` A →

A ` A → A →
` A → A → A

Proofs (Type) rather than Provability (Prop)
proof size as a defined function: ll P l → nat



Curry-Howard

Sequents as Multisets

which Church Boolean is this?
JA,AK ` A

JAK ` A → A
J K ` A → A → A

Sequents as Lists

A ` A
A,A ` A

A ` A → A
` A → A → A

A ` A
A,A ` A

ex (12)
A,A ` A →

A ` A → A →
` A → A → A

Proofs (Type) rather than Provability (Prop)
proof size as a defined function: ll P l → nat



Curry-Howard

Sequents as Multisets

which Church Boolean is this?
JA,AK ` A

JAK ` A → A
J K ` A → A → A

Sequents as Lists

A ` A
A,A ` A

A ` A → A
` A → A → A

A ` A
A,A ` A

ex (12)
A,A ` A →

A ` A → A →
` A → A → A

Proofs (Type) rather than Provability (Prop)
proof size as a defined function: ll P l → nat



Induced Coq Contributions

Standard Library
Missing results on lists, permutations, etc

Lemma in elt {A} : ∀ (a:A) l1 l2, In a (l1 ++ a :: l2).

Lemma Forall app inv {A} : ∀ P (l1 l2 : list A),
Forall P (l1 ++ l2) ↔ Forall P l1 ∧ Forall P l2.

...

From Prop to Type
I bug in setoid rewrite
I and and prod associate differently

Add-Ons
Cyclic permutations

Parametric permutations PCperm PEperm

Finite multisets up to Coq equality



Current State

fmformulas

ll_mix

yalla_ax

subs isubs

mell_Prop

mell2

llpol

mell_msetoid

mell_mset

bbb

fmiformulas

lambek

ll_def

ll_cut

ll_prop

ll_fragments

formulas iformulas

ill_def

ill_cut

ill_prop

tl
nn_prop

nn_foc

llfoc

nn_def

basic_tactics



Main Content

Results
substitutions and freshness

around mix rules

translations LL ↔ ILL ↔ TL
conservativity LL ↔ ILL ↔ TL

cut elimination

sub-formula property

deduction theorem

reversibility and focusing

Related Systems (some)
Lambek calculus

MELL in Prop

MELL with multisets



What’s Next?

Before Release 2.0 (ongoing)
Cut-elimination proof for ILL
Non-commutative cut-elimination for ILL and LL
Some cleaning

Move to Coq 8.9

Planned (not necessarily in 2.0)
Quantifiers in linear logic

More automation for permutation solving

Parametric exponential rules (subexponentials, light, etc)

Cut-elimination as proof rewriting

Denotational semantics

Intuitionistic and Classical Logics (ongoing [C. Lucas])

Automating correspondence with user-defined fragments



Try It!!!

https://perso.ens-lyon.fr/olivier.laurent/yalla/

https://github.com/olaure01/yalla/tree/working

Users, comments and manpower are welcome!

Support guaranteed:

olivier.laurent@ens-lyon.fr

https://github.com/olaure01/yalla/issues

https://perso.ens-lyon.fr/olivier.laurent/yalla/
https://github.com/olaure01/yalla/tree/working
olivier.laurent@ens-lyon.fr
https://github.com/olaure01/yalla/issues

	Yalla

