
LLWiki book

version 1.1

January 5, 2025

Informations

This document has not been built as a linear LATEX document but from an extraction of LLWiki.
This explains why the structure of the document may look strange at various points. Moreover as
different authors contributed at different places, you may face small inconsistencies in namings
and definitions.

LLWiki is a collaborative project aiming at the writing of a compendium about linear
logic [Gir87]. A previous project with similar goals is Linear Logic Pages.

The LLWiki is a collective work created under the authority of the editorial board:

• Emmanuel Beffara (IML)

• Thomas Ehrhard (PPS)

• Jean-Yves Girard (IML)

• Olivier Laurent (LIP)

• Damiano Mazza (LIPN)

• Laurent Regnier (IML)

• Lorenzo Tortora de Falco (Roma 3)

The editorial board is granted a monopoly of rights on the content of this collective work.1

The content of the LLWiki is licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 2.0 France. This means you can share and adapt this content, under the following
conditions:

• you must cite the “editorial board of the LLWiki” as the licensor;

• you may not use this content for commercial purposes;

• if you distribute a possibly modified version of this content, you must do so under the same
or similar license.

1The contributors are the individuals owning an account on the LLWiki, which allows them to edit the content.
By applying for the creation of their account, the candidates to the status of contributor agree to grant the

monopoly of rights on the LLWiki as a collective work to the editorial board; they moreover agree that their
contributions are distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike
2.0 France, the editorial board being cited as the licensor.

The contributors however keep their rights on their respective contributions and are free to exploit them for
their own sake.

1

http://llwiki.ens-lyon.fr/
http://llwiki.ens-lyon.fr/
https://www.i2m.univ-amu.fr/perso/yves.lafont/pub/llpages.pdf
http://llwiki.ens-lyon.fr/
http://creativecommons.org/licenses/by-nc-sa/2.0/fr/deed.en License
http://creativecommons.org/licenses/by-nc-sa/2.0/fr/deed.en License
http://llwiki.ens-lyon.fr/
http://creativecommons.org/licenses/by-nc-sa/2.0/fr/deed.en License
http://creativecommons.org/licenses/by-nc-sa/2.0/fr/deed.en License

Contents

I Syntax 7

1 Sequent calculus 8
1.1 Formulas . 8
1.2 Sequents and proofs . 9
1.3 Equivalences . 10

1.3.1 De Morgan laws . 10
1.3.2 Fundamental equivalences . 11
1.3.3 Definability . 11

1.4 Properties of proofs . 12
1.4.1 Cut elimination and consequences . 12
1.4.2 Expansion of identities . 13
1.4.3 Reversibility . 13

1.5 One-sided sequent calculus . 14
1.6 Variations . 15

1.6.1 Exponential rules . 15
1.6.2 Non-symmetric sequents . 15
1.6.3 Mix rules . 16

1.7 Equiprovability . 16
1.7.1 Definition . 16

1.8 Isomorphism . 16
1.8.1 Definition . 16
1.8.2 List of isomorphisms . 16

1.9 List of equivalences . 17
1.9.1 Multiplicatives . 17
1.9.2 Additives . 18
1.9.3 Quantifiers . 18
1.9.4 Exponentials . 18
1.9.5 Polarities . 18
1.9.6 Second order encodings . 18
1.9.7 Miscellaneous . 18

1.10 Lattice of exponential modalities . 19
1.11 Provable formulas . 20

1.11.1 Distributivities . 20
1.11.2 Factorizations . 20
1.11.3 Identities . 20
1.11.4 Additive structure . 20
1.11.5 Quantifiers . 21
1.11.6 Exponential structure . 21
1.11.7 Monoidality of exponentials . 21

2

1.11.8 Promotion principles . 21
1.11.9 Commutations . 21

1.12 Non provable formulas . 21
1.13 Mix . 22

1.13.1 Binary Mix rule . 22
1.13.2 Nullary Mix rule . 22

1.14 Additive cut rule . 22
1.15 Focusing . 23

1.15.1 Asynchrony . 23
1.15.2 Generalized connectives and rules . 23
1.15.3 Synchrony . 25

1.16 Positive formula . 26
1.16.1 Positive connectives . 26
1.16.2 Generalized structural rules . 27

1.17 Negative formula . 28
1.17.1 Negative connectives . 28
1.17.2 Generalized structural rules . 28

1.18 Regular formula . 29
1.18.1 Alternative characterization . 29
1.18.2 Regular connectives . 29

2 Intuitionistic linear logic 30
2.1 Sequent Calculus . 30
2.2 The intuitionistic fragment of linear logic . 30
2.3 Input / output polarities . 31

3 Polarized linear logic 33
3.1 Polarization . 33
3.2 Deduction rules . 33

4 Fragment 34
4.1 Motivations . 35
4.2 Multiplicative fragments . 35
4.3 Additive fragments . 36
4.4 Exponential fragments . 37

4.4.1 About exponential rules . 38
4.5 The provability problem . 39

4.5.1 The finite model property . 39
4.5.2 Provability . 39

4.6 The cut elimination problem . 39

5 Proof-nets: a formal account of nets 40
5.1 Preliminaries . 40

5.1.1 The short story . 40
5.2 Nets . 40

5.2.1 Wires . 40
5.2.2 Nets . 41
5.2.3 Subnets . 42
5.2.4 Rewriting . 42
5.2.5 Typing . 42

3

5.2.6 Boxes . 43

6 System L 44
6.1 Definitions . 44
6.2 Typing . 44
6.3 Reduction rules . 45

7 Translations of intuitionistic logic 46
7.1 Call-by-name Girard’s translation A→ B 7→ !A(B 46
7.2 Call-by-value translation A→ B 7→ !(A(B) . 47

7.2.1 Alternative presentation . 49
7.3 Call-by-value Girard’s translation A→ B 7→ !(A(B) 49

8 Translations of classical logic 52
8.1 T-translation A→ B 7→ !?A(?B . 52

8.1.1 Alternative presentation . 54
8.2 Q-translation A→ B 7→ !(A(?B) . 55

8.2.1 Alternative presentation . 57

9 Light linear logics 59
9.1 Elementary linear logic . 59
9.2 Light linear logic . 60
9.3 Soft linear logic . 60

II Semantics 61

10 Semantics 62
10.1 Orthogonality relation . 62

11 Coherent semantics 63
11.1 The cartesian closed structure of coherent semantics 63

11.1.1 Coherent spaces . 63
11.1.2 Stable functions . 65
11.1.3 Cartesian product . 66

11.2 The monoidal structure of coherent semantics . 66
11.2.1 Linear functions . 66
11.2.2 Tensor product . 67
11.2.3 Linear negation . 67

11.3 Exponentials . 68
11.4 Dual connectives and neutrals . 68

11.4.1 The direct sum . 68
11.4.2 The par and the why not . 69
11.4.3 One and bottom . 69
11.4.4 Zero and top . 69

11.5 After coherent semantics . 69
11.5.1 Sequentiality . 70
11.5.2 Multiplicative neutrals and the mix rule 71

4

12 Phase semantics 73
12.1 Introduction . 73
12.2 Preliminaries: relation and closure operators . 73

12.2.1 Relations and operators on subsets . 73
12.2.2 Closure operators . 74

12.3 Phase Semantics . 75
12.3.1 Phase spaces . 75
12.3.2 Additive connectives . 75
12.3.3 Multiplicative connectives . 76
12.3.4 Properties . 76
12.3.5 Exponentials . 77

12.4 Soundness . 77
12.5 Completeness . 77
12.6 Cut elimination . 78

13 Categorical semantics 79
13.1 Overview . 79
13.2 Modeling IMLL . 79
13.3 Modeling the additives . 81
13.4 Modeling ILL . 82
13.5 Modeling negation . 83

13.5.1 *-autonomous categories . 83
13.5.2 Compact closed categories . 83

14 Relational semantics 85
14.1 The category of sets and relations . 85

14.1.1 Monoidal structure . 85
14.1.2 Additives . 86
14.1.3 Exponentials . 86

14.2 Interpretation of propositional linear logic (LL0) 86

15 Finiteness semantics 88
15.1 Finiteness spaces . 88

15.1.1 Multiplicatives . 89
15.1.2 Additives . 89
15.1.3 Exponentials . 90

16 Geometry of interaction 91
16.1 Introduction . 91

16.1.1 The Geometry of Interaction as operators 91
16.2 GoI for MELL: partial isometries . 93

16.2.1 Operators, partial isometries . 93
16.2.2 Partial permutations . 94
16.2.3 The proof space . 95
16.2.4 From operators to matrices: internalization/externalization 96

16.3 GoI for MELL: the *-autonomous structure . 97
16.3.1 The tensor and the linear application . 97
16.3.2 The identity . 97
16.3.3 The execution formula, version 1: application 98
16.3.4 The tensor rule . 100

5

16.3.5 Other monoidal constructions . 101
16.3.6 Execution formula, version 2: composition 102

16.4 GoI for MELL: exponentials . 103
16.4.1 The tensor product of Hilbert spaces . 103

17 Game semantics 105
17.1 Preliminary definitions and notations . 105

17.1.1 Sequences, Polarities . 105
17.1.2 Sequences on Components . 105

17.2 Games and Strategies . 106
17.2.1 Game constructions . 106
17.2.2 Strategies . 106

A Notations 108
A.1 Logical systems . 108
A.2 Formulas and proof trees . 108

A.2.1 Formulas . 108
A.2.2 Rule names . 108

A.3 Semantics . 108
A.3.1 Coherent spaces . 108
A.3.2 Finiteness spaces . 109

A.4 Nets . 109
A.5 Miscellaneous . 109

6

Part I

Syntax

7

Chapter 1

Sequent calculus

This article presents the language and sequent calculus of second-order linear logic and the
basic properties of this sequent calculus. The core of the article uses the two-sided system with
negation as a proper connective; the one-sided system, often used as the definition of linear logic,
is presented at the end of section 1.5.

1.1 Formulas

Atomic formulas, written α, β, γ, are predicates of the form p(t1, . . . , tn), where the ti are terms
from some first-order language. The predicate symbol p may be either a predicate constant or a
second-order variable. By convention we will write first-order variables as x, y, z, second-order
variables as X,Y, Z, and ξ for a variable of arbitrary order (see appendix A).

Formulas, represented by capital letters A, B, C, are built using the following connectives:

α atom A⊥ negation
A⊗B tensor A`B par
1 one ⊥ bottom
A⊕B plus A&B with
0 zero > top
!A of course ?A why not
∃ξ.A there exists ∀ξ.A for all

Each line (except the first one) corresponds to a particular class of connectives, and each
class consists in a pair of connectives. Those in the left column are called positive and those in
the right column are called negative. The tensor and with connectives are conjunctions while par
and plus are disjunctions. The exponential connectives are called modalities, and traditionally
read of course A for !A and why not A for ?A. Quantifiers may apply to first- or second-order
variables.

There is no connective for implication in the syntax of standard linear logic. Instead, a linear
implication is defined similarly to the decomposition A → B = ¬A ∨ B in classical logic, as
A(B := A⊥ `B.

Free and bound variables and first-order substitution are defined in the standard way. Formulas
are always considered up to renaming of bound names. If A is a formula, X is a second-order
variable and B[x1, . . . , xn] is a formula with variables xi, then the formula A[B/X] is A where
every atom X(t1, . . . , tn) is replaced by B[t1, . . . , tn].

8

1.2 Sequents and proofs

A sequent is an expression Γ ` ∆ where Γ and ∆ are finite multisets of formulas. For a multiset
Γ = A1, . . . , An, the notation ?Γ represents the multiset ?A1, . . . , ?An. Proofs are labelled trees
of sequents, built using the following inference rules:

• Identity group:

axiom
A ` A

Γ ` A,∆ Γ′, A ` ∆′
cut

Γ,Γ′ ` ∆,∆′

• Negation:
Γ ` A,∆

nL
Γ, A⊥ ` ∆

Γ, A ` ∆
nR

Γ ` A⊥,∆

• Multiplicative group:

– tensor:
Γ, A,B ` ∆ ⊗L

Γ, A⊗B ` ∆

Γ ` A,∆ Γ′ ` B,∆′ ⊗R
Γ,Γ′ ` A⊗B,∆,∆′

– par:
Γ, A ` ∆ Γ′, B ` ∆′ `L

Γ,Γ′, A`B ` ∆,∆′
Γ ` A,B,∆ `RΓ ` A`B,∆

– one:
Γ ` ∆ 1LΓ, 1 ` ∆

1R` 1

– bottom:
⊥L⊥ `

Γ ` ∆ ⊥RΓ ` ⊥,∆

• Additive group:

– plus:

Γ, A ` ∆ Γ, B ` ∆ ⊕L
Γ, A⊕B ` ∆

Γ ` A,∆ ⊕R1
Γ ` A⊕B,∆

Γ ` B,∆ ⊕R2
Γ ` A⊕B,∆

– with:

Γ, A ` ∆
&L1Γ, A&B ` ∆

Γ, B ` ∆
&L2Γ, A&B ` ∆

Γ ` A,∆ Γ ` B,∆
&RΓ ` A&B,∆

– zero:
0LΓ, 0 ` ∆

– top:
>RΓ ` >,∆

• Exponential group:

– of course:

Γ, A ` ∆
dLΓ, !A ` ∆

Γ ` ∆ wL
Γ, !A ` ∆

Γ, !A, !A ` ∆
cL

Γ, !A ` ∆

!A1, . . . , !An ` B, ?B1, . . . , ?Bm
!R!A1, . . . , !An ` !B, ?B1, . . . , ?Bm

9

– why not:

Γ ` A,∆
dRΓ ` ?A,∆

Γ ` ∆ wR
Γ ` ?A,∆

Γ ` ?A, ?A,∆
cR

Γ ` ?A,∆

!A1, . . . , !An, A ` ?B1, . . . , ?Bm
?L!A1, . . . , !An, ?A ` ?B1, . . . , ?Bm

• Quantifier group (in the ∃L and ∀R rules, ξ must not occur free in Γ or ∆):

– there exists:

Γ, A ` ∆ ∃LΓ, ∃ξ.A ` ∆

Γ ` ∆, A[t/x]
∃1
RΓ ` ∆,∃x.A

Γ ` ∆, A[B/X]
∃2
RΓ ` ∆, ∃X.A

– for all:

Γ, A[t/x] ` ∆
∀1
LΓ, ∀x.A ` ∆

Γ, A[B/X] ` ∆
∀2
LΓ, ∀X.A ` ∆

Γ ` ∆, A ∀RΓ ` ∆, ∀ξ.A

The left rules for of course and right rules for why not are called dereliction, weakening and
contraction rules. The right rule for of course and the left rule for why not are called promotion
rules. Note the fundamental fact that there are no contraction and weakening rules for arbitrary
formulas, but only for the formulas starting with the ? modality. This is what distinguishes linear
logic from classical logic: if weakening and contraction were allowed for arbitrary formulas, then
⊗ and & would be identified, as well as ⊕ and `, 1 and >, 0 and ⊥. By identified, we mean here
that replacing a ⊗ with a & or vice versa would preserve provability.

Sequents are considered as multisets, in other words as sequences up to permutation. An
alternative presentation would be to define a sequent as a finite sequence of formulas and to add
the exchange rules:

Γ1, A,B,Γ2 ` ∆
exchangeLΓ1, B,A,Γ2 ` ∆

Γ ` ∆1, A,B,∆2 exchangeRΓ ` ∆1, B,A,∆2

1.3 Equivalences

Two formulas A and B are (linearly) equivalent, written A˛ B, if both implications A(B
and B(A are provable. Equivalently, A˛ B if both A ` B and B ` A are provable. Another
formulation of A˛ B is that, for all Γ and ∆, Γ ` ∆, A is provable if and only if Γ ` ∆, B is
provable.

Two related notions are isomorphism (stronger than equivalence) and equiprovability (weaker
than equivalence).

1.3.1 De Morgan laws

Negation is involutive: A˛ A⊥⊥

Duality between connectives:

(A⊗B)⊥ ˛ A⊥ `B⊥ (A`B)⊥ ˛ A⊥ ⊗B⊥
1⊥ ˛ ⊥ ⊥⊥ ˛ 1

(A⊕B)⊥ ˛ A⊥ &B⊥ (A&B)⊥ ˛ A⊥ ⊕B⊥
0⊥ ˛ > >⊥ ˛ 0

(!A)⊥ ˛ ?(A⊥) (?A)⊥ ˛ !(A⊥)
(∃ξ.A)⊥ ˛ ∀ξ.(A⊥) (∀ξ.A)⊥ ˛ ∃ξ.(A⊥)

10

1.3.2 Fundamental equivalences

• Associativity, commutativity, neutrality:

A⊗ (B ⊗ C) ˛ (A⊗B)⊗ C A⊗B ˛ B ⊗A A⊗ 1 ˛ A
A` (B ` C) ˛ (A`B) ` C A`B ˛ B `A A`⊥˛ A
A⊕ (B ⊕ C) ˛ (A⊕B)⊕ C A⊕B ˛ B ⊕A A⊕ 0 ˛ A
A& (B & C) ˛ (A&B) & C A&B ˛ B &A A&>˛ A

• Idempotence of additives:
A⊕A˛ A A&A˛ A

• Distributivity of multiplicatives over additives:

A⊗ (B ⊕ C) ˛ (A⊗B)⊕ (A⊗ C) A⊗ 0 ˛ 0
A` (B & C) ˛ (A`B) & (A` C) A`>˛ >

• Defining property of exponentials:

!(A&B) ˛ !A⊗ !B !>˛ 1
?(A⊕B) ˛ ?A` ?B ?0 ˛ ⊥

• Monoidal structure of exponentials:

!A⊗ !A˛ !A !1 ˛ 1
?A` ?A˛ ?A ?⊥˛ ⊥

• Digging:
!!A˛ !A ??A˛ ?A

• Other properties of exponentials:

!?!?A˛ !?A !?1 ˛ 1
?!?!A˛ ?!A ?!⊥˛ ⊥

These properties of exponentials lead to the lattice of exponential modalities.

• Commutation of quantifiers (ζ does not occur in A):

∃ξ.∃ψ.A˛ ∃ψ.∃ξ.A ∃ξ.(A⊕B) ˛ ∃ξ.A⊕ ∃ξ.B ∃ζ.(A⊗B) ˛ A⊗ ∃ζ.B ∃ζ.A˛ A
∀ξ.∀ψ.A˛ ∀ψ.∀ξ.A ∀ξ.(A&B) ˛ ∀ξ.A& ∀ξ.B ∀ζ.(A`B) ˛ A` ∀ζ.B ∀ζ.A˛ A

1.3.3 Definability

The units and the additive connectives can be defined using second-order quantification and
exponentials, indeed the following equivalences hold:

• 0 ˛ ∀X.X

• 1 ˛ ∀X.(X (X)

• A⊕B ˛ ∀X.(!(A(X)(!(B(X)(X)

The constants > and ⊥ and the connective & can be defined by duality.
Any pair of connectives that has the same rules as ⊗/` is equivalent to it, the same holds

for additives, but not for exponentials.
Other basic equivalences exist.

11

1.4 Properties of proofs

1.4.1 Cut elimination and consequences

Theorem 1 (cut elimination). For every sequent Γ ` ∆, there is a proof of Γ ` ∆ if and only if
there is a proof of Γ ` ∆ that does not use the cut rule.

This property is proved using a set of rewriting rules on proofs, using appropriate termination
arguments (see the specific articles on cut elimination for detailed proofs), it is the core of the
proof/program correspondence.

It has several important consequences:

Definition 1 (subformula). The subformulas of a formula A are A and, inductively, the subfor-
mulas of its immediate subformulas:

• the immediate subformulas of A⊗B, A`B, A⊕B, A&B are A and B,

• the only immediate subformula of !A and ?A is A,

• 1, ⊥, 0, > and atomic formulas have no immediate subformula,

• the immediate subformulas of ∃x.A and ∀x.A are all the A[t/x] for all first-order terms t,

• the immediate subformulas of ∃X.A and ∀X.A are all the A[B/X] for all formulas B (with
the appropriate number of parameters).

Theorem 2 (subformula property). A sequent Γ ` ∆ is provable if and only if it is the conclusion
of a proof in which each intermediate conclusion is made of subformulas of the formulas of Γ and
∆.

Proof. By the cut elimination theorem, if a sequent is provable, then it is provable by a cut-free
proof. In each rule except the cut rule, all formulas of the premisses are either formulas of
the conclusion, or immediate subformulas of it, therefore cut-free proofs have the subformula
property.

The subformula property means essentially nothing in the second-order system, since any
formula is a subformula of a quantified formula where the quantified variable occurs. However,
the property is very meaningful if the sequent Γ does not use second-order quantification, as it
puts a strong restriction on the set of potential proofs of a given sequent. In particular, it implies
that the first-order fragment without quantifiers is decidable.

Theorem 3 (consistency). The empty sequent ` is not provable. Subsequently, it is impossible
to prove both a formula A and its negation A⊥; it is impossible to prove 0 or ⊥.

Proof. If a sequent is provable, then it is the conclusion of a cut-free proof. In each rule except
the cut rule, there is at least one formula in conclusion. Therefore ` cannot be the conclusion of
a proof. The other properties are immediate consequences: if ` A⊥ and ` A are provable, then
by the left negation rule A⊥ ` is provable, and by the cut rule one gets empty conclusion, which
is not possible. As particular cases, since 1 and > are provable, ⊥ and 0 are not, since they are
equivalent to 1⊥ and >⊥ respectively.

12

1.4.2 Expansion of identities

Let us write π : Γ ` ∆ to signify that π is a proof with conclusion Γ ` ∆.

Proposition 1 (η-expansion). For every proof π, there is a proof π′ with the same conclusion
as π in which the axiom rule is only used with atomic formulas. If π is cut-free, then there is a
cut-free π′.

Proof. It suffices to prove that for every formula A, the sequent A ` A has a cut-free proof in
which the axiom rule is used only for atomic formulas. We prove this by induction on A.

• If A is atomic, then A ` A is an instance of the atomic axiom rule.

• If A = A1 ⊗A2 then we have:

π1 : A1 ` A1 π2 : A2 ` A2 ⊗R
A1, A2 ` A1 ⊗A2 ⊗L
A1 ⊗A2 ` A1 ⊗A2

where π1 and π2 exist by induction hypothesis.

• If A = A1 `A2 then we have:

π1 : A1 ` A1 π2 : A2 ` A2 `LA1 `A2 ` A1, A2 `RA1 `A2 ` A1 `A2

where π1 and π2 exist by induction hypothesis.

• All other connectives follow the same pattern.

The interesting thing with η-expansion is that, we can always assume that each connective is
explicitly introduced by its associated rule (except in the case where there is an occurrence of
the > rule).

1.4.3 Reversibility

Definition 2 (reversibility). A connective c is called reversible if

• for every proof π : Γ ` ∆, c(A1, . . . , An), there is a proof π′ with the same conclusion in
which c(A1, . . . , An) is introduced by the last rule,

• if π is cut-free then there is a cut-free π′.

Proposition 2. The connectives `, ⊥, &, > and ∀ are reversible.

Proof. Using the η-expansion property, we assume that the axiom rule is only applied to atomic
formulas. Then each top-level connective is introduced either by its associated (left or right) rule
or in an instance of the 0L or >R rule.

For `, consider a proof π : Γ ` ∆, A`B. If A`B is introduced by a `R rule (not necessarily
the last rule in π), then if we remove this rule we get a proof of ` Γ, A,B (this can be proved by
a straightforward induction on π). If it is introduced in the context of a 0L or >R rule, then this
rule can be changed so that A`B is replaced by A,B. In either case, we can apply a final `
rule to get the expected proof.

13

For ⊥, the same technique applies: if it is introduced by a ⊥R rule, then remove this rule
to get a proof of ` Γ, if it is introduced by a 0L or >R rule, remove the ⊥ from this rule, then
apply the ⊥ rule at the end of the new proof.

For &, consider a proof π : Γ ` ∆, A&B. If the connective is introduced by a & rule then
this rule is applied in a context like

π1 : Γ′ ` ∆′, A π2 : Γ′ ` ∆′, B
&

Γ′ ` ∆′, A&B

Since the formula A&B is not involved in other rules (except as context), if we replace this
step by π1 in π we finally get a proof π′1 : Γ ` ∆, A. If we replace this step by π2 we get a proof
π′2 : Γ ` ∆, B. Combining π1 and π2 with a final & rule we finally get the expected proof. The
case when the & was introduced in a > rule is solved as before.

For > the result is trivial: just choose π′ as an instance of the > rule with the appropriate
conclusion.

For ∀, consider a proof π : Γ ` ∆, ∀ξ.A. Up to renaming, we can assume that ξ occurs free
only above the rule that introduces the quantifier. If the quantifier is introduced by a ∀ rule,
then if we remove this rule, we can check that we get a proof of Γ ` ∆, A on which we can finally
apply the ∀ rule. The case when the ∀ was introduced in a > rule is solved as before.

Note that, in each case, if the proof we start from is cut-free, our transformations do not
introduce a cut rule. However, if the original proof has cuts, then the final proof may have more
cuts, since in the case of & we duplicated a part of the original proof.

A corresponding property for positive connectives is focusing, which states that clusters of
positive formulas can be treated in one step, under certain circumstances.

1.5 One-sided sequent calculus

The sequent calculus presented above is very symmetric: for every left introduction rule, there is
a right introduction rule for the dual connective that has the exact same structure. Moreover,
because of the involutivity of negation, a sequent Γ, A ` ∆ is provable if and only if the sequent
Γ ` A⊥,∆ is provable. From these remarks, we can define an equivalent one-sided sequent
calculus:

• Formulas are considered up to De Morgan duality. Equivalently, one can consider that
negation is not a connective but a syntactically defined operation on formulas. In this case,
negated atoms α⊥ must be considered as another kind of atomic formulas.

• Sequents have the form ` Γ.

The inference rules are essentially the same except that the left hand side of sequents is kept
empty:

• Identity group:
axiom

` A⊥, A
` Γ, A ` ∆, A⊥

cut` Γ,∆

• Multiplicative group:

` Γ, A ` ∆, B ⊗` Γ,∆, A⊗B
` Γ, A,B `` Γ, A`B

1` 1
` Γ ⊥` Γ,⊥

14

• Additive group:

` Γ, A ⊕1` Γ, A⊕B
` Γ, B ⊕2` Γ, A⊕B

` Γ, A ` Γ, B
&`,Γ, A&B

>` Γ,>

• Exponential group:

` Γ, A
d` Γ, ?A

` Γ w` Γ, ?A
` Γ, ?A, ?A

c` Γ, ?A

` ?Γ, B
!` ?Γ, !B

• Quantifier group (in the ∀ rule, ξ must not occur free in Γ):

` Γ, A[t/x]
∃1

` Γ,∃x.A
` Γ, A[B/X]

∃2
` Γ, ∃X.A

` Γ, A
∀` Γ, ∀ξ.A

Theorem 4. A two-sided sequent Γ ` ∆ is provable if and only if the sequent ` Γ⊥,∆ is provable
in the one-sided system.

The one-sided system enjoys the same properties as the two-sided one, including cut elimina-
tion, the subformula property, etc. This formulation is often used when studying proofs because
it is much lighter than the two-sided form while keeping the same expressiveness. In particular,
proof-nets can be seen as a quotient of one-sided sequent calculus proofs under commutation of
rules.

1.6 Variations

1.6.1 Exponential rules

• The promotion rule, on the right-hand side for example, !A1, . . . , !An ` B, ?B1, . . . , ?Bm
!R!A1, . . . , !An ` !B, ?B1, . . . , ?Bm

can be replaced by amulti-functorial promotion rule A1, . . . , An ` B,B1, . . . , Bm
!R mf

!A1, . . . , !An ` !B, ?B1, . . . , ?Bm

and a digging rule Γ ` ??A,∆
??

Γ ` ?A,∆
, without modifying the provability.

Note that digging violates the subformula property.

• In presence of the digging rule Γ ` ??A,∆
??

Γ ` ?A,∆
, the multiplexing rule Γ ` A(n),∆

mux
Γ ` ?A,∆

(where A(n) stands for n occurrences of formula A) is equivalent (for provability) to the
triple of rules: contraction, weakening, dereliction.

1.6.2 Non-symmetric sequents

The same remarks that lead to the definition of the one-sided calculus can lead the definition of
other simplified systems:

• A one-sided variant with sequents of the form Γ ` could be defined.

• When considering formulas up to De Morgan duality, an equivalent system is obtained by
considering only the left and right rules for positive connectives (or the ones for negative
connectives only, obviously).

• Intuitionistic linear logic is the two-sided system where the right-hand side is constrained
to always contain exactly one formula (with a few associated restrictions).

• Similar restrictions are used in various semantics and proof search formalisms.

15

1.6.3 Mix rules

It is quite common to consider mix rules: Mix0`
Γ ` ∆ Γ′ ` ∆′ Mix2

Γ,Γ′ ` ∆,∆′

1.7 Equiprovability

1.7.1 Definition

Two formulas A and B are equiprovable, when ` A is provable if and only if ` B is provable.

• for any A and B, A⊗B and A&B are equiprovable.

• for any A, A, !A and ∀ξA are equiprovable.

1.8 Isomorphism

1.8.1 Definition

Two formulas A and B are isomorphic (denoted A ∼= B), when there are two proofs π of A ` B
and ρ of B ` A such that eliminating the cut on A in

... π
A ` B

... ρ
B ` A

cut
B ` B

leads to an η-expansion of
ax

B ` B ,
and eliminating the cut on B in

... π
A ` B

... ρ
B ` A

cut
A ` A

leads to an η-expansion of
ax

A ` A .
Linear logic admits many isomorphisms, but it is not known wether all of them have been

discovered or not.

1.8.2 List of isomorphisms

1.8.2.1 Linear negation

A⊥⊥ ∼= A
(A⊗B)⊥ ∼= A⊥ `B⊥ 1⊥ ∼= ⊥
(A`B)⊥ ∼= A⊥ ⊗B⊥ ⊥⊥ ∼= 1
(A&B)⊥ ∼= A⊥ ⊕B⊥ >⊥ ∼= 0
(A⊕B)⊥ ∼= A⊥ &B⊥ 0⊥ ∼= >

(!A)⊥ ∼= ?A⊥

(?A)⊥ ∼= !A⊥

1.8.2.2 Neutrals

A⊗ 1 ∼= 1⊗A ∼= A
A`⊥ ∼= ⊥`A ∼= A
A&> ∼= >&A ∼= A
A⊕ 0 ∼= 0⊕A ∼= A

16

1.8.2.3 Commutativity

A⊗B ∼= B ⊗A
A`B ∼= B `A
A&B ∼= B &A
A⊕B ∼= B ⊕A

1.8.2.4 Associativity

(A⊗B)⊗ C ∼= A⊗ (B ⊗ C)
(A`B) ` C ∼= A` (B ` C)
(A&B) & C ∼= A& (B & C)
(A⊕B)⊕ C ∼= A⊕ (B ⊕ C)

1.8.2.5 Multiplicative-additive distributivity

A⊗ (B ⊕ C) ∼= (A⊗B)⊕ (A⊗ C) A⊗ 0 ∼= 0
A` (B & C) ∼= (A`B) & (A` C) A`> ∼= >

1.8.2.6 Linear implication

A(B ∼= A⊥ `B
A(B ∼= B⊥(A⊥

A⊗B(C ∼= A(B(C

1.8.2.7 The exponential isomorphisms

!(A&B) ∼= !A⊗ !B !> ∼= 1
?(A⊕B) ∼= ?A` ?B ?0 ∼= ⊥

1.8.2.8 Quantifiers

∀ξ1.∀ξ2.A ∼= ∀ξ2.∀ξ1.A
∃ξ1.∃ξ2.A ∼= ∃ξ2.∃ξ1.A

∀ξ.(A`B) ∼= A` ∀ξ.B (ξ /∈ A)
∃ξ.(A⊗B) ∼= A⊗ ∃ξ.B (ξ /∈ A)

∀ξ.(A&B) ∼= (∀ξ.A) & (∀ξ.B) ∀ξ.> ∼= >
∃ξ.(A⊕B) ∼= (∃ξ.A)⊕ (∃ξ.B) ∃ξ.0 ∼= 0

1.9 List of equivalences

Each isomorphism gives an equivalence of formulas. The following equivalences are not isomor-
phisms.

1.9.1 Multiplicatives

A ˛ A⊗ (A⊥ `A) ˛ (A⊗A⊥) `A
A`A⊥ ˛ (A`A⊥)⊗ (A`A⊥)

17

1.9.2 Additives
A&A ˛ A
A⊕A ˛ A

A& (A⊕B) ˛ A A⊕> ˛ >
A⊕ (A&B) ˛ A A& 0 ˛ 0

1.9.3 Quantifiers

∀X.A ˛ A (X /∈ A)
∃X.A ˛ A (X /∈ A)

1.9.4 Exponentials

!A ˛ !A⊗ !A ?A ˛ ?A` ?A
!A ˛ !!A ?A ˛ ??A

!?A ˛ !?!?A ?!A ˛ ?!?!A
Some of these equivalences are related with the lattice of exponential modalities.

1.9.5 Polarities
?N ˛ N (N negative)
!P ˛ P (P positive)
?!R˛ R (R regular)
!?L˛ L (L co-regular)

1.9.6 Second order encodings

A ˛ ∀X.(A⊗X⊥) `X
A ˛ ∃X.(A`X⊥)⊗X

A&B ˛ ∃X.!(A`X⊥)⊗ !(B `X⊥)⊗X > ˛ ∃X.X
A⊕B ˛ ∀X.?(A⊗X⊥) ` ?(B ⊗X⊥) `X 0 ˛ ∀X.X

⊥ ˛ ∃X.X ⊗X⊥
1 ˛ ∀X.X⊥ `X

∀ξ.A ˛ ∃X.(∀ξ.(A`X⊥))⊗X
∃ξ.A ˛ ∀X.(∃ξ.(A⊗X⊥)) `X

1.9.7 Miscellaneous
1 ˛ !(A⊥ `A)
⊥ ˛ ?(A⊥ ⊗A)

!?(!A& !B) ˛ !(?!A& ?!B)
?!(?A⊕ ?B) ˛ ?(!?A⊕ !?B)

18

1.10 Lattice of exponential modalities

?

?!?

gg

ε

AA

!?

>>

?!

``

!?!

`` >>

!

]]

77

An exponential modality is an arbitrary (possibly empty) sequence of the two exponential
connectives ! and ?. It can be considered itself as a unary connective. This leads to the notation
µA for applying an exponential modality µ to a formula A.

There is a preorder relation on exponential modalities defined by µ . ν if and only if for any
formula A we have µA ` νA. It induces an equivalence relation on exponential modalities by
µ ∼ ν if and only if µ . ν and ν . µ.

Lemma 1. For any formula A, !A ` A and A ` ?A.

Lemma 2 (Functoriality). If A and B are two formulas such that A ` B then, for any exponential
modality µ, µA ` µB.

Lemma 3. For any formula A, !A ` !!A and ??A ` ?A.

Lemma 4. For any formula A, !A ` !?!A and ?!?A ` ?A.

This allows to prove that any exponential modality is equivalent to one of the following seven
modalities: ε (the empty modality), !, ?, !?, ?!, !?! or ?!?. Indeed any sequence of consecutive ! or
? in a modality can be simplified into only one occurrence, and then any alternating sequence of
length at least four can be simplified into a smaller one.

Proof. We obtain !!A ` !A by functoriality from !A ` A (and similarly for ?A ` ??A). From
!A ` !?!A, we deduce ?!A ` ?!?!A by functoriality and !?B ` !?!?B (with A = ?B). In a similar
way we have !?!?A ` !?A and ?!?!A ` ?!A.

The order relation induced on equivalence classes of exponential modalities with respect to
∼ can be proved to be the one represented on the picture in the top of this section. All the
represented relations are valid.

Proof. We have already seen !A ` A and !A ` !?!A. By functoriality we deduce !?!A ` !?A and
by A = ?!B we deduce !?!B ` ?!B.

The others are obtained from these ones by duality: A ` B entails B⊥ ` A⊥.

Lemma 5. If α is an atom, ?α 6` α and α 6` ?!?α.

We can prove that no other relation between classes is true (by relying on the previous
lemma).

19

Proof. From the lemma and A ` ?A, we have ?α 6` ?!?α.
Then ? cannot be smaller than any other of the seven modalities (since they are all smaller

than ε or ?!?). For the same reason, ε cannot be smaller than !, !?, ?! or !?!. This entails that ?!?
is only smaller than ? since it is not smaller than ε (by duality from ε not smaller than !?!).

From these, ?!α 6` !?α and !?α 6` ?!α, we deduce that no other relation is possible.

The order relation on equivalence classes of exponential modalities is a lattice.

1.11 Provable formulas

Important provable formulas are given by isomorphisms and by equivalences.
In many of the cases below the converse implication does not hold.

1.11.1 Distributivities

1.11.1.1 Standard distributivities

A⊕ (B & C)((A⊕B) & (A⊕ C)

A⊗ (B & C)((A⊗B) & (A⊗ C)

∃ξ.(A&B)((∃ξ.A) & (∃ξ.B)

1.11.1.2 Linear distributivities

A⊗ (B ` C)((A⊗B) ` C

∃ξ.(A`B)(A` ∃ξ.B (ξ /∈ A)

A⊗ ∀ξ.B(∀ξ.(A⊗B) (ξ /∈ A)

1.11.2 Factorizations

(A&B)⊕ (A& C)(A& (B ⊕ C)

(A`B)⊕ (A` C)(A` (B ⊕ C)

(∀ξ.A)⊕ (∀ξ.B)(∀ξ.(A⊕B)

1.11.3 Identities

1(A⊥ `A

A⊗A⊥(⊥

1.11.4 Additive structure
A&B (A A&B (B A (>

A (A⊕B B (A⊕B 0 (A

20

1.11.5 Quantifiers

A (∀ξ.A (ξ /∈ A)
∃ξ.A (A (ξ /∈ A)

∀ξ1.∀ξ2.A (∀ξ.A[ξ/ξ1 ,
ξ /ξ2]

∃ξ.A[ξ/ξ1 ,
ξ /ξ2] (∃ξ1.∃ξ2.A

1.11.6 Exponential structure

Provable formulas involving exponential connectives only provide us with the lattice of exponential
modalities.

!A (A A (?A
!A (1 ⊥ (?A

1.11.7 Monoidality of exponentials

?(A`B) (?A` ?B
!A⊗ !B (!(A⊗B)

!(A&B) (!A& !B
?A⊕ ?B (?(A⊕B)

?(A&B) (?A& ?B
!A⊕ !B (!(A⊕B)

1.11.8 Promotion principles

!A⊗ ?B (?(A⊗B)
!(A`B) (?A` !B

1.11.9 Commutations

∃ξ.?A(?∃ξ.A
!∀ξ.A(∀ξ.!A
?∀ξ.A(∀ξ.?A
∃ξ.!A(!∃ξ.A

1.12 Non provable formulas

A& (B ⊕ C) 6((A&B)⊕ (A& C)

(A⊕B) & (A⊕ C) 6(A⊕ (B & C)

(A⊗B) ` C 6(A⊗ (B ` C)

A 6(!A

!?!A 6(A

!?!A 6(!A

!?A 6(?!A

?!A 6(!?A

21

1.13 Mix

The usual notion of Mix is the binary version of the rule but a nullary version also exists.

1.13.1 Binary Mix rule

` Γ ` ∆ Mix2` Γ,∆

The Mix2 rule is equivalent to ⊥ ` 1:

1` 1
1` 1 Mix2` 1, 1

` Γ ⊥` Γ,⊥ ` 1, 1
cut` Γ, 1

` ∆ ⊥` ∆,⊥
cut` Γ,∆

They are also equivalent to the principle A⊗B ` A`B:

1` 1
1` 1 ⊗` 1⊗ 1 ` ⊥`⊥, 1 ` 1

cut` 1 ` 1

ax` ⊥, 1 ax` ⊥, 1 ⊗` ⊥⊗⊥, 1, 1
cut` 1, 1

ax
` A⊥, A

ax
` B⊥, B

Mix2` A⊥, A,B⊥, B `
` A⊥, B⊥, A`B `
` A⊥ `B⊥, A`B

1.13.2 Nullary Mix rule

Mix0`

The Mix0 rule is equivalent to 1 ` ⊥:

Mix0` ⊥` ⊥ ⊥` ⊥,⊥

1` 1 ` ⊥,⊥
cut` ⊥ 1` 1

cut`

The nullary Mix acts as a unit for the binary one:

` Γ
Mix0` Mix2` Γ

If π is a proof which uses no ⊥ rule and no weakening rule, then (up to the simplification
of the pattern Mix0 /Mix2 above into nothing) π is either reduced to a Mix0 rule or does not
contain any Mix0 rule.

1.14 Additive cut rule

The additive cut rule is: Γ ` A,∆ Γ, A ` ∆
cut add

Γ ` ∆
In contrary to what happens in classical logic, this rule is not admissible in linear logic.
The formula α⊕ α⊥ is not provable in linear logic, while it is derivable with the additive cut

rule:

α ` α
` α, α⊥ ⊕R2
` α, α⊕ α⊥

α ` α ⊕R1
α ` α⊕ α⊥

cut add
` α⊕ α⊥

22

1.15 Focusing

1.15.1 Asynchrony

The connectives `, &, ⊥, > and ∀ are called asynchronous.

Theorem 5. Asynchronous connectives are reversible:

• A sequent ` Γ, A`B is provable if and only if ` Γ, A,B is provable.

• A sequent ` Γ, A&B is provable if and only if ` Γ, A and ` Γ, B are provable.

• A sequent ` Γ,⊥ is provable if and only if ` Γ is provable.

• A sequent ` Γ, ∀ξA is provable if and only if ` Γ, A is provable, for some fresh variable ξ.

Proof. See proof of proposition 2.

Remark that this result is proved using only commutation of rules, except when the formula
is introduced by an axiom rule. Furthermore, if axioms are applied only on atoms, this particular
case disappears.

A consequence of this fact is that, when searching for a proof of some sequent ` Γ, one can
always start by decomposing asynchronous connectives in Γ without losing provability. Applying
this result to successive connectives, we can get generalized formulations for more complex
formulas. For instance:

` Γ, (A`B) ` (B & C) is provable
iff ` Γ, A`B,B & C is provable
iff ` Γ, A`B,B and ` Γ, A`B,C are provable
iff ` Γ, A,B,B and ` Γ, A,B,C are provable

So without loss of generality, we can assume that any proof of ` Γ, (A`B) ` (B & C) ends
like

` Γ, A,B,B

` Γ, A`B,B

` Γ, A,B,C

` Γ, A`B,C

` Γ, A`B,B & C

` Γ, (A`B) ` (B & C)

In order to define a general statement for compound formulas, as well as an analogous result
for synchronous connectives, we need to give a proper status to clusters of connectives of the
same polarity.

1.15.2 Generalized connectives and rules

Definition 3. A synchronous generalized connective is a parametrized formula P [X1, . . . , Xn]
made from the variables Xi using the connectives ⊗, ⊕, 1, 0.

An asynchronous generalized connective is a parametrized formula N [X1, . . . , Xn] made from
the variables Xi using the connectives `, &, ⊥, >.

If C[X1, . . . , Xn] is a generalized connectives (of any polarity), the dual of C is the connective
C∗ such that C∗[X⊥1 , . . . , X

⊥
n] = C[X1, . . . , Xn]⊥.

23

It is clear that dualization of generalized connectives is involutive and exchanges polarities.
We do not include quantifiers in this definition, mainly for simplicity. Extending the notion to
quantifiers would only require taking proper care of the scope of variables.

Sequent calculus provides introduction rules for each connective. Asynchronous connectives
have one rule, synchronous ones may have any number of rules, namely 2 for ⊕ and 0 for 0. We
can derive introduction rules for the generalized connectives by combining the different possible
introduction rules for each of their components.

Considering the previous example N [X1, X2, X3] = (X1 `X2)` (X2 &X3), we can derive an
introduction rule for N as

` Γ, X1, X2, X2

` Γ, X1 `X2, X2

` Γ, X1, X2, X3

` Γ, X1 `X2, X3

` Γ, X1 `X2, X2 &X3

` Γ, (X1 `X2) ` (X2 &X3)

or

` Γ, X1, X2, X2 ` Γ, X1, X2, X3

` Γ, X1, X2, X2 &X3

` Γ, X1 `X2, X2 &X3

` Γ, (X1 `X2) ` (X2 &X3)

but these rules only differ by the commutation of independent rules. In particular, their premisses
are the same. The dual of N is P [X1, X2, X3] = (X1 ⊗X2)⊗ (X2 ⊕X3), for which we have two
possible derivations:

` Γ1, X1 ` Γ2, X2

` Γ1,Γ2, X1 ⊗X2

` Γ3, X2

` Γ3, X2 ⊕X3

` Γ1,Γ2,Γ3, (X1 ⊗X2)⊗ (X2 ⊕X3)

` Γ1, X1 ` Γ2, X2

` Γ1,Γ2, X1 ⊗X2

` Γ3, X3

` Γ3, X2 ⊕X3

` Γ1,Γ2,Γ3, (X1 ⊗X2)⊗ (X2 ⊕X3)

These are actually different, in particular their premisses differ. Each possible derivation
corresponds to the choice of one side of the ⊕ connective.

We can remark that the branches of the asynchronous inference precisely correspond to the
possible synchronous inferences:

• the first branch of the asynchronous inference has a premiss X1, X2, X2 and the first
synchronous inference has three premisses, holding X1, X2 and X2 respectively.

• the second branch of the asynchronous inference has a premiss X1, X2, X3 and the second
synchronous inference has three premisses, holding X1, X2 and X3 respectively.

This phenomenon extends to all generalized connectives.

Definition 4. The branching of a generalized connective P [X1, . . . , Xn] is the multiset IP of
multisets over {1, . . . , n} defined inductively as
IP⊗Q := [I + J | I ∈ IP , J ∈ IQ], IP⊕Q := IP + IQ, I1 := [[]], I0 := [], IXi := [[i]].
The branching of an asynchronous generalized connective is the branching of its dual. Elements

of a branching are called branches.

In the example above, the branching will be [[1, 2, 2], [1, 2, 3]], which corresponds to the
branches of the asynchronous inference and to the cases of the synchronous inference.

Definition 5. Let I be a branching. Write I as [I1, . . . , Ik] and write each Ij as [ij,1, . . . , ij,`j].
The derived rule for an asynchronous generalized connective N with branching I is

` Γ, Ai1,1 , . . . , Ai1,`1 · · · ` Γ, Aik,1 , . . . , Aik,`k
N` Γ, N [A1, . . . , An]

For each branch I = [i1, . . . , i`] of a synchronous generalized connective P , the derived rule
for branch I of P is

24

` Γ1, Ai1 · · · ` Γ`, Ai` PI` Γ1, . . . ,Γ`, P [A1, . . . , An]

The reversibility property of asynchronous connectives can be rephrased in a generalized way
as

Theorem 6. Let N be an asynchronous generalized connective. A sequent ` Γ, N [A1, . . . , An] is
provable if and only if, for each [i1, . . . , ik] ∈ IN , the sequent ` Γ, Ai1 , . . . , Aik is provable.

The corresponding property for synchronous connectives is the focusing property, defined in
the next section.

1.15.3 Synchrony

Definition 6. A formula is synchronous if it has a main connective among ⊗, ⊕, 1, 0. It is
called asynchronous if it has a main connective among `, &, ⊥, >. It is called neutral if it is
neither synchronous nor asynchronous.

If we extended the theory to include quantifiers in generalized connectives, then the definition
of synchronous and asynchronous formulas would be extended to include them too.

Definition 7. A proof π : ` Γ, A is said to be synchronously focused on A if it has the shape

π1 : ` Γ1, Ai1 · · · π` : ` Γ`, Ai` P[i1,...,i`]` Γ1, . . . ,Γ`, P [A1, . . . , An]

where P is a synchronous generalized connective, the Ai are non-synchronous and A = P [A1, . . . , An].
The formula A is called the focus of the proof π.

In other words, a proof is synchronously focused on a conclusion A if its last rules build A
from some of its non-synchronous subformulas in one cluster of inferences. Note that this notion
only makes sense for a sequent made only of synchronous formulas, since by this definition a
proof is obviously synchronously focused on any of its non-synchronous conclusions, using the
degenerate generalized connective P [X] = X.

Theorem 7. A sequent ` Γ is cut-free provable if and only if it is provable by a cut-free proof
that is synchronously focused.

Proof. We reason by induction on a proof π of Γ. As noted above, the result trivially holds if Γ
has a non-synchronous formula. We can thus assume that Γ contains only synchronous formulas
and reason on the nature of the last rule, which is necessarily the introduction of a synchronous
connective (it cannot be an axiom rule because an axiom always has at least one non-synchronous
conclusion).

Suppose that the last rule of π introduces a tensor, so that π is

ρ : ` Γ, A θ : ` ∆, B

` Γ,∆, A⊗B
By induction hypothesis, there are synchronously focused proofs ρ′ : ` Γ, A and θ′ : ` ∆, B.

If A is the focus of ρ′ and B is the focus of θ′, then the proof

ρ′ : ` Γ, A θ′ : ` ∆, B

` Γ,∆, A⊗B
is synchronously focused on A ⊗ B, so we can conclude. Otherwise, one of the two proofs is
synchronously focused on another conclusion. Without loss of generality, suppose that ρ′ is not
synchronously focused on A. Then it decomposes as

25

ρ1 : ` Γ1, Ci1 · · · ρ` : ` Γ`, Ci`
` Γ1, . . . ,Γ`, P [C1, . . . , Cn]

where the Ci are not synchronous and A belongs to some context Γj that we will write Γ′j , A.
Then we can conclude with the proof

ρ1 : ` Γ1, Ci1 · · ·
ρj : ` Γj , A,Cij θ : ` ∆, B

` Γj ,∆, A⊗B,Cij · · · ρ` : ` Γ`, Ci`
` Γ1, . . . ,Γ`,∆, A⊗B,P [C1, . . . , Cn]

which is synchronously focused on P [C1, . . . , Cn].
If the last rule of π introduces a ⊕, we proceed the same way except that there is only

one premiss. If the last rule of π introduces a 1, then it is the only rule of π, which is thus
synchronously focused on this 1.

As in the reversibility theorem (proposition 2), this proof only makes use of commutation of
independent rules.

These results say nothing about exponential modalities, because they respect neither re-
versibility nor focusing. However, if we consider the fragment of LL which consists only of
multiplicative and additive connectives, we can restrict the proof rules to enforce focusing without
loss of expressiveness.

1.16 Positive formula

A positive formula is a formula P such that P (!P (thus a coalgebra for the comonad !). As a
consequence P and !P are equivalent.

A formula P is positive if and only if P⊥ is negative.

1.16.1 Positive connectives

A connective c of arity n is positive if for any positive formulas P1,...,Pn, c(P1, . . . , Pn) is positive.

Proposition 3 (Positive connectives). ⊗, 1, ⊕, 0, ! and ∃ are positive connectives.

Proof.

P2 ` !P2

P1 ` !P1

ax
P1 ` P1

ax
P2 ` P2 ⊗R

P1, P2 ` P1 ⊗ P2
!dL

!P1, P2 ` P1 ⊗ P2
!dL

!P1, !P2 ` P1 ⊗ P2
!R

!P1, !P2 ` !(P1 ⊗ P2)
cut

P1, !P2 ` !(P1 ⊗ P2)
cut

P1, P2 ` !(P1 ⊗ P2)
⊗L

P1 ⊗ P2 ` !(P1 ⊗ P2)

1R` 1
!R` !1
1L

1 ` !1

26

https://en.wikipedia.org/wiki/F-coalgebra
https://en.wikipedia.org/wiki/Comonad

P1 ` !P1

ax
P1 ` P1 ⊕1RP1 ` P1 ⊕ P2

!dL
!P1 ` P1 ⊕ P2

!R
!P1 ` !(P1 ⊕ P2)

cut
P1 ` !(P1 ⊕ P2)

P2 ` !P2

ax
P2 ` P2 ⊕2RP2 ` P1 ⊕ P2

!dL
!P2 ` P1 ⊕ P2

!R
!P2 ` !(P1 ⊕ P2)

cut
P2 ` !(P1 ⊕ P2)

⊕L
P1 ⊕ P2 ` !(P1 ⊕ P2)

0L
0 ` !0

ax
!P ` !P

!R
!P ` !!P

P ` !P

ax
P ` P ∃R
P ` ∃ξP

!dL
!P ` ∃ξP

!R
!P ` !∃ξP

cut
P ` !∃ξP

∃L∃ξP ` !∃ξP

More generally, !A is positive for any formula A.
The notion of positive connective is related with but different from the notion of synchronous

connective.

1.16.2 Generalized structural rules

Positive formulas admit generalized left structural rules corresponding to a structure of ⊗-
comonoid: P (P ⊗ P and P (1. The following rules are derivable:

Γ, P, P ` ∆
+cL

Γ, P ` ∆
Γ ` ∆

+wL
Γ, P ` ∆

Proof.

P ` !P

Γ, P, P ` ∆
!L

Γ, P, !P ` ∆
!L

Γ, !P, !P ` ∆
!cL

Γ, !P ` ∆
cut

Γ, P ` ∆

P ` !P
Γ ` ∆

!wL
Γ, !P ` ∆

cut
Γ, P ` ∆

Positive formulas are also acceptable in the left-hand side context of the promotion rule. The
following rule is derivable:

!Γ, P1, . . . , Pn ` A, ?∆
+!R

!Γ, P1, . . . , Pn ` !A, ?∆

Proof.

27

https://en.wikipedia.org/wiki/Comonoid
https://en.wikipedia.org/wiki/Comonoid

P1 ` !P1

Pn ` !Pn

!Γ, P1, . . . , Pn ` A, ?∆
!L

!Γ, P1, . . . , Pn−1, !Pn ` A, ?∆
...

!Γ, P1, !P2, . . . , !Pn ` A, ?∆
!L

!Γ, !P1, . . . , !Pn ` A, ?∆
!R

!Γ, !P1, . . . , !Pn ` !A, ?∆
cut

!Γ, !P1, . . . , !Pn−1, Pn ` !A, ?∆
...

!Γ, !P1, P2, . . . , Pn ` !A, ?∆
cut

!Γ, P1, . . . , Pn ` !A, ?∆

1.17 Negative formula

A negative formula is a formula N such that ?N (N (thus a algebra for the monad ?). As a
consequence N and ?N are equivalent.

A formula N is negative if and only if N⊥ is positive.

1.17.1 Negative connectives

A connective c of arity n is negative if for any negative formulas N1,...,Nn, c(N1, . . . , Nn) is
negative.

Proposition 4 (Negative connectives). `, ⊥, &, >, ? and ∀ are negative connectives.

Proof. This is equivalent to the fact that ⊗, 1, ⊕, 0, ! and ∃ are positive connectives.

More generally, ?A is negative for any formula A.
The notion of negative connective is related with but different from the notion of asynchronous

connective.

1.17.2 Generalized structural rules

Negative formulas admit generalized right structural rules corresponding to a structure of
`-monoid: N `N (N and ⊥(N . The following rules are derivable:

Γ ` N,N,∆
−cR

Γ ` N,∆
Γ ` ∆ −wR

Γ ` N,∆

Proof. This is equivalent to the generalized left structural rules for positive formulas.

Negative formulas are also acceptable in the context of the promotion rule. The following
rule is derivable:

` A,N1, . . . , Nn −!R` !A,N1, . . . , Nn

Proof. This is equivalent to the possibility of having positive formulas in the left-hand side
context of the promotion rule.

28

https://en.wikipedia.org/wiki/F-algebra
https://en.wikipedia.org/wiki/Monad_(category_theory)
https://en.wikipedia.org/wiki/Monoid_(category_theory)

1.18 Regular formula

A regular formula is a formula R such that R˛ ?!R.
A formula L is co-regular if its dual L⊥ is regular, that is if L˛ !?L.

1.18.1 Alternative characterization

R is regular if and only if it is equivalent to a formula of the shape ?P for some positive formula
P .

Proof. If R is regular then R ˛ ?!R with !R positive. If R ˛ ?P with P positive then R is
regular since P ˛ !P .

1.18.2 Regular connectives

A connective c of arity n is regular if for any regular formulas R1,...,Rn, c(R1, . . . , Rn) is regular.

Proposition 5 (Regular connectives). `, ⊥ and ?! define regular connectives.

Proof. If R and S are regular, R` S ˛ ?!R` ?!S ˛ ?(!R⊕ !S) thus it is regular since !R⊕ !S
is positive.
⊥˛ ?0 thus it is regular since 0 is positive.
If R is regular then ?!R is regular, since ?!?!R˛ ?!R.

More generally, ?!A is regular for any formula A.

29

Chapter 2

Intuitionistic linear logic

Intuitionistic Linear Logic (ILL) is the intuitionnistic restriction of linear logic: the sequent
calculus of ILL is obtained from the two-sided sequent calculus of linear logic by constraining
sequents to have exactly one formula on the right-hand side: Γ ` A.

The connectives `, ⊥ and ? are not available anymore, but the linear implication(is.

2.1 Sequent Calculus

ax
A ` A

Γ ` A ∆, A ` C
cut

Γ,∆ ` C

Γ ` A ∆ ` B ⊗R
Γ,∆ ` A⊗B

Γ, A,B ` C
⊗L

Γ, A⊗B ` C
1R` 1

Γ ` C
1L

Γ, 1 ` C

Γ, A ` B
(R

Γ ` A(B

Γ ` A ∆, B ` C
(L

Γ,∆, A(B ` C

Γ ` A Γ ` B
&R

Γ ` A&B
Γ, A ` C

&1LΓ, A&B ` C
Γ, B ` C

&2LΓ, A&B ` C
>R

Γ ` >

Γ ` A ⊕1RΓ ` A⊕B
Γ ` B ⊕2RΓ ` A⊕B

Γ, A ` C Γ, B ` C
⊕L

Γ, A⊕B ` C
0L

Γ, 0 ` C

!Γ ` A
!R

!Γ ` !A
Γ, A ` C

!dL
Γ, !A ` C

Γ, !A, !A ` C
!cL

Γ, !A ` C
Γ ` C

!wL
Γ, !A ` C

Γ ` A ∀R
Γ ` ∀ξA

Γ, A[τ/ξ] ` C
∀L

Γ,∀ξA ` C
Γ ` A[τ/ξ]

∃R
Γ ` ∃ξA

Γ, A ` C
∃L

Γ, ∃ξA ` C

with ξ not free in Γ, C in the rules ∀R and ∃L.
By restricting to connectives ⊗, 1 and(, one gets Intuitionistic Multiplicative Linear Logic

(IMLL).

2.2 The intuitionistic fragment of linear logic

In order to characterize intuitionistic linear logic inside linear logic, we define the intuitionistic
restriction of linear formulas:

J ::= X | J ⊗ J | 1 | J (J | J & J | > | J ⊕ J | 0 | !J | ∀ξJ | ∃ξJ

30

JLL is the fragment of linear logic obtained by restriction to intuitionistic formulas.

Proposition 6 (From ILL to JLL). If Γ ` A is provable in ILL012, it is provable in JLL012.

Proof. ILL012 is included in JLL012.

Theorem 8 (From JLL to ILL). If Γ ` ∆ is provable in JLL12, it is provable in ILL12.

Proof. We only prove the first order case, a proof of the full result is given in the PhD thesis of
Harold Schellinx [Sch94].

Consider a cut-free proof of Γ ` ∆ in JLL12, we can prove by induction on the length of such
a proof that it belongs to ILL12.

Corollary 1 (Unique conclusion in JLL). If Γ ` ∆ is provable in JLL12 then ∆ is a singleton.

The theorem is also valid for formulas containing 1 or > but not anymore with 0. ` ((X (
Y)(0)((X ⊗ (0(Z)) is provable in JLL0:

ax
X ` X

0L
0 ` Y, Z

(R` Y, 0(Z
⊗R

X ` Y,X ⊗ (0(Z)
(R` X (Y,X ⊗ (0(Z)

0L
0 `

(L
(X (Y)(0 ` X ⊗ (0(Z)

(R` ((X (Y)(0)((X ⊗ (0(Z))

but not in ILL0.

2.3 Input / output polarities

In order to go to LL without (, we consider two classes of formulas: input formulas (I) and
output formulas (O).

I ::= X⊥ | I ` I | ⊥ | I ⊗O | O ⊗ I | I ⊕ I | 0 | I & I | > | ?I | ∃ξI | ∀ξI
O ::= X | O ⊗O | 1 | O ` I | I `O | O &O | > | O ⊕O | 0 | !O | ∀ξO | ∃ξO

By applying the definition of the linear implication A(B = A⊥`B, any formula of JLL is
mapped to an output formula (and the dual of a JLL formula to an input formula). Conversely,
any output formula is coming from a JLL formula in this way (up to commutativity of `:
O ` I = I `O).

The fragment of linear logic obtained by restriction to input/output formulas is thus equivalent
to JLL, but the closure of the set of input/output formulas under orthogonal allows for a one-sided

31

presentation.

ax
` O⊥, O

` Γ, O ` ∆, O⊥
cut` Γ,∆

` Γ, A ` ∆, B ⊗` Γ,∆, A⊗B
` Γ, A,B `` Γ, A`B

1` 1
` Γ ⊥` Γ,⊥

` Γ, A ` Γ, B
&` Γ, A&B

` Γ, A ⊕1` Γ, A⊕B
` Γ, B ⊕2` Γ, A⊕B

>` Γ,>

` ?Γ, O
!` ?Γ, !O

` Γ, I
?d` Γ, ?I

` Γ, ?I, ?I
?c` Γ, ?I

` Γ
?w` Γ, ?I

` Γ, A
∀` Γ, ∀ξA

` Γ, A[τ/ξ]
∃` Γ, ∃ξA

with A and B arbitrary input or output formulas (under the condition that the composite
formulas containing them are input or output formulas) and ξ not free in Γ in the rule ∀.

Lemma 6 (Output formula). If ` Γ is provable in LL12 and contains only input and output
formulas, then Γ contains exactly one output formula.

Proof. Assume ΓO is obtained by turning the output formulas of Γ into JLL formulas and ΓI is
obtained by turning the dual of the input formulas of Γ into JLL formulas, ΓI ` ΓO is provable
in LL12 thus in JLL12. By corollary 1 (Unique conclusion in JLL), ΓO is a singleton, thus Γ
contains exactly one output formula.

32

Chapter 3

Polarized linear logic

Polarized linear logic (LLP) is a logic close to plain linear logic in which structural rules, usually
restricted to ?-formulas, have been extended to the whole class of so called negative formulas.

3.1 Polarization

LLP relies on the notion of polarization, that is, it discriminates between two types of formulas,
negative (noted M,N...) vs. positive (P,Q...). They are mutually defined as follows:

N ::= X | N `N | ⊥ | N &N | > | ?P
P ::= X⊥ | P ⊗ P | 1 | P ⊕ P | 0 | !N

The dual operation (−)⊥ extended to propositions exchanges the roles of connectives and
reverses the polarity of formulas.

3.2 Deduction rules

There are several design choices for the structure of sequents. In particular, LLP proofs are
focused, i.e. they contain at most one positive formula. We choose to represent this explicitly
using sequents of the form ` Γ | ∆, where Γ is a multiset of negative formulas, and ∆ is a stoup
that contains at most one positive formula (though it may be empty).

ax
` P⊥ | P

` Γ1, N | ∆ ` Γ2 | N⊥
cut` Γ1,Γ2 | ∆

` Γ, N | ·
p

` Γ | !N
` Γ | P

d` Γ, ?P | ·
` Γ, N,N | ∆

c
` Γ, N | ∆

` Γ | ∆
w

` Γ, N | ∆
` Γ1 | P ` Γ2 | Q ⊗
` Γ1,Γ2 | P ⊗Q

1` · | 1
` Γ,M,N | ∆ `` Γ,M `N | ∆

` Γ | ∆
⊥` Γ,⊥ | ∆

` Γ | P ⊕1` Γ | P ⊕Q
` Γ | Q ⊕2` Γ | P ⊕Q

` Γ,M | ∆ ` Γ, N | ∆
&` Γ,M &N | ∆

>` Γ,> | ∆

33

Chapter 4

Fragment

In general, a fragment of a logical system S is a logical system obtained by restricting the
language of S, and by restricting the rules of S accordingly. In linear logic, the most well known
fragments are obtained by combining/removing in different ways the classes of connectives present
in the language of linear logic itself:

Multiplicative connectives: the conjunction ⊗ (tensor) and the disjunction ` (par), with
their respective units 1 (one) and ⊥ (bottom); these connectives are the combinatorial base
of linear logic (permutations, circuits, etc.).

Additive connectives: the conjunction & (with) and the disjunction ⊕ (plus), with their
respective units > (top) and 0 (zero); the computational content of these connectives, which
behave more closely to their intuitionistic counterparts (e.g., A&B(A and A&B(B
are provable), is strongly related to choice (if...then...else, product and sum types, etc.).

Exponential connectives: the modalities ! (of course) and ? (why not) handle the structural
rules in linear logic, and are necessary to recover the expressive power of intuitionistic or
classical logic.

Quantifiers: just as in classical logic, quantifiers may be added to propositional linear logic,
at any order. The most frequently considered are the second order ones (in analogy with
System F).

The additive and exponential connectives, if taken alone, yield fragments of limited interest,
so one usually considers only fragments containing at least the multiplicative connectives (perhaps
without units). It is important to observe that the cut elimination rules of linear logic do not
introduce connectives belonging to a different class than that of the pair of dual formulas whose
cut is being reduced. Hence, any fragment defined by combining the above classes will enjoy
cut elimination. Since cut elimination implies the subformula property, all of the fundamental
equivalences provable in full linear logic remain valid within such fragments, as soon as the
formulas concerned belong to the fragment itself.

Conventionally, if LL denotes full linear logic, its fragments are denoted by prefixing LL
with letters corresponding to the classes of connectives being considered: M for multiplicative
connectives, A for additive connectives, and E for exponential connectives. Additional subscripts
may specify whether units and/or quantifiers are present or not, and, for quantifiers, of what
order (see appendix A).

34

4.1 Motivations

The main interest of studying fragments of linear logic is that these are usually simpler than the
whole system, so that certain properties may be first analyzed on fragments, and then extended
or adapted to increasingly larger fragments. It may also be interesting to see, given a property
that does not hold for full linear logic, whether it holds for a fragment, and where the “breaking
point” is situated. Examples of such questions include:

logical complexity: proving cut elimination for full linear logic with second order quantification
is equivalent to proving the consistency of second order Peano arithmetic (Girard, via
translations of System F in linear logic). One may expect that smaller fragments have
lower logical complexity.

provability: the provability problem for a logical system S is defined as follows: given a formula
A in the language of S, is A provable in S? This problem is undecidable in full linear
logic with quantifiers, of whatever order (again, because classical logic can be translated
in linear logic). On what fragments does it become decidable? And if it does, what is its
computational complexity?

computational complexity of cut elimination: the cut elimination problem (Mairson-Terui [MT03])
for a logical system S is defined as follows: given two proofs of A in S, do they reduce
to the same cut-free proof? Although decidable (thanks to strong normalization), this
problem is not elementary recursive in full propositional linear logic (Statman, again via
the above-mentioned translations). Does the problem fall into any interesting complexity
class when applied to fragments?

proof nets: the definition of proof nets, and in particular the formulation of correctness criteria
and the study of their complexity, is a good example of how a methodology can be applied
to a small fragment of linear logic and later adapted (more or less successfully) to wider
fragments.

denotational semantics: several problems related to denotational semantics (formulation of
categorical models, full abstraction, full completeness, injectivity, etc.) may be first attacked
in the simpler case of fragments, and then extended to wider subsystems.

4.2 Multiplicative fragments

Multiplicative linear logic (MLL) is the simplest of the well known fragments of linear logic. Its
formulas are obtained by combining propositional atoms with the connectives tensor and par
only. As a consequence, the sequent calculus of MLL is limited to the rules axiom, cut, ⊗, and
`. These rules actually determine the multiplicative connectives: if a dual pair of connectives ⊗′
and `′ is introduced, with the same rules as ⊗ and `, respectively, then one can show A⊗′ B to
be provably equivalent to A⊗B (and, dually, A`′ B to be provably equivalent to A`B).

The cut elimination problem for MLL is P-complete (Mairson-Terui [MT03]), even though
there exists a deterministic algorithm solving the problem in logarithmic space if one considers
only eta-expanded proofs (Mairson-Terui [MT03]). On the other hand, provability for MLL is
NP-complete, and it remains so even in presence of first order quantifiers.

Another multiplicative fragment, less considered in the literature, can be defined by using
the units 1 and ⊥ instead of the propositional atoms. In this fragment, denoted by MLLu, one
can also eliminate the axiom rule from sequent calculus, since it is redundant. MLLu is even

35

simpler than MLL: its provability problem is in P, and, since all proofs are eta-expandend, its
cut elimination problem is in L.

The union of MLL and MLLu is the full propositional multiplicative fragment of linear
logic, and is denoted by MLL0. It has the same properties as MLL, which shows that the
presence/absence of propositional atoms (and of the axiom rule) has a non-trivial effect on the
complexity of provability and cut elimination, i.e., the complexity is not altered iff P (NP and
L (P, respectively.

If we add second order quantifiers to MLL (resp. MLLu), we obtain a system denoted
by MLL2 (resp. MLL02). In MLL02 one can show that 1 and ⊥ are provably equivalent to
∀X.(X⊥ `X) and ∃X.(X⊥ ⊗X), respectively. Hence, MLL2 is as expressive as MLL02. In
these second order fragments, provability is undecidable, while cut elimination is still P-complete.

4.3 Additive fragments

The most studied additive fragments of linear logic are defined by taking MLL or MLL0 and by
enriching their language with the additive connectives, with or without units. The same can be
done in presence of quantifiers. We thus obtain:

• MALL: formulas built from propositional atoms using ⊗,`,&,⊕;
• MALL0: formulas built from propositional atoms and 1,⊥,>, 0, using ⊗,`,&,⊕;
• MALLn: MALL with quantifiers of order n;

• MALL0n: MALL0 with quantifiers of order n.

The purely additive framents are less common:

• ALL: formulas built from propositional atoms using &,⊕;

• ALL0: formulas built from propositional atoms and >, 0, using &,⊕;

• ALLn: ALL with quantifiers of order n;

• ALL0n: ALL0 with quantifiers of order n.

As for the multiplicative connectives, the additive connectives are also defined by their rules:
adding a pair of dual connectives &′,⊕′ to MALL, and giving them the same rules as &,⊕,
makes the new connectives provably equivalent to the old ones.

In MALL02, the additive units > and 0 are provably equivalent to ∃X.X⊥ and ∀X.X,
respectively. Since multiplicative units are also definable in terms of second order quantification,
we obtain that MALL2 is as expressive as MALL02.

The cut elimination problem is coNP-complete for all of the fragments defined above
(Mairson-Terui [MT03]).

Provability is undecidable in any additive fragment as soon as second order quantification
is considered. It is decidable, although quite complex, in the propositional and first order case:
it is PSPACE-complete in MALL0, and NEXP-complete in MALL01. This latter result is
indicative of the fact that the undecidability of predicate calculus is not ascribable to existential
quantification alone, but rather to the simultaneous presence of existential quantification and
contraction.

36

4.4 Exponential fragments

The most common proper fragments of linear logic containing the exponential connectives are
defined as in the case of the additive fragments, i.e., by adding the modalities on top of MLL
and its variants:

• MELL: formulas built from propositional atoms using ⊗,`, !, ?;
• MELL0: formulas built from propositional atoms and 1,⊥, using ⊗,`, !, ?;
• MELLn: MELL with quantifiers of order n;

• MELL0n: MELL0 with quantifiers of order n.

If, instead of taking MLL, we add the modalities to MALL, we obtain of course various
versions of full linear logic:

• LL: full linear logic, without units;

• LL0: full linear logic, with units;

• LLn: LL with quantifiers of order n;

• LL0n: LL0 with quantifiers of order n.

In LL02 the formulas A&B and A⊕B are provably equivalent to ∃X.(!(X⊥ `A)⊗!(X⊥ `B)⊗
X) and ∀X.(?(X⊥ ⊗A)`?(X⊥ ⊗B)`X), respectively, for all A,B. Thanks to the second-order
definability of units discussed above, we obtain that MELL2 is as expressive as LL02, i.e., full
propositional second order linear logic embeds in its second order multiplicative exponential
fragment without units.

Girard showed how cut elimination for LL02 without the contraction rule can be proved by a
simple induction up to ω, i.e., in first order Peano arithmetic. This gives a huge gap between the
logical complexity of full linear logic and its contraction-free subsystem: in fact, still by Girard’s
results, we know that cut elimination in MELL2 is equivalent to the consistency of second order
Peano arithmetic, for which no ordinal analysis is known. There are nevertheless subsystems
of MELL2, the so-called light subsystems of linear logic, in which the exponential connectives
are weakened, whose cut elimination can be proved in seconder order Peano arithmetic even in
presence of contraction.

The cut elimination problem is never elementary recursive in presence of exponential connec-
tives: the simply typed λ-calculus with arrow types only can be encoded in MELL, and this is
enough for Statman’s lower bound to apply. However, it becomes elementary recursive in the
above mentioned light logics.

Albeit perhaps surprisingly, provability in LL is already undecidable. This result, obtained
by coding Minsky machines with linear logic formulas, contrasts with the situation in classical
logic, whose propositional fragment is notoriously decidable. It is indicative of the fact that
modalities are themselves a form of quantification, although this claim is far from being clear: as
a matter of fact, the decidability of propositional provability in the absence of additives, i.e.,
in MELL alone, is still an open problem. It is known that adding first order quantification to
MELL makes it undecidable.

37

4.4.1 About exponential rules

In this section, provability is assumed to be in LL02, i.e., full propositional second order linear
logic.

In contrast with multiplicative and additive connectives, the modalities of linear logic are
not defined by their rules: one may introduce a pair of dual modalities !′, ?′, each with the same
rules as !, ?, without !′A (resp. ?′A) being in general provably equivalent to !A (resp. ?A).

The promotion rule is derivable from the following two rules, called (multi)functorial promotion
and digging, respectively:

` Γ, A
! mf` ?Γ, !A

` Γ, ??A
??` Γ, ?A

Functorial promotion is itself derivable from dereliction and promotion; the digging rule
is also derivable, but only using the cut rule (in fact, digging does not enjoy the subformula
property). It may be convenient to consider this pair of rules instead of the standard promotion
rule in the context of categorical semantics of linear logic.

In presence of the digging rule, dereliction, weakening, and contraction can be derived from
the following rule, called multiplexing, in which A(n) stands for the sequence A, . . . , A containing
n occurrences of A:

` Γ, A(n)

mux` Γ, ?A

Of course, multiplexing is itself derivable from dereliction, weakening, and contraction. Hence,
there are several alternative but equivalent presentations of the exponential fragment of linear
logic, such as

1. remove promotion, and replace it with functorial promotion and digging;

2. remove promotion, dereliction, weakening, and contraction, and replace them with functorial
promotion, digging, and multiplexing.

Apart from their usefulness in categorical semantics, these alternative formulations are
of interest in the context of the so-called light linear logics mentioned above. For example,
elementary linear logic is obtained by removing dereliction and digging from formulation 1, and
soft linear logic is obtained by removing digging from formulation 2.

Multiplexing is invertible in certain circumstances. A sequent ` Γ, ?A containing no occurrence
of &, !, or second order ∃ is provable iff ` Γ, A(n) is provable for some n (this is easily checked
by induction on cut-free proofs). To see that this does not hold in general, take for instance
A = X⊥ and Γ = X & 1, or Γ = !X. The restriction on the presence of additive conjunction can
be removed by slightly changing the statement: a sequent ` Γ, ?A containing no occurrence of !
or second order ∃ is provable iff ` Γ, (A⊕⊥)(n) is provable for some n.

The latter result can be generalized as follows. If A is a formula, !nA stands for the formula
(A& 1)⊗ · · · ⊗ (A& 1) (n times) and ?nA for the formula (A⊕⊥) ` · · ·` (A⊕⊥) (n times).
Then, we have

Theorem 9 (Approximation Theorem). Let ` Γ be a provable sequent containing p occurrences
of !, q occurrences of ?, and no occurrence of second order ∃. Then, for all m1, . . . ,mp ∈ N, there
are n1, . . . , nq ∈ N such that the sequent obtained from ` Γ by replacing the p occurrences of !
with !m1 , . . . , !mp and the q occurrences of ? with ?n1 , . . . , ?nq is provable.

A structural formula is a formula C such that C (C⊗C and C (1 are provable. Obviously,
any formula of the form ?B is structural. However, the promotion rule cannot be extended to
arbitrary structural formulas, i.e., the following rule is not admissible:

38

C ` A C ` C ⊗ C C ` 1
C ` !A

For instance, if A = C = α⊗ !(α(α⊗ α)⊗ !(α(1), the three premisses are provable but not
the conclusion.

The following rule, called absorption, is derivable in the standard sequent calculus:

` Γ, ?A,A

` Γ, ?A

The absorption rule is useful in the context of proof search in linear logic.

4.5 The provability problem

It is well known that the decidability of the provability problem is connected to the finite model
property: if a fragment of a logic with a truth semantics enjoys the finite model property, then
the provability in that fragment is decidable. Note of course that the converse may fail.

In this section, we summarize the known results about the validity of the finite model property
and the decidability of provability, with its complexity, for the various fragments of linear logic
introduced above. Question marks in the tables below denote open problems. For brevity, all
fragments are assumed to have units and propositional atoms, e.g., MLL actually denotes what
we called MLL0 above.

4.5.1 The finite model property

MLL MALL MELL LL
yes yes no no

4.5.2 Provability

MLL MALL MELL LL
propositional case NP-complete PSPACE-complete ? undecidable
first order case NP-complete NEXP-complete undecidable undecidable
second order case undecidable undecidable undecidable undecidable

4.6 The cut elimination problem

In this section, we summarize the known results about the complexity of the cut elimination
problem for the various fragments of linear logic introduced above, plus some light linear logics. All
fragments are assumed to be propositional; the results do not change in presence of quantification
of any order.

MLLu MLL MALL MSLL MLLL MELL
L P-complete coNP-complete EXP-complete 2EXP-complete not elementary recursive

Notations used in the above table:

• MSLL: multiplicative soft linear logic;

• MLLL: multiplicative light linear logic.

39

Chapter 5

Proof-nets: a formal account of nets

We provide a formal account of nets, but it is probably not the best way to learn about proof-nets
if you have never seen them before.

The aim of this chapter is to provide a common framework for describing linear logic proof
nets, interaction nets, multiport interaction nets, and the likes, while factoring out most of the
tedious, uninteresting details (clearly not the fanciest chapter of this document).

5.1 Preliminaries

5.1.1 The short story

• the general flavor is that of multiport interaction nets;

• the top/down or passive/active orientation of cells is related with the distinction between
premisses and conclusions of rules, (and in that sense, a cut is not a logical rule, but the
focus of interaction between two rules);

• cuts are thus wires rather than cells/links: this fits with the intuition of geometry of
interaction (GoI), but not with the most common presentations of proof nets;

• because the notion of subnet is not trivial in multiport interaction nets, and to avoid the
use of geometric conditions (boxes must not overlap but can be nested), we introduce boxes
as particular cells;

• when representing proof nets, we introduce axioms explicitly as cells, so that axiom-cuts
do not vanish.

5.2 Nets

5.2.1 Wires

A wiring is the data of a finite set P of ports and of a partition W of P by pairs (the wires):
if {p, q} ∈ W , we write W (p) = q and W (q) = p. Hence a wiring is equivalently given by an
involutive permutation W of finite domain P , without fixpoints (forall p, W (p) 6= p): the wires
are then the orbits. Another equivalent presentation is to consider W as a (simple, loopless,
undirected) graph, with vertices in P, all of degree 1.

We say two wirings are disjoint when their sets of ports are. A connection between two
disjoint wirings W and W ′ is a partial injection (I, I ′, f) : P ↪⇀ P ′: I ⊆ P , I ′ ⊆ P ′ and f is
a bijection I ∼= I ′. We then write W ./f W

′ for the wiring obtained by identifying the ports

40

pairwise mapped by f , and then “straightening” the paths thus obtained to recover wires: notice
this might also introduce loops and we write 〈〈W |W ′〉〉f for the number of loops thus appeared.

We describe these operations a bit more formally. Write P = P0] I and P ′ = P ′0] I ′. Then
consider the graphW ::f W

′ with vertices in P ∪P ′, and such that there is an edge between p and
q iff q = W (p) or q = W ′(p) or q = f(p) or p = f(q): in other words,W ::f W

′ = W∪W ′∪f∪f−1.
Vertices in P0 ∪ P ′0 are of degree 1, and the others are of degree 2. Hence maximal paths in
W ::f W

′ are of two kinds:

• straight paths, with both ends in P0 ∪ P ′0;

• cycles, with vertices all in I ∪ I ′.

Then the wires in W ./f W
′ are the pairs {p, p′} such that p and p′ are the ends of a path in

W ::f W
′. And 〈〈W |W ′〉〉f is the number of cycles in W ::f W

′, or more precisely the number of
support sets of cycles (i.e. we forget about the starting vertice of cycles).

Lemma 7. Consider three wirings (P,W), (P ′,W ′) and (P ′′,W ′′), and two connections (I, I ′, f) :
P ↪⇀ P ′ and (J ′, J ′′, g) : P ′ ↪⇀ P ′′ such that I ′ ∩ J ′ = ∅. Then

(W ./f W
′) ./g W

′′ = W ./f (W ′ ./g W
′′)

and 〈〈
W
∣∣W ′〉〉

f
+
〈〈

(W ./f W
′)
∣∣W ′′〉〉

g
=
〈〈
W
∣∣(W ′ ./g W ′′)〉〉f +

〈〈
W ′
∣∣W ′′〉〉

g
.

Proof. The first equation holds because open maximal paths in W ::f W
′ ./gW

′′ correspond
with those in W ::f (W ′ ::g W

′′), hence in (W ::f W
′) ::g W

′′, hence in W ./f W
′ ::g W

′′. The
second equation holds because both sides are two possible writings for the number of loops in
(W ::f W

′) ::g W
′′.

5.2.2 Nets

A signature is the data of a set Σ of symbols, together with arity functions α : Σ → N \ {0}
(number of active ports, or conclusions) and π : Σ→ N (number of passive ports, or hypotheses).
In the remaining, we assume such a signature is given.

A cell c with ports in P is the data of a symbol σ ∈ Σ and of two disjoint lists of pairwise
distinct ports: α(c) ∈ Pα(σ) is the list of active ports and π(c) ∈ P π(σ) is the list of passive ports.

A net is the data of a wiring (P,W), of a set C of disjoint cells on P , and of a number L ∈ N
(the number of loops). It follows from the definitions that each port p ∈ P appears in exactly one
wire and in at most one cell: we say p is free if it is not part of a cell, and p is internal otherwise.
Moreover, we say p is dangling if p is free and W (p) is internal. We write fp(R) for the set of
free ports of a net R.

Generally, the “names” of internal ports of a net are not relevant, but free ports matter
most often: internal ports are the analogue of bound variables in λ-terms. More formally, an
isomorphism from net R to net R′ is the data of a bijection of ports φ : P ∼= P ′ and a bijection
of cells ψ : C ∼= C ′ such that:

• for all p ∈ P , W ′(φ(p)) = φ(W (p));

• for all c ∈ C:

– σψ(c) = σc,

– for all i ∈ {0, . . . , α(σc)− 1}, α(ψ(c))i = φ(α(c)i),

41

– for all j ∈ {0, . . . , π(σc)− 1}, π(ψ(c))j = φ(π(c)j);

• L = L′.

Observe that under these conditions ψ is uniquely induced by φ. We say that the isomorphism
φ is nominal if moreover p ∈ fp(R) implies p = φ(p).

5.2.3 Subnets

We say two nets are disjoint when their sets of ports are. Let R and R′ be disjoint nets, and
(I, I ′, f) be a connection betweenW andW ′, such that I ⊆ fp(R) and I ′ ⊆ fp(R′). We then write
R ./f R

′ for the net with wiring W ./f W
′, cells C∪C ′ and loops 〈〈R|R′〉〉f = L+L′+ 〈〈W |W ′〉〉f .

We say this connection is orthogonal if 〈〈W |W ′〉〉f = 0, and it is modular if the ports in I ∪ I ′ are
all dangling: a modular connection is always orthogonal.

We say R0 is a subnet of R, if there exists a net R′ and a connection (I, I ′, f) between R0

and R′ such that R = R0 ./f R
′.

Lemma 8. Let R0, R1 and R′ be nets such that R0 and R1 are disjoint from R, (I, I ′, f) be
a connection fp(R0) ↪⇀ fp(R′) and φ an isomorphism R0

∼= R1 such that φ(p) = φ(p′) for all
p ∈ fp(R0) \ I. Then R0 ./f R

′ is nominally isomorphic to R1 ./f◦φ−1 R′.

5.2.4 Rewriting

A net rewriting rule is a pair (r0, r1) of nets such that fp(r0) = fp(r1). Then an instance of this
rule is a pair (R0, R1) such that there exist:

• nets R′0 and R′1 isomorphic to r0 and r1 respectively, namely R′i = φi(ri), so that moreover
φ0(p) = φ1(p) for all p ∈ fp(r0) (in particular, fp(R′0) = fp(R′1));

• a net R′′, disjoint from R′0 and R′1;

• a connection (fp(R′0), J, f) : fp(R′0) ↪⇀ fp(R′′);

such that each Ri is nominally isomorphic to R′i ./f R
′′.

5.2.5 Typing

A typing system on signature Σ is the data of a set Θ of types, an involutive negation ·⊥ : Θ→ Θ,
together with a typing discipline for each symbol, i.e. a relation Θ(σ) ⊆ Θα(σ) ×Θπ(σ). We then
write A1, · · · , Aπ(σ) `σ B1, · · · , Bα(σ) for (~A, ~B) ∈ Θ(σ).

Then a typing for net R = (P,W,C) is a function τ : P → Θ such that:

• for all p ∈ P , τ(W (p)) = τ(p)⊥;

• for all c ∈ C of symbol σ, τ(π(c)) ` τ(α(c))⊥;

where, in the last formula, we implicitly generalized τ to lists of ports and ·⊥ to lists of formulas, in
the obvious, componentwise fashion. The interface of the typed net (R, τ) is then the restriction
of τ to fp(R).

The idea, is that a wire {p, q} bears the type τ(q) (resp. τ(p)) in the direction (p, q) (resp.
(q, p)), so that a rule ~A `σ ~B reads as an inference from passive inputs (hypotheses) to active
outputs (conclusions).

Observe that if (R, τ) is a typed net, and φ : R ∼= R′ is an isomorphism, then R′ is typed and
its interface is τ ◦ φ−1: in particular, if φ is nominal, R′ and R have the same interface.

42

Now let (R, τ) and (R′, τ ′) be typed nets and (I, I ′, f) a connection so that τ ′ ◦ f and
τ⊥ = ·⊥ ◦ τ coincide on I. Then this induces a typing of R ./f R

′ preserving the interface on the
remaining free ports.

5.2.6 Boxes

A signature with boxes is the data of a signature Σ, together with a box arity β(σ) for all symbol
σ ∈ Σ.

Then a net on signature with boxes (Σ, β) is the same as a net R on Σ plus, for each cell c of
R, the data β(c) of a β(σc)-tuple of nets (with boxes) with free ports the internal ports of c.

43

Chapter 6

System L

System L [CMM10] is a family of syntax for a variety of variants of linear logic, inspired from
classical calculi such as λ̄µµ̃-calculus. These, in turn, stem from the study of abstract machines for
λ-calculus. In this realm, polarization and focusing are features that appear naturally. Positives
are typically values, and negatives pattern-matches. Contraction and weakening are implicit.

We present here a system for explicitely polarized and focused linear logic. Polarization
classifies terms and types between positive and negative; focusing separates values from non-values.

6.1 Definitions
Positive types: P ::= 1 | P ⊗ P | 0 | P ⊕ P | ´N | !N
Negative types: N ::=⊥ | N `N | > | N &N | ˆP | ?P
Positive values: v+ ::=x+ | () | (v+

1 , v
+
2) | inl(v+) | inr(v+) | ´t− | µ(?x+).c

Positive terms: t+ ::= v+ | µx−.c
Negative terms: t− ::=x− | µx+.c | µ().c | µ(x+, y+).c | µ[·] | µ[inl(x+).c1 | inr(y+).c2] | µ(´x−).c | ?v+

Commands: c ::= 〈t+ | t−〉

6.2 Typing

There are as many typing sequents classes as there are terms classes. Typing of positive values
corresponds to focused sequents, and commands are cuts.

Positive values: sequents are of the form ` Γ :: v+ : P .

ax+

` x+ : P⊥ :: x+ : P

1` :: () : 1
` Γ1 :: v+

1 : P1 ` Γ2 :: v+
2 : P2 ⊗

` Γ1,Γ2 :: (v+
1 , v

+
2) : P1 ⊗ P2

` Γ :: v+ : P1 ⊕1` Γ :: inl(v+) : P1 ⊕ P2

` Γ :: v+ : P2 ⊕2` Γ :: inr(v+) : P1 ⊕ P2

` Γ | t− : N ´` Γ :: ´t− : ´N
c ` ?Γ, x+ : N

!` ?Γ :: µ(?x+).c : !N

Positive terms: sequents are of the form ` Γ | t+ : P .

` Γ :: v+ : P
foc` Γ | v+ : P

c ` Γ, x− : P
µ-

` Γ | µx−.c : P

44

Negative terms: sequents are of the form ` Γ | t− : N .

ax−` x− : N⊥ | x− : N
c ` Γ, x+ : N

µ+

` Γ | µx+.c : N

c ` Γ ⊥` Γ | µ().c : ⊥
c ` Γ, x+ : N1, y

+ : N2 `` Γ | µ(x+, y+).c : N1 `N2

>` Γ | µ[·] : >
c1 ` Γ, x+ : N1 c2 ` Γ, y+ : N2

&` Γ | µ[inl(x+).c1 | inr(y+).c2] : N1 &N2

c ` Γ, x− : P ˆ` Γ | µ(´x−).c : ˆP
` Γ :: v+ : P

?` Γ | ?v+ : ?P

Commands:

` Γ | t+ : P ` ∆ | t− : P⊥
cut

〈t+ | t−〉 ` Γ,∆

c ` Γ
wkn

c ` Γ, x+ : ?P

c ` Γ, x+
1 : ?P, x+

2 : ?P
ctr

c[x+
1 := x+, x+

2 := x+] ` Γ, x+ : ?P

6.3 Reduction rules

〈v+ | µx+.c〉 → c[x+ := v+]

〈µx−.c | t−〉 → c[x− := t−]

〈() | µ().c〉 → c

〈(v+
1 , v

+
2) | µ(x+, y+).c〉 → c[x+ := v+

1 , y
+ := v+

2]

〈inl(v+) | µ[inl(x+).c1 | inr(y+).c2]〉 → c1[x+ := v+]

〈inr(v+) | µ[inl(x+).c1 | inr(y+).c2]〉 → c2[y+ := v+]

〈´t− | µ(´x−).c〉 → c[x− := t−]

〈µ(?x+).c | ?v+〉 → c[x+ := v+]

45

Chapter 7

Translations of intuitionistic logic

The genesis of linear logic comes with a decomposition of the intuitionistic implication. Once
linear logic properly defined, it corresponds to a translation of intuitionistic logic into linear
logic, often called Girard’s translation. In fact Jean-Yves Girard has defined two translations in
his linear logic paper [Gir87]. We call them the call-by-name translation and the call-by-value
translation.

These translations can be extended to translations of classical logic into linear logic.

7.1 Call-by-name Girard’s translation A→ B 7→ !A(B

Formulas are translated as:

Xn = X

(A→ B)n = !An(Bn

(A ∧B)n = An &Bn

Tn = >
(A ∨B)n = !An ⊕ !Bn

Fn = 0

(∀ξA)n = ∀ξAn

(∃ξA)n = ∃ξ!An

This is extended to sequents by (Γ ` A)n = !Γn ` An.
This allows one to translate the rules of intuitionistic logic into linear logic:

ax
A ` A 7→

ax
An ` An

!dL
!An ` An

Γ ` A ∆, A ` B
cut

Γ,∆ ` B
7→

!Γn ` An
!R

!Γn ` !An !∆n, !An ` Bn

cut
!Γn, !∆n ` Bn

Γ, A,A ` C
cL

Γ, A ` C
7→ !Γn, !An, !An ` Cn

!cL
!Γn, !An ` Cn

Γ ` C
wL

Γ, A ` C 7→ !Γn ` Cn
!wL

!Γn, !An ` Cn

Γ, A ` B
→ R

Γ ` A→ B
7→ !Γn, !An ` Bn

(R
!Γn ` !An(Bn

46

Γ ` A ∆, B ` C
→ L

Γ,∆, A→ B ` C
7→

!Γn ` An
!R

!Γn ` !An
ax

Bn ` Bn
(L

!Γn, !An(Bn ` Bn

!dL
!Γn, !(!An(Bn) ` Bn

!R
!Γn, !(!An(Bn) ` !Bn !∆n, !Bn ` Cn

cut
!Γn, !∆n, !(!An(Bn) ` Cn

Γ ` A Γ ` B ∧R
Γ ` A ∧B 7→ !Γn ` An !Γn ` Bn

&R
!Γn ` An &Bn

Γ, A ` C ∧1LΓ, A ∧B ` C
7→

ax
An ` An &1LAn &Bn ` An

!dL
!(An &Bn) ` An

!R
!(An &Bn) ` !An !Γn, !An ` Cn

cut
!Γn, !(An &Bn) ` Cn

TR
Γ ` T 7→ >R

!Γn ` >

Γ ` A ∨1RΓ ` A ∨B 7→
!Γn ` An

!R
!Γn ` !An ⊕1R!Γn ` !An ⊕ !Bn

Γ, A ` C Γ, B ` C
∨L

Γ, A ∨B ` C
7→

!Γn, !An ` Cn !Γn, !Bn ` Cn
⊕L

!Γn, !An ⊕ !Bn ` Cn
!dL

!Γn, !(!An ⊕ !Bn) ` Cn

FL
Γ, F ` C 7→

0L
!Γn, 0 ` Cn

!dL
!Γn, !0 ` Cn

Γ ` A ∀R
Γ ` ∀ξA 7→ !Γn ` An ∀R

!Γn ` ∀ξAn

Γ, A[τ/ξ] ` C
∀L

Γ,∀ξA ` C
7→

ax
An[τn/ξ] ` An[τn/ξ]

∀L∀ξAn ` An[τn/ξ]
!dL

!∀ξAn ` An[τn/ξ]
!R

!∀ξAn ` !(An[τn/ξ]) !Γn, !(An[τn/ξ]) ` Cn
cut

!Γn, !∀ξAn ` Cn

Γ ` A[τ/ξ]
∃R

Γ ` ∃ξA
7→

!Γn ` An[τn/ξ]
!R

!Γn ` !(An[τn/ξ])
∃R

!Γn ` ∃ξ!An

Γ, A ` C
∃L

Γ, ∃ξA ` C
7→

!Γn, !An ` Cn
∃L

!Γn, ∃ξ!An ` Cn
!dL

!Γn, !∃ξ!An ` Cn

7.2 Call-by-value translation A→ B 7→ !(A(B)

Formulas are translated as:

Xv = !X

47

(A→ B)v = !(Av (Bv)

(A ∧B)v = !(Av ⊗Bv)

T v = !1

(A ∨B)v = !(Av ⊕Bv)

F v = !0

(∀ξA)v = !∀ξAv

(∃ξA)v = !∃ξAv

The translation of any formula starts with !, we define Av such that Av = !Av.
The translation of sequents is (Γ ` A)v = Γv ` Av.
This allows one to translate the rules of intuitionistic logic into linear logic:

ax
A ` A 7→ ax

Av ` Av

Γ ` A ∆, A ` B
cut

Γ,∆ ` B
7→ Γv ` Av ∆v, Av ` Bv

cut
Γv,∆v ` Bv

Γ, A,A ` C
cL

Γ, A ` C
7→ Γv, Av, Av ` Cv

!cL
Γv, Av ` Cv

Γ ` C
wL

Γ, A ` C 7→ Γv ` Cv
!wL

Γv, Av ` Cv

Γ, A ` B
→ R

Γ ` A→ B
7→

Γv, Av ` Bv

(R
Γv ` Av (Bv

!R
Γv ` !(Av (Bv)

Γ ` A ∆, B ` C
→ L

Γ,∆, A→ B ` C
7→

Γv ` Av ∆v, Bv ` Cv
(L

Γv,∆v, Av (Bv ` Cv
!dL

Γv,∆v, !(Av (Bv) ` Cv

Γ ` A ∆ ` B ∧R
Γ,∆ ` A ∧B 7→

Γv ` Av ∆v ` Bv
⊗R

Γv,∆v ` Av ⊗Bv

!R
Γv,∆v ` !(Av ⊗Bv)

Γ, A,B ` C
∧L

Γ, A ∧B ` C
7→

Γv, Av, Bv ` Cv
⊗L

Γv, Av ⊗Bv ` Cv
!dL

Γv, !(Av ⊗Bv) ` Cv

TR` T 7→
1R` 1
!R` !1

Γ ` C
TL

Γ, T ` C 7→
Γv ` Cv

1L
Γv, 1 ` Cv

!dL
Γv, !1 ` Cv

Γ ` A ∨1RΓ ` A ∨B 7→
Γv ` Av ⊕1RΓv ` Av ⊕Bv

!R
Γv ` !(Av ⊕Bv)

48

Γ, A ` C Γ, B ` C
∨L

Γ, A ∨B ` C
7→

Γv, Av ` Cv Γv, Bv ` Cv
⊕L

Γv, Av ⊕Bv ` Cv
!dL

Γv, !(Av ⊕Bv) ` Cv

FL
Γ, F ` C 7→

0L
Γv, 0 ` Cv

!dL
Γv, !0 ` Cv

Γ ` A ∀R
Γ ` ∀ξA 7→

Γv ` Av ∀R
Γv ` ∀ξAv

!R
Γv ` !∀ξAv

Γ, A[τ/ξ] ` C
∀L

Γ,∀ξA ` C
7→

Γv, Av[τv/ξ] ` Cv
∀L

Γv,∀ξAv ` Cv
!dL

Γv, !∀ξAv ` Cv

Γ ` A[τ/ξ]
∃R

Γ ` ∃ξA
7→

Γv ` Av[τv/ξ]
∃R

Γv ` ∃ξAv
!R

Γv ` !∃ξAv

Γ, A ` C
∃L

Γ,∃ξA ` C
7→

Γv, Av ` Cv
∃L

Γv,∃ξAv ` Cv
!dL

Γv, !∃ξAv ` Cv

We use (A[τ/ξ])v = Av[τv/ξ].

7.2.1 Alternative presentation

It is also possible to define Av as the primitive construction.

Xv = X

(A→ B)v = !Av (!Bv

(A ∧B)v = !Av ⊗ !Bv

T v = 1

(A ∨B)v = !Av ⊕ !Bv

F v = 0

(∀ξA)v = ∀ξ!Av

(∃ξA)v = ∃ξ!Av

If we define (Γ ` A)v = !Γv ` !Av, we have (Γ ` A)v = (Γ ` A)v and thus we obtain the same
translation of proofs.

7.3 Call-by-value Girard’s translation A→ B 7→ !(A(B)

The original version of the call-by-value translation given by Jean-Yves Girard [Gir87] is an
optimisation of the previous one using properties of positive formulas.

Formulas are translated as:

Xw = !X

(A→ B)w = !(Aw (Bw)

(A ∧B)w = Aw ⊗Bw

49

Tw = 1

(A ∨B)w = Aw ⊕Bw

Fw = 0

(∀ξA)w = !∀ξAw

(∃ξA)w = ∃ξAw

The translation of any formula is a positive formula.
The translation of sequents is (Γ ` A)w = Γw ` Aw.
This allows one to translate the rules of intuitionistic logic into linear logic:

ax
A ` A 7→ ax

Aw ` Aw

Γ ` A ∆, A ` B
cut

Γ,∆ ` B
7→ Γw ` Aw ∆w, Aw ` Bw

cut
Γw,∆w ` Bw

Γ, A,A ` C
cL

Γ, A ` C
7→ Γw, Aw, Aw ` Cw

+cL
Γw, Aw ` Cw

Γ ` C
wL

Γ, A ` C 7→ Γw ` Cw
+wL

Γw, Aw ` Cw

Γ, A ` B
→ R

Γ ` A→ B
7→

Γw, Aw ` Bw

(R
Γw ` Aw (Bw

+!R
Γw ` !(Aw (Bw)

Γ ` A ∆, B ` C
→ L

Γ,∆, A→ B ` C
7→

Γw ` Aw ∆w, Bw ` Cw
(L

Γw,∆w, Aw (Bw ` Cw
!dL

Γw,∆w, !(Aw (Bw) ` Cw

Γ ` A ∆ ` B ∧R
Γ,∆ ` A ∧B 7→ Γw ` Aw ∆w ` Bw

⊗R
Γw,∆w ` Aw ⊗Bw

Γ, A,B ` C
∧L

Γ, A ∧B ` C
7→ Γw, Aw, Bw ` Cw

⊗L
Γw, Aw ⊗Bw ` Cw

TR` T 7→ 1R` 1

Γ ` A ∨1RΓ ` A ∨B 7→ Γw ` Aw ⊕1RΓw ` Aw ⊕Bw

Γ, A ` C Γ, B ` C
∨L

Γ, A ∨B ` C
7→ Γw, Aw ` Cw Γw, Bw ` Cw

⊕L
Γw, Aw ⊕Bw ` Cw

FL
Γ, F ` C 7→ 0L

Γw, 0 ` Cw

Γ ` A ∀R
Γ ` ∀ξA 7→

Γw ` Aw ∀R
Γw ` ∀ξAw

+!R
Γw ` !∀ξAw

Γ, A[τ/ξ] ` C
∀L

Γ,∀ξA ` C
7→

Γw, (A[τ/ξ])w ` Cw

Γw, Aw[τw/ξ] ` Cw
∀L

Γw,∀ξAw ` Cw
!dL

Γw, !∀ξAw ` Cw

50

Γ ` A[τ/ξ]
∃R

Γ ` ∃ξA
7→

Γw ` (A[τ/ξ])w

Γw ` Aw[τw/ξ]
∃R

Γw ` ∃ξAw

Γ, A ` C
∃L

Γ,∃ξA ` C
7→ Γw, Aw ` Cw

∃L
Γw,∃ξAw ` Cw

We use (A[τ/ξ])w ˛ Aw[τw/ξ].

51

Chapter 8

Translations of classical logic

8.1 T-translation A→ B 7→ !?A(?B

Formulas are translated as:

XT = X

(A→ B)T = !?AT (?BT

(A ∧B)T = ?AT & ?BT

T T = >
(A ∨B)T = ?AT ` ?BT

F T = ⊥
(¬A)T = ?!(AT)⊥

(∀ξA)T = ∀ξ?AT

(∃ξA)T = ∃ξ!?AT

This is extended to sequents by (Γ ` ∆)T = !?ΓT ` ?∆T .
This allows one to translate the rules of classical logic into linear logic:

ax
A ` A 7→

ax
?AT ` ?AT

!L
!?AT ` ?AT

Γ ` A,∆ Γ′, A ` ∆′
cut

Γ,Γ′ ` ∆,∆′
7→

!?ΓT ` ?AT , ?∆T

!R
!?ΓT ` !?AT , ?∆T !?Γ′T , !?AT ` ?∆′T

cut
!?ΓT , !?Γ′T ` ?∆T , ?∆′T

Γ, A,A ` ∆
cL

Γ, A ` ∆
7→ !?ΓT , !?AT , !?AT ` ?∆T

!cL
!?ΓT , !?AT ` ?∆T

Γ ` A,A,∆
cR

Γ ` A,∆
7→ !?ΓT ` ?AT , ?AT , ?∆T

?cR
!?ΓT ` ?AT , ?∆T

Γ ` ∆
wL

Γ, A ` ∆
7→ !?ΓT ` ?∆T

!wL
!?ΓT , !?AT ` ?∆T

Γ ` ∆
wR

Γ ` A,∆ 7→ !?ΓT ` ?∆T
?wR

!?ΓT ` ?AT , ?∆T

52

Γ, A ` B,∆
→ R

Γ ` A→ B,∆
7→

!?ΓT , !?AT ` ?BT , ?∆T

(R
!?ΓT ` !?AT (?BT , ?∆T

?dR
!?ΓT ` ?(!?AT (?BT), ?∆T

Γ ` A,∆ Γ′, B ` ∆′
→ L

Γ,Γ′, A→ B ` ∆,∆′
7→

!?ΓT ` ?AT , ?∆T

!R
!?ΓT ` !?AT , ?∆T

ax
?BT ` ?BT

(L
!?ΓT , !?AT (?BT ` ?BT , ?∆T

?L
!?ΓT , ?(!?AT (?BT) ` ?BT , ?∆T

!dL
!?ΓT , !?(!?AT (?BT) ` ?BT , ?∆T

!R
!?ΓT , !?(!?AT (?BT) ` !?BT , ?∆T !?Γ′T , !?BT ` ?∆′T

cut
!?ΓT , !?Γ′T , !?(!?AT (?BT) ` ?∆T , ?∆′T

Γ ` A,∆ Γ ` B,∆
∧R

Γ ` A ∧B,∆
7→

!?ΓT ` ?AT , ?∆T !?ΓT ` ?BT , ?∆T

&R
!?ΓT ` ?AT & ?BT , ?∆T

?dR
!?ΓT ` ?(?AT & ?BT), ?∆T

Γ, A ` ∆ ∧1LΓ, A ∧B ` ∆
7→

ax
?AT ` ?AT &1L

?AT & ?BT ` ?AT
?L

?(?AT & ?BT) ` ?AT
!dL

!?(?AT & ?BT) ` ?AT
!R

!?(?AT & ?BT) ` !?AT !?ΓT , !?AT ` ?∆T

cut
!?ΓT , !?(?AT & ?BT) ` ?∆T

TR
Γ ` T,∆ 7→

>R
!?ΓT ` >, ?∆T

?dR
!?ΓT ` ?>, ?∆T

Γ ` A,B,∆
∨R

Γ ` A ∨B,∆
7→

!?ΓT ` ?AT , ?BT , ?∆T

`R
!?ΓT ` ?AT ` ?BT , ?∆T

?dR
!?ΓT ` ?(?AT ` ?BT), ?∆T

Γ, A ` ∆ Γ′, B ` ∆′
∨L

Γ,Γ′, A ∨B ` ∆,∆′
7→

ax
?AT ` ?AT

ax
?BT ` ?BT `L

?AT ` ?BT ` ?AT , ?BT

?L
?(?AT ` ?BT) ` ?AT , ?BT

!dL
!?(?AT ` ?BT) ` ?AT , ?BT

!R
!?(?AT ` ?BT) ` ?AT , !?BT !?Γ′T , !?BT ` ?∆′T

cut
!?Γ′T , !?(?AT ` ?BT) ` ?AT , ?∆′T

!R
!?Γ′T , !?(?AT ` ?BT) ` !?AT , ?∆′T !?ΓT , !?AT ` ?∆T

cut
!?ΓT , !?Γ′T , !?(?AT ` ?BT) ` ?∆T , ?∆′T

Γ ` ∆
FR

Γ ` F,∆ 7→
!?ΓT ` ?∆T

⊥R
!?ΓT ` ⊥, ?∆T

?R
!?ΓT ` ?⊥, ?∆T

53

FL
F ` 7→

⊥L⊥ `
?L

?⊥ `
!dL

!?⊥ `

Γ, A ` ∆
¬R

Γ ` ¬A,∆
7→

!?ΓT , !?AT ` ?∆T

(.)⊥R
!?ΓT ` ?!(AT)⊥, ?∆T

?dR
!?ΓT ` ??!(AT)⊥, ?∆T

Γ ` A,∆
¬L

Γ,¬A ` ∆
7→

!?ΓT ` ?AT , ?∆T

(.)⊥L
!?ΓT , !(AT)⊥ ` ?∆T

?L
!?ΓT , ?!(AT)⊥ ` ?∆T

?L
!?ΓT , ??!(AT)⊥ ` ?∆T

!dL
!?ΓT , !??!(AT)⊥ ` ?∆T

Γ ` A,∆
∀R

Γ ` ∀ξA,∆
7→

!?ΓT ` ?AT , ?∆T

∀R
!?ΓT ` ∀ξ?AT , ?∆T

?dR
!?ΓT ` ?∀ξ?AT , ?∆T

Γ, A[τ/ξ] ` ∆
∀L

Γ, ∀ξA ` ∆
7→

ax
?AT [τT /ξ] ` ?AT [τT /ξ]

∀L
∀ξ?AT ` ?AT [τT /ξ]

?L
?∀ξ?AT ` ?AT [τT /ξ]

!dL
!?∀ξ?AT ` ?AT [τT /ξ]

!R
!?∀ξ?AT ` !?AT [τT /ξ] !?ΓT , !?(AT [τT /ξ]) ` ?∆T

cut
!?ΓT , !?∀ξ?AT ` ?∆T

Γ ` A[τ/ξ],∆
∃R

Γ ` ∃ξA,∆
7→

!?ΓT ` ?AT [τT /ξ], ?∆T

!R
!?ΓT ` !?AT [τT /ξ], ?∆T

∃R
!?ΓT ` ∃ξ!?AT , ?∆T

?dR
!?ΓT ` ?∃ξ!?AT , ?∆T

Γ, A ` ∆
∃L

Γ, ∃ξA ` ∆
7→

!?ΓT , !?AT ` ?∆T

∃L
!?ΓT , ∃ξ!?AT ` ?∆T

?L
!?ΓT , ?∃ξ!?AT ` ?∆T

!dL
!?ΓT , !?∃ξ!?AT ` ?∆T

8.1.1 Alternative presentation

It is also possible to define AT by:

XT = ?X

(A→ B)T = ?(!AT (BT)

(A ∧B)T = ?(AT &BT)

T T = ?>

(A ∨B)T = ?(AT `BT)

F T = ?⊥

54

(¬A)T = ??(AT)⊥

(∀ξA)T = ?∀ξAT

(∃ξA)T = ?∃ξ!AT

If we define (Γ ` ∆)T = !ΓT ` ∆T , we have (Γ ` ∆)T = (Γ ` ∆)T and thus we obtain the
same translation of proofs.

8.2 Q-translation A→ B 7→ !(A(?B)

Formulas are translated as:

XQ = !X

(A→ B)Q = !(AQ(?BQ)

(A ∧B)Q = !(AQ ⊗BQ)

TQ = !1

(A ∨B)Q = !(AQ ⊕BQ)

FQ = !0

(¬A)Q = !(AQ)⊥

(∀ξA)Q = !∀ξ?AQ

(∃ξA)Q = !∃ξAQ

The translation of any formula starts with !, we define AQ such that AQ = !AQ.
The translation of sequents is (Γ ` ∆)Q = ΓQ ` ?∆Q.
This allows one to translate the rules of classical logic into linear logic:

ax
A ` A 7→

ax
AQ ` AQ

?dR
AQ ` ?AQ

Γ ` A,∆ Γ′, A ` ∆′
cut

Γ,Γ′ ` ∆,∆′
7→ ΓQ ` ?AQ, ?∆Q

Γ′Q, AQ ` ?∆′Q
?L

Γ′Q, ?AQ ` ?∆′Q
cut

ΓQ,Γ′Q ` ?∆Q, ?∆′Q

Γ, A,A ` ∆
cL

Γ, A ` ∆
7→ ΓQ, AQ, AQ ` ?∆Q

!cL
ΓQ, AQ ` ?∆Q

Γ ` A,A,∆
cR

Γ ` A,∆
7→ ΓQ ` ?AQ, ?AQ, ?∆Q

?cR
ΓQ ` ?AQ, ?∆Q

Γ ` ∆
wL

Γ, A ` ∆
7→ ΓQ ` ?∆Q

!wL
ΓQ, AQ ` ?∆Q

Γ ` ∆
wR

Γ ` A,∆ 7→ ΓQ ` ?∆Q
?wR

ΓQ ` ?AQ, ?∆Q

55

Γ, A ` B,∆
→ R

Γ ` A→ B,∆
7→

ΓQ, AQ ` ?BQ, ?∆Q

(R
ΓQ ` AQ(?BQ, ?∆Q

!R
ΓQ ` !(AQ(?BQ), ?∆Q

?dR
ΓQ ` ?!(AQ(?BQ), ?∆Q

Γ ` A,∆ Γ′, B ` ∆′
→ L

Γ,Γ′, A→ B ` ∆,∆′
7→

ΓQ ` ?AQ, ?∆Q

ax
AQ ` AQ

Γ′Q, BQ ` ?∆′Q
?L

Γ′Q, ?BQ ` ?∆′Q
(L

Γ′Q, AQ(?BQ, AQ ` ?∆′Q
!dL

Γ′Q, !(AQ(?BQ), AQ ` ?∆′Q
?L

Γ′Q, !(AQ(?BQ), ?AQ ` ?∆′Q
cut

ΓQ,Γ′Q, !(AQ(?BQ) ` ?∆Q, ?∆′Q

Γ ` A,∆ Γ′ ` B,∆′
∧R

Γ,Γ′ ` A ∧B,∆,∆′
7→

ΓQ ` ?AQ, ?∆Q

Γ′Q ` ?BQ, ?∆′Q

ax
AQ ` AQ

ax
BQ ` BQ

⊗R
AQ, BQ ` AQ ⊗BQ

!R
AQ, BQ ` !(AQ ⊗BQ)

?dR
AQ, BQ ` ?!(AQ ⊗BQ)

?L
AQ, ?BQ ` ?!(AQ ⊗BQ)

cut
Γ′Q, AQ ` ?!(AQ ⊗BQ), ?∆′Q

?L
Γ′Q, ?AQ ` ?!(AQ ⊗BQ), ?∆′Q

cut
ΓQ,Γ′Q ` ?!(AQ ⊗BQ), ?∆Q, ?∆′Q

Γ, A,B ` ∆
∧L

Γ, A ∧B ` ∆
7→

ΓQ, AQ, BQ ` ?∆Q

⊗L
ΓQ, AQ ⊗BQ ` ?∆Q

!dL
ΓQ, !(AQ ⊗BQ) ` ?∆Q

TR` T 7→
1R` 1
!R` !1
?dR` ?!1

Γ ` ∆
TL

Γ, T ` ∆
7→

ΓQ ` ?∆Q
1L

ΓQ, 1 ` ?∆Q

!dL
ΓQ, !1 ` ?∆Q

Γ ` A,∆ ∨1RΓ ` A ∨B,∆
7→

ΓQ ` ?AQ, ?∆Q

ax
AQ ` AQ ⊕1R

AQ ` AQ ⊕BQ

!R
AQ ` !(AQ ⊕BQ)

?dR
AQ ` ?!(AQ ⊕BQ)

?L
?AQ ` ?!(AQ ⊕BQ)

cut
ΓQ ` ?!(AQ ⊕BQ), ?∆Q

Γ, A ` ∆ Γ, B ` ∆
∨L

Γ, A ∨B ` ∆
7→

ΓQ, AQ ` ?∆Q ΓQ, BQ ` ?∆Q

⊕L
ΓQ, AQ ⊕BQ ` ?∆Q

!dL
ΓQ, !(AQ ⊕BQ) ` ?∆Q

56

FL
Γ, F ` ∆ 7→

0L
ΓQ, 0 ` ?∆Q

!dL
ΓQ, !0 ` ?∆Q

Γ, A ` ∆
¬R

Γ ` ¬A,∆
7→

ΓQ, AQ ` ?∆Q

(.)⊥R
ΓQ ` (AQ)⊥, ?∆Q

!R
ΓQ ` !(AQ)⊥, ?∆Q

?dR
ΓQ ` ?!(AQ)⊥, ?∆Q

Γ ` A,∆
¬L

Γ,¬A ` ∆
7→ ΓQ ` ?AQ, ?∆Q

(.)⊥L
ΓQ, !(AQ)⊥ ` ?∆Q

Γ ` A,∆
∀R

Γ ` ∀ξA,∆
7→

ΓQ ` ?AQ, ?∆Q

∀R
ΓQ ` ∀ξ?AQ, ?∆Q

!R
ΓQ ` !∀ξ?AQ, ?∆Q

Γ, A[τ/ξ] ` ∆
∀L

Γ,∀ξA ` ∆
7→

ΓQ, AQ[τQ/ξ] ` ?∆Q

?L
ΓQ, ?AQ[τQ/ξ] ` ?∆Q

∀L
ΓQ,∀ξ?AQ ` ?∆Q

!dL
ΓQ, !∀ξ?AQ ` ?∆Q

Γ ` A[τ/ξ],∆
∃R

Γ ` ∃ξA,∆
7→

ΓQ ` ?AQ[τQ/ξ], ?∆Q

ax
AQ[τQ/ξ] ` AQ[τQ/ξ]

∃R
AQ[τQ/ξ] ` ∃ξAQ

!R
AQ[τQ/ξ] ` !∃ξAQ

?dR
AQ[τQ/ξ] ` ?!∃ξAQ

?L
?AQ[τQ/ξ] ` ?!∃ξAQ

cut
ΓQ ` ?!∃ξAQ, ?∆Q

Γ, A ` ∆
∃L

Γ, ∃ξA ` ∆
7→

ΓQ, AQ ` ?∆Q

∃L
ΓQ, ∃ξAQ ` ?∆Q

!dL
ΓQ, !∃ξAQ ` ?∆Q

We use (A[τ/ξ])Q = AQ[τQ/ξ].

8.2.1 Alternative presentation

It is also possible to define AQ as the primitive construction.

XQ = X

(A→ B)Q = !AQ(?!BQ

(A ∧B)Q = !AQ ⊗ !BQ

TQ = 1

(A ∨B)Q = !AQ ⊕ !BQ

FQ = 0

(¬A)Q = ?(AQ)⊥

(∀ξA)Q = ∀ξ?!AQ

57

(∃ξA)Q = ∃ξ!AQ

If we define (Γ ` ∆)Q = !ΓQ ` ?!∆Q, we have (Γ ` ∆)Q = (Γ ` ∆)Q and thus we obtain the
same translation of proofs.

58

Chapter 9

Light linear logics

Light linear logics are variants of linear logic characterizing complexity classes. They are
designed by defining alternative exponential connectives, which induce a complexity bound on
the cut-elimination procedure.

Light linear logics are one of the approaches used in implicit computational complexity, the
area studying the computational complexity of programs without referring to external measuring
conditions or particular machine models.

9.1 Elementary linear logic

We present here the intuitionistic version of elementary linear logic, ELL. Moreover we restrict
to the fragment without additive connectives.

The language of formulas is the same one as that of (multiplicative) ILL:

A ::= X | A⊗A | A(A | !A | ∀XA
The sequent calculus rules are the same ones as for ILL, except for the rules dealing with the
exponential connectives:

Γ ` A
! mf

!Γ ` !A
Γ, !A, !A ` C

!cL
Γ, !A ` C

Γ ` C
!wL

Γ, !A ` C
The depth of a derivation π is the maximum number of (! mf) rules in a branch of π.
We consider the function K(., .) defined by:{

K(0, n) = n,

K(k + 1, n) = 2K(k,n).

Theorem 10. If π is an ELL proof of depth d, and R is the corresponding ELL proof-net, then
R can be reduced to its normal form by cut elimination in at most K(d+ 1, |π|) steps, where |π|
is the size of π.

A function f on integers is elementary recursive if there exists an integer h and a Turing
machine which computes f in time bounded by K(h, n), where n is the size of the input.

Theorem 11. The functions representable in ELL are exactly the elementary recursive functions.

One also often considers the affine variant of ELL, called elementary affine logic EAL, which
is defined by adding unrestricted weakening:

Γ ` C
wL

Γ, A ` C
It enjoys the same properties as ELL.

Elementary linear logic was introduced together with light linear logic [Gir98].

59

9.2 Light linear logic

We present the intuitionistic version of light linear logic LLL, without additive connectives. The
language of formulas is:

A ::= X | A⊗A | A(A | !A | §A | ∀XA

The sequent calculus rules are the same ones as for ILL, except for the rules dealing with the
exponential connectives:

Γ ` A
! f

!Γ ` !A
Γ,∆ ` A §

!Γ, §∆ ` §A
Γ, !A, !A ` C

!cL
Γ, !A ` C

Γ ` C
!wL

Γ, !A ` C

In the (! f) rule, Γ must contain at most one formula.
The depth of a derivation π is the maximum number of (! f) and (§) rules in a branch of π.

Theorem 12. If π is an LLL proof of depth d, and R is the corresponding LLL proof-net, then
R can be reduced to its normal form by cut elimination in O((d+ 1)|π|2d+1

) steps, where |π| is
the size of π.

The class FP is the class of functions on binary lists which are computable in polynomial
time on a Turing machine.

Theorem 13. The class of functions on binary lists representable in LLL is exactly FP.

In the literature one also often considers the affine variant of LLL, called light affine logic,
LAL.

9.3 Soft linear logic

We consider the intuitionistic version of soft linear logic, SLL. The language of formulas is the
same one as that of ILL:

A ::= X | A⊗A | A(A | A&A | A⊕A | !A | ∀XA

The sequent calculus rules are the same ones as for ILL, except for the rules dealing with the
exponential connectives:

Γ ` A
! mf

!Γ ` !A
Γ, A(n) ` C

mux
Γ, !A ` C

The rule mux is the multiplexing rule. In its premiss, A(n) stands for n occurrences of formula
A. As particular instances of multiplexing for n = 0 and 1 respectively, we get weakening and
dereliction:

Γ ` C
Γ, !A ` C

Γ, A ` C
Γ, !A ` C

The depth of a derivation π is the maximum number of (! mf) rules in a branch of π.

Theorem 14. If π is an SLL proof of depth d, and R is the corresponding SLL proof-net, then R
can be reduced to its normal form by cut elimination in O(|π|d) steps, where |π| is the size of π.

Theorem 15. The class of functions on binary lists representable in SLL is exactly FP.

Soft linear logic was introduced in [Laf04].

60

Part II

Semantics

61

Chapter 10

Semantics

Linear Logic has numerous semantics some of which are described in details in the next chapters.

• Coherent semantics

• Phase semantics

• Categorical semantics

• Relational semantics

• Finiteness semantics

• Geometry of interaction

• Game semantics

Common properties may be found in most of these models. We will denote by A −→ B the
fact that there is a canonical morphism from A to B and by A ∼= B the fact that there is a
canonical isomorphism between A and B. By “canonical” we mean that these (iso)morphisms
are natural transformations.

10.1 Orthogonality relation

Orthogonality relations are used pervasively throughout linear logic models, being often used to
define somehow the duality operator (−)⊥.

Definition 8 (Orthogonality relation). Let A and B be two sets. An orthogonality relation on
A and B is a binary relation R ⊆ A×B. We say that a ∈ A and b ∈ B are orthogonal, and we
note a ⊥ b, whenever (a, b) ∈ R.

Let us now assume an orthogonality relation over A and B.

Definition 9 (Orthogonal sets). Let α ⊆ A. We define its orthogonal set α⊥ as α⊥ := {b ∈ B |
∀a ∈ α, a ⊥ b}.

Symmetrically, for any β ⊆ B, we define β⊥ := {a ∈ A | ∀b ∈ β, a ⊥ b}.
Orthogonal sets define Galois connections and share many common properties.

Proposition 7. For any sets α, α′ ⊆ A:
• α ⊆ α⊥⊥

• If α ⊆ α′, then α′⊥ ⊆ α⊥

• α⊥⊥⊥ = α⊥

62

Chapter 11

Coherent semantics

Coherent semantics was invented by Girard in the paper The system F, 15 years later [Gir86]
with the objective of building a denotationnal interpretation of second order intuitionnistic logic
(aka polymorphic lambda-calculus).

Coherent semantics is based on the notion of stable functions that was initially proposed
by Gérard Berry. Stability is a condition on Scott continuous functions that expresses the
determinism of the relation between the output and the input: the typical Scott continuous but
non stable function is the parallel or because when the two inputs are both set to true, only one
of them is the reason why the result is true but there is no way to determine which one.

A further achievement of coherent semantics was that it allowed to endow the set of stable
functions from X to Y with a structure of domain, thus closing the category of coherent spaces
and stable functions. However the most interesting point was the discovery of a special class of
stable functions, linear functions, which was the first step leading to Linear Logic.

11.1 The cartesian closed structure of coherent semantics

There are three equivalent definitions of coherent spaces: the first one, coherent spaces as domains,
is interesting from a historical point of view as it emphazises the fact that coherent spaces are
particular cases of Scott domains. The second one, coherent spaces as graphs, is the most
commonly used and will be our “official” definition in the sequel. The last one, cliqued spaces is a
particular example of a more general scheme that one could call “symmetric reducibility”; this
scheme is underlying lots of constructions in linear logic such as phase semantics or the proof of
strong normalisation for proof-nets.

11.1.1 Coherent spaces

A coherent space X is a collection of subsets of a set |X| satisfying some conditions that will be
detailed shortly. The elements of X are called the cliques of X (for reasons that will be made
clear in a few lines). The set |X| is called the web of X and its elements are called the points of
X; thus a clique is a set of points. Note that the terminology is a bit ambiguous as the points of
X are the elements of the web of X, not the elements of X.

The definitions below give three equivalent conditions that have to be satisfied by the cliques
of a coherent space.

11.1.1.1 As domains

The cliques of X have to satisfy:

63

• subset closure: if x ⊂ y ∈ X then x ∈ X,

• singletons: {a} ∈ X for a ∈ |X|.

• binary compatibility: if A is a family of pairwise compatible cliques of X, that is if x∪y ∈ X
for any x, y ∈ A, then

⋃
A ∈ X.

A coherent space is thus ordered by inclusion; one easily checks that it is a domain. In
particular finite cliques of X correspond to compact elements.

11.1.1.2 As graphs

There is a reflexive and symmetric relation ¨X on |X| (the coherence relation) such that any
subset x of |X| is a clique of X iff ∀a, b ∈ x, a ¨X b. In other terms X is the set of complete
subgraphs of the simple unoriented graph of the ¨X relation; this is the reason why elements of
X are called cliques.

The strict coherence relation ˝X on X is defined by: a ˝X b iff a 6= b and a ¨X b.
A coherent space in the domain sense is seen to be a coherent space in the graph sense by

setting a ¨X b iff {a, b} ∈ X; conversely one can check that cliques in the graph sense are subset
closed and satisfy the binary compatibility condition.

A coherent space is completely determined by its web and its coherence relation, or equivalently
by its web and its strict coherence.

11.1.1.3 As cliqued spaces

Definition 10 (Duality). Let x, y ⊆ |X| be two sets. We will say that they are dual, written
x ⊥ y if their intersection contains at most one element: Card(x ∩ y) ≤ 1. As usual, it defines
an orthogonality relation over P (|X|).

The last way to express the conditions on the cliques of a coherent space X is simply to say
that we must have X⊥⊥ = X.

11.1.1.4 Equivalence of definitions

Let X be a cliqued space and define a relation on |X| by setting a ¨X b iff there is x ∈ X such
that a, b ∈ x. This relation is obviously symmetric; it is also reflexive because all singletons
belong to X: if a ∈ |X| then {a} is dual to any element of X⊥ (actually {a} is dual to any subset
of |X|), thus {a} is in X⊥⊥, thus in X.

Let a ¨X b. Then {a, b} ∈ X; indeed there is an x ∈ X such that a, b ∈ x. This x is dual to
any y ∈ X⊥, that is meets any y ∈ X⊥ in a most one point. Since {a, b} ⊂ x this is also true of
{a, b}, so that {a, b} is in X⊥⊥ thus in X.

Now let x be a clique for ¨X and y be an element of X⊥. Suppose a, b ∈ x ∩ y, then since a
and b are coherent (by hypothesis on x) we have {a, b} ∈ X and since y ∈ X⊥ we must have
that {a, b} and y meet in at most one point. Thus a = b and we have shown that x and y are
dual. Since y was arbitrary this means that x is in X⊥⊥, thus in X. Finally we get that any
set of pairwise coherent points of X is in X. Conversely given x ∈ X its points are obviously
pairwise coherent so eventually we get that X is a coherent space in the graph sense.

Conversely given a coherent space X in the graph sense, one can check that it is a cliqued
space. Call anticlique a set y ⊂ |X| of pairwise incoherent points: for all a, b in y, if a ¨X b
then a = b. Any anticlique intersects any clique in at most one point: let x be a clique and y be
an anticlique, then if a, b ∈ x ∩ y, since a, b ∈ x we have a ¨X b and since y is an anticlique we
have a = b. Thus y ∈ X⊥. Conversely given any y ∈ X⊥ and a, b ∈ y, suppose a ¨X b. Then

64

{a, b} ∈ X, thus {a, b} ⊥ y which entails that {a, b} has at most one point so that a = b: we
have shown that any two elements of y are incoherent.

Thus the collection of anticliques of X is the dual X⊥ of X. Note that the incoherence relation
defined above is reflexive and symmetric, so that X⊥ is a coherent space in the graph sense. Thus
we can do for X⊥ exactly what we’ve just done for X and consider the anti-anticliques, that is
the anticliques for the incoherent relation which are the cliques for the in-incoherent relation. It
is not difficult to see that this in-incoherence relation is just the coherence relation we started
with; we thus obtain that X⊥⊥ = X, so that X is a cliqued space.

11.1.2 Stable functions

Definition 11 (Stable function). Let X and Y be two coherent spaces. A function F : X −→ Y
is stable if it satisfies:

• it is non decreasing: for any x, y ∈ X if x ⊂ y then F (x) ⊂ F (y);

• it is continuous (in the Scott sense): if A is a directed family of cliques of X, that is if for
any x, y ∈ A there is a z ∈ A such that x ∪ y ⊂ z, then

⋃
x∈A F (x) = F (

⋃
A);

• it satisfies the stability condition: if x, y ∈ X are compatible, that is if x ∪ y ∈ X, then
F (x ∩ y) = F (x) ∩ F (y).

This definition is admitedly not very tractable. An equivalent and most useful caracterisation
of stable functions is given by the following theorem.

Theorem 16. Let F : X −→ Y be a non-decreasing function from the coherent space X to the
coherent space Y . The function F is stable iff it satisfies: for any x ∈ X, b ∈ |Y |, if b ∈ F (x)
then there is a finite clique x0 ⊂ x such that:

• b ∈ F (x0),

• for any y ⊂ x if b ∈ F (y) then x0 ⊂ y (x0 is “the” minimum sub-clique of x such that
b ∈ F (x0)).

Note that the stability condition doesn’t depend on the coherent space structure and can be
expressed more generally for continuous functions on domains. However, as mentionned in the
introduction, the restriction to coherent spaces allows to endow the set of stable functions from
X to Y with a structure of coherent space.

Definition 12 (The space of stable functions). Let X and Y be coherent spaces. We denote by
Xfin the set of finite cliques of X. The function space X → Y is defined by:

• |X → Y | = Xfin × |Y |,

• (x0, a) ¨X→Y (y0, b) iff

{
if x0 ∪ y0 ∈ X then a ¨Y b,

if x0 ∪ y0 ∈ X and a = b then x0 = y0

.

One could equivalently define the strict coherence relation on X → Y by: (x0, a) ˝X→Y (y0, b)
iff when x0 ∪ y0 ∈ X then a ˝Y b (equivalently x0 ∪ y0 6∈ X or a ˝Y b).

Definition 13 (Trace of a stable function). Let F : X −→ Y be a function. The trace of F is
the set:

Tr(F) = {(x0, b), x0 minimal such that b ∈ F (x0)}.

Theorem 17. F is stable iff Tr(F) is a clique of the function space X → Y .

65

In particular the continuity of F entails that if x0 is minimal such that b ∈ F (x0), then x0 is
finite.

Definition 14 (The evaluation function). Let f be a clique in X → Y . We define a function
Fun f : X −→ Y by: Fun f(x) = {b ∈ Y, there is x0 ⊂ x such that (x0, b) ∈ f}.

Theorem 18 (Closure). If f is a clique of the function space X → Y then we have Tr(Fun f) = f .
Conversely if F : X −→ Y is a stable function then we have F = Fun Tr(F).

11.1.3 Cartesian product

Definition 15 (Cartesian product). Let X1 and X2 be two coherent spaces. We define the
coherent space X1 &X2 (read X1 “with” X2):

• the web is the disjoint union of the webs: |X1 &X2| = {1} × |X1| ∪ {2} × |X2|;

• the coherence relation is the serie composition of the relations on X1 and X2: (i, a) ¨X1&X2

(j, b) iff either i 6= j or i = j and a ¨Xi b.

This definition is just the way to put a coherent space structure on the cartesian product.
Indeed one easily shows the

Theorem 19. Given cliques x1 and x2 in X1 and X2, we define the subset 〈x1, x2〉 of |X1 &X2|
by: 〈x1, x2〉 = {1} × x1 ∪ {2} × x2. Then 〈x1, x2〉 is a clique in X1 &X2.

Conversely, given a clique x ∈ X1 &X2, for i = 1, 2 we define πi(x) = {a ∈ Xi, (i, a) ∈ x}.
Then πi(x) is a clique in Xi and the function πi : X1 &X2 −→ Xi is stable.

Furthemore these two operations are inverse of each other: πi(〈x1, x2〉) = xi and 〈π1(x), π2(x)〉 =
x. In particular any clique in X1 &X2 is of the form 〈x1, x2〉.

Altogether the results above (and a few other more that we shall leave to the reader) allow
to get:

Theorem 20. The category of coherent spaces and stable functions is cartesian closed.

In particular this means that if we define Eval : (X → Y) & X −→ Y by: Eval(〈f, x〉) =
Fun f(x) then Eval is stable.

11.2 The monoidal structure of coherent semantics

11.2.1 Linear functions

Definition 16 (Linear function). A function F : X −→ Y is linear if it is stable and furthemore
satisfies: for any family A of pairwise compatible cliques of X, that is such that for any x, y ∈ A,
x ∪ y ∈ X, we have

⋃
x∈A F (x) = F (

⋃
A).

In particular if we take A to be the empty family, then we have F (∅) = ∅.
The condition for linearity is quite similar to the condition for Scott continuity, except that

we dropped the constraint that A is directed. Linearity is therefore much stronger than stability:
most stable functions are not linear.

However most of the functions seen so far are linear. Typically the function πi : X1&X2 −→ Xi

is linear from wich one may deduce that the with construction is also a cartesian product in the
category of coherent spaces and linear functions.

As with stable function we have an equivalent and much more tractable caracterisation of
linear function:

66

Theorem 21. Let F : X −→ Y be a continuous function. Then F is linear iff it satisfies: for
any clique x ∈ X and any b ∈ F (x) there is a unique a ∈ x such that b ∈ F ({a}).

Just as the caracterisation theorem for stable functions allowed us to build the coherent space
of stable functions, this theorem will help us to endow the set of linear maps with a structure of
coherent space.

Definition 17 (The linear functions space). Let X and Y be coherent spaces. The linear function
space X (Y is defined by:

• |X (Y | = |X| × |Y |,

• (a, b) ¨X(Y (a′, b′) iff

{
if a ¨X a′ then b ¨Y b′

if a ¨X a′ and b = b′ then a = a′

Equivalently one could define the strict coherence to be: (a, b) ˝X(Y (a′, b′) iff a ˝X a′

entails b ˝Y b′.

Definition 18 (Linear trace). Let F : X −→ Y be a function. The linear trace of F denoted as
LinTr(F) is the set: LinTr(F) = {(a, b) ∈ |X| × |Y | such that b ∈ F ({a})}.

Theorem 22. If F is linear then LinTr(F) is a clique of X (Y .

Definition 19 (Evaluation of linear function). Let f be a clique of X (Y . We define the
function LinFun f : X −→ Y by: LinFun f(x) = {b ∈ |Y | such that there is an a ∈ x satisfying
(a, b) ∈ f}.

Theorem 23 (Linear closure). Let f be a clique in X (Y . Then we have LinTr(LinFun f) = f .
Conversely if F : X −→ Y is linear then we have F = LinFun LinTr(F).

It remains to define a tensor product and we will get that the category of coherent spaces
with linear functions is monoidal symmetric (it is actually *-autonomous).

11.2.2 Tensor product

Definition 20 (Tensor product). Let X and Y be coherent spaces. Their tensor product X ⊗ Y
is defined by: |X ⊗ Y | = |X| × |Y | and (a, b) ¨X⊗Y (a′, b′) iff a ¨X a′ and b ¨Y b′.

Theorem 24. The category of coherent spaces with linear maps and tensor product is monoidal
symmetric closed.

The closedness is a consequence of the existence of the linear isomorphism:

ϕ : X ⊗ Y (Z
∼−→ X ((Y (Z)

that is defined by its linear trace: LinTr(ϕ) = {(((a, b), c), (a, (b, c))), a ∈ |X| , b ∈ |Y | , c ∈ |Z|}.

11.2.3 Linear negation

Definition 21 (Linear negation). Let X be a coherent space. We define the incoherence relation
on |X| by: a ˚X b iff a ¨X b entails a = b. The incoherence relation is reflexive and symmetric;
we call dual or linear negation of X the associated coherent space denoted X⊥, thus defined by:∣∣X⊥∣∣ = |X| and a ¨X⊥ b iff a ˚X b.

The cliques of X⊥ are called the anticliques of X. As seen in the section on cliqued spaces
we have X⊥⊥ = X.

67

Theorem 25. The category of coherent spaces with linear maps, tensor product and linear
negation is *-autonomous.

This is in particular consequence of the existence of the isomorphism:

ϕ : X (Y
∼−→ Y ⊥(X⊥

defined by its linear trace: LinTr(ϕ) = {((a, b), (b, a)), a ∈ |X| , b ∈ |Y |}.

11.3 Exponentials

In linear algebra, bilinear maps may be factorized through the tensor product. Similarly there is
a coherent space !X that allows to factorize stable functions through linear functions.

Definition 22 (Of course). Let X be a coherent space; recall that Xfin denotes the set of finite
cliques of X. We define the space !X (read “of course X”) by: |!X| = Xfin and x0 ¨!X y0 iff
x0 ∪ y0 is a clique of X.

Thus a clique of !X is a set of finite cliques of X the union of wich is a clique of X.

Theorem 26. Let X be a coherent space. Denote by β : X −→ !X the stable function whose
trace is: Tr(β) = {(x0, x0), x0 ∈ Xfin}. Then for any coherent space Y and any stable function
F : X −→ Y there is a unique linear function F̄ : !X −→ Y such that F = F̄ ◦ β.

Furthermore we have X → Y = !X (Y .

Theorem 27 (The exponential isomorphism). Let X and Y be two coherent spaces. Then there
is a linear isomorphism:

ϕ : !(X & Y)
∼−→ !X ⊗ !Y.

The iso ϕ is defined by its trace:

Tr(ϕ) = {(x0, (π1(x0), π2(x0)), x0 finite clique of X & Y }.

This isomorphism, that sends an additive structure (the web of a with is obtained by disjoint
union) onto a multiplicative one (the web of a tensor is obtained by cartesian product) is the
reason why the of course is called an exponential.

11.4 Dual connectives and neutrals

By linear negation all the constructions defined so far (&,⊗, !) have a dual.

11.4.1 The direct sum

The dual of & is ⊕ defined by: X ⊕ Y = (X⊥ & Y ⊥)⊥. An equivalent definition is given by:
|X ⊕ Y | = |X & Y | = {1} × |X| ∪ {2} × |Y | and (i, a) ¨X⊕Y (j, b) iff i = j = 1 and a ¨X

b, or i = j = 2 and a ¨Y b.

Theorem 28. Let x′ be a clique of X⊕Y ; then x′ is of the form {i}×x where i = 1 and x ∈ X,
or i = 2 and x ∈ Y .

Denote inl : X −→ X ⊕ Y the function defined by inl(x) = {1}× x and by inr : Y −→ X ⊕ Y
the function defined by inr(x) = {2} × x. Then inl and inr are linear.

If F : X −→ Z and G : Y −→ Z are “linear” functions then the function H : X ⊕ Y −→ Z
defined by H(inl(x)) = F (x) and H(inr(y)) = G(y) is linear.

68

In other terms X ⊕ Y is the direct sum of X and Y . Note that in the theorem all functions
are linear. Things doesn’t work so smoothly for stable functions. Historically it was after noting
this defect of coherent semantics w.r.t. the intuitionnistic implication that Girard was leaded to
discover linear functions.

11.4.2 The par and the why not

We now come to the most mysterious constructions of coherent semantics: the duals of the tensor
and the of course.

The par is the dual of the tensor, thus defined by: X ` Y = (X⊥⊗ Y ⊥)⊥. From this one can
deduce the definition in graph terms: |X ` Y | = |X ⊗ Y | = |X| × |Y | and (a, b) ˝X`Y (a′, b′) iff
a ˝X a′ or b ˝Y b′. With this definition one sees that we have:

X (Y = X⊥ ` Y

for any coherent spaces X and Y . This equation can be seen as an alternative definition of the
par: X ` Y = X⊥(Y .

Similarly the dual of the of course is called why not defined by: ?X = (!X⊥)⊥. From this we
deduce the definition in the graph sense which is a bit tricky: |?X| is the set of finite anticliques
of X, and given two finite anticliques x and y of X we have x ˝?X y iff there is a ∈ x and b ∈ y
such that a ˝X b.

Note that both for the par and the why not it is much more convenient to define the strict
coherence than the coherence.

With these two last constructions, the equation between the stable function space, the of
course and the linear function space may be written:

X → Y = ?X⊥ ` Y.

11.4.3 One and bottom

Depending on the context we denote by 1 or ⊥ the coherent space whose web is a singleton and
whose coherence relation is the trivial reflexive relation.

Theorem 29. 1 is neutral for tensor, that is, there is a linear isomorphism ϕ : X ⊗ 1
∼−→ X.

Similarly ⊥ is neutral for par.

11.4.4 Zero and top

Depending on the context we denote by 0 or > the coherent space with empty web.

Theorem 30. 0 is neutral for the direct sum ⊕, > is neutral for the cartesian product &.

Remark 1. It is one of the main defect of coherent semantics w.r.t. linear logic that it identifies
the neutrals: in coherent semantics 0 = > and 1 = ⊥. However there is no known semantics of
LL that solves this problem in a satisfactory way.

11.5 After coherent semantics

Coherent semantics was an important milestone in the modern theory of logic of programs, in
particular because it leaded to the invention of Linear Logic, and more generally because it
establishes a strong link between logic and linear algebra; this link is nowadays aknowledged by
the customary use of monoidal categories in logic. In some sense coherent semantics is a precursor

69

of many forthcoming works that explore the linear nature of logic as for example geometry of
interaction which interprets proofs by operators or finiteness semantics which interprets formulas
as vector spaces and resulted in differential linear logic...

Lots of this work have been motivated by the fact that coherent semantics is not complete as
a semantics of programs (technically one says that it is not fully abstract). In order to see this,
let us firts come back on the origin of the central concept of stability which as pointed above
originated in the study of the sequentiality in programs.

11.5.1 Sequentiality

Sequentiality is a property that we will not define here (it would diserve its own chapter). We
rely on the intuition that a function of n arguments is sequential if one can determine which of
these argument is examined first during the computation. Obviously any function implemented
in a functionnal language is sequential; for example the function or defined à la CAML by:

or = fun (x, y) -> if x then true else y

examines its argument x first. Note that this may be expressed more abstractly by the property:
or(⊥, x) = ⊥ for any boolean x: the function or needs its first argument in order to compute
anything. On the other hand we have or(true,⊥) = true: in some case (when the first argument
is true), the function doesn’t need its second argument at all.

The typical non sequential function is the parallel or (that one cannot define in a CAML like
language).

For a while one may have believed that the stability condition on which coherent semantics
is built was enough to capture the notion of sequentiality of programs. A hint was the already
mentionned fact that the parallel or is not stable. This diserves a bit of explanation.

11.5.1.1 The parallel or is not stable

Let B be the coherent space of booleans, also know as the flat domain of booleans: |B| = {tt, ff}
where tt and ff are two arbitrary distinct objects (for example one may take tt = 0 and ff = 1)
and for any b1, b2 ∈ |B|, define b1 ¨B b2 iff b1 = b2. Then B has exactly three cliques: the empty
clique that we shall denote ⊥, the singleton {tt} that we shall denote T and the singleton {ff}
that we shall denote F . These three cliques are ordered by inclusion: ⊥ ≤ T, F (we use ≤ for ⊂
to enforce the idea that coherent spaces are domains).

Recall the definition of the with, and in particular that any clique of B&B has the form 〈x, y〉
where x and y are cliques of B. Thus B &B has 9 cliques: 〈⊥,⊥〉, 〈⊥, T 〉, 〈⊥, F 〉, 〈T,⊥〉, . . .
that are ordered by the product order: 〈x, y〉 ≤ 〈x, y〉 iff x ≤ x′ and y ≤ y′.

With these notations in mind one may define the parallel or by:

Por : B &B −→ B

〈T,⊥〉 −→ T

〈⊥, T 〉 −→ T

〈F, F 〉 −→ F

The function is completely determined if we add the assumption that it is non decreasing; for
example one must have Por〈⊥,⊥〉 = ⊥ because the lhs has to be less than both T and F (because
〈⊥,⊥〉 ≤ 〈T,⊥〉 and 〈⊥,⊥〉 ≤ 〈F, F 〉). The function is not stable because 〈T,⊥〉∩〈⊥, T 〉 = 〈⊥,⊥〉,
thus Por(〈T,⊥〉 ∩ 〈⊥, T 〉) = ⊥ whereas Por〈T,⊥〉 ∩ Por〈⊥, T 〉 = T ∩ T = T .

Another way to see this is: suppose x and y are two cliques of B such that tt ∈ Por〈x, y〉,
which means that Por〈x, y〉 = T ; according to the caracterisation theorem of stable functions, if

70

Por were stable then there would be a unique minimum x0 included in x, and a unique minimum
y0 included in y such that Por〈x0, y0〉 = T . This is not the case because both 〈T,⊥〉 and 〈T,⊥〉
are minimal such that their value is T .

In other terms, knowing that Por〈x, y〉 = T doesn’t tell which of x of y is responsible for that,
although we know by the definition of Por that only one of them is. Indeed the Por function is
not representable in sequential programming languages such as (typed) lambda-calculus.

So the first genuine idea would be that stability caracterises sequentiality; but...

11.5.1.2 The Gustave function is stable

The Gustave function, so-called after an old joke, was found by Gérard Berry as an example of a
function that is stable but non sequential. It is defined by:

B &B &B −→ B

〈T, F,⊥〉 −→ T

〈⊥, T, F 〉 −→ T

〈F,⊥, T 〉 −→ T

〈x, y, z〉 −→ F

The last clause is for all cliques x, y and z such that 〈x, y, z〉 is incompatible with the three
cliques 〈T, F,⊥〉, 〈⊥, T, F 〉 and 〈F,⊥, T 〉, that is such that the union with any of these three
cliques is not a clique in B & B & B. We shall denote x1, x2 and x3 these three cliques. We
furthemore assume that the Gustave function is non decreasing, so that we get G〈⊥,⊥,⊥〉 = ⊥.

We note that x1, x2 and x3 are pairwise incompatible. From this we can deduce that the
Gustave function is stable: typically if G〈x, y, z〉 = T then exactly one of the xis is contained in
〈x, y, z〉.

However it is not sequential because there is no way to determine which of its three arguments
is examined first: it is not the first one otherwise we would have G〈⊥, T, F 〉 = ⊥ and similarly it
is not the second one nor the third one.

In other terms there is no way to implement the Gustave function by a lambda-term (or
in any sequential programming language). Thus coherent semantics is not complete w.r.t.
lambda-calculus.

The research for a right model for sequentiality was the motivation for lot of work, e.g.,
sequential algorithms by Gérard Bérry and Pierre-Louis Currien in the early eighties, that were
more recently reformulated as a kind of game model, and the theory of hypercoherent spaces by
Antonio Bucciarelli and Thomas Ehrhard.

11.5.2 Multiplicative neutrals and the mix rule

Coherent semantics is slightly degenerated w.r.t. linear logic because it identifies multiplicative
neutrals (it also identifies additive neutrals but that’s yet another problem): the coherent spaces
1 and ⊥ are equal.

The first consequence of the identity 1 = ⊥ is that the formula 1(⊥ becomes provable,
and so does the formula ⊥. Note that this doesn’t entail (as in classical logic or intuitionnistic
logic) that linear logic is incoherent because the principle ⊥(A for any formula A is still not
provable.

The equality 1 = ⊥ has also as consequence the fact that ⊥(1 (or equivalently the formula
1 ` 1) is provable. This principle is also known as the mix rule

` Γ ` ∆
mix` Γ,∆

71

as it can be used to show that this rule is admissible:

` Γ ⊥` Γ,⊥
` ∆ ⊥` ∆,⊥ ⊗` Γ,∆,⊥⊗⊥ ` 1 ` 1

cut` Γ,∆

None of the two principles 1(⊥ and ⊥(1 are valid in linear logic. To correct this one
could extend the syntax of linear logic by adding the mix-rule. This is not very satisfactory as
the mix rule violates some principles of Polarized linear logic, typically the fact that as sequent
of the form ` P1, P2 where P1 and P2 are positive, is never provable.

On the other hand the mix-rule is valid in coherent semantics so one could try to find some
other model that invalidates the mix-rule. For example Girard’s Coherent Banach spaces were
an attempt to address this issue.

72

Chapter 12

Phase semantics

12.1 Introduction

The semantics given by phase spaces is a kind of “formula and provability semantics”, and is thus
quite different in spirit from the more usual denotational semantics of linear logic. (Those are
rather some “formulas and proofs semantics”.)

12.2 Preliminaries: relation and closure operators

Part of the structure obtained from phase semantics works in a very general framework and relies
solely on the notion of relation between two sets.

12.2.1 Relations and operators on subsets

The starting point of phase semantics is the notion of duality. The structure needed to talk about
duality is very simple: one just needs a relation R between two sets X and Y . Using standard
mathematical practice, we can write either (a, b) ∈ R or a R b to say that a ∈ X and b ∈ Y are
related.

Definition 23. If R ⊆ X × Y is a relation, we write R∼ ⊆ Y ×X for the converse relation:
(b, a) ∈ R∼ iff (a, b) ∈ R.

Such a relation yields three interesting operators sending subsets of X to subsets of Y :

Definition 24. Let R ⊆ X×Y be a relation, define the operators 〈R〉, [R] and _R taking subsets
of X to subsets of Y as follows:

1. b ∈ 〈R〉(x) iff ∃a ∈ x, (a, b) ∈ R

2. b ∈ [R](x) iff ∀a ∈ X, (a, b) ∈ R =⇒ a ∈ x

3. b ∈ xR iff ∀a ∈ x, (a, b) ∈ R

The operator 〈R〉 is usually called the direct image of the relation, [R] is sometimes called
the universal image of the relation.

It is trivial to check that 〈R〉 and [R] are covariant (increasing for the ⊆ relation) while _R

is contravariant (decreasing for the ⊆ relation). More interesting:

Lemma 9 (Galois Connections).

1. 〈R〉 is right-adjoint to [R∼]: for any x ⊆ X and y ⊆ Y , we have [R∼]y ⊆ x iff y ⊆ 〈R〉(x)

73

2. we have y ⊆ xR iff x ⊆ yR∼

This implies directly that 〈R〉 commutes with arbitrary unions and [R] commutes with
arbitrary intersections. (And in fact, any operator commuting with arbitrary unions (resp.
intersections) is of the form 〈R〉 (resp. [R]).

Remark 2. The operator _R sends unions to intersections because _R : P(X) → P(Y)op is
right adjoint to _R∼ : P(Y)op → P(X)...

12.2.2 Closure operators

Definition 25. A closure operator on P(X) is a monotonic operator P on the subsets of X
which satisfies:

1. for all x ⊆ X, we have x ⊆ P (x)

2. for all x ⊆ X, we have P (P (x)) ⊆ P (x)

Closure operators are quite common in mathematics and computer science. They correspond
exactly to the notion of monad on a preorder...

It follows directly from the definition that for any closure operator P , the image P (x) is a
fixed point of P . Moreover:

Lemma 10. P (x) is the smallest fixed point of P containing x.

One other important property is the following:

Lemma 11. Write F(P) = {x | P (x) ⊆ x} for the collection of fixed points of a closure operator
P . We have that (F(P),

⋂
) is a complete inf-lattice.

Remark 3. A closure operator is in fact determined by its set of fixed points: we have P (x) =⋃
{y | y ∈ F(P), y ⊆ x}

Since any complete inf-lattice is automatically a complete sup-lattice, F(P) is also a complete
sup-lattice. However, the sup operation isn’t given by plain union:

Lemma 12. If P is a closure operator on P(X), and if (xi)i∈I is a (possibly infinite) family of
subsets of X, we write

∨
i∈I xi = P

(⋃
i∈I xi

)
.

We have (F(P),
⋂
,
∨

) is a complete lattice.

Proof. easy.

A rather direct consequence of the Galois connections of the previous section is:

Lemma 13. The operator and 〈R〉 ◦ [R∼] and the operator x 7→ xR
R∼ are closures.

A last trivial lemma:

Lemma 14. We have xR = xR
R∼R.

As a consequence, a subset x ⊆ X is in F(_RR
∼

) iff it is of the form yR
∼.

Remark 4. Everything gets a little simpler when R is a symmetric relation on X.

74

12.3 Phase Semantics

12.3.1 Phase spaces

Definition 26 (monoid). A monoid is simply a set X equipped with a binary operation _ · _
s.t.:

1. the operation is associative

2. there is a neutral element 1 ∈ X

The monoid is commutative when the binary operation is commutative.

Definition 27 (Phase space). A phase space is given by:

1. a commutative monoid (X, 1, ·),

2. together with a subset ‚ ⊆ X.

The elements of X are called phases.
We write ⊥ for the relation {(a, b) | a · b ∈‚}. This relation is symmetric.
A fact in a phase space is simply a fixed point for the closure operator x 7→ x⊥⊥.

Thanks to the preliminary work, we have:

Corollary 2. The set of facts of a phase space is a complete lattice where:

1.
∧
i∈I xi is simply

⋂
i∈I xi,

2.
∨
i∈I xi is

(⋃
i∈I xi

)⊥⊥.
12.3.2 Additive connectives

The previous corollary makes the following definition correct:

Definition 28 (additive connectives). If (X, 1, ·,‚) is a phase space, we define the following
facts and operations on facts:

1. > = X = ∅⊥

2. 0 = ∅⊥⊥ = X⊥

3. x& y = x ∩ y

4. x⊕ y = (x ∪ y)⊥⊥

Once again, the next lemma follows from previous observations:

Lemma 15 (additive de Morgan laws). We have

1. 0⊥ = >

2. >⊥ = 0

3. (x& y)⊥ = x⊥ ⊕ y⊥

4. (x⊕ y)⊥ = x⊥ & y⊥

75

12.3.3 Multiplicative connectives

In order to define the multiplicative connectives, we actually need to use the monoid structure of
our phase space. One interpretation that is reminiscent in phase semantics is that our spaces are
collections of tests / programs / proofs / strategies that can interact with each other. The result
of the interaction between a and b is simply a · b.

The set ‚ can be thought of as the set of “good” things, and we thus have a ∈ x⊥ iff “a
interacts correctly with all the elements of x”.

Definition 29. If x and y are two subsets of a phase space, we write x · y for the set {a · b | a ∈
x, b ∈ y}.

Thus x · y contains all the possible interactions between one element of x and one element of
y.

The tensor connective of linear logic is now defined as:

Definition 30 (multiplicative connectives). If x and y are facts in a phase space, we define

• 1 = {1}⊥⊥;

• ⊥ = 1⊥;

• the tensor x⊗ y to be the fact (x · y)⊥⊥;

• the par connective is the de Morgan dual of the tensor: x` y = (x⊥ ⊗ y⊥)⊥;

• the linear arrow is just x(y = x⊥ ` y = (x⊗ y⊥)⊥.

Note that by unfolding the definition of(, we have the following, “intuitive” definition of
x(y:

Lemma 16. If x and y are facts, we have a ∈ x(y iff ∀b ∈ x, a · b ∈ y.

Proof. easy exercise.

Readers familiar with realisability will appreciate...

Remark 5. Some people say that this idea of orthogonality was implicitly present in Tait’s proof
of strong normalisation. More recently, Jean-Louis Krivine and Alexandre Miquel have used the
idea explicitly to do realisability...

12.3.4 Properties

All the expected properties hold:

Lemma 17.

• The operations ⊗, `, ⊕ and & are commutative and associative,

• They have respectively 1, ⊥, 0 and > as neutral element,

• 0 is absorbing for ⊗,

• > is absorbing for `,

• ⊗ distributes over ⊕,

• ` distributes over &.

76

12.3.5 Exponentials

Definition 31 (Exponentials). Write I for the set of idempotents of a phase space: I = {a | a·a =
a}. We put:

1. !x = (x ∩ I ∩ 1)⊥⊥,

2. ?x = (x⊥ ∩ I ∩ 1)⊥.

This definition captures precisely the intuition behind the exponentials:

• we need to have contraction, hence we restrict to indempotents in x,

• and weakening, hence we restrict to 1.

Since I isn’t necessarily a fact, we then take the biorthogonal to get a fact...

12.4 Soundness

Definition 32. Let (X, 1, ·) be a commutative monoid.
Given a formula A of linear logic and an assignation ρ that associate a fact to any variable,

we can inductively define the interpretation JAKρ of A in X as one would expect. Interpretation
is lifted to sequents as JA1, . . . , AnKρ = JA1Kρ ` · · ·` JAnKρ.

Theorem 31. Let Γ be a provable sequent in linear logic. Then 1X ∈ JΓK.

Proof. By induction on ` Γ.

12.5 Completeness

Phase semantics is complete w.r.t. linear logic. In order to prove this, we need to build a
particular commutative monoid.

Definition 33. We define the syntactic monoid as follows:

• Its elements are sequents Γ quotiented by the equivalence relation ∼= generated by the rules:

1. Γ ∼= ∆ if Γ is a permutation of ∆

2. ?A, ?A,Γ ∼= ?A,Γ

• Product is concatenation: Γ ·∆ := Γ,∆

• Neutral element is the empty sequent: 1 := ∅.

The equivalence relation intuitively means that we do not care about the multiplicity of
?-formulas.

Lemma 18. The syntactic monoid is indeed a commutative monoid.

Definition 34. The syntactic assignation is the assignation that sends any variable α to the
fact {α}⊥.

We instantiate the pole as ‚ := {Γ |` Γ}.

Theorem 32. If Γ ∈ JΓK⊥, then ` Γ.

Proof. By induction on Γ.

77

12.6 Cut elimination

Actually, the completeness result is stronger, as the proof does not use the cut-rule in the
reconstruction of ` Γ. By refining the pole as the set of cut-free provable formulas, we get:

Theorem 33. If Γ ∈ JΓK⊥, then Γ is cut-free provable.

From soundness, one can retrieve the cut-elimination theorem.

Corollary 3. Linear logic enjoys the cut-elimination property.

78

Chapter 13

Categorical semantics

Constructing denotational models of linear logic can be a tedious work. Categorical semantics
are useful to identify the fundamental structure of these models, and thus simplify and make
more abstract the elaboration of those models.

See [Mac98] for a more detailed introduction to category theory. See [Mel09] for a detailed
treatment of categorical semantics of linear logic.

13.1 Overview

In order to interpret the various fragments of linear logic, we define incrementally what structure
we need in a categorical setting.

• The most basic underlying structure are symmetric monoidal categories which model the
symmetric tensor ⊗ and its unit 1.

• The ⊗,(fragment (IMLL) is captured by so-called symmetric monoidal closed categories.

• Upgrading to ILL, that is, adding the exponential ! modality to IMLL requires modelling
it categorically. There are various ways to do so: using rich enough adjunctions, or with
an ad-hoc definition of a well-behaved comonad which leads to linear categories and close
relatives.

• Dealing with the additives &,⊕ is quite easy, as they are plain cartesian product and
coproduct, usually defined through universal properties in category theory.

• Retrieving `, ⊥ and ? is just a matter of dualizing ⊗, 1 and !, thus requiring the model to
be a *-autonomous category for that purpose.

13.2 Modeling IMLL

A model of IMLL is a closed symmetric monoidal category. We recall the definition of these
categories below.

Definition 35 (Monoidal category). A monoidal category (C,⊗, I, α, λ, ρ) is a category C
equipped with

• a functor ⊗ : C × C → C called tensor product,

• an object I called unit object,

79

• three natural isomorphisms α, λ and ρ, called respectively associator, left unitor and right
unitor, whose components are

αA,B,C : (A⊗B)⊗ C → A⊗ (B ⊗ C) λA : I ⊗A→ A ρA : A⊗ I → A

such that

• for every objects A,B,C,D in C, the diagram

((A⊗B)⊗ C)⊗D
αA⊗B,C,D

��

αA,B,C⊗D// (A⊗ (B ⊗ C))⊗D
αA,B⊗C,D// A⊗ ((B ⊗ C)⊗D)

A⊗αB,C,D

��
(A⊗B)⊗ (C ⊗D) αA,B,C⊗D

// A⊗ (B ⊗ (C ⊗D))

commutes,

• for every objects A and B in C, the diagram

(A⊗ I)⊗B

ρA⊗B &&

αA,I,B // A⊗ (I ⊗B)

A⊗λBxx
A⊗B

commutes.

Definition 36 (Braided, symmetric monoidal category). A braided monoidal category is a
category together with a natural isomorphism of components

γA,B : A⊗B → B ⊗A

called braiding, such that the two diagrams

A⊗ (B ⊗ C)
γA,B⊗C// (B ⊗ C)⊗A

αB,C,A

((
(A⊗B)⊗ C

αA,B,C

66

γA,B⊗C ((

B ⊗ (C ⊗A)

(B ⊗A)⊗ C αB,A,C

// B ⊗ (A⊗ C)

B⊗γA,C

66

and
(A⊗B)⊗ C

γA⊗B,C// C ⊗ (A⊗B)
α−1
C,A,B

((
A⊗ (B ⊗ C)

α−1
A,B,C

66

A⊗γB,C ((

(C ⊗A)⊗B

A⊗ (C ⊗B)
α−1
A,C,B

// (A⊗ C)⊗B
γA,C⊗B

66

commute for every objects A, B and C.
A symmetric monoidal category is a braided monoidal category in which the braiding satisfies

γB,A ◦ γA,B = A⊗B

for every objects A and B.

80

Definition 37 (Closed monoidal category). A monoidal category (C,⊗, I) is left closed when
for every object A, the functor B 7→ A ⊗ B has a right adjoint, written B 7→ (A(B). This
means that there exists a bijection

C(A⊗B,C) ∼= C(B,A(C)

which is natural in B and C. Equivalently, a monoidal category is left closed when it is equipped
with a left closed structure, which consists of

• an object A(B,

• a morphism evalA,B : A⊗ (A(B)→ B, called left evaluation,

for every objects A and B, such that for every morphism f : A⊗X → B there exists a unique
morphism h : X → A(B making the diagram

A⊗X

A⊗h
��

f

&&
A⊗ (A(B)

evalA,B

// B

commute.
Dually, the monoidal category C is right closed when the functor B 7→ B ⊗A admits a right

adjoint. The notion of right closed structure can be defined similarly.

In a symmetric monoidal category, a left closed structure induces a right closed structure and
conversely, allowing us to simply speak of a closed symmetric monoidal category.

13.3 Modeling the additives

Definition 38 (Product). A product (X,π1, π2) of two coinitial morphisms f : A → B and
g : A → C in a category C is an object X of C together with two morphisms π1 : X → B and
π2 : X → C such that there exists a unique morphism h : A→ X making the diagram

A

f

��

h
��

g

��

X

π1~~ π2
B C

commute.
(X,π1, π2) is a product of the two objects B and C if it is a product of any two coinitial

morphisms f : A→ B and g : A→ C.

A category has finite products when it has products and a terminal object.

Definition 39 (Monoid). A monoid (M,µ, η) in a monoidal category (C,⊗, I) is an object M

81

together with two morphisms µ : M ⊗M →M and η : I →M such that the diagrams

(M ⊗M)⊗M
αM,M,M

vv

µ⊗M //M ⊗M

µ

��

M ⊗ (M ⊗M)

M⊗µ
��

M ⊗M µ
//M

and
I ⊗M η⊗M //

λM &&

M ⊗M
µ

��

M ⊗ IM⊗ηoo

ρM
yy

M

commute.

Property 1. Categories with products are monoidal categories.

13.4 Modeling ILL

Definition 40 (Linear-non linear (LNL) adjunction [Ben94]). A linear-non linear adjunction is
a symmetric monoidal adjunction between lax monoidal functors

(M,×,>)

(L,l)
--⊥ (L,⊗, I)

(M,m)

mm

in which the categoryM has finite products.

! = L ◦M

This section is devoted to defining the concepts necessary to define these adjunctions.

Definition 41 (Monoidal functor). A lax monoidal functor (F, f) between two monoidal categories
(C,⊗, I) and (D, •, J) consists of

• a functor F : C → D between the underlying categories,

• a natural transformation f of components fA,B : FA • FB → F (A⊗B),

• a morphism f : J → FI

such that the diagrams

(FA • FB) • FC

φA,B•FC
��

αFA,FB,FC// FA • (FB • FC)
FA•φB,C

))
F (A⊗B) • FC

φA⊗B,C))

FA • F (B ⊗ C)

φA,B⊗C

��
F ((A⊗B)⊗ C)

FαA,B,C

// F (A⊗ (B ⊗ C))

82

and
FA • J
ρFA

��

FA•φ// FA • FI
φA,I

��
FA F (A⊗ I)

FρA
oo

and

J • FB

λFB

��

φ•FB // FI • FB
φI,B
��

FB F (I ⊗B)
FλB

oo

commute for every objects A, B and C of C. The morphisms fA,B and f are called coherence
maps.

A lax monoidal functor is strong when the coherence maps are invertible and strict when
they are identities.

Definition 42 (Monoidal natural transformation). Suppose that (C,⊗, I) and (D, •, J) are two
monoidal categories and (F, f) : (C,⊗, I) ⇒ (D, •, J) and (G, g) : (C,⊗, I) ⇒ (D, •, J) are two
monoidal functors between these categories. A monoidal natural transformation θ : (F, f)→ (G, g)
between these monoidal functors is a natural transformation θ : F ⇒ G between the underlying
functors such that the diagrams

FA • FB
fA,B

��

θA•θB // GA •GB
gA,B

��
F (A⊗B)

θA⊗B

// G(A⊗B)

and

J
f

~~

g

FI

θI
// GI

commute for every objects A and B of D.

Definition 43 (Monoidal adjunction). A monoidal adjunction between two monoidal functors
(F, f) : (C,⊗, I) ⇒ (D, •, J) and (G, g) : (D, •, J) ⇒ (C,⊗, I) is an adjunction between the
underlying functors F and G such that the unit and the counit η : C ⇒ G ◦ F and ε : F ◦G⇒ D
induce monoidal natural transformations between the corresponding monoidal functors.

13.5 Modeling negation

13.5.1 *-autonomous categories

Definition 44 (*-autonomous category). Suppose that we are given a symmetric monoidal
closed category (C,⊗, I) and an object R of C. For every object A, we define a morphism
∂A : A→ (A(R)(R as follows. By applying the bijection of the adjunction defining (left)
closed monoidal categories to the identity morphism idA(R : A (R → A (R, we get a
morphism A⊗ (A(R)→ R, and thus a morphism (A(R)⊗ A→ R by precomposing with
the symmetry γA(R,A. The morphism ∂A is finally obtained by applying the bijection of the
adjunction defining (left) closed monoidal categories to this morphism. The object R is called
dualizing when the morphism ∂A is a bijection for every object A of C. A symmetric monoidal
closed category is *-autonomous when it admits such a dualizing object.

13.5.2 Compact closed categories

Definition 45 (Dual objects). A dual object structure (A,B, η, ε) in a monoidal category (C,⊗, I)
is a pair of objects A and B together with two morphisms η : I → B ⊗A and ε : A⊗B → I such

83

that the diagrams

A⊗ (B ⊗A)
α−1
A,B,A// (A⊗B)⊗A

ε⊗A

&&
A⊗ I

A⊗η
88

I ⊗A
λA
��

A

ρ−1
A

OO

A

and
(B ⊗A)⊗B

αB,A,B// B ⊗ (A⊗B)
B⊗ε

&&
I ⊗B

η⊗B
88

B ⊗ I
ρB
��

B

λ−1
B

OO

B

commute. The object A is called a left dual of B (and conversely B is a right dual of A).

Lemma 19. Two left (resp. right) duals of a same object B are necessarily isomorphic.

Definition 46 (Compact closed category). A symmetric monoidal category (C,⊗, I) is compact
closed when every object A has a right dual A∗. We write ηA : I → A∗ ⊗A and εA : A⊗A∗ → I
for the corresponding duality morphisms.

Lemma 20. In a compact closed category the left and right duals of an object A are isomorphic.

Property 2. A compact closed category C is monoidal closed, with closure defined by C(A ⊗
B,C) ∼= C(B,A∗ ⊗ C).

Proof. To every morphism f : A⊗B → C, we associate a morphism pfq : B → A∗ ⊗ C defined
as

B
λ−1
B // I ⊗B ηA⊗B // (A∗ ⊗A)⊗B

αA∗,A,B// A∗ ⊗ (A⊗B)
A∗⊗f // A⊗ C

and to every morphism g : B → A∗ ⊗ C, we associate a morphism xgy : A⊗B → C defined as

A⊗B A⊗g // A⊗ (A∗ ⊗ C)
α−1
A,A∗,C// (A⊗A∗)⊗ C εA⊗C // I ⊗ C λC // C

It is easy to show that xpfqy = f and pxgyq = g from which we deduce the required bijection.

Property 3. A compact closed category is a (degenerated) *-autonomous category, with the
obvious duality structure. In particular, (A⊗B)∗ ∼= A∗ ⊗B∗.

Remark 6. The above isomorphism does not hold in *-autonomous categories in general. This
means that models which are compact closed categories identify ⊗ and ` as well as 1 and ⊥.

Proof. The dualizing object R is simply I∗.
For any A, the reverse isomorphism δA : (A(R)(R→ A is constructed as follows:

C((A(R)(R,A) := C((A⊗ I∗∗)⊗ I∗∗, A) ∼= C((A⊗ I)⊗ I, A) ∼= C(A,A)

Identity on A is taken as the canonical morphism required.

84

Chapter 14

Relational semantics

This is the simplest denotational semantics of linear logic. It consists in interpreting a formula A
as a set A∗ and a proof π of A as a subset π∗ of A∗.

14.1 The category of sets and relations

It is the categoryRel whose objects are sets, and such thatRel(X,Y) = P (X × Y). Composition
is the ordinary composition of relations: given s ∈ Rel(X,Y) and t ∈ Rel(Y,Z), one sets
t ◦ s = { (a, c) ∈ X × Z ; ∃b ∈ Y (a, b) ∈ s and (b, c) ∈ t } and the identity morphism is the
diagonal relation IdX = { (a, a) ; a ∈ X }.

An isomorphism in the category Rel is a relation which is a bijection, as easily checked.

14.1.1 Monoidal structure

The tensor product is the usual cartesian product of sets X⊗Y = X×Y (which is not a cartesian
product in the category Rel in the categorical sense, definition 38). It is a bifunctor: given
si ∈ Rel(Xi, Yi) (for i = 1, 2), one sets s1 ⊗ s2 = { ((a1, a2), (b1, b2)) ; (ai, bi) ∈ si for i = 1, 2 }.
The unit of this tensor product is 1 = {∗} where ∗ is an arbitrary element.

For defining a monoidal category (definition 35), it is not sufficient to provide the definition
of the tensor product functor ⊗ and its unit 1, one has also to provide natural isomorphisms
λX ∈ Rel(1 ⊗X,X), ρX ∈ Rel(X ⊗ 1, X) (left and right neutrality of 1 for ⊗) and αX,Y,Z ∈
Rel((X ⊗ Y)⊗ Z,X ⊗ (Y ⊗ Z)) (associativity of ⊗). All these isomorphisms have to satisfy a
number of commutations. In the present case, they are defined in the obvious way.

This monoidal category (Rel,⊗, 1, λ, ρ) is symmetric, meaning that it is endowed with an
additional natural isomorphism σX,Y ∈ Rel(X ⊗ Y, Y ⊗ X), also subject to some commuta-
tions. Here, again, this isomorphism is defined in the obvious way (symmetry of the cartesian
product). So, to be precise, the SMCC (symmetric monoidal closed category) Rel is the tuple
(Rel,⊗, 1, λ, ρ, α, σ), but we shall simply denote it as Rel.

The SMCC Rel is closed (definition 37). This means that, given any object X of Rel (a
set), the functor Z 7→ Z ⊗X (from Rel to Rel) admits a right adjoint Y 7→ (X (Y) (from
Rel to Rel). In other words, for any objects X and Y , we are given an object X (Y and
a morphism evX,Y ∈ Rel((X (Y) ⊗ X,Y) with the following universal property: for any
morphism s ∈ Rel(Z ⊗X,Y), there is a unique morphism fun(s) ∈ Rel(Z,X (Y) such that
evX,Y ◦ (fun(s)⊗ IdX) = s.

The definition of all these data is quite simple in Rel: X (Y = X × Y , evX,Y =
{ (((a, b), a), b) ; (a, b) ∈ X × Y } and fun(s) = { (c, (a, b)) ; ((c, a), b) ∈ s }.

85

Let ⊥ = 1 = {∗}. Then we have ev ◦σ : Rel(X ⊗ (X (⊥),⊥) and hence ηX = fun(ev ◦σ) ∈
Rel(X, (X (⊥)(⊥). It is clear that η = { (a, ((a, ∗), ∗)) ; a ∈ X } and hence η is a natural
isomorphism: one says that the SMCC Rel is a *-autonomous category (definition 44), with ⊥
as dualizing object.

14.1.2 Additives

Given a family (Xi)i∈I , let &i∈IXi = ∪i∈I{i} × Xi. Let πj ∈ Rel(&i∈IXi, Xj) given by
πj = { ((j, a), a) ; a ∈ Xj }. Then (&i∈IXi, (πi)i∈I) is the cartesian product of the Xis in the
category Rel.

14.1.3 Exponentials

One defines !X as the set of all finite multisets of elements of X. Given s ∈ Rel(X,Y), one defines
!s = { ([a1, . . . , an], [b1, . . . , bn]) ; n ∈ N and ∀i (ai, bi) ∈ s } where [a1, . . . , an] is the multiset
containing a1, . . . , an, taking multiplicities into account. This defines a functor Rel→ Rel, that
we endow with a comonad structure as follows:

• the counit, called dereliction, is the natural transformation derX ∈ Rel(!X,X), given by
derX = { ([a], a) ; a ∈ X }

• the comultiplication, called digging, is the natural transformation diggX ∈ Rel(!X, !!X),
given by diggX = { (m1 + · · ·+mn, [m1, . . . ,mn]) ; n ∈ N and m1, . . . ,mn ∈ !X }

14.2 Interpretation of propositional linear logic (LL0)

The structure described above gives rise to the following interpretation of formulas and proofs of
linear logic.

For all propositional variable X, fix a set |X|. Then with each formula A, we associate a set
|A| as follows:

•
∣∣A⊥∣∣ = |A|;

• |A⊗B| = |A`B| = |A| × |B|;

• |A&B| = |A⊕B| = ({1} × |A|) ∪ ({2} × |B|);

• |!A| = |?A| = Mf (|A|).

We then interpret the proofs of LL0 as follows: with each proof π of sequent ` A1, . . . , An,
we associate a subset JπK ⊆ |A1| × · · · × |An|.

• Identity group:
r

axiom
` A⊥, A

z
= { (a, a) ; a ∈ |A| }

u

w
v

... π
` Γ, A

... ρ
` ∆, A⊥

cut` Γ,∆

}

�
~ = { (γ, δ) ; ∃a ∈ |A| , (γ, a) ∈ JπK ∧ (δ, a) ∈ JρK }

86

• Multiplicative group:
u

w
v

... π
` Γ, A

... ρ
` ∆, B ⊗` Γ,∆, A⊗B

}

�
~ = { (γ, δ, a, b) ; (γ, a) ∈ JπK ∧ (δ, b) ∈ JρK }

u

w
v

... π
` Γ, A,B `` Γ, A`B

}

�
~ = { (γ, (a, b)) ; (γ, a, b) ∈ JπK }

q
1` 1
y

= {∗}
u

v
... π
` Γ ⊥` Γ,⊥

}

~ = { (γ, ∗) ; γ ∈ JπK }

• Additive group:
u

w
v

... π
` Γ, A ⊕1` Γ, A⊕B

}

�
~ = { (γ, (1, a)) ; (γ, a) ∈ JπK }

u

w
v

... π
` Γ, B ⊕2` Γ, A⊕B

}

�
~ = { (γ, (2, b)) ; (γ, b) ∈ JπK }

u

w
v

... π
` Γ, A

... ρ
` Γ, B

&` Γ, A&B

}

�
~ = { (γ, (1, a)) ; (γ, a) ∈ JπK } ∪ { (γ, (2, b)) ; (γ, b) ∈ JρK }

r
>` Γ,>

z
= ∅

• Exponential group:
u

w
v

... π
` Γ, A

d` Γ, ?A

}

�
~ = { (γ, [a]) ; (γ, a) ∈ JπK }

u

v
... π
` Γ w` Γ, ?A

}

~ = { (γ, []) ; γ ∈ JπK }

u

w
v

... π
` Γ, ?A, ?A

c` Γ, ?A

}

�
~ = { (γ,m+ n) ; (γ,m, n) ∈ JπK }

u

w
v

... π
` ?A1, . . . , ?An, B

!` ?A1, . . . , ?An, !B

}

�
~ =

{(∑k
i=1m

i
1, . . . ,

∑k
i=1m

i
n, [b1, . . . , bk]

)
; k ∈ N and ∀1 ≤ i ≤ k, (mi

1, . . . ,m
i
n, bi) ∈ JπK

}
Theorem 34. If proof π′ is obtained from π by eliminating a cut, then JπK = Jπ′K.

87

Chapter 15

Finiteness semantics

The category Fin of finiteness spaces and finitary relations was introduced by Ehrhard, refining
the purely relational model of linear logic. A finiteness space is a set equipped with a finiteness
structure, i.e. a particular set of subsets which are said to be finitary; and the model is such
that the usual relational denotation of a proof in linear logic is always a finitary subset of its
conclusion. By the usual co-Kleisli construction, this also provides a model of the simply typed
lambda-calculus: the cartesian closed category Fin!.

The main property of finiteness spaces is that the intersection of two finitary subsets of dual
types is always finite. This feature allows to reformulate Girard’s quantitative semantics in a
standard algebraic setting, where morphisms interpreting typed λ-terms are analytic functions
between the topological vector spaces generated by vectors with finitary supports. This provided
the semantical foundations of Ehrhard-Regnier’s differential λ-calculus and motivated the general
study of a differential extension of linear logic.

It is worth noticing that finiteness spaces can accomodate typed λ-calculi only: for instance,
the relational semantics of fixpoint combinators is never finitary. The whole point of the finiteness
construction is actually to reject infinite computations. Indeed, from a logical point of view,
computation is cut elimination: the finiteness structure ensures the intermediate sets involved
in the relational interpretation of a cut are all finite. In that sense, the finitary semantics is
intrinsically typed.

15.1 Finiteness spaces

The construction of finiteness spaces follows a well known pattern. It is given by the following
notion of orthogonality: a ⊥ a′ iff a ∩ a′ is finite. Then one unrolls familiar definitions, as we do
in the following paragraphs.

Let A be a set. Denote by P (A) the powerset of A and by Pf (A) the set of all finite
subsets of A. Let F ⊆ P (A) any set of subsets of A. We define the pre-dual of F in A as
F⊥A = {a′ ⊆ A; ∀a ∈ F, a ∩ a′ ∈ Pf (A)}. In general we will omit the subscript in the pre-dual
notation and just write F⊥. For all F ⊆ P (A), we have the following immediate properties:
Pf (A) ⊆ F⊥; F ⊆ F⊥⊥; if G ⊆ F, F⊥ ⊆ G⊥. By the last two, we get F⊥ = F⊥⊥⊥. A finiteness
structure on A is then a set F of subsets of A such that F⊥⊥ = F.

A finiteness space is a dependant pair A = (|A| ,F (A)) where |A| is the underlying set (the
web of A) and F (A) is a finiteness structure on |A|. We then write A⊥ for the dual finiteness
space:

∣∣A⊥∣∣ = |A| and F
(
A⊥
)

= F (A)⊥. The elements of F (A) are called the finitary subsets
of A.

Example 1. For all set A, (A,Pf (A)) is a finiteness space and (A,Pf (A))⊥ = (A,P (A)). In

88

particular, each finite set A is the web of exactly one finiteness space: (A,Pf (A)) = (A,P (A)).
We introduce the following two: 0 = 0⊥ = (∅, {∅}) and 1 = 1⊥ = ({∅}, {∅, {∅}}). We also
introduce the finiteness space of natural numbers N by: |N | = N and a ∈ F (N) iff a is finite.
We write O = {0} ∈ F (N).

Notice that F is a finiteness structure iff it is of the form G⊥. It follows that any finiteness
structure F is downwards closed for inclusion, and closed under finite unions and arbitrary
intersections. Notice however that F is not closed under directed unions in general: for all k ∈ N,
write k↓ = {j; j ≤ k} ∈ F (N); then k↓ ⊆ k′↓ as soon as k ≤ k′, but

⋃
k≥0 k↓ = N 6∈ F (N).

15.1.1 Multiplicatives

For all finiteness spaces A and B, we define A ⊗ B by |A ⊗ B| = |A| × |B| and F (A⊗ B) =
{a× b; a ∈ F (A) , b ∈ F (B)}⊥⊥.

It can be shown that F (A⊗ B) = {c ⊆ |A| × |B| ; c|l ∈ F (A) , c|r ∈ F (B)}, where c|l and
c|r are the obvious projections.

Let f ⊆ A × B be a relation from A to B, we write f⊥ = {(β, α); (α, β) ∈ f}. For
all a ⊆ A, we set f · a = {β ∈ B; ∃α ∈ a, (α, β) ∈ f}. If moreover g ⊆ B × C, we define
g • f = {(α, γ) ∈ A× C; ∃β ∈ B, (α, β) ∈ f ∧ (β, γ) ∈ g}. Then, setting A(B =

(
A⊗ B⊥

)⊥,
F (A(B) ⊆ |A| × |B| is characterized as follows:

f ∈ F (A(B) ⇐⇒ ∀a ∈ F (A) , f · a ∈ F (B) and ∀b ∈ F
(
B⊥
)
, f⊥ · b ∈ F

(
A⊥
)

⇐⇒ ∀a ∈ F (A) , f · a ∈ F (B) and ∀β ∈ |B| , f⊥ · {β} ∈ F
(
A⊥
)

⇐⇒ ∀α ∈ |A| , f · {α} ∈ F (B) and ∀b ∈ F
(
B⊥
)
, f⊥ · b ∈ F

(
A⊥
)

The elements of F (A(B) are called finitary relations from A to B. By the previous char-
acterization, the identity relation idA = {(α, α); α ∈ |A|} is finitary, and the composition of
two finitary relations is also finitary. One can thus define the category Fin of finiteness spaces
and finitary relations: the objects of Fin are all finiteness spaces, and Fin(A,B) = F (A(B).
Equipped with the tensor product ⊗, Fin is symmetric monoidal, with unit 1; it is monoidal
closed by the definition of(; it is ∗-autonomous by the obvious isomorphism between A⊥ and
A(1.

Example 2. Setting S = {(k, k + 1); k ∈ N} and P = {(k + 1, k); k ∈ N}, we have S,P ∈
Fin(N ,N) and P • S = idN .

15.1.2 Additives

We now introduce the cartesian structure of Fin. We define A ⊕ B by |A ⊕ B| = |A|] |B|
and F (A⊕ B) = {a] b; a ∈ F (A) , b ∈ F (B)} where] denotes the disjoint union of sets:
x] y = ({1} × x) ∪ ({2} × y). We have (A⊕ B)⊥ = A⊥ ⊕ B⊥.1 The category Fin is both
cartesian and co-cartesian, with ⊕ being the product and co-product, and 0 the initial and
terminal object. Projections are given by:

λA,B = {((1, α), α) ; α ∈ |A|} ∈ Fin(A⊕ B,A)

ρA,B = {((2, β), β) ; β ∈ |B|} ∈ Fin(A⊕ B,B)

1The fact that the additive connectives are identified, i.e. that we obtain a biproduct, is to be related with the
enrichment of Fin over the monoid structure of set union: see [Fio07]. This identification can also be shown to be
a isomorphism of LL with sums of proofs.

89

and if f ∈ Fin(C,A) and g ∈ Fin(C,B), pairing is given by:

〈f, g〉 = {(γ, (1, α)) ; (γ, α) ∈ f} ∪ {(γ, (2, β)) ; (γ, β) ∈ g} ∈ Fin(C,A⊕ B).

The unique morphism from A to 0 is the empty relation. The co-cartesian structure is
obtained symmetrically.

Example 3. Write O⊥ = {(0, ∅)} ∈ Fin(N , 1). Then
〈
O⊥,P

〉
= {(0, (1, ∅))}∪{(k+1, (2, k)); k ∈

N} ∈ Fin (N , 1⊕N) is an isomorphism.

15.1.3 Exponentials

If A is a set, we denote by Mf (A) the set of all finite multisets of elements of A, and if a ⊆ A,
we write a! = Mf (a) ⊆Mf (A). If α ∈Mf (A), we denote its support by Support (α) ∈ Pf (A).
For all finiteness space A, we define !A by: |!A| = Mf (|A|) and F (!A) =

{
a!; a ∈ F (A)

}⊥⊥.
It can be shown that F (!A) =

{
a ⊆Mf (|A|) ;

⋃
α∈a Support (α) ∈ F (A)

}
. Then, for all f ∈

Fin(A,B), we set

!f = {([α1, . . . , αn] , [β1, . . . , βn]) ; ∀i, (αi, βi) ∈ f} ∈ Fin(!A, !B),

which defines a functor. Natural transformations derA = {([α], α); α ∈ |A|} ∈ Fin(!A,A) and
diggA = {(

∑n
i=1 αi, [α1, . . . , αn]) ; ∀i, αi ∈ |!A|} make this functor a comonad.

Example 4. We have isomorphisms:

{([], ∅)} ∈ Fin(!0, 1){(
αl + βr,

(
α, β

))
; (αl, α) ∈ !λA,B ∧ (βr, β) ∈ !ρA,B

}
∈ Fin(!(A⊕ B), !A⊗ !B).

More generally, we have ! (A1 ⊕ · · · ⊕ An) ∼= !A1 ⊗ · · · ⊗ !An.

90

Chapter 16

Geometry of interaction

16.1 Introduction

The geometry of interaction, GoI in short, was defined in the early nineties by Girard as an
interpretation of linear logic into operators algebra: formulas were interpreted by Hilbert spaces
and proofs by partial isometries.

This was a striking novelty as it was the first time that a mathematical model of logic
(lambda-calculus) didn’t interpret a proof of A (B as a morphism from A to B and proof
composition (cut rule) as the composition of morphisms. Rather the proof was interpreted as an
operator acting on A(B, that is a morphism from A(B to A(B. For proof composition
the problem was then, given an operator on A(B and another one on B(C to construct a
new operator on A(C. This problem was solved by the execution formula that bares some
formal analogies with Kleene’s formula for recursive functions. For this reason GoI was claimed
to be an operational semantics, as opposed to traditionnal denotational semantics.

The first instance of the GoI was restricted to the MELL fragment of linear logic (Multi-
plicative and Exponential fragment) which is enough to encode lambda-calculus. Since then
Girard proposed several improvements: firstly the extension to the additive connectives known
as Geometry of Interaction 3 and more recently a complete reformulation using Von Neumann
algebras that allows to deal with some aspects of implicit complexity

The GoI has been a source of inspiration for various authors. Danos and Regnier have
reformulated the original model exhibiting its combinatorial nature using a theory of reduction
of paths in proof-nets and showing the link with abstract machines; the execution formula
appears as the composition of two automata interacting through a common interface. Also the
execution formula has rapidly been understood as expressing the composition of strategies in
game semantics. It has been used in the theory of sharing reduction for lambda-calculus in the
Abadi-Gonthier-Lévy reformulation and simplification of Lamping’s representation of sharing.
Finally the original GoI for the MELL fragment has been reformulated in the framework of
traced monoidal categories following an idea originally proposed by Joyal.

16.1.1 The Geometry of Interaction as operators

The original construction of GoI by Girard follows a general pattern already mentionned in the
section on coherent semantics under the name symmetric reducibility and that was first put
to use in phase semantics. First set a general space P called the proof space because this is
where the interpretations of proofs will live. Make sure that P is a (not necessarily commutative)
monoid. In the case of GoI, the proof space is a subset of the space of bounded operators on `2.

Second define a particular subset of P that will be denoted by ⊥; then derive a duality on P :

91

for u, v ∈ P , u and v are dual1 iff uv ∈ ⊥.
Such a duality defines an orthogonality relation, with the usual derived definitions and

properties.
For the GoI, two dualities have proved to work; we will consider the first one: nilpotency, ie,

⊥ is the set of nilpotent operators in P . Let us explicit this: two operators u and v are dual if
there is a nonnegative integer n such that (uv)n = 0. This duality is symmetric: if uv is nilpotent
then vu is nilpotent also.

Last define a type as a subset T of the proof space that is equal to its bidual: T = T⊥⊥. This
means that u ∈ T iff for all operator v ∈ T⊥, that is such that u′v ∈ ⊥ for all u′ ∈ T , we have
uv ∈ ⊥.

The real work2 is now to interpret logical operations, that is to associate a type to each
formula, an object to each proof and show the adequacy lemma: if u is the interpretation of a
proof of the formula A then u belongs to the type associated to A.

16.1.1.1 Partial isometries

The first step is to build the proof space. This is constructed as a special set of partial isometries
on a separable Hilbert space H which turns out to be generated by partial permutations on the
canonical basis of H.

These so-called p-isometries enjoy some nice properties, the most important one being that a
p-isometry is a sum of p-isometries iff all the terms of the sum have disjoint domains and disjoint
codomains. As a consequence we get that a sum of p-isometries is null iff each term of the sum is
null.

A second important property is that operators on H can be externalized using p-isometries
into operators acting on H ⊕H, and conversely operators on H ⊕H may be internalized into
operators on H. This is widely used in the sequel.

16.1.1.2 The *-autonomous structure

The second step is to interpret the linear logic multiplicative operations, most importantly the
cut rule.

Internalization/externalization is the key for this: typically the type A⊗B is interpreted by
a set of p-isometries which are internalizations of operators acting on H ⊕H.

The (interpretation of) the cut-rule is defined in two steps: firstly we use nilpotency to
define an operation corresponding to lambda-calculus application which given two p-isometries
in respectively A(B and A produces an operator in B. From this we deduce the composition
and finally obtain a structure of *-autonomous category (definition 44), that is a model of
multiplicative linear logic.

16.1.1.3 The exponentials

Finally we turn to define exponentials, that is connectives managing duplication. To do this we
introduce an isomorphism (induced by a p-isometry) between H and H ⊗H: the first component
of the tensor is intended to hold the address of the the copy whereas the second component
contains the content of the copy.

We eventually get a quasi-model of full MELL; quasi in the sense that if we can construct
p-isometries for usual structural operations in MELL (contraction, dereliction, digging), the

1In modern terms one says that u and v are polar.
2The difficulty is to find the right duality that will make logical operations interpretable. General conditions that

allow to achieve this have been formulated by Hyland and Schalk thanks to their theory of double glueing [HS03].

92

interpretation of linear logic proofs is not invariant w.r.t. cut elimination in general. It is however
invariant in some good cases, which are enough to get a correction theorem for the interpretation.

16.2 GoI for MELL: partial isometries

16.2.1 Operators, partial isometries

We will denote by H the Hilbert space `2(N) of sequences (xn)n∈N of complex numbers such
that the series

∑
n∈N |xn|2 converges. If x = (xn)n∈N and y = (yn)n∈N are two vectors of H their

scalar product is:
〈x, y〉 =

∑
n∈N

xnȳn.

Two vectors of H are orthogonal if their scalar product is null. We will say that two subspaces
are disjoint when any two vectors taken in each subspace are orthorgonal. Note that this notion
is different from the set theoretic one, in particular two disjoint subspaces always have exactly
one vector in common: 0.

The norm of a vector is the square root of the scalar product with itself:

‖x‖ =
√
〈x, x〉.

Let us denote by (ek)k∈N the canonical hilbertian basis of H: ek = (δkn)n∈N where δkn is the
Kroenecker symbol: δkn = 1 if k = n, 0 otherwise. Thus if x = (xn)n∈N is a sequence in H we
have:

x =
∑
n∈N

xnen.

An operator on H is a continuous linear map from H to H.3 The set of (bounded) operators
is denoted by B(H).

The range or codomain of the operator u is the set of images of vectors; the kernel of u is the
set of vectors that are annihilated by u; the domain of u is the set of vectors orthogonal to the
kernel, ie, the maximal subspace disjoint with the kernel:

• Codom(u) = {u(x), x ∈ H};

• Ker(u) = {x ∈ H, u(x) = 0};

• Dom(u) = {x ∈ H, ∀y ∈ Ker(u), 〈x, y〉 = 0}.

These three sets are closed subspaces of H.
The adjoint of an operator u is the operator u∗ defined by 〈u(x), y〉 = 〈x, u∗(y)〉 for any

x, y ∈ H. Adjointness is well behaved w.r.t. composition of operators:

(uv)∗ = v∗u∗.

A projector is an idempotent operator of norm 0 (the projector on the null subspace) or 1,
that is an operator p such that p2 = p and ‖p‖ = 0 or 1. A projector is auto-adjoint and its
domain is equal to its codomain.

3Continuity is equivalent to the fact that operators are bounded, which means that one may define the norm of
an operator u as the sup on the unit ball of the norms of its values:

‖u‖ = sup
{x∈H, ‖x‖=1}

‖u(x)‖.

93

A partial isometry is an operator u satisfying uu∗u = u; this condition entails that we also
have u∗uu∗ = u∗. As a consequence uu∗ and uu∗ are both projectors, called respectively the
initial and the final projector of u because their (co)domains are respectively the domain and
the codomain of u:

• Dom(u∗u) = Codom(u∗u) = Dom(u);

• Dom(uu∗) = Codom(uu∗) = Codom(u).

The restriction of u to its domain is an isometry. Projectors are particular examples of partial
isometries.

If u is a partial isometry then u∗ is also a partial isometry the domain of which is the codomain
of u and the codomain of which is the domain of u.

If the domain of u is H that is if u∗u = 1 we say that u has full domain, and similarly for
codomain. If u and v are two partial isometries then we have:

• uv∗ = 0 iff u∗uv∗v = 0 iff the domains of u and v are disjoint;

• u∗v = 0 iff uu∗vv∗ = 0 iff the codomains of u and v are disjoint;

• uu∗ + vv∗ = 1 iff the codomains of u and v are disjoint and their direct sum is H.

16.2.2 Partial permutations

We will now define our proof space which turns out to be the set of partial isometries acting as
permutations on the canonical basis (en)n∈N.

More precisely a partial permutation ϕ on N is a one-to-one map defined on a subset Dϕ of N
onto a subset Cϕ of N. Dϕ is called the domain of ϕ and Cϕ its codomain. Partial permutations
may be composed: if ψ is another partial permutation on N then ϕ ◦ ψ is defined by:

• n ∈ Dϕ◦ψ iff n ∈ Dψ and ψ(n) ∈ Dϕ;

• if n ∈ Dϕ◦ψ then ϕ ◦ ψ(n) = ϕ(ψ(n));

• the codomain of ϕ ◦ ψ is the image of the domain: Cϕ◦ψ = {ϕ(ψ(n)), n ∈ Dϕ◦ψ}.

Partial permutations are well known to form a structure of inverse monoid that we detail
now.

Given a a subset D of N, the partial identity on D is the partial permutation ϕ defined by:

• Dϕ = D;

• ϕ(n) = n for any n ∈ Dϕ.

Thus the codomain of ϕ is D.
The partial identity on D will be denoted by 1D. Partial identities are idempotent for

composition.
Among partial identities one finds the identity on the empty subset, that is the empty map,

that we will denote by 0 and the identity on N that we will denote by 1. This latter permutation
is the neutral for composition.

If ϕ is a partial permutation there is an inverse partial permutation ϕ−1 whose domain is
Dϕ−1 = Cϕ and who satisfies:

ϕ−1 ◦ ϕ = 1Dϕ

ϕ ◦ ϕ−1 = 1Cϕ

94

16.2.3 The proof space

Given a partial permutation ϕ one defines a partial isometry uϕ by:

uϕ(en) =

{
eϕ(n) if n ∈ Dϕ

0 otherwise

In other terms if x = (xn)n∈N is a sequence in `2 then uϕ(x) is the sequence (yn)n∈N defined
by:

yn = xϕ−1(n) if n ∈ Cϕ, 0 otherwise.

We will (not so abusively) write eϕ(n) = 0 when ϕ(n) is undefined so that the definition of
uϕ reads:

uϕ(en) = eϕ(n).

The domain of uϕ is the subspace spanned by the family (en)n∈Dϕ and the codomain of uϕ
is the subspace spanned by (en)n∈Cϕ . In particular if ϕ is 1D then uϕ is the projector on the
subspace spanned by (en)n∈D.

Definition 47. We call p-isometry a partial isometry of the form uϕ where ϕ is a partial
permutation on N. The proof space P is the set of all p-isometries.

Proposition 8. Let ϕ and ψ be two partial permutations. We have:

uϕuψ = uϕ◦ψ.

The adjoint of uϕ is:
u∗ϕ = uϕ−1 .

In particular the initial projector of uϕ is given by:

uϕu
∗
ϕ = u1Dϕ

.

and the final projector of uϕ is:
u∗ϕuϕ = u1Cϕ

.

If p is a projector in P then there is a partial identity 1D such that p = u1D .
Projectors commute, in particular we have:

uϕu
∗
ϕuψu

∗
ψ = uψu

∗
ψuϕu

∗
ϕ.

Note that this entails all the other commutations of projectors: u∗ϕuϕuψu∗ψ = uψu
∗
ψu
∗
ϕuϕ and

u∗ϕuϕu
∗
ψuψ = u∗ψuψu

∗
ϕuϕ.

In particular note that 0 is a p-isometry. The set P is a submonoid of B(H) but it is not a
subalgebra.4 In general given u, v ∈ P we don’t necessarily have u+ v ∈ P. However we have:

Proposition 9. Let u, v ∈ P. Then u+ v ∈ P iff u and v have disjoint domains and disjoint
codomains, that is:

u+ v ∈ P iff uu∗vv∗ = u∗uv∗v = 0.

Proof. Suppose for contradiction that en is in the domains of u and v. There are integers p and
q such that u(en) = ep and v(en) = eq thus (u + v)(en) = ep + eq which is not a basis vector;
therefore u+ v is not a p-permutation.

As a corollary note that if u+ v = 0 then u = v = 0.
4P is the normalizing groupoid of the maximal commutative subalgebra of B(H) consisiting of all operators

diagonalizable in the canonical basis.

95

16.2.4 From operators to matrices: internalization/externalization

It will be convenient to view operators on H as acting on H ⊕ H, and conversely. For this
purpose we define an isomorphism H ⊕H ∼= H by x⊕ y p(x) + q(y) where p : H 7→ H and
q : H 7→ H are partial isometries given by:

p(en) = e2n

q(en) = e2n+1.

From the definition p and q have full domain, that is satisfy p∗p = q∗q = 1. On the other
hand their codomains are disjoint, thus we have p∗q = q∗p = 0. As the sum of their codomains is
the full space H we also have pp∗ + qq∗ = 1.

Note that we have choosen p and q in P . However the choice is arbitrary: any two p-isometries
with full domain and disjoint codomains would do the job.

Given an operator u on H we may externalize it obtaining an operator U on H ⊕H defined
by the matrix:

U =

(
u11 u12

u21 u22

)
where the uij ’s are given by:

u11 = p∗up

u12 = p∗uq

u21 = q∗up

u22 = q∗uq.

The uij ’s are called the external components of u. The externalization is functorial in the
sense that if v is another operator externalized as:

V =

(
v11 v12

v21 v22

)
=

(
p∗vp p∗vq
q∗vp q∗vq

)
then the externalization of uv is the matrix product UV .

As pp∗ + qq∗ = 1 we have:

u = (pp∗ + qq∗)u(pp∗ + qq∗) = pu11p
∗ + pu12q

∗ + qu21p
∗ + qu22q

∗

which entails that externalization is reversible, its converse being called internalization.
If we suppose that u is a p-isometry then so are the components uij ’s. Thus the formula

above entails that the four terms of the sum have pairwise disjoint domains and pairwise disjoint
codomains from which we deduce:

Proposition 10. If u is a p-isometry and uij are its external components then:

• u1j and u2j have disjoint domains, that is u∗1ju1ju
∗
2ju2j = 0 for j = 1, 2;

• ui1 and ui2 have disjoint codomains, that is ui1u∗i1ui2u
∗
i2 = 0 for i = 1, 2.

As an example of computation in P let us check that the product of the final projectors of
pu11p

∗ and pu12q
∗ is null:

(pu11p
∗)(pu∗11p

∗)(pu12q
∗)(qu∗12p

∗) = pu11u
∗
11u12u

∗
12p
∗

= pp∗upp∗u∗pp∗uqq∗u∗pp∗

96

= pp∗u(pp∗)(u∗pp∗u)qq∗u∗pp∗

= pp∗u(u∗pp∗u)(pp∗)qq∗u∗pp∗

= pp∗uu∗pp∗u(pp∗)(qq∗)u∗pp∗

= 0

where we used the fact that all projectors in P commute, which is in particular the case of pp∗

and u∗pp∗u.

16.3 GoI for MELL: the *-autonomous structure

Recall that when u and v are p-isometries we say they are dual when uv is nilpotent, and that ⊥
denotes the set of nilpotent operators. A type is a subset of P that is equal to its bidual. In
particular X⊥ is a type for any X ⊂ P. We say that X generates the type X⊥⊥.

16.3.1 The tensor and the linear application

If u and v are two p-isometries summing them doesn’t in general produces a p-isometry. However
as pup∗ and qvq∗ have disjoint domains and disjoint codomains it is true that pup∗ + qvq∗ is a
p-isometry. Given two types A and B, we thus define their tensor by:

A⊗B = {pup∗ + qvq∗, u ∈ A, v ∈ B}⊥⊥

Note the closure by bidual to make sure that we obtain a type.
From what precedes we see that A⊗B is generated by the internalizations of operators on

H ⊕H of the form: (
u 0
0 v

)
Remark 7. This so-called tensor resembles a sum rather than a product. We will stick to this
terminology though because it defines the interpretation of the tensor connective of linear logic.

The linear implication is derived from the tensor by duality: given two types A and B the
type A(B is defined by:

A(B = (A⊗B⊥)⊥.

Unfolding this definition we get:

A(B = {u ∈ P s.t. ∀v ∈ A,∀w ∈ B⊥, u.(pvp∗ + qwq∗) ∈ ⊥}.

16.3.2 The identity

Given a type A we are to find an operator ι in type A(A, thus satisfying:

∀u ∈ A, v ∈ A⊥, ι(pup∗ + qvq∗) ∈ ⊥.

An easy solution is to take ι = pq∗ + qp∗. In this way we get ι(pup∗ + qvq∗) = qup∗ + pvq∗.
Therefore (ι(pup∗ + qvq∗))2 = quvq∗ + pvup∗, from which one deduces that this operator is
nilpotent iff uv is nilpotent. It is the case since u is in A and v in A⊥.

It is interesting to note that the ι thus defined is actually the internalization of the operator
on H ⊕H given by the matrix: (

0 1
1 0

)
We will see once the composition is defined that the ι operator is the interpretation of the

identity proof, as expected.

97

16.3.3 The execution formula, version 1: application

Definition 48. Let u and v be two operators; as above denote by uij the external components of
u. If u11v is nilpotent we define the application of u to v by:

App(u, v) = u22 + u21v
∑
k

(u11v)ku12.

Note that the hypothesis that u11v is nilpotent entails that the sum
∑

k(u11v)k is actually
finite. It would be enough to assume that this sum converges. For simplicity we stick to the
nilpotency condition, but we should mention that weak nilpotency would do as well.

Theorem 35. If u and v are p-isometries such that u11v is nilpotent, then App(u, v) is also a
p-isometry.

Proof. Let us note Ek = u21v(u11v)ku12. Recall that u22 and u12 being external components of
the p-isometry u, they have disjoint domains. Thus it is also the case of u22 and Ek. Similarly
u22 and Ek have disjoint codomains because u22 and u21 have disjoint codomains.

Let now k and l be two integers such that k > l and let us compute for example the intersection
of the codomains of Ek and El:

EkE
∗
kElE

∗
l = (u21v(u11v)ku12)(u∗12(v∗u∗11)kv∗u∗21)(u21v(u11v)lu12)(u∗12(v∗u∗11)lv∗u∗21)

As k > l we may write (v∗u∗11)l = (v∗u∗11)k−l−1v∗u∗11(v∗u∗11)l. Let us noteE = u∗11(v∗u∗11)lv∗u∗21u21v(u11v)lu12

so that EkE∗kElE
∗
l = u21v(u11v)ku12u

∗
12(v∗u∗11)k−l−1v∗Eu∗12(v∗u∗11)lv∗u∗21. We have:

E = u∗11(v∗u∗11)lv∗u∗21u21v(u11v)lu12

= (u∗11u11u
∗
11)(v∗u∗11)lv∗u∗21u21v(u11v)lu12

= u∗11(u11u
∗
11)
(
(v∗u∗11)lv∗u∗21u21v(u11v)l

)
u12

= u∗11

(
(v∗u∗11)lv∗u∗21u21v(u11v)l

)
(u11u

∗
11)u12

= u∗11(v∗u∗11)lv∗u∗21u21v(u11v)lu11u
∗
11u12

= 0

because u11 and u12 have disjoint codomains, thus u∗11u12 = 0.
Similarly we can show that Ek and El have disjoint domains. Therefore we have proved that

all terms of the sum App(u, v) have disjoint domains and disjoint codomains. Consequently
App(u, v) is a p-isometry.

Theorem 36. Let A and B be two types and u a p-isometry. Then the two following conditions
are equivalent:

1. u ∈ A(B;

2. for any v ∈ A we have:

• u11v is nilpotent and

• App(u, v) ∈ B.

Proof. Let v and w be two p-isometries. If we compute

(u.(pvp∗ + qwq∗))n =
(
(pu11p

∗ + pu12q
∗ + qu21p

∗ + qu22q
∗)(pvp∗ + qwq∗)

)n
we get a finite sum of monomial operators of the form:

98

1. p(u11v)i0u12w(u22w)i1 . . . u21v(u11v)imp∗

2. p(u11v)i0u12w(u22w)i1 . . . u12w(u22w)imq∗,

3. q(u22w)i0u21v(u11v)i1 . . . u21v(u11v)imp∗ or

4. q(u22w)i0u21v(u11v)i1 . . . u12w(u22w)imq∗,

for all tuples of (nonnegative) integers (i1, . . . , im) such that i0 + · · ·+ im +m = n.
Each of these monomials is a p-isometry. Furthermore they have disjoint domains and

disjoint codomains because their sum is the p-isometry (u.(pvp∗ + qwq∗))n. This entails that
(u.(pvp∗ + qwq∗))n = 0 iff all these monomials are null.

Suppose u11v is nilpotent and consider:(
App(u, v)w

)n
=

((
u22 + u21v

∑
k

(u11v)ku12

)
w

)n
.

Developping we get a finite sum of monomials of the form:

5. (u22w)l0u21v(u11v)k1u12w(u22w)l1 . . . u21v(u11v)kmu12w(u22w)lm

for all tuples (l0, k1, l1, . . . , km, lm) such that l0 · · · lm +m = n and ki is less than the degree of
nilpotency of u11v for all i.

Again as these monomials are p-isometries and their sum is the p-isometry (App(u, v)w)n,
they have pairwise disjoint domains and pairwise disjoint codomains. Note that each of these
monomials is equal to q∗Mq where M is a monomial of type 4 above.

As before we thus have that
(
App(u, v)w

)n
= 0 iff all monomials of type 5 are null.

Suppose now that u ∈ A (B and v ∈ A. Then, since 0 ∈ B⊥ (0 belongs to any type)
u.(pvp∗) = pu11vp

∗ is nilpotent, thus u11v is nilpotent.
Suppose further that w ∈ B⊥. Then u.(pvp∗+ qwq∗) is nilpotent, thus there is a N such that

(u.(pvp∗ + qwq∗))n = 0 for any n ≥ N . This entails that all monomials of type 1 to 4 are null.
Therefore all monomials appearing in the developpment of (App(u, v)w)N are null which proves
that App(u, v)w is nilpotent. Thus App(u, v) ∈ B.

Conversely suppose for any v ∈ A and w ∈ B⊥, u11v and App(u, v)w are nilpotent. Let P
and N be their respective degrees of nilpotency and put n = N(P + 1) +N . Then we claim that
all monomials of type 1 to 4 appearing in the development of (u.(pvp∗ + qwq∗))n are null.

Consider for example a monomial of type 1:

p(u11v)i0u12w(u22w)i1 . . . u21v(u11v)imp∗

with i0 + · · ·+ im +m = n. Note that m must be even.
If i2k ≥ P for some 0 ≤ k ≤ m/2 then (u11v)i2k = 0 thus our monomial is null. Otherwise if

i2k < P for all k we have:

i1 + i3 + · · ·+ im−1 +m/2 = n−m/2− (i0 + i2 + · · ·+ im)

thus:
i1 + i3 + · · ·+ im−1 +m/2 ≥ n−m/2− (1 +m/2)P.

Now if m/2 ≥ N then i1 + · · ·+ im−1 +m/2 ≥ N . Otherwise 1 +m/2 ≤ N thus

i1 + i3 + · · ·+ im−1 +m/2 ≥ n−N −NP = N.

Since N is the degree of nilpotency of App(u, v)w we have that the monomial:

(u22w)i1u21v(u11v)i2u12w . . . (u11v)im−2u12w(u22w)im−1

is null, thus also the monomial of type 1 we started with.

99

Corollary 4. If A and B are types then we have:

A(B = {u ∈ P such that ∀v ∈ A : u11v ∈ ⊥ and App(u, v) ∈ B}.

As an example if we compute the application of the interpretation of the identity ι in type
A(A to the operator v ∈ A then we have:

App(ι, v) = ι22 + ι21v
∑

(ι11v)kι12.

Now recall that ι = pq∗ + qp∗ so that ι11 = ι22 = 0 and ι12 = ι21 = 1 and we thus get:

App(ι, v) = v

as expected.

16.3.4 The tensor rule

Let now A,A′, B and B′ be types and consider two operators u and u′ respectively in A(B
and A′(B′. We define an operator u⊗ u′ by:

u⊗ u′ = ppp∗upp∗p∗ + qpq∗upp∗p∗ + ppp∗uqp∗q∗ + qpq∗uqp∗q∗

+ pqp∗u′pq∗p∗ + qqq∗u′pq∗p∗ + pqp∗u′qq∗q∗ + qqq∗u′qq∗q∗

Once again the notation is motivated by linear logic syntax and is contradictory with linear
algebra practice since what we denote by u⊗ u′ actually is the internalization of the direct sum
u⊕ u′.

Indeed if we think of u and u′ as the internalizations of the matrices:(
u11 u12

u21 u22

)
and

(
u′11 u′12

u′21 u′22

)
then we may write:

u⊗ u′ = ppu11p
∗p∗ + qpu21p

∗p∗ + ppu12p
∗q∗ + qpu22p

∗q∗

+ pqu′11q
∗p∗ + qqu′21q

∗p∗ + pqu′12q
∗q∗ + qqu′22q

∗q∗

Thus the components of u⊗ u′ are given by:

(u⊗ u′)ij = puijp
∗ + qu′ijq

∗.

and we see that u⊗ u′ is actually the internalization of the matrix:
u11 0 u12 0
0 u′11 0 u′12

u21 0 u22 0
0 u′21 0 u′22

We are now to show that if we suppose u and u′ are in types A(B and A′ (B′, then

u⊗ u′ is in A⊗ A′ (B ⊗B′. For this we consider v and v′ respectively in A and A′, so that
pvp∗ + qv′q∗ is in A⊗A′, and we show that App(u⊗ u′, pvp∗ + qv′q∗) ∈ B ⊗B′.

Since u and u′ are in A(B and A′ (B′ we have that u11v and u′11v
′ are nilpotent and

that App(u, v) and App(u′, v′) are respectively in B and B′, thus:

pApp(u, v)p∗ + qApp(u′, v′)q∗ ∈ B ⊗B′.

100

But we have: (
(u⊗ u′)11(pvp∗ + qv′q∗)

)n
=
(
(pu11p

∗ + qu′11q
∗)(pvp∗ + qv′q∗)

)n
= (pu11vp

∗ + qu′11v
′q∗)n

= p(u11v)np∗ + q(u′11v
′)nq∗

Therefore (u⊗ u′)11(pvp∗ + qv′q∗) is nilpotent. So we can compute App(u⊗ u′, pvp∗ + qv′q∗):

App(u⊗ u′, pvp∗ + qv′q∗)

= (u⊗ u′)22 + (u⊗ u′)21(pvp∗ + qv′q∗)
∑(

(u⊗ u′)11(pvp∗ + qv′q∗)
)k

(u⊗ u′)12

= pu22p
∗ + qu′22q

∗ + (pu21p
∗ + qu′21q

∗)(pvp∗ + qv′q∗)
∑(

(pu11p
∗ + qu′11q

∗)(pvp∗ + qv′q∗)
)k

(pu12p
∗ + qu′12q

∗)

= p
(
u22 + u21v

∑
(u11v)ku12

)
p∗ + q

(
u′22 + u′21v

′
∑

(u′11v
′)ku′12

)
q∗

= pApp(u, v)p∗ + qApp(u′, v′)q∗

thus lives in B ⊗B′.

16.3.5 Other monoidal constructions

16.3.5.1 Contraposition

Let A and B be some types; we have:

A(B = A⊥ › B⊥

Indeed, u ∈ A(B means that for any v and w in respectively A and B⊥ we have u.(pvp∗ +
qwq∗) ∈ ⊥ which is exactly the definition of A⊥ › B⊥.

We will denote u⊥ the operator:

u⊥ = pu22p
∗ + pu12q

∗ + qu12p
∗ + qu11q

∗

where uij is given by externalization. Therefore the externalization of u⊥ is:

(u⊥)ij = uī j̄ where .̄ is defined by 1̄ = 2, 2̄ = 1.

From this we deduce that u⊥ ∈ B⊥(A⊥ and that (u⊥)⊥ = u.

16.3.5.2 Commutativity

Let σ be the operator:
σ = ppq∗q∗ + pqp∗q∗ + qpq∗p∗ + qqp∗p∗.

One can check that σ is the internalization of the operator S on H ⊕H ⊕H ⊕H defined by:
S(x1 ⊕ x2 ⊕ x3 ⊕ x4) = x4 ⊕ x3 ⊕ x2 ⊕ x1. In particular the components of σ are:

σ11 = σ22 = 0

σ12 = σ21 = pq∗ + qp∗.

Let A and B be types and u and v be operators in A and B. Then pup∗ + qvq∗ is in A⊗B
and as σ11.(pup

∗ + qvq∗) = 0 we may compute:

App(σ, pup∗ + qvq∗) = σ22 + σ21(pup∗ + qvq∗)
∑

(σ11(pup∗ + qvq∗))kσ12

= (pq∗ + qp∗)(pup∗ + qvq∗)(pq∗ + qp∗)

= pvp∗ + quq∗

But pvp∗ + quq∗ ∈ B ⊗A, thus we have shown that:

σ ∈ (A⊗B)((B ⊗A).

101

16.3.5.3 Associativity

We get associativity by considering the operator:

δ = ppp∗p∗q∗ + pqpq∗p∗q∗ + pqqq∗q∗ + qppp∗p∗ + qpqp∗q∗p∗ + qqq∗q∗p∗

that is similarly shown to be in type A⊗ (B ⊗ C)((A⊗B)⊗ C for any types A, B and C.

16.3.5.4 Weak distributivity

Similarly we get weak distributivity thanks to the operators:

δ1 = pppp∗q∗ + ppqp∗q∗q∗ + pqq∗q∗q∗ + qpp∗p∗p∗ + qqpq∗p∗p∗ + qqqq∗p∗

δ2 = ppp∗p∗q∗ + pqpq∗p∗q∗ + pqqq∗q∗ + qppp∗p∗ + qpqp∗q∗p∗ + qqq∗q∗p∗.

Given three types A, B and C then one can show that:

• δ1 has type ((A(B)⊗ C)(A((B ⊗ C) and

• δ2 has type (A⊗ (B(C))((A(B)(C.

16.3.6 Execution formula, version 2: composition

Let A, B and C be types and u and v be operators respectively in types A(B and B(C.
As usual we will denote uij and vij the operators obtained by externalization of u and v, eg,

u11 = p∗up, ...
As u is in A (B we have that App(u, 0) = u22 ∈ B; similarly as v ∈ B (C, thus

v⊥ ∈ C⊥(B⊥, we have App(v⊥, 0) = v11 ∈ B⊥. Thus u22v11 is nilpotent.
We define the operator Comp(u, v) by:

Comp(u, v) = p(u11 + u12

∑
(v11u22)k v11u21)p∗

+ p(u12

∑
(v11u22)k v12)q∗

+ q(v21

∑
(u22v11)k u21)p∗

+ q(v22 + v21

∑
(u22v11)k u22v12)q∗

This is well defined since u11v22 is nilpotent. As an example let us compute the composition of u
and ι in type B(B; recall that ιij = δij , so we get:

Comp(u, ι) = pu11p
∗ + pu12q

∗ + qu21p
∗ + qu22q

∗ = u

Similar computation would show that Comp(ι, v) = v (we use pp∗ + qq∗ = 1 here).
Coming back to the general case we claim that Comp(u, v) is in A(C: let a be an operator

in A. By computation we can check that:

App(Comp(u, v), a) = App(v,App(u, a)).

Now since u is in A(B, App(u, a) is in B and since v is in B(C, App(v,App(u, a)) is
in C.

If we now consider a type D and an operator w in C (D then we have:

Comp(Comp(u, v), w) = Comp(u,Comp(v, w))

Putting together the results of this section we finally have:

102

Theorem 37. Let GoI(H) be defined by:

• objects are types, i.e. sets A of p-isometries satisfying: A⊥⊥ = A;

• morphisms from A to B are p-isometries in type A(B;

• composition is given by the formula above.

Then GoI(H) is a star-autonomous category.

16.4 GoI for MELL: exponentials

16.4.1 The tensor product of Hilbert spaces

Recall that we work in the Hilbert space H = `2(N) endowed with its canonical hilbertian basis
denoted by (ek)k∈N.

The space H ⊗H is the collection of sequences (xnp)n,p∈N of complex numbers such that∑
n,p |xnp|2 converges. The scalar product is defined just as before:

〈(xnp), (ynp)〉 =
∑
n,p

xnpȳnp.

If x = (xn)n∈N and y = (yp)p∈N are vectors in H then their tensor is the sequence:

x⊗ y = (xnyp)n,p∈N.

We define: enp = en ⊗ ep so that enp is the sequence (enpij)i,j∈N of complex numbers given
by enpij = δniδpj . By bilinearity of tensor we have:

x⊗ y =

(∑
n

xnen

)
⊗

(∑
p

ypep

)
=
∑
n,p

xnyp en ⊗ ep =
∑
n,p

xnyp enp

Furthermore the system of vectors (enp) is a hilbertian basis of H ⊗ H: the sequence
x = (xnp)n,p∈N may be written:

x =
∑
n,p∈N

xnp enp

=
∑
n,p∈N

xnp en ⊗ ep.

16.4.1.1 An algebra isomorphism

Being both separable Hilbert spaces, H and H⊗H are isomorphic. We will now define explicitely
an iso based on partial permutations.

We fix, once for all, a bijection from couples of natural numbers to natural numbers that we
will denote by (n, p) 7→ 〈n, p〉. For example set 〈n, p〉 = 2n(2p+ 1)− 1. Conversely, given n ∈ N
we denote by n(1) and n(2) the unique integers such that 〈n(1), n(2)〉 = n.

Remark 8. Just as it was convenient but actually not necessary to choose p and q so that
pp∗ + qq∗ = 1 it is actually not necessary to have a bijection, a one-to-one mapping from N2 into
N would be sufficient for our purpose.

103

This bijection can be extended into a Hilbert space isomorphism Φ : H ⊗H → H by defining:

en ⊗ ep = enp 7→ e〈n,p〉.

Now given an operator u on H we define the operator !u on H by:

!u(e〈n,p〉) = Φ(en ⊗ u(ep)).

Remark 9. The operator !u is defined by:

!u = Φ ◦ (1⊗ u) ◦ Φ−1

where 1⊗ u denotes the operator on H ⊗H defined by (1⊗ u)(x⊗ y) = x⊗ u(y) for any x, y in
H. However this notation must not be confused with the tensor of operators that was defined in
the previous section in order to interpret the tensor rule of linear logic; we therefore will not use
it.

One can check that given two operators u and v we have:

• !u!v = !(uv);

• !(u∗) = (!u)∗.

Due to the fact that Φ is an isomorphism onto we also have !1 = 1; this however will not be used.
We therefore have that ! is a morphism on B(H); it is easily seen to be an iso (not onto

though). As this is the crucial ingredient for interpreting the structural rules of linear logic, we
will call it the copying iso.

16.4.1.2 Interpretation of exponentials

If we suppose that u = uϕ is a p-isometry generated by the partial permutation ϕ then we have:

!u(e〈n,p〉) = Φ(en ⊗ u(ep)) = Φ(en ⊗ eϕ(p)) = e〈n,ϕ(p)〉.

Thus !uϕ is itself a p-isometry generated by the partial permutation !ϕ : n 7→ 〈n(1), ϕ(n(2))〉,
which shows that the proof space is stable under the copying iso.

Given a type A we define the type !A by:

!A = {!u, u ∈ A}⊥⊥

104

Chapter 17

Game semantics

This chapter presents the game-theoretic fully complete model of MLL. Formulas are interpreted
by games between two players, Player and Opponent, and proofs are interpreted by strategies for
Player.

17.1 Preliminary definitions and notations

17.1.1 Sequences, Polarities

Definition 49 (Sequences). If M is a set of moves, a sequence or a play on M is a finite
sequence of elements of M . The set of sequences of M is denoted by M∗.

We introduce some convenient notations on sequences.

• If s ∈M∗, |s| will denote the length of s;

• If 1 ≤ i ≤ |s|, si will denote the i-th move of s;

• We denote by v the prefix partial order on M∗;

• If s1 is an even-length prefix of s2, we denote it by s1 vP s2;

• The empty sequence will be denoted by ε.

All moves will be equipped with a polarity, which will be either Player (P) or Opponent (O).

• We define (_) : {O,P} → {O,P} with O = P and P = O.

• This operation extends in a pointwise way to functions onto {O,P}.

17.1.2 Sequences on Components

We will often need to speak of sequences over (the disjoint sum of) multiple sets of moves, along
with a restriction operation.

• If M1 and M2 are two sets, M1 + M2 will denote their disjoint sum, implemented as
M1 +M2 = {1} ×M1 ∪ {2} ×M2;

• In this case, if we have two functions λ1 : M1 → R and λ2 : M2 → R, we denote by
[λ1, λ2] : M1 +M2 → R their co-pairing ;

• If s ∈ (MA + MB)∗, the restriction of s to MA (resp. MB) is denoted by s � MA

(resp.s �MB). Later, if A and B are games, this will be abbreviated s � A and s � B.

105

17.2 Games and Strategies

17.2.1 Game constructions

We first give the definition for a game, then all the constructions used to interpret the connectives
and operations of MLL.

Definition 50 (Games). A game A is a triple (MA, λA, PA) where:

• MA is a finite set of moves;

• λA : MA → {O,P} is a polarity function;

• PA is a subset of M∗A such that

– Each s ∈ PA is alternating, i.e. if λA(si) = Q then, if defined, λA(si+1) = Q;

– A is finite: there is no infinite strictly increasing sequence s1 @ s2 @ . . . in PA.

Definition 51 (Linear Negation). If A is a game, the game A⊥ is A where Player and Opponent
are interchanged. Formally:

• MA⊥ = MA

• λA⊥ = λA

• PA⊥ = PA

Definition 52 (Tensor). If A and B are games, we define A⊗B as:

• MA⊗B = MA +MB;

• λA⊗B = [λA, λB]

• PA⊗B is the set of all finite, alternating sequences in M∗A⊗B such that s ∈ PA⊗B if and
only if:

1. s � A ∈ PA and s � B ∈ PB;
2. If we have i ≤ |s| such that si and si+1 are in different components, then λA⊗B(si+1) =

O. We will refer to this condition as the switching convention for tensor game.

The par connective can be defined either as A`B = (A⊥ ⊗B⊥)⊥, or similarly to the tensor
except that the switching convention is in favor of Player. We will refer to this as the switching
convention for par game. Likewise, we define A(B = A⊥ `B.

17.2.2 Strategies

Definition 53 (Strategies). A strategy for Player in a game A is defined as a subset σ ⊆ PA
satisfying the following conditions:

• σ is non-empty: ε ∈ σ

• Opponent starts: If s ∈ σ, λA(s1) = O;

• σ is closed by even prefix, i.e. if s ∈ σ and s′ vP s, then s′ ∈ σ;

• Determinacy: If we have soa ∈ σ and sob ∈ σ, then a = b.

106

We write σ : A.

Composition is defined by parallel interaction plus hiding. We take all valid sequences on
A,B and C which behave accordingly to σ (resp. τ) on A,B (resp. B,C). Then, we hide all the
communication in B.

Definition 54 (Parallel Interaction). If A,B and C are games, we define the set of interactions
I(A,B,C) as the set of sequences s over A,B and C such that their respective restrictions on
A (B and B (C are in PA(B and PB(C , and such that no successive moves of s are
respectively in A and C, or C and A. If σ : A(B and τ : B(C, we define the set of parallel
interactions of σ and τ , denoted by σ||τ , as {s ∈ I(A,B,C) | s � A,B ∈ σ ∧ s � B,C ∈ τ}.

Definition 55 (Composition). If σ : A(B and τ : B (C, we define σ; τ = {s � A,C | s ∈
σ||τ}.

We also define the identities, which are simple copycat strategies : they immediately copy on
the left (resp. right) component the last Opponent’s move on the right (resp.left) component. In
the following definition, let L (resp. R) denote the left (resp. right) occurrence of A in A(A.

Definition 56 (Identities). If A is a game, we define a strategy idA : A (A by idA = {s ∈
PA(A | ∀s′ vP s, s′ � L = s′ � R}.

With these definitions, we get the following theorem:

Theorem 38 (Category of Games and Strategies). Composition of strategies is associative and
identities are neutral for it. More precisely, there is a *-autonomous category with games as
objects and strategies on A(B as morphisms from A to B.

107

Appendix A

Notations

A.1 Logical systems

For a given logical system such as MLL (for multiplicative linear logic), we consider the following
variations:

Notation Meaning Connectives
MLL propositional without units X,⊗,`
MLLu propositional with units only 1,⊥,⊗,`
MLL0 propositional with units and variables X, 1,⊥,⊗,`
MLL1 first-order without units X~t,⊗,`, ∀x,∃x
MLL01 first-order with units X~t, 1,⊥,⊗,`, ∀x, ∃x
MLL2 second-order propositional without units X,⊗,`,∀X,∃X
MLL02 second-order propositional with units X, 1,⊥,⊗,`,∀X,∃X
MLL12 first-order and second-order without units X~t,⊗,`, ∀x,∃x,∀X,∃X
MLL012 first-order and second-order with units X~t, 1,⊥,⊗,`, ∀x, ∃x, ∀X,∃X

A.2 Formulas and proof trees

A.2.1 Formulas

• First order quantification: ∀xA with substitution A[t/x]

• Second order quantification: ∀XA with substitution A[B/X]

• Quantification of arbitrary order (mainly first or second): ∀ξA with substitution A[τ/ξ]

A.2.2 Rule names

Name of the connective, followed by some additional information if required, followed by “L” for
a left rule or “R” for a right rule. This is for a two-sided system, “R” is implicit for one-sided
systems. For example: ∧1addL.

A.3 Semantics

A.3.1 Coherent spaces

• Web of the space X: |X|

• Coherence relation of the space X: large ¨X and strict ˝X

108

A.3.2 Finiteness spaces

• Web of the finiteness space A: |A|

• Finiteness structure of the space A: F(A) (which is consistent with the fact that Pf (|A|) ⊆
F(A) ⊆ P (|A|)).

A.4 Nets

• The free ports of a net R: fp(R).

• The result of the connection of two nets R and R′, given the partial bijection f : fp(R) ↪⇀
fp(R′): R ./f R

′.

• The number of loops in the resulting net: 〈〈R|R′〉〉f (includes the loops already present in
R and R′).

A.5 Miscellaneous

• Isomorphism: A ∼= B

• injection: A ↪→ B

• partial injection: A ↪⇀B

109

Bibliography

[Ben94] Nick Benton. A mixed linear and non-linear logic: Proofs, terms and models (extended
abstract). In Leszek Pacholski and Jerzy Tiuryn, editors, Computer Science Logic,
volume 933 of Lecture Notes in Computer Science, pages 121–135. Springer, 1994.

[CMM10] Pierre-Louis Curien Curien and Guillaume Munch-Maccagnoni. The duality of com-
putation under focus. In Cristian S. Calude and Vladimiro Sassone, editors, IFIP
Theoretical Computer Science, volume 323 of IFIP Advances in Information and
Communication Technology, pages 165–181. Springer, 2010.

[Fio07] Marcello P. Fiore. Differential structure in models of multiplicative biadditive intu-
itionistic linear logic. In Simona Ronchi Della Rocca, editor, Typed Lambda Calculi
and Applications (TLCA), volume 4583 of Lecture Notes in Computer Science, pages
163–177. Springer, 2007.

[Gir86] Jean-Yves Girard. The system F of variable types, fifteen years later. Theoretical
Computer Science, 45:159–192, 1986.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987.

[Gir98] Jean-Yves Girard. Light linear logic. Information and Computation, 43:175–204, 1998.

[HS03] Martin Hyland and Andrea Schalk. Glueing and orthogonality for models of linear
logic. Theoretical Computer Science, 294(1–2):183–231, February 2003.

[Laf04] Yves Lafont. Soft linear logic and polynomial time. Theoretical Computer Science,
318(1–2):163–180, 2004.

[Mac98] Saunders Maclane. Categories for the Working Mathematician, volume 5 of Graduate
Texts in Mathematics. Springer, second edition, 1998.

[Mel09] Paul-André Melliès. Interactive models of computation and program behaviour, vol-
ume 27 of Panoramas et Synthèses, chapter Categorical Semantics of Linear Logic,
pages 1–196. Société Mathématique de France, 2009.

[MT03] Harry Mairson and Kazushige Terui. On the computational complexity of cut-
elimination in linear logic. In Proceedings of the eighth Italian Conference on Theoretical
Computer Science (ICTCS), volume 2841 of Lecture Notes in Computer Science, pages
23–36. Springer, 2003.

[Sch94] Harold Schellinx. The Noble Art of Linear Decorating. Dissertation series of the
Dutch Institute for Logic, Language and Computation, University of Amsterdam,
1994. ILLC-Dissertation Series, 1994-1.

110

	I Syntax
	Sequent calculus
	Formulas
	Sequents and proofs
	Equivalences
	De Morgan laws
	Fundamental equivalences
	Definability

	Properties of proofs
	Cut elimination and consequences
	Expansion of identities
	Reversibility

	One-sided sequent calculus
	Variations
	Exponential rules
	Non-symmetric sequents
	Mix rules

	Equiprovability
	Definition

	Isomorphism
	Definition
	List of isomorphisms

	List of equivalences
	Multiplicatives
	Additives
	Quantifiers
	Exponentials
	Polarities
	Second order encodings
	Miscellaneous

	Lattice of exponential modalities
	Provable formulas
	Distributivities
	Factorizations
	Identities
	Additive structure
	Quantifiers
	Exponential structure
	Monoidality of exponentials
	Promotion principles
	Commutations

	Non provable formulas
	Mix
	Binary \rulename{Mix} rule
	Nullary \rulename{Mix} rule

	Additive cut rule
	Focusing
	Asynchrony
	Generalized connectives and rules
	Synchrony

	Positive formula
	Positive connectives
	Generalized structural rules

	Negative formula
	Negative connectives
	Generalized structural rules

	Regular formula
	Alternative characterization
	Regular connectives

	Intuitionistic linear logic
	Sequent Calculus
	The intuitionistic fragment of linear logic
	Input / output polarities

	Polarized linear logic
	Polarization
	Deduction rules

	Fragment
	Motivations
	Multiplicative fragments
	Additive fragments
	Exponential fragments
	About exponential rules

	The provability problem
	The finite model property
	Provability

	The cut elimination problem

	Proof-nets: a formal account of nets
	Preliminaries
	The short story

	Nets
	Wires
	Nets
	Subnets
	Rewriting
	Typing
	Boxes

	System L
	Definitions
	Typing
	Reduction rules

	Translations of intuitionistic logic
	Call-by-name Girard's translation A\imp B \mapsto \oc{A}\limp B
	Call-by-value translation A\imp B \mapsto \oc{(A\limp B)}
	Alternative presentation

	Call-by-value Girard's translation A\imp B \mapsto \oc{(A\limp B)}

	Translations of classical logic
	T-translation A\imp B \mapsto \oc{\wn{A}}\limp\wn{B}
	Alternative presentation

	Q-translation A\imp B \mapsto \oc{(A\limp\wn{B})}
	Alternative presentation

	Light linear logics
	Elementary linear logic
	Light linear logic
	Soft linear logic

	II Semantics
	Semantics
	Orthogonality relation

	Coherent semantics
	The cartesian closed structure of coherent semantics
	Coherent spaces
	Stable functions
	Cartesian product

	The monoidal structure of coherent semantics
	Linear functions
	Tensor product
	Linear negation

	Exponentials
	Dual connectives and neutrals
	The direct sum
	The par and the why not
	One and bottom
	Zero and top

	After coherent semantics
	Sequentiality
	Multiplicative neutrals and the mix rule

	Phase semantics
	Introduction
	Preliminaries: relation and closure operators
	Relations and operators on subsets
	Closure operators

	Phase Semantics
	Phase spaces
	Additive connectives
	Multiplicative connectives
	Properties
	Exponentials

	Soundness
	Completeness
	Cut elimination

	Categorical semantics
	Overview
	Modeling IMLL
	Modeling the additives
	Modeling ILL
	Modeling negation
	*-autonomous categories
	Compact closed categories

	Relational semantics
	The category of sets and relations
	Monoidal structure
	Additives
	Exponentials

	Interpretation of propositional linear logic (LL0)

	Finiteness semantics
	Finiteness spaces
	Multiplicatives
	Additives
	Exponentials

	Geometry of interaction
	Introduction
	The Geometry of Interaction as operators

	GoI for MELL: partial isometries
	Operators, partial isometries
	Partial permutations
	The proof space
	From operators to matrices: internalization/externalization

	GoI for MELL: the *-autonomous structure
	The tensor and the linear application
	The identity
	The execution formula, version 1: application
	The tensor rule
	Other monoidal constructions
	Execution formula, version 2: composition

	GoI for MELL: exponentials
	The tensor product of Hilbert spaces

	Game semantics
	Preliminary definitions and notations
	Sequences, Polarities
	Sequences on Components

	Games and Strategies
	Game constructions
	Strategies

	Notations
	Logical systems
	Formulas and proof trees
	Formulas
	Rule names

	Semantics
	Coherent spaces
	Finiteness spaces

	Nets
	Miscellaneous

