
Krivine's abstrat mahine and the ��-alulus(an overview)Olivier LAURENTPreuves, Programmes et Syst�emesCNRS { Universit�e Paris VIIUMR 7126 { Case 7014175, rue du Chevaleret { 75013 Paris { FRANCEOlivier.Laurent�pps.jussieu.frSeptember 17, 2003AbstratAfter a presentation of Krivine's abstrat mahine for the pure and simply typed �-aluli,we show how an extension of the instrutions for the manipulation of staks leads to Parigot's��-alulus. Using a typing system for the mahine, we derive the typing rules for the simplytyped ��-alulus.Keywords : �-alulus, ��-alulus, Krivine's abstrat mahine (KAM), lassial logi, ontroloperators.IntrodutionM. Parigot introdued the ��-alulus [14℄ as an extension of the �-alulus allowing to extendthe Curry-Howard orrespondene to lassial logi, in the spirit of GriÆn's ideas [8℄. His work isbased on a proof theoretial approah in the study of natural dedution with many onlusions.We propose to show how it is possible to de�ne and desribe the ��-alulus with more operationalonsiderations. We will use Krivine's abstrat mahine (KAM) [10℄ as omputational framework,presented in a �rst step as an abstrat mahine for the �-alulus. The de�nition of a typing systemfor the mahine allows to ontrol some properties of the mahine: stopping states, termination, ...In a seond step, we extend the mahine with instrutions for the manipulation of staks whihappear to orrespond preisely to the ��-alulus and whih give enough expressive power to enodeontrol primitives (like all/, ontinuations, ...). The typing system of the mahine allows thento derive the typing rules of the simply typed ��-alulus. So that Parigot's ��-alulus is entirelyrebuilt from Krivine's abstrat mahine.We an almost say that none of the ideas introdued in this paper is due to the author. Theseare ommon ideas (very well known by M. Parigot and J.-L. Krivine themselves) that have neverbeen written in details, as far as we know. Our goal is to give an alternative presentation of the��-alulus with respet to Parigot's one [14℄, that an be used by people with a basi knowledgein �-alulus. 1



1 The �-alulusWe are just going to reall some elements of �-alulus in order to introdue some notations andto present the results we will use. For a more preise and omplete introdution to the �-alulus,see [1, 11℄.1.1 The languageLet �Var be a denumerable set of variables alled the �-variables and denoted x, y, z, ..., the�-terms are given by: t ::= x j �x:t j (t)twe will use the notation (t)t1 : : : tn for (((t)t1) : : : )tn.Remark: These kinds of notations with brakets around the funtion of an appliation are par-tiularly natural for Krivine's Abstrat Mahine sine (t)t1 : : : tn will be an instrution whih �rstbuilds the stak t1 : : : tn and then exeutes t.The �-onstrution is a binder for the �-variable x. The free variables of a term (denoted byx 2 t) are thus de�ned by:� x has a unique free variable x;� the free variables of �x:t are those of t exept x;� the free variables of (t)u are those of t and u.Terms are used up to �-equivalene for bound variables.The �-redution is the only omputation rule and an be applied anywhere in a �-term:(�x:t)u !� t[u=x℄where t[u=x℄ is the usual apture-avoiding substitution of variables by �-terms de�ned by: x[u=x℄ =u, y[u=x℄ = y if x 6= y, ((t)t0)[u=x℄ = (t[u=x℄)t0[u=x℄ and (�y:t)[u=x℄ = �y:(t[u=x℄) where y is hosennot free in u and x (using �-equivalene).Lemma 1 (Redution and free variables)If t !� t0 and x is free in t0 then x is free in t.Instead of the general �-rule, we will be interested in a restrition alled the weak head redution:a redex an be redued only if it is just under some appliations. That is, we only redue redexesof the shape ((�x:t)u)u1 : : : un. A weak head normal form is a normal form for this partiularredution proedure, that is a �-term of the shape (x)u1 : : : un (in this ase x is alled its headvariable) or �x:t.1.2 Simple typesGiven a set of ground types (�, ...), the simple types are generated by:A ::= � j ? j A ! Awith the onvention A ! B ! C = A ! (B ! C). The atoms � or ? are denoted by X. Anysimple type an be written in a unique way in the shape A = A1 ! � � � ! An ! X. The onstant? an be onsidered as a partiular ground type and will be used later.2



A typing ontext � is a �nite set of pairs (x;A), denoted by x : A, where eah �-variable appearsat most one. A typing judgment has the shape � ` t : A. The typing rule we are using for thesimply typed �-alulus are:varx : A ` x : A � ` t : B lam� n fx : Ag ` �x:t : A ! B � ` t : A ! B � ` u : A app� [� ` (t)u : Bwhere � n fx : Ag is not de�ned if � ontains x : B with A 6= B, and � [ � is not de�ned if �ontains x : A and � ontains x : B with A 6= B (we also use �; x : A for � [ fx : Ag).The typing system we present doesn't allow to delare unused variables (whih is not thease with a var-rule like �; x : A ` x : A). This requires to give a re�ned statement for thesubjet redution property (proposition 1) but gives more informative typing judgments as statedby lemma 2 or lemma 5. Moreover, this makes the typing system of setion 2.2 easier to understand.Lemma 2 (Typing ontext and free variables)If � ` t : A is derivable, then � ontains exatly one typing delaration for eah free variable of t.Lemma 3 (Substitution)If �; x : B ` t : A and � ` u : B are derivable and � [� is de�ned, then � [� ` t[u=x℄ : A.Proposition 1 (Subjet redution)If � ` t : A is derivable and t !� t0, then �0 ` t0 : A is derivable where �0 is the subset of �ontaining only the typing delarations for the free variables of t0.Proposition 2 (Strong normalization)If � ` t : A is derivable, there is no in�nite sequene of redutions starting from t.2 Krivine's abstrat mahineInstead of the usual interpretation of the redution of the �-alulus as a rewriting system, wewill interpret the onstrutions of the �-alulus as instrutions of an abstrat mahine: Krivine'sabstrat mahine (or KAM).2.1 De�nitions and propertiesIn order to de�ne the states of the KAM, we need the following mutually indutive de�nitions:� An environment e is a partial funtion with �nite domain from �Var to the set of losures(or equivalently a �nite set of pairs (x; )).� A losure  is a pair (t; e) of a �-term and an environment (at this stage, there is no partiularrequirement on the fat e must (or not) give values for the free variables of t, some additionalonstraints will be required by typing in setion 2.2, see omment page 8).� A stak � is a �nite sequene of losures.� A state is a triple h t ; e ; � i (or equivalently a pair (; �)).Informally, a �-term requires some information to de�ne the value of its free variables, and thisinformation is given by the environment in a losure. A stak is an evaluation ontext.We de�ne the following notations: 3



� ; is the empty environment;� if e is an environment, e(x) is the losure assoiated with x in e;� e+ (x = ) is the environment obtained by modifying the value assoiated with x in e (or byde�ning it if e(x) was unde�ned), whih is  in the new environment;� " is the empty stak;�  :: � is the stak obtained by pushing  on �.Expansion of states. We an transform any �-term t into a state h t ; ; ; " i of the mahine.The onverse is also possible:� if  = (t; e) is a losure with e = f(x1; 1); : : : ; (xn; n)g, the �-term e or tfeg is given by theorresponding substitutions t[ e1=x1 ; : : : ;fn=xn ℄;� if � = 1 :: � � � :: n :: " is a stak, e� is the sequene of �-terms e1 : : : en.If s = h t ; e ; � i is a state of the mahine, the expansion of s is es = (tfeg)e�.Transitions. The transitions of the mahine give the evolution of states with the idea that the�-term in the state is the set of instrutions and de�nes the transition to be applied:h (t)u ; e ; � i push������! h t ; e ; (u; e) :: � ih�x:t ; e ;  :: � i pop������! h t ; e+ (x = ) ; � ihx ; e ; � i deref������! h t ; e0 ; � i where e(x) = (t; e0)If none of the transitions an be applied, the mahine stops and the last state is the result of theomputation. There are two reasons for the mahine to stop:� in a (pop) transition if the stak is empty;� in a (deref ) transition if the variable is not de�ned in the environment.In setion 2.2, we will see how we an ontrol these stopping ases by some typing onstraints.Intuitive properties. We �rst give some intuitions about the properties of the KAM, whih willbe made more formal in the sequel.� In a losure (t; e), we an modify in e the value assoiated with any variable not free in twithout modifying omputation (lemma 4).� We an replae any losure (t; e) by (tfeg; ;) without modifying omputation.� The omputation of the KAM realizes the weak head redution of �-terms.
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Example 1 (Computation of a �-redex)The evaluation of a �-redex in the KAM starts by:h (�x:t)u ; e ; � ipush������! h �x:t ; e ; (u; e) :: � ipop������! h t ; e+ (x = (u; e)) ; � iand during the evaluation of t, eah time the variable x arrives in head position, a (deref ) transitionis used to evaluate u (this orresponds to the substitution of x by u given by the �-redution).Lemma 4 (Non-free variables)If (t; e) is a losure appearing in the state s and if s0 is obtained by replaing (t; e) by (t; e+(x = )) ins with x not free in t, the �-terms that will appear in \instrution position" during the omputationof s0 in the KAM are the same as for the omputation from s.Proof: We onsider the following relation on states: s � s0 if s0 is obtained from s by replaingsome losures (t; e) of s by (t; e+ (x = )) with x not free in t.We show that if s ������! s1 and s � s0 then s0 ������! s01 with s1 � s01. We onsidereah possible transition for s ������! s1 with s = h t0 ; e0 ; �0 i and s0 = h t0 ; e00 ; �00 i:(push) If t0 = (u0)v0, then s1 = hu0 ; e0 ; (v0; e0) :: �0 i and s0 ������! s01 with s01 =hu0 ; e00 ; (v0; e00) :: �00 i. Sine s � s0, the di�erene between e0 and e00 an only besome additional delarations for variables not free in (u0)v0 and the same for �0 and �00so that s1 � s01.(pop) If t0 = �y:u0 then �0 = 0 :: �1 so that s1 = hu0 ; e0 + (y = 0) ; �1 i, �00 = 00 :: �01and s01 = hu0 ; e00 + (y = 00) ; �01 i. Up to �-equivalene, we an assume that y is notdelared in e0 and e00 and from s � s0 we easily dedue s1 � s01.(deref ) If t0 = y and e0(y) = (t1; e1) then e00(y) is de�ned to be some (t01; e01) and s1 =h t1 ; e1 ; �0 i, s01 = h t01 ; e01 ; �00 i. Sine y is free in y, the di�erene between (t1; e1)and (t01; e01) an only onern delarations in e1 and e01 (and moreover for variables notfree in t1 and t01) thus t1 = t01, and we then get s1 � s01.We thus have that if s ������! s1 ������! � � � ������! sn ������! � � � is the sequeneof states of the exeution of the KAM with starting state s then the sequene of states withstarting state s0 is s0 ������! s01 ������! � � � ������! s0n ������! � � � with si � s0i forevery i. This entails that the term of the state si is the same as the term of the state s0i. 2Example 2 (�-redution)The �-redution of the �-alulus is de�ned by:�x:(t)x !� t if x =2 tThis redution is realized by the KAM, exept if the starting stak is empty:h �x:(t)x ; e ; " iis a stopping state (this will be re�ned by typing, see after orollary 4.1).5



If the stak is non-empty, the omputation leads to t:h �x:(t)x ; e ;  :: � ipop������! h (t)x ; e+ (x = ) ; � ipush������! h t ; e+ (x = ) ; (x; e+ (x = )) :: � iand the mahine omputes as for h t ; e ;  :: � i by lemma 4. This is very similar to what appendsfor �-redution.Example 3 (
)We use the standard notation Æ = �x:(x)x:h (Æ)Æ ; ; ; " ipush������! h Æ ; ; ; (Æ; ;) ipop������! h (x)x ; x = (Æ; ;) ; " ipush������! h x ; x = (Æ; ;) ; (x; x = (Æ; ;)) ideref������! h Æ ; ; ; (x; x = (Æ; ;)) ipop������! : : :and the omputation does not terminate.We have desribed a relation between states and �-terms through the expansion of states andwe an extend this relation to the omputational part of the two worlds.Proposition 3 (Simulation)If an exeution of the mahine goes from the state s to the state s0, the �-term es redues by weakhead redution to es0. This simulation is strit in the ase of (pop) transitions: if s pop������! s0then es!� es0.Proof: We onsider eah ase of transition:(push) If the starting state is s = h (t)u ; e ; � i, we have es = ((t)ufeg)e� = (tfeg)ufege� whihis exatly es0 with s0 = h t ; e ; (u; e) :: � i, no redution is required.(pop) If the starting state is s = h�x:t ; e ;  :: � i, we have es = (�x:tfeg)ee� and s0 =h t ; e+ (x = ) ; � i with es0 = (tfe+ (x = )g)e� = (tfeg[e=x℄)e�. This allows to onludesine (�x:tfeg)ee� redues by one step of weak head redution to (tfeg[e=x℄)e�.(deref ) If the starting state is s = hx ; e ; � i with e(x) = (t; e0), we have es = (xfeg)e� = (tfe0g)e�and s0 = h t ; e0 ; � i with es0 = (tfe0g)e�, and no redution is required. 2Corollary 3.1 (Weak head normal form)If the KAM starts from the state s and stops in the state s0, then es0 is the weak head normal formof es.Proof: Using proposition 3, we know that es redues to es0 by weak head redution. We just haveto show that if the KAM stops in the state s0, es0 is a weak head normal form. We have twopossible ases: 6



� s0 = h�x:u ; e ; " i, so that es0 = �x:ufeg is a weak head normal form;� s0 = hx ; e ; � i with e(x) unde�ned, so that es0 = (xfeg)e� = (x)e� is a weak head normalform. 2In partiular, if the starting state is h t ; ; ; " i and the stopping state is hu ; e ; � i, (ufeg)e�is the weak head normal form of t.2.2 TypingIn order to type the mahine, we �rst introdue simple stak types:P ::= �� j > j A ^ Pwhere � is a simple ground type and A is a simple type. The notation �� suggests a kind of dualitybetween simple types and simple stak types whih is made expliit in the remark after the typingrules.To the previously de�ned typing judgments for �-terms � ` t : A, we add:� typing judgments for losures: � `los  : A, where � is a typing ontext for the free variablesof  (that is free in the �-term of  and not de�ned in the environment of ) and A is a simpletype for the �-term of ;� typing judgments for environments: � `env e : f�g, where � is a typing ontext for the freevariables of e (that is free in a losure of e) and � is a typing ontext for the variables de�nedin e;� typing judgments for staks: � `stak � : P , where � is a typing ontext for the free variablesof � (that is free in a losure of �) and P is a simple stak type;� typing judgments for states: � `state s, where � is a typing ontext for the free variables ofs (that is free in the losure of s or in the stak of s).The typing rules for environments, losures, staks and states are:`env ; : fg � `env e : f�g � `los  : A� [� `env e+ (x = ) : f�; x : Ag � ` t : A � `env e : f�g(� n �) [� `los (t; e) : A`stak " : �� `stak " : > � `los  : A � `stak � : P� [� `stak ( :: �) : A ^ P� `los (t; e) : A1 ! � � � ! An ! X � `stak � : A1 ^ � � � ^An ^ �X� [� `state h t ; e ; � iwith �X = �� if X = � and �X = > if X = ?.Remark: This last rule an be de�ned in a slightly di�erent way if we introdue an expliit \du-ality" between simple types and simple stak types by �? = ��, ?? = > and (A ! B)? = A^B?:� `los (t; e) : A � `stak � : A?� [� `state h t ; e ; � i7



This idea of a duality between terms and staks an be thought of as a key ingredient of theomputational interpretations of lassial logi. It appears in Parigot's proof of strong normalizationfor the ��-alulus [15℄ and in Krivine's lassial realizability [12℄, it is related to the dualitybetween all-by-name and all-by-value omputations [18, 3℄, it an be related with the duality oflinear logi [4℄, ...We an now make more formal the intuitive desriptions of the meanings of typing judgmentswe have given before the rules.De�nition 1 (Free variables)We extend the notion of free variable to environments, losures, staks and states:� If e = f(x1; 1); : : : ; (xn; n)g, the free variables of e are the free variables of 1, ..., n.� If  = (t; e), the free variables of  are the free variables of t not de�ned in e and the freevariables of e.� If � = 1 :: � � � :: n :: ", the free variables of � are the free variables of 1, ..., n.� If s = h t ; e ; � i, the free variables of s are the free variables of the losure (t; e) and the freevariables of �.It is not very natural to onsider losures with free variables, sine the intuition behind a losureis a losed objet ontaining exatly the delarations required for the free variables of the �-term.In fat these free variables in losures (or states) should be onsidered as onstants more thanvariables and this gives a very easy way to enrih the language with ground type onstants sinethey are treated just like variables.Lemma 5 (Typing judgments and free variables)Derivable typing judgments delare exatly the free variables:� If � `env e : f�g is derivable, then � ontains exatly one typing delaration for eah freevariable of e and � ontains exatly one typing delaration for eah variable delared in e.� If � `los  : A is derivable, then � ontains exatly one typing delaration for eah freevariable of .� If � `stak � : P is derivable, then � ontains exatly one typing delaration for eah freevariable of �.� If � `state s is derivable, then � ontains exatly one typing delaration for eah free variableof s.Proof: We prove all the results together by indution on the size of the typing derivation. Weonsider eah possible ase of a last rule:� If we derive `env ; : fg, ; ontains no delaration and no free variable.� If we derive �[� `env e+(x = ) : f�; x : Ag from � `env e : f�g and � `los  : A, thede�ned variables of e + (x = ) are those of e, ontained in � by indution hypothesis,and x. The free variables of e + (x = ) are those of e, ontained in � by indutionhypothesis, and those of , ontained in � by indution hypothesis.8



� If we derive (� n �) [ � `los (t; e) : A from � ` t : A and � `env e : f�g, the freevariables of (t; e) are the free variables of t not de�ned in e ontained in � n � and thefree variables of e ontained in �.� If we derive `stak " : �� or `stak " : >, " has no free variable.� If we derive � [� `stak ( :: �) : A ^ P from � `los  : A and � `stak � : P , the freevariables of ( :: �) are the free variables of  ontained in � and those of � ontained in�.� If we derive � [ � `state h t ; e ; � i from � `los (t; e) : A and � `stak � : A?, thefree variables of h t ; e ; � i are the free variables of (t; e) ontained in � and those of �ontained in �. 2The typing rules we have given for the KAM are ompatible with the typing rules for termsthrough the expansion of states.Lemma 6 (Typing and expansion)If � `state s is derivable, there exists an atom X suh that �0 ` es : X is derivable where �0 is thesubset of � ontaining only the typing delarations for the free variables of es.Proof: We �rst prove, by indution on the size of e, that if � `los (t; e) : A then �0 ` tfeg : A.From � `los (t; e) : A we an dedue � = (�1 n �) [ �2 with �1 ` t : A and �2 `env e : f�g.If e = ;, tfeg = t and �2 and � are empty so that � ` tfeg : A. If e = e0 + (x = ),we have �2 = �02 [ �002 and � = �0; x : B with �02 `env e0 : f�0g and �002 `los  : B. Wean dedue (�1 n �0) [ �02 `los (t; e0) : A and by indution hypothesis � ` tfe0g for theorret subset � of (�1 n �0) [ �02. If x is not free in t, this is enough to onlude, otherwisetfeg = tfe0g[e=x℄ and by indution hypothesis �002 `los  : B entails �0 ` e : B with �0 � �002so that (� n fx : Bg) [�0 ` tfe0g[e=x℄ : A by lemma 3 sine � ontains x : B.If � `state s is derivable with s = h t ; e ; � i, we have � = �1 [�2 with �1 `los (t; e) : A1 !� � � ! An ! X and �2 `stak � : A1 ^ � � � ^An ^ �X , this entails � = 1 :: � � � :: n :: " with, foreah 1 � i � n, �i `los i : Ai and �2 = �1 [ � � � [�n. By the result we have just shown,we get �01 ` tfeg : A1 ! � � � ! An ! X and, for eah 1 � i � n, �0i ` ei : Ai, leading to�01 [�01 [ � � � [�0n ` (tfeg)e1 : : : en : X with (tfeg)e1 : : : en = es. 2Proposition 4 (Subjet redution)The evaluation of the KAM preserves typing, i.e. if � `state h t ; e ; � i is derivable and if thefollowing transition is valid: h t ; e ; � i ������! h t0 ; e0 ; �0 ithen �0 `state h t0 ; e0 ; �0 i where �0 is the subset of � ontaining only the typing delarations forthe free variables of h t0 ; e0 ; �0 i.Proof: If � `state h t ; e ; � i is derivable, we must have � = (�1 n �) [ �2 [ �3 with �1 ` t : A,�2 `env e : f�g and �3 `stak � : A?. We look at eah possible transition:(push) We have t = (t0)u, this entails �1 = �01 [ �001 with �01 ` t0 : B ! A and �001 ` u : B, andwe an derive:
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�01 ` t0 : B ! A �2 `env e : f�g(�01 n �) [ �2 `los (t0; e) : B ! A �001 ` u : B �2 `env e : f�g(�001 n �) [ �2 `los (u; e) : B �3 `stak � : A?(�001 n �) [ �2 [ �3 `stak ((u; e) :: �) : B ^A?(�01 n �) [ (�001 n �) [ �2 [ �3 `state h t0 ; e0 ; �0 iwith (�01 n �) [ (�001 n �) = (�01 [ �001) n � = �1 n � and the free variables of s and s0 arethe same.(pop) We have t = �x:t0, A = B ! C, �1 = �01 n fx : Bg and �01 ` t0 : C. Moreover � =  :: �0,thus �3 = �03 [ �003 with �03 `los  : B and �003 `stak �0 : C? and we an derive:�01 ` t0 : C �2 `env e : f�g �03 `los  : B�2 [ �03 `env e+ (x = ) : f�; x : Bg(�1 n �) [ �2 [ �03 `los (t0; e+ (x = )) : C �003 `stak �0 : C?(�1 n �) [ �2 [ �03 [ �003 `state h t0 ; e0 ; �0 iand the free variables of s and s0 are the same.(deref ) We have t = x, this entails �1 = x : A and e = e0+(x = (t0; e0)). From �2 `env e0+(x =(t0; e0)) : f�g, we dedue �2 = �02 [ �002 and � = �0; x : A with �02 `env e0 : f�0g and�002 `los (t0; e0) : A, and we an derive:�002 `los (t0; e0) : A �3 `stak � : A?�002 [ �3 `state h t0 ; e0 ; �0 iBy lemma 5, �002[�3 ontains exatly the typing delarations from � for the free variablesof h t0 ; e0 ; �0 i. 2Corollary 4.1 (Termination)If � `state s is derivable, the KAM, starting from the state s, stops in a state hx ; e0 ; �0 i where xis the head variable of the weak head normal form of es.Proof: We �rst show that the mahine stops, whih means that we an't have an in�nite sequeneof transitions from s. We de�ne the size jtj of a term t to be its number of symbols, the sizejej of an environment e to be the sum of the sizes of its losures and the size of a losure(t; e) to be jtj+ jej. We remark that we an't have an in�nite sequene of transitions (push)and (deref ) beause the value of (jej; jtj) (ordered in lexiographi order) is stritly dereasingin suh a sequene. So that an in�nite sequene of transitions of the mahine ontains anin�nite number of transitions (pop). Aording to proposition 3, eah (pop) transition froms1 to s2 orresponds to a step of weak head redution from es1 to es2, but by lemma 6 the termes assoiated with the �rst state is typable so that, by strong normalization for the simplytyped �-alulus (proposition 2), it an't have an in�nite sequene of redutions.Let s0 be the stopping state, it is either h�x:u ; e0 ; " i or hx ; e0 ; �0 i (see page 4) butthe �rst ase is rejeted by proposition 4 sine it must be typable and " is not typable of atype A ^ P . This entails, s0 = hx ; e0 ; �0 i with x not delared in e0 and by orollary 3.1,(xfe0g)e�0 = (x)e�0 is the weak head normal form of es so that x is the head variable of thisweak head normal form. 210



In partiular, the mahine never stops beause the �-term is �x:t and the stak is empty (inexample 2, the stak annot be empty).A natural partiular ase of the previous orollary is s = h t ; ; ; " i, and we an wonder whatresult we get if t is losed and `state h t ; ; ; " i. In fat, we get a ontradition! If `state h t ; ; ; " iis derivable, the KAM ends with a state hx ; e0 ; �0 i, but this is not possible beause x annot bede�ned in e0 (otherwise the mahine doesn't stop) and for `state hx ; e0 ; �0 i to be derivable, xmust be de�ned in e0. We an give a diret proof that `state h t ; ; ; " i is never derivable: if it is,the last rules have the shape:` t : A `env ; : fg`los (t; ;) : A `stak " : A?`state h t ; ; ; " iThis entails A = � or A = ?, otherwise `stak " : A? is not derivable, but in this ase ` t : A isnot derivable.There are two interpretations of this remark. First, using our disussion about free variables inlosures and states, we an restrit ourselves to �-terms ontaining onstants (with ground types)and with a redution leading to suh a onstant. Seond, we an liberalize the typing rule for " by:`stak " : Pwith any simple stak type P , but in this ase we get bak the stopping on�guration of a (pop)transition that we annot apply beause the stak is empty. So that typing doesn't give anymorea ontrol on the stopping on�gurations.3 KAM and ontrol3.1 Extension of the mahineIf we look at a state of the KAM as a pair of a losure and a stak, the transitions we have seeninterpret the instrutions given by �-terms as operations on losures: stoking a losure on thestak (push), naming a losure in the environment (pop) and reading bak a losure from its namein the environment (deref ).In this spirit, it is natural to try to extend our set of instrutions (thus our onstrutions ofterms) in order to de�ne operations on staks: naming a stak in the environment (save) andreading bak a stak from its name in the environment (restore).Given a denumerable set �Var of variables, denoted by �, �, ..., alled the �-variables and usedin the mahine as names for the staks, we extend the language of terms with two new onstrutions:t ::= x j �x:t j (t)t j ��:t j [�℄tThe �-onstrution is a binder for the �-variable � and [�℄t introdues a free ourrene of �. Thisleads to the following de�nition of the free �-variables of a term t:� x doesn't ontain any free �-variable;� the free �-variables of �x:t are those of t;� the free �-variables of (t)u are those of t and u;� the free �-variables of ��:t are those of t exept �;11



� the free �-variables of [�℄t are those of t together with �.Terms are used up to �-equivalene for both bound �-variables and bound �-variables.An environment will now be a pair of partial funtions with �nite domain from �Var to losuresand from �Var to staks (or equivalently a �nite set of pairs (x; ) and (�; �)).This allows to extend the KAM with the two new transitions:h��:t ; e ; � i save������! h t ; e+ (� = �) ; " ih [�℄t ; e ; " i restore������! h t ; e ; � i where e(�) = �These transitions add two new stopping ases for the KAM:� in a (restore) transition if the stak is not empty;� in a (restore) transition if the variable is not de�ned in the environment.It would be possible to de�ne the (restore) transition with a non-empty starting stak by justdisarding it. However this generalized transition an be simulated by replaing [�℄t with �Æ[�℄t(Æ =2 t) and our transitions appear as more atomi operations.Lemma 7 (Non-free variables)If (t; e) is a losure appearing in the state s and if s0 is obtained by replaing (t; e) by (t; e + (� =�)) in s with � not free in t, the �-terms that will appear in \instrution position" during theomputation of s0 in the KAM are the same as for the omputation from s.Proof: We follow the proof of lemma 4 with the same notations, and we extend the relations � s0 by allowing new delarations for non-free �-variables. Sine the transitions (push),(pop) and (deref ) ignore the de�nitions of �-variables in the environment, we just study thetwo remaining transitions:(save) If t0 = ��:u0 (we assume � not in e0 and e00 using �-equivalene) then s1 = hu0 ; e0 +(� = �0) ; " i and s0 ������! s01 with s01 = hu0 ; e00 + (� = �00) ; " i so that s1 � s01.(restore) If t0 = [�℄u0 and e0(�) = �1 then s1 = hu0 ; e0 ; �1 i and e00(�) is de�ned beause� is free in [�℄u0 and s � s0 so that s0 ������! s01 with s01 = hu0 ; e00 ; �01 i (wheree00(�) = �01). Sine � is free in [�℄u0, we easily verify that s1 � s01.We onlude as for lemma 4. 2Example 4 (push/save)As shown in example 1, the �-redution orresponds, in the KAM, to an interation between the(push) instrution whih adds a losure on the stak and the (pop) instrution whih reads a losurefrom the stak. We now have a new instrution whih reads the stak: the (save) instrution, andwe are going to look at the interation between (push) and (save).h (��:t)u ; e ; " ipush������! h ��:t ; e ; (u; e) :: " isave������! h t ; e+ (� = (u; e) :: ") ; " i12



We denote by ~u the sequene u1 : : : un and by �~u the stak (u1; e) :: � � � :: (un; e) :: ". Sine (save)ats on the whole stak, we have the more general behavior:h (��:t)~u ; e ; " i( push������!)n h ��:t ; e ; �~u isave������! h t ; e+ (� = �~u) ; " ibut this example is not loal in the following sense: it requires an empty starting stak and it looksat an arbitrarily long sequene of terms in the appliation. The loal ase would orrespond to thestarting state h (��:t)u ; e ; � i:h (��:t)u ; e ; � ipush������! h ��:t ; e ; (u; e) :: � isave������! h t ; e+ (� = (u; e) :: �) ; " iAs for the �-redution, we want to �nd a term t0 with the same behavior as (��:t)u to de�ne aredution rule. If we ontinue the exeution of the KAM desribed just above for h (��:t)u ; e ; � i,eah time we arrive to some term [�℄v, we have to restore the stak (u; e) :: � whih orrespondsto the evaluation of (v)u with the stak �, that is to the evaluation of [�℄(v)u where � = � is inthe environment.Consider t0 to be ��:t[[�℄(v)u=[�℄v℄ where t[[�℄(v)u=[�℄v℄ is obtained by substituting any sub-termof t starting by [�℄, thus of the shape [�℄v for some v, by the term [�℄(v)u (see setion 4.1 for aformal de�nition of this notion of substitution). We have:h ��:t[[�℄(v)u=[�℄v℄ ; e ; � isave������! h t[[�℄(v)u=[�℄v℄ ; e+ (� = �) ; " iAording to the previous disussion, the evaluations of h t ; e + (� = (u; e) :: �) ; " i andh t[[�℄(v)u=[�℄v℄ ; e+(� = �) ; " i are almost the same: in the �rst ase, eah time we have a [�℄v, weevaluate v with the stak (u; e) :: � and in the seond ase, eah time we have a [�℄v, it has beensubstituted by [�℄(v)u and we evaluate (v)u with the stak �, that is v with a stak (u; e0) :: �.Example 5 (save/restore)Putting together the two instrutions �� and [�℄ ontinues the omputation in the same onditionsexept that the stak is memorized in the environment with name �:h ��[�℄t ; e ; � isave������! h [�℄t ; e+ (� = �) ; " irestore������! h t ; e+ (� = �) ; � i3.2 Control primitivesTo establish a relation between the stak manipulations in the KAM and ontrol operators, we willshow how to simulate an extension of the �-alulus with \jumping" primitives in the extendedKAM. 13



We onsider the following toy extension of the �-alulus:t ::= x j �x:t j (t)t j label k : t j goto k with tSine we don't want to give the detailed operational semantis of this language and we just wantto be informal in this setion, the reader an have a look at [6, 20℄ for more formal presentationsof this kind of extensions of the �-alulus with ontrol primitives.The idea is the following: if we want to ompute label k : t in a ontext C, we start theomputation of t in the ontext C, and if we arrive to some goto k with u, we stop the exeutionand we start the omputation of u in the ontext C.We de�ne an embedding of this language in the language of instrutions of the KAM:x = x�x:t = �x:t(t)u = (t)ulabel k : t = (�f:��[�℄(f)�x:�Æ[�℄x)�k:tgoto k with u = (k)uWe an ompare the exeution of label k : t with the exeution of the KAM for the orrespond-ing term label k : t (this very partiular ase where we use a unique label de�ned at top level, anbe enoded with both exeptions and ontinuations even if they usually di�er [13, 16℄).h (�f:��[�℄(f)�x:�Æ[�℄x)�k:t ; e ; � ipush������! h �f:��[�℄(f)�x:�Æ[�℄x ; e ; (�k:t; e) :: � ipop������! h ��[�℄(f)�x:�Æ[�℄x ; e+ (f = (�k:t; e)) ; � isave������! h [�℄(f)�x:�Æ[�℄x ; e+ (f = (�k:t; e)) + (� = �) ; " irestore������! h (f)�x:�Æ[�℄x ; e+ (f = (�k:t; e)) + (� = �) ; � ipush������! h f ; e+ (f = (�k:t; e)) + (� = �) ; (�x:�Æ[�℄x; e0) :: � ideref������! h �k:t ; e ; (�x:�Æ[�℄x; e0) :: � ipop������! h t ; e+ (k = (�x:�Æ[�℄x; e0)) ; � iwhere e0 = e+(f = (�k:t; e))+(� = �). Aording to lemmas 4 and 7, we an replae (�x:�Æ[�℄x; e0)with (�x:�Æ[�℄x; � = �).Using the idea that the stak represents the urrent ontext of evaluation, this shows that inorder to ompute label k : t, we ompute t in the same ontext (with some appropriate upgrade ofthe environment). If k never ours during the omputation of t, the omputations of label k : tand t are the same, this orresponds to the ase where no jump to k is used in t. If k appears
14



during the omputation of t, the instrution (k)u appears in the KAM:h (k)u ; e0 ; �0 ipush������! h k ; e0 ; (u; e0) :: �0 ideref������! h �x:�Æ[�℄x ; � = � ; (u; e0) :: �0 ipop������! h �Æ[�℄x ; (� = �) + (x = (u; e0)) ; �0 isave������! h [�℄x ; (� = �) + (x = (u; e0)) + (Æ = �0) ; " irestore������! h x ; (� = �) + (x = (u; e0)) + (Æ = �0) ; � ideref������! h u ; e0 ; � iwhih means that we stop the evaluation of t, and we start the exeution of u in the initial ontext� as for label k : t.4 The ��-alulusWe are going to move from the KAM to a term language with rewriting, based on the instrutionlanguage of the mahine with �� and [�℄. This language is a very small variant of M. Parigot's��-alulus [14℄ (as given in [9℄).4.1 The languageWe have already de�ned the term language in setion 3.1 with its two binders � for the �-variablesand � for the �-variables. We now give the orresponding redution rules, extending �-redutionwith a rule for the � binder (as suggested in example 4):(��:t)u !� ��:t[[�℄(v)u=[�℄v℄The substitution t[[�℄(v)u=[�℄v℄ is one of the key ingredients of the ��-alulus, some intuitions havebeen given in example 4 and it is formally de�ned as follows:x[[�℄(v)u=[�℄v℄ = x(�x:t)[[�℄(v)u=[�℄v℄ = �x:(t[[�℄(v)u=[�℄v℄) with x =2 u using �-equivalene((t)t0)[[�℄(v)u=[�℄v℄ = (t[[�℄(v)u=[�℄v℄)t0[[�℄(v)u=[�℄v℄(��:t)[[�℄(v)u=[�℄v℄ = ��:(t[[�℄(v)u=[�℄v℄) with � 6= � and � =2 u using �-equivalene([�℄t)[[�℄(v)u=[�℄v℄ = [�℄(t[[�℄(v)u=[�℄v℄)u([�℄t)[[�℄(v)u=[�℄v℄ = [�℄(t[[�℄(v)u=[�℄v℄) if � 6= �Example 6 (�-substitution)With the de�nition of the new substitution:�f:��[�℄(f)�Æ[�℄�x:�Æ[�℄x[[�℄(v)u=[�℄v℄ = �f:��[�℄((f)�Æ[�℄�x:�Æ[�℄(x)u)u
15



In the spirit of �-redution, we an also add two other redution rules:[�℄��:t !� t[�=�℄��[�℄t !� t if � =2 tWe will use the notation u! v for u!� v or u !� v or u !� v.Proposition 5 (Churh-Rosser property)If t !� u and t!� v, there exists a ��-term w suh that u !� w and v !� w.Proof: See [14℄ slightly orreted in [17℄ for example. 2Example 4 shows how the KAM simulates the �-redution: the di�erene between h t ; e+(� =(u; e) :: �) ; " i and h t[[�℄(v)u=[�℄v℄ ; e + (� = �) ; " i ours in the exeution when some [�℄vappears as the urrent instrution. In the �rst ase, the stak (u; e) :: � is restored and exeutionontinues with v. In the seond ase, we have in fat [�℄(v)u and the stak � is restored butafter one transition u is pushed on the stak and exeution ontinues with v leading to the sameomputation.Example 7 (�-redution)The KAM simulates the �-redution if the starting state has an empty stak and ontains a dela-ration for the variable � in the environment:h [�℄��:t ; e+ (� = �) ; " irestore������! h ��:t ; e+ (� = �) ; � isave������! h t ; e+ (� = �) + (� = �) ; " iExample 8 (�-redution)The simulation of the �-redution orresponds to the partiular ase of example 5 where � =2 t:h ��[�℄t ; e ; � isave������! h [�℄t ; e+ (� = �) ; " irestore������! h t ; e+ (� = �) ; � iand, aording to lemma 7, the omputation follows on like with the state h t ; e ; � i.Due to the modi�ation of the de�nition of environments, we have to extend the notion ofexpansion of states:� if  = (t; e) is a losure with e = f(x1; 1); : : : ; (xn; n); (�1; �1); : : : ; (�m; �m)g, the ��-term eor tfeg is t[ e1=x1 ; : : : ;fn=xn ℄[[�1℄(v)f�1=[�1℄v; : : : ; [�m℄(v)f�m=[�m℄v℄.The weak head redution of the ��-alulus allows to redue redexes (for the �-, �- or �-redutions) under appliations but also under some �� onstrutions at the beginning of the termfollowed by some [�℄ with � bound. This means that the redex r an be redued in t only if t hasthe shape: ��1 : : : ��n[�1℄ : : : [�k℄(r)u1 : : : upwith n; k; p � 0 and �j 2 f�1; : : : ; �ng for 1 � j � k.A weak head normal form is a normal form for this redution proedure, that is a ��-term ofone of the following shapes: 16



� ��1 : : : ��n[�1℄ : : : [�k℄[℄t with n � 0, k � 0, �1, ..., �k bound and  free, in this ase  isalled the head �-variable of the weak head normal form;� ��1 : : : ��n[�1℄ : : : [�k℄([℄t)u1 : : : up with n � 0, k � 0, p > 0 and �1, ..., �k bound, in thisase  is alled the head �-variable;� ��1 : : : ��n[�1℄ : : : [�k℄(x)u1 : : : up with n � 0, k � 0, p � 0 and �1, ..., �k bound, in this asex is alled the head �-variable;� ��1 : : : ��n[�1℄ : : : [�k℄�x:t with n � 0, k � 0 and �1, ..., �k bound, and we don't de�ne headvariables in this ase.Proposition 6 (Simulation)If an exeution of the mahine goes from the state s to the state s0, the ��-term es redues byweak head redution to a term u suh that es0 is obtained by removing some �� and [�℄ in thebeginning of u. This simulation is strit in the ase of (save) transitions with a non-empty stak:if s save������! s0 and the stak of s is not empty then es!� u.Proof: We look at the two new transitions:(save) If the starting state is s = h��:t ; e ; � i, we have es = (��:tfeg)e� whih redues to��:tfeg[[�℄(v)e�=[�℄v℄ (by n steps if � ontains n losures) and s0 = h t ; e + (� = �) ; " iwith es0 = tfe+ (� = �)g = tfeg[[�℄(v)e�=[�℄v℄, and the di�erene is a �� in the beginning.(restore) If the starting state is s = h [�℄t ; e ; " i with e(�) = �, we have es = ([�℄t)feg =[�℄(tfeg)e� and s0 = h t ; e ; � i with es0 = (tfeg)e�, and the di�erene is a [�℄ in thebeginning. 2Corollary 6.1 (Weak head normal form)If the KAM starts from the state s and stops in the state s0, then es0 is the weak head normal formof es (up to some �� and [�℄ in the beginning).Proof: Using proposition 6, we know that es redues to es0 by weak head redution (up to some�� and [�℄ in the beginning). We just have to show that if the KAM stops in the state s0, es0is a weak head normal form. We have two new possible ases with respet to orollary 3.1:� s0 = h [�℄u ; e ; � i with � 6= ", so that es0 = ([�℄u0)e� (for some u0) is a weak head normalform;� s0 = h [�℄u ; e ; " i with e(�) unde�ned, so that es0 = [�℄(ufeg) is also a weak headnormal form. 24.2 Simple typesOur goal is to build a typing system for the ��-alulus out of the KAM, starting with an intuitivetyping of the mahine. We look at the following sequene:h ��[�℄t ; � = �0 ; � isave������! h [�℄t ; (� = �0) + (� = �) ; " irestore������! h t ; (� = �0) + (� = �) ; �0 i17



Let A be the type of t, the last state tells us that �0 must have type A?. To ensure the ohereneof the environment, the type of � must be in orrespondene with the type of �0, and if we wantto type �-variables with simple types, the only natural andidate is A. The middle state entailsthat [�℄t must have an atomi type sine the orresponding stak is empty, we make the partiularhoie of ? for this purpose, so that if t has type A and � has type A, [�℄t has type ?, this an besummarized by the informal judgments: t : A [:℄[�℄t : ? and � : Athe typing delaration for � is required in the seond judgment sine � is free in [�℄t.Let B be the type of �, aording to the middle state, � has type B?, this entails in the �rststate that ��[�℄t must have type B. We summarize it by:t : ? and � : B mu��:t : BIf we try to ompare these informal rules with the (lam) rule written in the same way:x : A and t : B lam�x:t : A! Bwe an see that the type of x appears negatively in the type of t whih justi�es logially the fatthat the typing delaration for x in a typing judgment of the �-alulus appears on the left-handside of `. Whereas the types of the �-variables in our informal rules appear in positive ourrenein the type of the term, this leads us to put typing delarations for �-variables in the right-handside of the `, and to introdue typing judgments of the shape:x1 : A1; : : : ; xn : An ` t : A j �1 : B1; : : : ; �m : Bm or � ` t : A j �The formal typing rules for �� and [�℄ follow from these remarks:� ` t : A j � [:℄� ` [�℄t : ? j � [ f� : Ag � ` t : ? j � mu� ` ��:t : A j � n f� : AgDue to these rules, the atom ? has now a di�erent status from �, ...Lemma 8 (Typing ontext and free variables)If � ` t : A j � is derivable, then � ontains exatly one typing delaration for eah free �-variableof t and � ontains exatly one typing delaration for eah free �-variable of t.Example 9 (Call/ and Peire's law)The ��-term we have studied in setion 3.2 is typable of type ((A ! B)! A)! A:
varf : (A ! B)! A ` f : (A! B)! A j varx : A ` x : A j [:℄x : A ` [�℄x : ? j � : A mux : A ` �Æ[�℄x : B j � : A lam` �x:�Æ[�℄x : A! B j � : A appf : (A ! B)! A ` (f)�x:�Æ[�℄x : A j � : A [:℄f : (A ! B)! A ` [�℄(f)�x:�Æ[�℄x : ? j � : A muf : (A ! B)! A ` ��[�℄(f)�x:�Æ[�℄x : A j lam` �f:��[�℄(f)�x:�Æ[�℄x : ((A ! B)! A)! A j18



The Curry-Howard orrespondene gives the relation between typing derivations in the simplytyped �-alulus and intuitionisti logi. T. GriÆn [8℄ has disovered that ontrol operators inprogramming languages an be typed with lassial (not intuitionistially provable) formulas, al-lowing to extend the Curry-Howard orrespondene to lassial logi. A lot of work followed thisidea in partiular the introdution of the ��-alulus [14℄ (but also [6, 7, 4℄). The �-terms orre-spond to proofs in intuitionisti natural dedution and the previous derivation shows that ��-termsorrespond to derivations in lassial logi (sine intuitionisti logi with Peire's law is lassiallogi).Lemma 9 (Substitution)If � ` t : A j �; � : B ! C and �0 ` u : B j �0 are derivable and � [ �0 and � [�0 are de�ned,then � [ �0 ` t[[�℄(v)u=[�℄v℄ : A j � [�0; � : C.Proposition 7 (Subjet redution)If � ` t : A j � is derivable and t ! t0, then �0 ` t0 : A j �0 is derivable where �0 (resp. �0)is the subset of � (resp. �) ontaining only the typing delarations for the free �-variables (resp.�-variables) of t0.Proof: See [14℄. 2Proposition 8 (Strong normalization)If � ` t : A j � is derivable, there is no in�nite sequene of redutions starting from t.Proof: See [15℄. 24.3 Types for the KAMWe extend all the typing judgments with a ontext in the right-hand side and typing judgmentsfor environments beome � `env e : f� j �g j � where � ontains typing delarations for the�-variables de�ned in e.The unique new rule is the following one:� `env e : f� j �g j � �0 `stak � : A? j �0� [ �0 `env e+ (� = �) : f� j �; � : Ag j � [�0the other ones are extended in the natural way with right-hand side ontexts.Lemma 10 (Typing and expansion)If � `state s j � is derivable, there exists an atom X suh that �0 ` es : X j �0 is derivable where �0(resp. �0) is the subset of �(resp. �) ontaining only the typing delarations for the free �-variables(resp. �-variables) of es.Proof: As for lemma 6, we �rst prove the losure ase: if � `los (t; e) : A j � is derivable, then�0 ` tfeg : A j �0. We use the same notations so that �1 ` t : A j �1 and �2 `env e : f� j�g j �2, and we just prove the ase e = e0 + (� = �). From �2 `env e : f� j �g j �2 wean dedue �2 = �02 [ �002, �2 = �02 [�002 and � = �0; � : B with �02 `env e0 : f� j �0g j �02and �002 `stak � : B? j �002. If � = 1 :: � � � :: n :: " and B = B1 ! � � � ! Bn ! X, wehave for eah 1 � i � n, �002;i `los i : Bi j �002;i with �002 = �002;1 [ � � � [ �002;n and by indutionhypothesis �0002;i ` ei : Bi j �0002;i. By indution hypothesis we an dedue from �1 ` t : A j �1and �02 `env e0 : f� j �0g j �02 that � ` tfe0g : A j � (for some � � (�1 n �) [ �02 and forsome � � (�1 n �0) [�02). If � is not free in t this is enough to onlude and if � is free int, � = �0; � : B so that � [ �0002 ` tfe0g[[�℄(v)e�=[�℄v℄ : A j �0 [ f� : Xg [�0002 by lemma 9.If � `state s j � is derivable with s = h t ; e ; � i, we easily onlude with the losure ase. 219



Proposition 9 (Subjet redution)The evaluation of the KAM preserves typing, i.e. if � `state h t ; e ; � i j � is derivable and if thefollowing transition is valid: h t ; e ; � i ������! h t0 ; e0 ; �0 ithen �0 `state h t0 ; e0 ; �0 i j �0 where �0 (resp. �0) is the subset of � (resp. �) ontaining only thetyping delarations for the free �-variables (resp. �-variables) of h t0 ; e0 ; �0 i.Proof: If � `state h t ; e ; � i j � is derivable, we must have � = (�1 n �) [ �2 [ �3 and� = (�1n�)[�2[�3 with �1 ` t : A j �1, �2 `env e : f� j �g j �2 and �3 `stak � : A? j �3.The proof for the transitions (push), (pop) and (deref ) is almost the same as for proposition 4,and we just give the two other ases:(save) We have t = ��:t0, this entails �1 = �01 n f� : Ag with �1 ` t0 : ? j �01, and we anderive:�1 ` t0 : ? j �01 �2 `env e : f� j �g j �2 �3 `stak � : A? j �3�2 [ �3 `env e+ (� = �) : f� j �; � : Ag j �2 [�3(�1 n �) [ �2 [ �3 `los (t0; e+ (� = �)) : ? j (�01 n (� [ f� : Ag)) [�2 [�3 `stak " : > j(�1 n �) [ �2 [ �3 `state h t0 ; e+ (� = �) ; " i j (�01 n (� [ f� : Ag)) [�2 [�3with �01 n (� [ f� : Ag) = (�01 n f� : Ag) n� = �1 n� and s and s0 have the same freevariables.(restore) We have t = [�℄t0 and � = ", this entails �1 = �01; � : B and A = ?, and �3 and �3 areempty with �1 ` t0 : B j �01. Moreover e = e0 + (� = �0) so that �2 = �02 [ �002, �2 =�02 [�002 and � = �0; � : B with �02 `env e0 : f� j �0g j �02 and �002 `stak �0 : B? j �002,and we an derive:�1 ` t0 : B j �01 �2 `env e : f� j �g j �2(�1 n �) [ �2 `los (t0; e) : B j (�01 n�) [�2 �002 `stak �0 : B? j �002(�1 n �) [ �2 `state h t0 ; e ; �0 i j (�01 n�) [�2and s and s0 have the same free �-variables and their free �-variables an only di�er on� if � =2 t0. 2Corollary 9.1 (Termination)If � `state s j � is derivable, the KAM, starting from the state s, stops in a state hx ; e0 ; �0 iwhere x is the head �-variable of the weak head normal form of es or in a state h [�℄u ; e0 ; " i where� is the head �-variable of the weak head normal form of es.Proof: We �rst show that the mahine stops. The size jej of an environment e is now the sumof the sizes of its losures plus the sum of the sizes of its staks, and the size jsj of a stak sis the sum of the sizes of its losures (with j"j = 0). The transitions whih don't orrespondto a redution step of the term assoiated to the state are: (push), (deref ), (restore) and also(save) when the stak is empty, but we an't have an in�nite sequene of suh transitions sinethey derease the value of (jej; jtj). We an dedue that an in�nite sequene of transitions ofthe mahine ontains an in�nite number of transitions (pop) and (non-degenerated) (save) so20
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