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Abstract

Starting with the idea of reflexive objects in Selinger’s control categories, we define three different
denotational models of Parigot’s untyped lambda-mu calculus. The first one is built from an intersection
types system for the lambda-mu calculus leading to a generalization of Engeler’s model of the untyped
lambda calculus. The second model introduces correlation spaces (coming from Girard’s model of classical
logic) in the usual coherent model of the untyped lambda calculus. The third model is simply obtained
by showing that Ker-Nickau-Ong’s game model of the untyped lambda calculus is also a model of the
untyped lambda-mu calculus.

1 Introduction

The study of models of the λ-calculus has been a major subject in the study of the λ-calculus and in the
development of the Curry-Howard correspondence. Starting with the work of D. Scott [Sco72], a huge number
of contributions addressed questions like the construction of models, the general characterization of models
(in relation with combinatory algebras and categories), the comparison of models, the study of the λ-theories
induced by these models, the relations with properties of syntax, ... In this way, domain theory led to the
discovery of some important properties of terms, like continuity, stability, sequentiality, strong stability, ...,
giving an abstract way of describing notions of computation.

In the beginning of the 90’s, the work of T. Griffin [Gri90] has allowed to go through one of the main
limitations of the Curry-Howard correspondence: intuitionism. He discovered that control operators such as
call/cc in Scheme can be typed with classical (non intuitionistic) tautologies as Peirce’s law. This has led
to a lot of work on both the computer science and the logic sides for developing extensions of the relation
between the λ-calculus and minimal natural deduction. Among them, M. Parigot’s λµ-calculus [Par92]
appears as a very satisfactory approach by adding a new atomic construction µα[β]t to the λ-calculus which
corresponds to right-hand side structural rules of classical logic. From a typing judgments point of view, this
corresponds to move from intuitionistic typing judgments x1 : A1, . . . , xn : An ` t : A of the λ-calculus to
classical typing judgments x1 : A1, . . . , xn : An ` t : A | α1 : B1, . . . , αm : Bm where the αis are µ-variables
(also called channel names).

In the spirit of cartesian closed categories as models of the simply typed λ-calculus, categorical definitions
of models of the simply typed λµ-calculus have been given. However this has shown to be a long time work
and after L. Ong’s work [Ong96], M. Hofmann-T. Streicher’s work [HS02] and various others, P. Selinger
introduced, ten years after T. Griffin’s paper, the notion of control category [Sel01] which seems to be the
most satisfactory answer. Control categories are described as extensions of cartesian closed categories with
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a premonoidal structure [PR97] (endowing each object with a structure of monoid) which interacts in the
appropriate way with the cartesian structure.

This leads to the current situation: models of the simply typed λ-calculus, of the untyped λ-calculus and
of the simply typed λµ-calculus are well understood, but what about models of the untyped λµ-calculus? As
far as we know, this question has been almost ignored. In the spirit of extending the Curry-Howard corre-
spondence to classical features, it seems very important to have a good understanding of the computational
behavior of the λµ-calculus. At some point, this requires to move to more abstract structures as denota-
tional models of the λµ-calculus. A good knowledge in the untyped λµ-calculus should allow to go outside
the simply typed world and to look at more general programming constructions in a setting with control
operators: recursion, more general typing systems (subtyping, recursive types, ...), ... Important models
of complex typed systems are built from models of the underlying untyped calculus: realizability models,
models of XML related programming languages, ... In particular, using models of the untyped λµ-calculus,
it could be possible to apply J.-L. Krivine’s realizability [Kri01] in order to build models of powerful typed
systems and even of ZF set theory.

Moving the knowledge about models of the untyped λµ-calculus at the level of what we know about the
λ-calculus is a huge piece of work. This paper only tries, as a first step in this seemingly new area, to make
clear how some usual constructions of models of the λ-calculus can be modified and extended to give (what
we think to be) the first models of the untyped λµ-calculus. As a kind of general setting, we show that the
notion of reflexive object in cartesian closed categories can be applied in control categories to move from
models of the untyped λ-calculus to models of the untyped λµ-calculus. This shows that the idea of finding
a model of a untyped calculus from a model of the associated simply typed one through an equation of the
kind D = D → D is still valid for the λµ-calculus (a similar idea has been applied in a syntactical setting to
build proof-nets for the untyped λµ-calculus [Lau03]).

Our first construction consists in the extension of an intersection types system [CDCV81, BCDC83] to
the λµ-calculus. The key idea is to add a “union” construction t. The intersection u is related with the
comma on the left-hand side of typing judgments of the λ-calculus, since it allows to give a single common
type A u B to two different occurrences of a variable x with distinct types A and B. In the same spirit,
union is related with the comma on the right-hand side of typing judgments of the λµ-calculus, allowing to
give a common type AtB to two different occurrences of a channel name α with distinct types A and B. In
the λ-calculus we have to deal with interactions between→ and u. Here things get a little more complicated
since we have possible interactions between →, u and t. Using the idea that we can restrict types to the
shape A1 u · · · u An → A in the λ-calculus, we use types restricted to unions of types of this shape. This
leads to three levels of types in the typing system and to three levels of “power-sets” in the definition of
Engeler’s model (instead of two in the usual case).

This typing system leads to a very simple and concrete model of the λµ-calculus by a natural extension of
Engeler’s model. Moreover by applying the usual techniques of intersection types, we get characterizations of
solvable terms and normalizable terms of the untyped λµ-calculus. This is the main syntactical contribution
of this paper.

The only related work we are aware of concerning intersection types for classical extensions of the λ-
calculus has been carried out independently by D. Dougherty, S. Ghilezan and P. Lescanne [LGD03]. They
give a typing system for the λµµ̃-calculus [CH00] which characterizes strongly normalizable terms. However,
in their system, typing is not preserved by expansion and cannot lead to a denotational model. The reason
for that probably comes from the simplicity of their system which only uses→ and u. It would be interesting
to see the precise relation between these systems. It might be the case that a system related to theirs could
be obtained by collapsing t and u in ours.

The introduction of stability [Ber78] in models of the λ-calculus by G. Berry has been followed by the
definition of the model of coherence spaces by J.-Y. Girard [Gir86, Gir87]. This model, which can by
easily presented as an interpretation of terms as cliques in a reflexive graph, has been used for modeling
both the untyped λ-calculus and a propositional sequent calculus for classical logic LC [Gir91] (LC and the
simply typed λµ-calculus are two strongly related systems born together in Paris around 1991). Using both
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constructions, we show that merging them properly allows us to build a coherent model of the untyped λµ-
calculus (which validates also the ηθ-reduction). The key point is to introduce, at each step of the inductive
construction of the untyped model, a monoid structure corresponding to right-hand side structural rules of
classical logic. The model of LC (correlation spaces) which is based on this monoid structure ensures us that
all the constructions preserve monoids. From a categorical point of view, we get a reflexive object in the
control category of correlation spaces. We do not claim that this section introduces very new ideas. Our
goal is just to show how we should proceed if we want to put together a model of the untyped λ-calculus
and a model of the simply typed λµ-calculus to build a model of the untyped λµ-calculus.

Game models have been very important for the semantics of extensions of the simply typed λ-calculus by
giving the first fully abstract models. The model we give for the untyped λµ-calculus is mainly an example
of what we can do with game models. It is really a direct application of what we learned about game models
of the untyped λ-calculus [KNO02] and about game models of the simply typed λµ-calculus [Lai97, Lau02,
Lau05]. These two directions happen to fit very well together and to immediately give a model of the untyped
λµ-calculus compatible with ηθ-reduction.

Remark: In the whole paper, we will use the word “classical” to mean “related with classical computation”
that is with the λµ-calculus (as opposed to “intuitionistic” for the λ-calculus). This has not to be confused
with “usual”!

2 Lambda-mu calculus

While working on deduction systems for classical logic (free deduction, ...), M. Parigot introduced an exten-
sion of natural deduction for classical logic based on sequents with more than one formula on the right-hand
side. Under the Curry-Howard correspondence, he extracted the underlying extension of the λ-calculus: the
λµ-calculus [Par92] which can be described as both a typed and an untyped calculus.

Terms. Given a set of λ-variables x, y, ... and a set of µ-variables α, β, ... The λµ-terms are presented as
an extension of the λ-calculus syntax with a new construction:

t ::= x | λx.t | (t t) | µα[β]t
n ::= [β]t

where µ is a binder for µ-variables, so that β is free in µα[β]t if and only if α 6= β and α is never free in
µα[β]t. Terms are considered up to α-equivalence on both λ and µ variables.

The intermediary notation n is often useful. These terms are called named terms and are such that if n
is a named term, µα.n is a λµ-term.

Reduction rules. Together with the usual β-reduction, two new reduction rules are added in the λµ-
calculus:

(λx.t u)→β t[
u/x]

(µα.n u)→µ µα.n[[α](v u)/[α]v]

[β]µα.n→ρ n[β/α]

The µ-reduction is the main novelty of the λµ-calculus. A simple computational interpretation is to say
that an argument u given to a term µα.n is propagated to all the subterms listening on the channel α (those
starting with [α]). The substitution t[[α](v u)/[α]v] (which could also be denoted by t[[α]( u)/[α] ]) is obtained
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by replacing any subterm v of t under a [α] by (v u). It is inductively given by:

x[[α](v u)/[α]v] = x

(λx.t)[[α](v u)/[α]v] = λx.(t[[α](v u)/[α]v])

(t t′)[[α](v u)/[α]v] = (t[[α](v u)/[α]v] t
′[[α](v u)/[α]v])

(µβ[α]t)[[α](v u)/[α]v] = µβ[α](t[[α](v u)/[α]v] u)

(µβ[γ]t)[[α](v u)/[α]v] = µβ[γ](t[[α](v u)/[α]v])

with β 6= α and γ 6= α
The ρ-reduction is a simple simplification rule in order to remove successions µα[β]µα′[β′] in terms. The

substitution t[β/α] is the natural notion of substitution of a free µ-variable by another one.
We denote by → the union of the three relations →β , →µ and →ρ.

Proposition 1 (Church-Rosser [Par92])
The reduction rules of the λµ-calculus are confluent.

Definition 1 (Solvable term)
A head normal form is a term of the shape:

λ . . . λµα1[β1] · · ·λ . . . λµα2[β2] · · · (x t1 . . . tn)

without any succession µαi[βi]µαi+1[βi+1].
A λµ-term is solvable if it reduces into a head normal form.

Equational theories. The equivalence relation =βµρ is the smallest congruence containing the reflexive
symmetric transitive closure of →.

=βηµρθ is obtained by extending =βµρ with the following two equations:

λx.(t x) =η t x /∈ t
µα[α]t =θ t α /∈ t

where θ is the natural rule of the λµ-calculus corresponding to η.
Our goal is not to study the extension of the theory of λ-algebras, λ-models, ... [Bar84]. We just give a

very simple notion of models of the λµ-calculus and we will see a natural categorical way of building them
in the spirit of what happens for the λ-calculus.

Definition 2 (Denotational model)
A pair (M, J.K) is a denotational model (or just model) (resp. η-model) of the λµ-calculus if M is a set, J.K
is a function from the set of closed λµ-terms into M and t1 =βµρ t2 ⇒ Jt1K = Jt2K (resp. t1 =βηµρθ t2 ⇒
Jt1K = Jt2K).

3 Categorical approach

We show how the notion of reflexive objects in cartesian closed categories (which gives models of the untyped
λ-calculus) can be easily applied to control categories and to the λµ-calculus.

Definition 3 (Control category [Sel01])
A category (C,×,>,→,`,⊥) is a control category if:

• (C,×,>,→) is a cartesian closed category;

• (C,`,⊥) is a symmetric premonoidal category [PR97];
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• each object A has a given `-monoidal structure (A,wkA, ctrA) (with wkA ∈ C(⊥, A) and ctrA ∈
C(A`A,A));

• ` distributes over ×;

• there exists a natural isomorphism str between (A→ B) ` C and A→ (B ` C);

• three coherence conditions on morphisms from (A → B) ` (C → D) to C → A → (B ` D), from
(A→ B) ` (A→ B) to A→ B and from ⊥ to A→ B (see [Sel01]) are satisfied.

The following notations for canonical morphisms, coming from the previously described structures, will
be useful:

(A→ B)×A eval−−→ B

A
∆A−−→ A×A

A1 × · · · ×An
πni−−→ Ai

A`B
commut`−−−−−−→ B `A

⊥ wkA−−−→ A

A`A
ctrA−−−→ A

A` (B × C)
distr−−−→ (A`B)× (A` C)

A
f̃−→ (B → C) if (A×B)

f−→ C

A morphism f from A to B in a control category is central if for any morphism g from C to D, (f `
idD) ◦ (idA ` g) = (idB ` g) ◦ (f ` idC) from A` C to B `D.

Definition 4 (Reflexive object)
A reflexive object (resp. η-reflexive object) in a control category C is a triple (O, i, j) where O is an object, i
is a morphism from O → O to O and j is a central morphism from O to O → O and j ◦ i = idO→O (resp.
j ◦ i = idO→O and i ◦ j = idO).

Proposition 2 (Categorical models)
A reflexive object (resp. η-reflexive object) O in a (locally small) control category C gives a model (resp. η-
model) (C(>, O), J.KO) of the λµ-calculus (where J.KO is obtained from the usual interpretation of the simply
typed λµ-calculus in C [Sel01], see table 1).

Proof: A λµ-term t with its free λ-variables among Γ = x1, . . . , xn and its free µ-variables among ∆ =
α1, . . . , αm is interpreted as a morphism JtKΓ·∆ from O×· · ·×O (n times) to O` · · ·`O (m+1 times).

We adapt the usual interpretation of the simply typed λµ-calculus in control categories [Sel01] as we
would do for the λ-calculus with cartesian closed categories (see table 1, where we omit the isomor-
phisms related with units, commutativity and associativity except when they are particularly crucial).

Using the fact that a control category is a η-model of the simply typed λµ-calculus, we can show:

• J(λx.t u)KΓ·∆ = Jt[u/x]KΓ·∆ with j ◦ i = idO→O

• J(µα.n u)KΓ·∆ = Jµα.n[[α](v u)/[α]v]KΓ·∆ with j central

• Jµγ[β]µα.nKΓ·∆ = Jµγ.n[β/α]KΓ·∆

• Jλx.(t x)KΓ·∆ = JtKΓ·∆ if x /∈ t with i ◦ j = idO

• Jµα[α]tKΓ·∆ = JtKΓ·∆ if α /∈ t

If t is a closed λµ-term, we define JtKO = JtK∅·∅ ∈ C(>, O). We have just shown the result: (C(>, O), J.KO)
is a model (resp. η-model) if O is a reflexive (resp. η-reflexive) object in C. 2
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JxiKΓ·∆ =
∏
n

O
πni−−→ O

O`∑
m wkO−−−−−−−−→ O `∑

m

O

Jλx.tKΓ·∆ =
∏
n

O
J̃tK(x,Γ)·∆−−−−−−→ (O →

∑
m+1

O)
str−1

−−−→ (O → O) `∑
m

O
i`∑

m O
−−−−−−→ O `∑

m

O

J(t u)KΓ·∆ =
∏
n

O
∆∏

n O−−−−→
∏
n

O ×
∏
n

O
JtKΓ·∆×JuKΓ·∆−−−−−−−−−→

∑
m+1

O ×
∑
m+1

O

(j`∑
m O)×

∑
m+1 O−−−−−−−−−−−−−−→ ((O → O) `∑

m

O)× (O `∑
m

O)
distr−1

−−−−→ ((O → O)×O) `∑
m

O
eval`∑

m O
−−−−−−−−→ O `∑

m

O

Jµα[α]tKΓ·∆ =
∏
n

O
JtKΓ·(α,∆)−−−−−−→ O `O `∑

m

O
ctrO`∑

m O
−−−−−−−−→ O `∑

m

O

Jµα[β]tKΓ·(β,∆) =
∏
n

O
JtKΓ·(α,β,∆)−−−−−−−→ O `O `O `∑

m

O
commut``∑

m+1 O−−−−−−−−−−−−−→ O `O `O `∑
m

O
O`ctrO`∑

m O
−−−−−−−−−−→ O ` ∑

m+1

O

with
∏
nO = O × · · · ×O (n times) and

∑
mO = O ` · · ·`O (m times).

Table 1: Interpretation of the untyped λµ-calculus in a control category with a reflexive object

4 A continuous model: Intersection types

In order to define a denotational model of the untyped λµ-calculus, we are going to define a typing system for
untyped terms which verifies both subject reduction and subject expansion. Such a system defines a model
by associating with each term the set of its possible types. As usual with the λ-calculus, we use intersection
types to make typable a reasonable subset of λµ-terms. The corresponding model is an extension of Engeler’s
model [Kri93] of continuous functions.

4.1 Intersection types for the λµ-calculus

We develop an intersection types system [CDCV81, BCDC83] for the λµ-calculus, based on the introduction
of a union t connective for dealing with channel names of λµ-terms as the intersection u deals with λ-
variables.

If X denotes atomic types, types are of three kinds:

arrow types A ::= X | I → A
intersection types I ::= Ω | U u · · · u U
union types U ::= A t · · · tA

and a typing judgment has the shape x1 : I1, . . . , xn : In ` t : U | α1 : U1, . . . , αm : Um. Types are considered
up to commutativity, idempotency and unit element for u and t (U u V = V u U , U u U = U , U u Ω = U ,
A tB = B tA, A tA = A).

If U = A1 t · · · t Ap (p > 0) and I are two types, we use the notation U ∈ I to say that U is one
of the components of I (i.e. U /∈ Ω and U ∈ U1 u · · · u Uq if U = Uk), and the notation I → U for
(I → A1) t · · · t (I → Ap) (well defined since unions, as opposed to intersections, are never empty).

Typing rules are given on table 2.
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var
Γ, x : I ` x : U | ∆ if U ∈ I Γ, x : I ` t : U | ∆

lam
Γ ` λx.t : I → U | ∆

Γ ` t : (I1 → A1) t · · · t (Ip → Ap) | ∆ (· · · Γ ` u : U | ∆ · · · ∀U ∈ I1 u · · · u Ip) app
Γ ` (t u) : A1 t · · · tAp | ∆

Γ ` t : V | ∆, α : U
mu1

Γ ` µα[α]t : V t U | ∆
Γ ` t : W | ∆, α : U, β : V

mu2
Γ ` µα[β]t : U | ∆, β : W t V

if α 6= β

Table 2: Typing rules for intersection types

Remark: The last two rules of table 2 are equivalent to:

Γ ` t : V | ∆, α : U

Γ ` [α]t | ∆, α : V t U
Γ ` n | ∆, α : U

Γ ` µα.n : U | ∆

The three following lemmas are proved by induction on the typing derivation for t:

Lemma 1 (λ-substitution)
If Γ, x : I ` t : U | ∆ and for each V ∈ I, Γ ` u : V | ∆ (x /∈ u), then Γ ` t[u/x] : U | ∆.

Lemma 2 (ρ-substitution)
If Γ ` t : U | ∆, β1 : V1, β2 : V2 then Γ ` t[β/β1

, β/β2
] : U | ∆, β : V1 t V2 (β /∈ ∆).

Lemma 3 (µ-substitution)
If Γ ` t : U | ∆, α : (I1 → A1) t · · · t (Ip → Ap) and for each V ∈ I1 u · · · u Ip, Γ ` u : V | ∆ (α /∈ u), then
Γ ` t[[α](v u)/[α]v] : U | ∆, α : A1 t · · · tAp.

Theorem 1 (Subject equivalence)
If t1 =βµρ t2 and Γ ` t1 : U | ∆ then Γ ` t2 : U | ∆.

Proof: We use lemmas 1, 2 and 3 to prove the preservation of typing by β, ρ and µ reduction.

We prove by induction on the size of a derivation of Γ ` t[u/x] : U | ∆ that we can find an intersection
type I such that Γ, x : I ` t : U | ∆ and for each element V of I, Γ ` u : V | ∆. We then conclude that
Γ ` (λx.t u) : U | ∆.

We prove by induction on the size of a derivation of Γ ` t[β/α] : V | ∆, β : U that U = U1 t U2 and
Γ ` t : V | ∆, β : U1, α : U2. We then show that Γ ` n[β/α] | ∆ entails Γ ` [β]µα.n | ∆ (with the
modified µ-rules of the preceding remark).

We prove by induction on the size of a derivation of Γ ` t[[α](v u)/[α]v] : U | ∆, α : V that V =
A1 t · · · t Ap, Γ ` t : U | ∆, α : (I1 → A1) t · · · t (Ip → Ap) and for each element W of I1 u · · · u Ip,
Γ ` u : W | ∆. And we conclude that Γ ` µα.n[[α](v u)/[α]v] : U | ∆ entails Γ ` (µα.n u) : U | ∆. 2

Corollary 1 (Intersection model)
Let U be the set of union types, and for any closed term t JtKU = {U ∈ U | ` t : U | }, (U , J.KU ) is a model
of the λµ-calculus.

4.2 Classical Engeler’s model

Engeler’s model of the λ-calculus is strongly related with intersection types for the λ-calculus. In the same
spirit, starting with our generalized intersection types with unions, we build the required hierarchy of sets.
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JxkKE(i1, . . . , in) =

{
(u, u1, . . . , um)

∣∣∣∣ u ∈ ik ∧ (u1, . . . , um) ∈ Um
}

Jλx0.tKE(i1, . . . , in) =

{(
{(i0, a1), . . . , (i0, ap)}, u1, . . . , um

) ∣∣∣∣ i0 ∈ Pfin(U)

∧
(
{a1, . . . , ap}, u1, . . . , um

)
∈ JtKE(i0, i1, . . . , in)

}

J(t t′)KE(i1, . . . , in) =

{(
{a1, . . . , ap}, u1, . . . , um

) ∣∣∣∣ ∃(j1, . . . , jp) ∈ Pfin(U)p

(
{(j1, a1), . . . , (jp, ap)}, u1, . . . , um

)
∈ JtKE(i1, . . . , in) ∧ ∀u ∈

⋃
1≤k≤p

jk , (u, u1, . . . , um) ∈ Jt′KE(i1, . . . , in)

}

Jµαk[αk]tKE(i1, . . . , in) =

{
(u ∪ uk, u1, . . . , uk−1, uk+1, . . . , um)

∣∣∣∣ (u, u1, . . . , um) ∈ JtKE(i1, . . . , in)

}

Jµαk[αk′ ]tKE(i1, . . . , in) =

{
(uk, u1, . . . , uk−1, uk+1, . . . , uk′−1, uk′ ∪ u, uk′+1, . . . , um)

∣∣∣∣ (u, u1, . . . , um) ∈ JtKE(i1, . . . , in)

}

Table 3: Interpretation of terms in classical Engeler’s model

Let S be a set of atoms, we define:

A ::= S | Pfin(P?fin(A))×A
U = P?fin(A)

E = P(U)

where P(X ), Pfin(X ) and P?fin(X ) are, respectively, the set of the subsets of X , of the finite subsets of X ,
and of the non-empty finite subsets of X . The definition of A directly comes from the grammar of types with
Pfin(.) corresponding to the construction of intersections and P?fin(.) to the construction of unions (required
to be non-empty).

If the free variables of t are contained in {x1, . . . , xn, α1, . . . , αm}, we define the continuous function JtKE
from P(U)n into P(Um+1) as in table 3.

In the particular case of the λ-calculus, we can restrict U to singletons and we can consider only m = 0.
In this way, we get back the usual Engeler’s model of the λ-calculus.

If we consider the intersection types system with types built with the set S as atomic types, we have a
one-to-one correspondence between arrow types and elements of A, between union types and elements of U
and between intersection types and elements of Pfin(U). With the appropriate adapted notations we then
have:

Proposition 3 (Engeler and intersection types)
For any λµ-term t, JtKE(I1, . . . , In) = {(U,U1, . . . , Um) | x1 : I1, . . . , xn : In ` t : U | α1 : U1, . . . , αm : Um}.

Proof: By a simple induction on t with tables 2 and 3. 2

Corollary 2 (Engeler’s model)
If t is closed, we define JtKE = JtKE ∈ E. (E , J.KE) is a model of the λµ-calculus.

Proof: By corollary 1 and proposition 3. 2
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4.3 Syntactical properties

As a key application of intersection types, we can derive typing characterizations of various normalization
properties of λµ-terms. This relates the denotational model and syntactical properties, and gives a useful
way of looking at the syntax. We give here the natural extensions of the results concerning the λ-calculus.

Proposition 4 (Reduction of typing derivations)
If Γ ` t : U | ∆, there exists a term t′ with t →∗ t′ such that Γ ` t′ : U | ∆ in a typing derivation without
any lam-app, mu-app nor mu-mu succession of rules.

Proof: A redex in a typing derivation is a lam-app, mu-app or mu-mu succession of rules (respectively
called β-redexes, µ-redexes and ρ-redexes). The size of a β-redex (resp. µ-redex) r is the pair (|A|, 1)
(resp. (|A|, 2)) where |A| is the size of the functional type of the redex. Let π be the typing derivation
of Γ ` t : U | ∆, and let (k,m) be the maximal size of its β and µ redexes and n be the number of
such maximal redexes in π, the size of π is (k,m, n, |π|) where |π| is the number of rules of π. We show
the result by induction on (k,m, n, |π|) (with the lexicographic order). If π contains some ρ-redex, we
eliminate it (as for lemma 2). This makes |π| decrease and does not modify k, m, and n. Otherwise,
we choose a maximal (β or µ) redex without any maximal redex above it and we eliminate it (as for
lemmas 1 and 3). We can show that it makes the size of π decrease. 2

Corollary 3 (Sub-formula property)
If Γ ` t : U | ∆, there exists a term t′ with t →∗ t′ such that Γ ` t′ : U | ∆ in a typing derivation which
contains only sub-formulas of Γ, U and ∆.

Corollary 4 (Solvable terms)
A λµ-term t is solvable if and only if there exist Γ, U and ∆ such that Γ ` t : U | ∆.

Corollary 5 (Normalizable terms)
A λµ-term t is normalizable if and only if there exist Γ, U and ∆ containing no Ω and such that Γ ` t : U | ∆.

It is certainly the case that strongly normalizable λµ-terms are exactly those typable without any use
of the Ω type in typing derivations. This would require a more complicated proof as in the λ-calculus case,
probably without leading to anything new.

5 A stable model: Correlation spaces

Based on the notion of stable functions [Ber78] in domains, coherence spaces have been introduced by
Girard [Gir86, Gir87] to study sum types. They lead to a “concrete” notion of domains coming from a web:
a reflexive graph. In a typed setting they allow to give a model of system F [Gir86]. In an untyped setting,
it is possible to solve the equation D → D = D leading to an extensional model of the untyped λ-calculus.

Definition 5 (Coherence space)
A coherence space A is a reflexive (symmetric) graph (|A|,¨A).

Given a set S, we denote by MS the set of finite multisets of elements of S. A clique in the coherence
space A is a subset a (denoted by a @ A) of |A| such that for all x, y ∈ a, x ¨A y. We denote by FC(A) the
set of the elements a of M|A| such that the underlying set of a is a clique in A.

Constructions.

• A⊥ = (|A|,˚A) where x ˚A y if ¬(x ¨A y) or x = y.

• A`B = (|A|× |B|,¨A`B) where (x, y) ˝A`B (x′, y′) if x ˝A x′ or y ˝B y′ (with x ˝A y when x ¨A y
and x 6= y).

• !A = (FC(A),¨!A) where a ¨!A b if a+ b ∈ |!A|.
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• A( B = A⊥ `B and A→ B = !A( B.

In order to move from a model of intuitionistic (or linear) logic to (one of) the first denotational model
of classical logic, Girard refined coherence spaces by correlation spaces [Gir91] coming with some additional
structure. Intuitively, these richer objects come with the information required to interpret structural rules
(weakening and contraction) on the right-hand side of sequents in classical sequent calculus.

Definition 6 (Correlation space)
A correlation space A is a tuple (|A|,¨A,wkA, ctrA) where (|A|,¨A) is a coherence space, wkA @ A and
ctrA @ (A`A)( A satisfying:

∀x ∈ |A| ∃y ∈ wkA ((x, y), x) ∈ ctrA

∀((x, y), z) ∈ ctrA ((y, x), z) ∈ ctrA

∀((x, y), u) ∈ ctrA ∀((u, z), t) ∈ ctrA ∃v ∈ |A| ((y, z), v) ∈ ctrA ∧ ((x, v), t) ∈ ctrA

A correlation space is a `-monoid in the cartesian closed category of coherence spaces.

Definition 7 (Correlation subspace)
Let A = (|A|,¨A,wkA, ctrA) be a correlation space, a correlation subspace B of A is a correlation space
(|B|,¨B ,wkB , ctrB) such that B ⊂ A, ¨B = ¨A ∩ (|B| × |B|), wkB = wkA ∩ |B| and ctrB = ctrA ∩ (|B| ×
|B| × |B|).

Constructions. The correlation structure is not preserved by all the constructions of coherence spaces.
In particular, if A is a correlation space, A⊥ and !A are not correlation spaces. While if A is any coherence
space, there is a natural way of putting a correlation structure on the coherence space ?A = (!A⊥)⊥. The
main cases we need are: if A and B are correlation spaces, then A`B and ?A⊥ are correlation spaces (it is
also true for ⊥, > and A&B, see [Gir91]).

• A ` B = (|A| × |B|,¨A`B ,wkA × wkB , ctrA`B) with ctrA`B = {((x, x′), (y, y′), (z, z′)) | (x, y, z) ∈
ctrA ∧ (x′, y′, z′) ∈ ctrB}.

• ?A⊥ = (FC(A),¨(!A)⊥ , {[ ]}, ctr?A⊥) with ctr?A⊥ = {(a, b, a+ b) | a+ b ∈ |?A⊥|}.

so that A→ B = ?A⊥ `B has a correlation structure as soon as B does.
As remarked in [LR03]:

Proposition 5 (Correlation category)
Correlation spaces with morphisms from A to B given by cliques of A→ B is a control category.

In order to build a reflexive object in this category (thus a model of the λµ-calculus), we follow the
construction usually used for the λ-calculus as given in [Kri93].

Let (|S|,¨S ,wkS , ctrS) be a correlation space such that none of the elements of |S| are ordered pairs. We
define the correlation space Cn by:

C0 = (|S|,¨S ,wkS , ctrS)

|Cn+1| = ((FC(Cn)× |Cn|) \ ({[ ]} × |S|)) ∪ |S|

The coherence relation of Cn+1, and the cliques wkCn+1
and ctrCn+1

are defined in the natural way such
that the correlation space Cn+1 is isomorphic to Cn → Cn: we have an immediate bijection in between
|Cn → Cn| and |Cn+1|, and we define ¨Cn+1

in such a way that in(x) ¨Cn+1
in(y) ⇐⇒ x ¨Cn→Cn y, ...

Lemma 4
For all n, Cn is a correlation subspace of Cn+1.

The correlation space C is given by |C| =
⋃
n≥0|Cn|, ¨C =

⋃
n≥0 ¨Cn , wkC =

⋃
n≥0 wkCn and ctrC =⋃

n≥0 ctrCn .
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Theorem 2
C is a correlation space which is isomorphic to C → C.

Proof: By definition, (|C|,¨C) is a coherence space. If x, y ∈ wkC , let n be such that x, y ∈ Cn, we have
x, y ∈ wkCn thus x ¨Cn y and x ¨C y so that wkC is a clique of C. In the same way we prove that
ctrC @ (C ` C)( C, and that the required equations are satisfied.

We define the function i from FC(C) × |C| into |C| by i([ ], x) = x if x ∈ |S| and i(a, x) = (a, x)
otherwise. The function i is a bijection since it is clearly injective and since any point in |C| is either in
|S| or in some (FC(Cn)× |Cn|) \ ({[ ]} × |S|). We finally verify that i(¨C→C) = ¨C , i(wkC→C) = wkC
and i(ctrC→C) = ctrC . 2

Corollary 6 (Correlation model)
C is a η-model of the λµ-calculus.

Proof: C is a η-reflexive object in the control category of correlation spaces and we conclude with propo-
sition 2. 2

6 A sequential model: Game semantics

The introduction of game semantics [AJM00, HO00, Nic94] for languages as powerful as PCF led to the
definition of fully abstract models of many typed languages (with control operators, states, ...).

In [KNO02], Ker, Nickau and Ong define a η-reflexive object in a cartesian closed category of games. It
appears that their category is in fact a control category [Lai97, Lau02, Lau05] (thus a model of the simply
typed λµ-calculus) so that their model is a η-model of the λµ-calculus.

We recall the main definitions of game semantics, see [McC96, Lai98, Har99] for more details.

Definition 8 (Arena)
An arena A is a forest, that is a partial order (|A|,≤A) such that for all x, x↓ = ({y ∈ |A| | y ≤A x},≤A) is
a finite total order. The elements of |A| are called the moves of A. If x is a minimal element of A (called an
initial move), we use the notation `A x, otherwise we use y `A x if y is the maximal element of x↓ \ {x}.

An arena is characterized by (|A|,`A), and we will forget ≤A. The set of the initial moves of A is denoted
by Ai. The polarity of a move a is the parity of the length of the path from an initial move to a: Opponent
(or O) for even length and Player (or P ) for odd length. So that an initial move is always an Opponent
move.

Constructions. If A and B are two arenas, we define:

• A×B = (|A|+ |B|,`A + `B).

• A+B = ((Ai×Bi)+(Ai×(|B|\Bi))+((|A|\Ai)×Bi),`A+B) where `A+B (a0, b0), (a0, b) `A+B (a0, b
′)

if b `B b′ and (a, b0) `A+B (a′, b0) if a `A a′ (for a0 ∈ Ai, b0 ∈ Bi and any a, a′, b and b′).

• A → B = ((|A| × Bi) + |B|,`A→B) where (a, b0) `A→B (a′, b0) if a `A a′, b `A→B b′ if b `B b′ and
b0 `A→B (a, b0) (for any b0 ∈ Bi and any a, a′, b and b′). So that an initial move in A → B is an
initial move in B and the polarity of a move (a, b0) is the opposite of the polarity of a in A.

Definition 9 (Arena T )
The universal arena T is the countably deep tree in which each node is countably branching (i.e. sequences
of natural numbers ordered with the prefix order).

A justified sequence s in A is a sequence of moves together with, for each occurrence of a non-initial move
b, a pointer to an earlier occurrence of move a such that a `A b (this entails that a justified sequence starts
with an Opponent move). A play is a justified sequence in which the polarity of moves alternates. The set
of the justified sequences (resp. plays) in A is denoted by JA (resp. PA).
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The view psq of a play s is defined by psaq = a if a is an initial move, psaq = psqa if a is a Player move,
and psatbq = psqab if b is an Opponent move pointing to a.

Definition 10 (Strategy)
A strategy σ on A is a non-empty set of even-length plays of A which is closed under even prefixes and such
that if sab ∈ σ and sac ∈ σ then sab = sac.

A strategy σ is innocent if

• for any sab ∈ σ, the pointer of b goes to a move in psaq;

• sab ∈ σ, t ∈ σ, ta ∈ PA and psaq = ptaq entails tab ∈ σ.

If s is a justified sequence in A → B, we denote by s �A (resp. s �B) the justified subsequence of s
containing only the moves in A (resp. B). If σ is a strategy on A → B and τ is a strategy on B → C, the
composition of σ and τ is the strategy on A→ C defined by:

σ; τ = {s �A→C | s ∈ J(A→B)→C , s �A→B ∈ σ, s �B→C ∈ τ, s �A→C ∈ PA→C}

where, in s �A→C , the occurrence a of an initial move in A (which points to b in s) points to the occurrence
c of an initial move of C on which b points in s.

If σ and τ are innocent then σ; τ is innocent.
As described in [Lau05], we get the following categorical structure:

Proposition 6 (Game control category)
The category G with objects given by arenas and morphisms from A to B by innocent strategies on A → B
is a control category (the cartesian product is given by A×B and the premonoidal product by A+B).

Proposition 7 (Game model)
T is a η-model of the λµ-calculus.

Proof: T is a η-reflexive object in G (as proved by Ker, Ong and Nickau [KNO02]), and we conclude with
propositions 2 and 6. 2

7 Conclusion

We have described three different models of the untyped λµ-calculus as a very first step in the study of
denotational semantics of classical extensions of the untyped λ-calculus.

A lot of different directions have now to be covered, as for example:

• define a notion of classical combinatory algebra using the C combinator (typable of type ((A→ B)→
A)→ A)) in the spirit of Hilbert’s deduction system for classical logic;

• give a general study of λµ-algebras, of λµ-models, and of the corresponding reflexive objects in control
categories;

• try to define variants of our intersection type systems (for example with subtyping) to deal with θ and
η-reduction;

• apply all these models, in particular for realizability constructions.

Instead of our direct approach through control categories, the λµ-calculus can also be studied through the
use of CPS translations [Plo75, HS02]. Here we do prefer to have a direct description of models (as control
categories are important even if a representation theorem with respect to continuation models holds), but
the CPS direction has to be investigated further.

As it is now well known since Selinger’s work, there exists a syntactical duality between the call-by-
name and the call-by-value λµ-calculi [Sel01, CH00]. This should help to develop the theory of these two
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systems together, however the closed structure of control categories used to interpret functions in the call-by-
name λµ-calculus is not the one used in the call-by-value case (the weak co-closed structure is used instead,
see [Sel01]).

Thanks to Chantal Berline, Jean-Louis Krivine, Paul-André Melliès, and Paul Rozière for very helpful
discussions on various topics related to this work.
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