
Polarized proof-nets and ��-
al
ulusOlivier LAURENTInstitut de Math�ematiques de Luminy163, avenue de Luminy - 
ase 90713288 MARSEILLE 
edex 09 FRANCEolaurent�iml.univ-mrs.frAbstra
tWe �rst de�ne polarized proof-nets, an extension of MELL proof-nets for the polarized frag-ment of linear logi
; the main di�eren
e with usual proof-nets is that we allow stru
tural rules onany negative formula. The essential properties (
on
uen
e, strong normalization in the typed
ase) of polarized proof-nets are proved using a redu
tion preserving translation into usualproof-nets.We then give a redu
tion preserving en
oding of Parigot's ��-terms for 
lassi
al logi
 aspolarized proof-nets. It is based on the intuitionisti
 translation: A! B  !A( B, so that itis a straightforward extension of the usual translation of �-
al
ulus into proof-nets. We give areverse en
oding whi
h sequentializes any polarized proof-net as a ��-term.In the last part of the paper, we extend the �-equivalen
e for �-
al
ulus to ��-
al
ulus.Interestingly, this new �-equivalen
e relation identi�es normal ��-terms. We eventually showthat two terms are equivalent i� they are translated as the same polarized proof-net; thus theset of polarized proof-nets represents the quotient of ��-
al
ulus by �-equivalen
e.Introdu
tionIn the last ten years, mu
h work has been done to solve the so-
alled determinization problem for
lassi
al logi
: �nding some 
omputational interpretation of 
lassi
al proofs, similar to the Curry-Howard 
orresponden
e for intuitionisti
 logi
. We will be interested in two kinds of solutions thathave been proposed.� The sequent 
al
ulus approa
h has two main instan
es: Girard's LC [5℄ is a deterministi
 se-quent 
al
ulus for 
lassi
al logi
 based on a polarization of formulas, with a semanti
s of proofsin 
oherent spa
es; the LKtq system of Danos-Joinet-S
hellinx [2℄ gives an extensive des
rip-tion of the deterministi
 redu
tion strategies that may be applied to LK. Both LC and LKtqhave translations into linear logi
 that preserve redu
tions (see also Quatrini-Tortora [11℄).� The �-
al
ulus approa
h 
onsists in extending the �-
al
ulus with 
ontrol operators typedby 
lassi
al s
hemes. For example one adds a new 
onstant 
all/

 typed by the Peir
e law((A! B)! A)! A. Unfortunately the redu
tion rules for this new 
onstant depend on theredu
tion strategy (
all-by-name or 
all-by-value), 
ontradi
ting the Chur
h-Rosser propertyfor �-
al
ulus.The ��-
al
ulus of M. Parigot [9℄ on the other hand is based on a natural dedu
tion withmultiple 
on
lusions and enjoys 
on
uen
e. As before there are some good translations of ��-
al
ulus into linear logi
. Furthermore it has been re
ently given a ni
e 
ategori
al semanti
s,1



the 
ontrol 
ategories of P. Selinger [14℄, whi
h as a by-produ
t, extends the language of typeswith a new disjun
tive 
onne
tive.As in the �-
al
ulus where the �-equivalen
e [12, 13℄ identi�es terms that di�er only in theirsequential stru
ture (e.g., (�x1:�x2:u)v1v2 and (�x2:�x1:u)v2v1), ��-
al
ulus terms 
ontain pie
esof information, whi
h are unne
essary from the operational viewpoint. Indeed the 
ontrol 
at-egory semanti
s identi�es distin
t normal ��-terms. So two questions naturally arise: �nd the�-equivalen
e for ��-
al
ulus; �nd some parallel syntax whi
h identi�es �-equivalent terms. In the�-
al
ulus, these two questions are answered by means of a translation of intuitionisti
 logi
 intoproof-nets. However as to the present work, the translations of ��-
al
ulus into linear logi
 fail tosolve these problems, essentially be
ause they preserve the sequential information by translating itas exponential boxes (typi
ally the t-translation in [2℄ de�nes the en
oding of the 
lassi
al arrowby: A! B  !?A( ?B).In this paper we set up and study a translation of ��-
al
ulus into polarized proof-nets (PPN)for the fragment LLP of linear logi
 [7, 8℄. LLP is a subsystem of LL dealing with polarized formulaswhere polarities are de�ned as a linear version of LC's polarities. Polarized proof-nets allow a �neruse of exponential boxes: stru
tural rules, whi
h are reserved to formulas of the shape ?A in LL, arenow applied to any negative formula (saving uses of the ? 
onne
tive). Dually the 
ut eliminationtakes advantage of the geometri
al properties of polarized proof-nets for dupli
ating any 
-tree(saving uses of the !-boxes). We prove the basi
 properties of PPN (
on
uen
e, normalization) byusing a redu
tion preserving translation of polarized proof-nets into usual proof-nets whi
h may beseen as an analogue of CPS-translations from ��-
al
ulus into �-
al
ulus.We shall show that the translation of ��-
al
ulus preserves redu
tions and that it is surje
tive.Interestingly enough, it translates A ! B as !A( B just like the usual en
oding of intuitionisti
logi
1. As a 
onsequen
e the translation is a straightforward extension of the �-
al
ulus transla-tion [1, 12℄. Furthermore, sin
e there is very little di�eren
e between LLP and LC (the two systemsare equivalent in the 
ategori
al sense), our framework 
on
iliates LC and the ��-
al
ulus, allowingthe use of LC as a typing system for ��-terms and endowing ��-
al
ulus with LC stru
ture (e.g.,its denotational semanti
s). In other terms we have established a Curry-Howard 
orresponden
ebetween LC and ��-
al
ulus.We shall also de�ne the �-equivalen
e for ��-
al
ulus as an extension of the �-equivalen
e for�-
al
ulus. We show that it is operationally inno
uous as it is in
luded in the ��-equivalen
eof ��-
al
ulus. This result is slightly weaker than in the �-
al
ulus sin
e it must make use of�-equivalen
e (whereas �-equivalen
e for �-terms is in
luded in �-equivalen
e). We show that �-equivalen
e is 
omplete w.r.t. the translation: two terms are equivalent i� they are translated asthe same proof-net.For the sake of simpli
ity, we shall sti
k to simply typed ��-
al
ulus. However our translation iseasily extendable to some ri
her language: pairing may be en
oded by the & 
onne
tive, Selinger'sdisjun
tive 
onne
tive may be en
oded by the P 
onne
tive. As in the �-
al
ulus, we 
an use linear�rst and se
ond order quanti�ers to en
ode the 
lassi
al ones. The proof-net te
hnology needed forall these extensions has been developed in [7, 8℄. Also, in the last se
tion we use the same tri
k asin the �-
al
ulus for applying our results to the untyped ��-
al
ulus.Note that as the �-equivalen
e identi�es normal ��-terms, and sin
e two equivalent terms
orrespond to the same proof-net, it is impossible to distinguish them by evaluation in a 
ontext.Thus ��-
al
ulus violates B�ohm's theorem whi
h enfor
es David and Py result, who found two1In fa
t the t-translation may be fa
torized through ours: �rst use the LLP-translation, then use the translationof LLP into LL shown in se
tion 1.4. 2



normal terms that are operationally indistinguishable [4℄. It is worth noting that their two termsare not �-equivalent, from whi
h we may dedu
e that polarized proof-nets themselves do not satisfyB�ohm's theorem.1 Polarized proof-netsWe use a fragment of multipli
ative exponential polarized proof-nets [7, 8℄ whi
h has a parti
ularlysimple 
orre
tness 
riterion to en
ode ��-
al
ulus.1.1 De�nitionsDe�nition 1 (Polarized formula)Starting with a set of atoms (denoted by X), we de�ne output (denoted by N , M , : : : ) and antioutput (denoted by P , Q, : : : ) formulas:N ::= X j ?P P NP ::= X? j !N 
 PFormulas of the shape ?P (resp. !N) are 
alled input (resp. anti input) formulas. Negative formulas(resp. positive formulas) are input and output (resp. anti input and anti output) formulas.The negation is involutive with (?P P N)? = !P? 
N? and (?P )? = !P?.The terminology \input" and \output" will be
ome 
lear in se
tion 2.2.De�nition 2 (Proof-stru
ture)A proof-stru
ture is a �nite a
y
li
 oriented graph built over the alphabet of nodes representedbelow (where the orientation is the top-bottom one), i.e. respe
ting for ea
h node: the orientation,the number of in
ident (top) edges (the premises of the node), the number of emergent (bottom)edges (the 
on
lusions of the node), the typing of ea
h edge by a polarized formula.Ea
h edge is 
on
lusion of exa
tly one node and premise of at most one node. Edges whi
h arenot premise of any node are the 
on
lusions of the proof-stru
ture.
... ...
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where A is a negative formula.Additionally, to ea
h !-node with 
on
lusions f!N;�g is asso
iated a box, that is a proof-stru
turewith 
on
lusions fN;�g. We say that a node o

urs at depth 0 in the proof-stru
ture R if it is anode of R, and that it o

urs at depth k+1 in R if it o

urs at depth k in some box asso
iated toa !-node of R. The depth of R is the maximal depth of the nodes o

urring in R. We assume it isalways �nite. 3



We distinguish two kinds of 
ontra
tions (?
-nodes) (resp. weakenings (?w -nodes)): one foroutput types denoted by 
o (resp. wo) and the other one for input types denoted by 
i (resp. wi).If the distin
tion is not needed we still use ?
 (resp. ?w).De�nition 3 (Edges and nodes)� An edge is positive (resp. negative) if the asso
iated formula is positive (resp. negative).� A node is positive (resp. negative) if all its edges are positive (resp. negative), thus positivenodes are 
-nodes and negative nodes are P-, ?
- and ?w -nodes.� A 
ut-node is a stru
tural 
ut if its negative premise is 
on
lusion of ?d, ?
, ?w or !. Theother 
uts, i.e. 
=P and ax, are 
alled multipli
ative 
uts.1.2 Corre
tness 
riterionDe�nition 4 (Corre
tion graph)Given a proof-stru
ture, its 
orre
tion graph is obtained by orienting upwardly (resp. downwardly)the positive (resp. negative) edges, i.e. by reversing the orientation of positive edges, and by erasingboxes (just keeping the !-node).Sin
e we have de�ned two orientations on proof-stru
tures, we have to introdu
e some ter-minology to distinguish them. In the sequel, we will never mention the orientation 
oming fromthe de�nition of a proof-stru
ture ex
ept through \geometri
al" terms su
h as above, below, down,up, : : : To talk about the orientation 
oming from the 
orre
tion graph, we will use \ordering"terms su
h as initial, �nal, maximal, : : :De�nition 5 (Proof-net)A proof-stru
ture is 
orre
t or is a proof-net if:� its 
orre
tion graph is an a
y
li
 oriented graph;� the number of positive 
on
lusions plus ?d -nodes is one;� and re
ursively the boxes are also 
orre
t proof-stru
tures.Remarks:� The 
omplexity of the veri�
ation of 
orre
tness is linear in the size of the proof-stru
ture(i.e. its number of nodes).� The 
orre
tion graph of a proof-stru
ture without 
ut is always a
y
li
. A path in su
ha 
orre
tion graph 
an start either on a negative edge and in this 
ase it goes towards a
on
lusion or on a positive edge and in this 
ase it 
an only go to an axiom and then towardsa 
on
lusion, then the path ends be
ause the only way to 
ontinue is to use a 
ut.� A polarized proof-net has one non ?w initial node at depth 0 
alled the main initial nodewhi
h is either a positive 
on
lusion or a ?d-node.� A polarized proof-net with no anti input 
on
lusion has at least one output 
on
lusion. Indeeda polarized proof-net without anti input 
on
lusion has an anti output edge at depth 0;starting from this edge, it is possible to go through an oriented path (of the 
orre
tion graph)
ontaining only output and anti output edges yielding to an output 
on
lusion.4



The orientation de�ned by the 
orre
tion graph and the a
y
li
ity of this graph indu
e a partialorder on the set of the nodes of a proof-net. A node is �nal if it is maximal at depth 0 for this order.A 
ut-node is a maximal 
ut-node if it is at depth 0 and maximal inside the subset of 
ut-nodes.Remark: A negative node the 
on
lusion of whi
h is 
on
lusion of the proof-stru
ture is �nal.This would not be true anymore with 8 and & be
ause the 
orre
tness 
riterion for su
h proof-netsintrodu
es parti
ular edges starting from these nodes [8℄.1.3 Cut eliminationDe�nition 6 (
-tree)The set of nodes above a positive edge e is 
alled its 
-tree and e is 
alled the root of the tree (the
-tree of a 
-node is the 
-tree of its 
on
lusion). It has a very parti
ular stru
ture: either it isjust a box or just an axiom or it is a 
-node with a box above one of its premises and another
-tree above the other.If the 
-tree is a box, it is said to be 
at. A non 
at 
-tree 
ontains exa
tly one axiom thenegative 
on
lusion of whi
h is 
alled the main 
on
lusion of the 
-tree. All the other non-root
on
lusions of a 
-tree are the auxiliary 
on
lusions.Remark: The 
-tree above a positive edge e is the smallest sub-proof-net 
ontaining e, also 
alledthe kingdom of e. Note that the kingdom of an edge e typed by !N is the whole box of whi
h e isa 
on
lusion, so that 
-trees may be 
onsidered as generalizations of boxes for all positive edges.A 
ut-node always has a 
-tree above its positive premise. Maximality of the 
ut-node entailsthat there is no other 
ut-node below the 
on
lusions of the 
-tree.The 
ut elimination steps for ax, 
/P, ?d/!, 
i/!, wi/! and !/! redu
tions are the same as inusual proof-nets [1, 12℄. We add new steps for the new stru
tural rules whi
h are similar to the
i/!, wi/! and !/! if we 
onsider 
-trees as boxes.
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where B0 is obtained by a 
ut between the M 
on
lusion of B and the 
-tree.We use the notation R! R0 if R 
an be redu
ed in R0 by one step of 
ut elimination.Proposition 1Corre
tness is preserved by redu
tion.Proof: There are two interesting 
ases:� For a 
ut between a ?d-node and a box, the main initial node was the ?d one whi
h isrepla
ed by the main initial node of the box. As for the a
y
li
ity, if a 
y
le is 
reated,it must go through the box but it is impossible be
ause all its 
on
lusions are negative.� For a 
ut on a ?
-node (or ?w), we have to remark that all the 
on
lusions of the 
-treeare negative thus there is no problem to propagate the ?
-node (or ?w) on them.1.4 Translation into usual proof-netsThere is an en
oding of polarized proof-nets into usual multipli
ative exponential proof-nets whi
hpreserves redu
tion. This gives a simple way to prove di�erent properties of polarized proof-nets.We pre�x output formulas with a ? so that the en
oding of ea
h negative formula begins witha ?: X = ?X?P P N = ?(?P P N)?P = ?PThe translation of positive formulas is obtained by duality.We translate proof-nets by repla
ing ea
h P-node by the sequen
e P-?d and by putting a boxaround the 
-tree of ea
h 
-node. This translation emphasizes the fa
t that 
-trees behave likeboxes. 6





 


BnB1! ! ax BnB1 ! ax!

!
!

Remark: This translation is the linear 
ounterpart of CPS-translations. Indeed, very informally,CPS-translations a
t by adding :: in suitable pla
es whi
h amounts to adding ? in the 
orrespond-ing pla
es in linear logi
.If we 
onsider the usual translation of the intuitionisti
 arrow A! B  !A( B (as done inse
tion 2.2) and apply the translation (), we obtain !?A( ?B whi
h is the basis of the t-translationused in [2℄ to translate ��-
al
ulus into linear logi
.We have the following 
orresponden
e between redu
tions:PPN redu
tions (R) PN redu
tions (R)ax  (!=!)�; ax
=P  ?d=!;
=Pstru
tural output  exponentialstru
tural input (exponential)  exponentialTheorem 1 (Simulation)If R !LLP R0 then R !+LL R0. Conversely if R !�LL S, let R0 be the proof-net obtained from R byapplying the 
orresponding redu
tion steps, S gives R0 by redu
ing all its 
/P-
uts and its !/!-
utsand ax-
uts inside boxes not 
ontaining 
-trees (in parti
ular if S = R1 then R !�LLP R1).Proof: The �rst statement is immediate. As to the 
onverse, the redu
tion R !� S may haveredu
ed some ?d/!-
uts (resp. !/!-
uts) but omitted the resulting 
/P's (resp. !/!'s and ax's).This is why we have to redu
e the 
/P-
uts (resp. some !/!-
uts and ax-
uts) in S to obtainR0.Lemma 1 (Inje
tivity)The ()-translation is inje
tive.Corollary 1.1 (Con
uen
e)Redu
tion of polarized proof-nets is 
on
uent.Proof: If R !� R1 and R !� R2 then, by theorem 1, R !� R1 and R !� R2 thus, by
on
uen
e of usual proof-nets, there exists S su
h that R1 !� S and R2 !� S. Let R01and R02 be the 
orresponding redu
ts of R1 and R2, we have by theorem 1 that R01 andR02 are obtained from S by redu
ing the same 
uts, thus R01 = R02 and we 
an 
on
lude bylemma 1. 7



Corollary 1.2 (Strong normalization)There is no in�nite sequen
e of redu
tions in polarized proof-nets.These properties 
an also be obtained with usual methods su
h as those used in [1, 12℄.2 The ��-
al
ulusThe ��-
al
ulus has been introdu
ed by M. Parigot in [9℄ as an extension of �-
al
ulus whi
h givesan algorithmi
 interpretation of 
lassi
al proofs. We will see how it 
an be interpreted into polarizedproof-nets and how this indu
es new identi�
ations in ��-
al
ulus.2.1 De�nitionsDe�nition 7 (��-term)Given two disjoint denumerable sets of variables: 
alled �-variables (denoted by x, y, z, : : : ) and�-variables (denoted by �, �, 
, : : : ), the ��-terms are de�ned by:u ::= x j �x:u j ��[�℄u j (u)uThe � and � 
onstru
tions are 
alled abstra
tions and (u)v is the appli
ation; � and � are binders.We 
onsider terms modulo �-
onversion on �- and �-variables. We use the notations x (resp. �)2 u for \x (resp. �) free in u" and (u)v1:::vn for (:::((u)v1)v2:::)vn.For the simply typed ��-
al
ulus, a typing judgment for the term u is � ` u : N j � where �(resp. �) 
ontains typing de
larations for �-variables (resp. �-variables). Ea
h variable appears atmost on
e in a 
ontext. The derivation rules are: varx : N ` x : N j�; x : N ` u : M j � abs� ` �x:u : N !M j �� ` u : N j � :M;� �� ` ��[�℄u : M j � : N;�� ` u : N !M j � �0 ` v : N j �0 app�;�0 ` (u)v : M j �;�0The (abs) (resp. (�)) rule 
ontains an impli
it weakening if x (resp. �) does not appear in the
ontext. The (app) rule 
ontains impli
it 
ontra
tions if variables appear in both � and �0 or both� and �0. There is also an impli
it 
ontra
tion in the (�) rule if � appears in �.Alternatively, the �-rule may be de
omposed by introdu
ing the notion of named term [�℄u. Anamed term has no type (or has type ?) and appears in a judgment � ` [�℄u j �. The (�) rule issplit into: � ` u : N j � �-name� ` [�℄u j � : N;�8



� ` [�℄u j � :M;� �-abs� ` ��[�℄u : M j �Remark: If a ��-term u is typable in this system, the 
on
lusion of the typing derivation is� ` u : N j � where � and � exa
tly 
ontain the free variables of u. In parti
ular talking about aterm or about a typing judgment is equivalent sin
e there is at most one typing judgment for ea
hterm. Moreover for this typing judgment there exists at most one typing derivation.The two redu
tion rules are the usual ones for ��-
al
ulus:(�x:u)v !� u[v=x℄(��:u)v !� ��:u[[�℄(w)v=[�℄w℄We use the notation u! v if u 
an be redu
ed in v by one step of �- or �-redu
tion.2.2 Translation into proof-netsWe now give a �rst translation, denoted by ()Æ, of ��-terms into proof-nets. Simple types aremapped to output formulas by:XÆ = X(N !M)Æ = !NÆ(MÆ = ?NÆ? PMÆThe translation of typed ��-terms is de�ned by indu
tion on the typing: a proof of the sequent � `u : N j � is interpreted by a proof-net with 
on
lusions ?�Æ?; NÆ;�Æ. There lies the justi�
ation forthe input/output terminology: �-variables are typed by input formulas; �-variables (
ontinuationvariables) and the term are typed by output formulas.For the purpose of the translation, we add to proof-nets a labelling of their 
on
lusions: ea
hinput 
on
lusion in ?�Æ? is labelled by the name of the 
orresponding �-variable in �, ea
h output
on
lusion in �Æ is labelled by the name of the 
orresponding �-variable in �. The 
on
lusion NÆis said to be distinguished and is the only one whi
h has no asso
iated name.In the pi
tures, we use for the distinguished 
on
lusion, for an old distinguished
on
lusion and (�) for the old name of the distinguished 
on
lusion.� (xN )Æ ?dxN? ?N? Nax
� (�xN :uM )Æ uÆ M?N??N? PMxP� (��M [�℄NuN )Æ 9



uÆN NNM �(�) �
oThis is for the parti
ular 
ase where � 2 u and � 2 u. If � =2 u we do not need the 
o-node, if� =2 u we need a wo-node. Note that if � =2 u and � 2 u, the only e�e
t of the translation isto swap the status of the two 
on
lusions, that is to asso
iate the name � to the distinguished
on
lusion (whi
h is no more distinguished) and forget the name of the 
on
lusion labelledby � (whi
h be
omes the new distinguished 
on
lusion) leaving the proof-net un
hanged.� ((uN!M )vN )Æ
uÆ !N 
M?M? M?N? PM !NvÆ
! ax
utWe 
an separate in two parts the 
ase of ��[�℄u if we translate named terms [�℄u as proof-netswithout distinguished 
on
lusion. The [�℄ 
onstru
tion on u introdu
es a 
ontra
tion node if � 2 u.The �� 
onstru
tion introdu
es a weakening node if � =2 u.Another way to deal with named terms is to put expli
itly the type ?. The two �-rules be
ome:� ` u : N j � �-name'� ` [�℄u : ? j � : N;�� ` [�℄u : ? j � :M;� �-abs'� ` ��[�℄u :M j �These two rules 
an be translated into proof-nets2 through the translation ()�:� ([�℄NuN )� u�N N�� N ?
o ?� (��M :u?)�2The introdu
tion of 1- and ?-nodes does not modify the 
orre
tness 
riterion.10



u� ?(�) 1M 1
utThe translation ()� is the same as ()Æ for the other rules. We 
an re
over ()Æ from ()� by redu
ingthe 
uts on 
onstants. Indeed, by de�nition of ��-
al
ulus, �� and [�℄ always 
ome together, sothe 
onstant 
uts are always between 1-nodes and ?-nodes whi
h vanish by redu
tion.The ()� translation allows to a

ount with a slight generalization of ��-
al
ulus with a new rulefor ? 
orresponding to the 
onstru
tion ��M :u? for any u of type ? (not only named terms). Inthis 
ase 1-nodes are not always 
ut against ?-ones. Sin
e ? is an output formula, the ?-nodeis just a parti
ular 
ase of the wo-node. On the other hand, the 1-node introdu
es a new kind ofleaves for 
-trees.With this extension, we 
an, for example, translate the C operator of Felleisen of type ::N ! Nde�ned in ��-
al
ulus by �f::N :��N :(f)�xN :[�℄Nx:x ? �N 11
N??N?

((N ! ?)! ?)�? f(((N ! ?)! ?)! N)�N ?
?d ?P 
 P?d 1

ax
! ax 
ut

2.3 Simulation of redu
tionThe translation ()Æ has also a dynami
 meaning: it simulates ��-redu
tion by 
ut elimination inproof-nets.Until the end of the paper, we have to identify all the binary trees of 
ontra
tions with the samenumber of nodes, the sequen
e ?w -?
 with a simple edge and a 
i -node on two input 
on
lusionsof a box with the same node inside the box. Another solution has been proposed in [3, 12℄ to getrid of this problem with generalized 
ontra
tions.Final ?w-nodes of a proof-net 
orrespond to variables in the 
ontext not free in the term. Asdone for typing derivations, we want to ignore them. In the sequel we will not 
are about su
h �nal?w-nodes. In parti
ular we say that two proof-nets are equal if they di�er only by �nal ?w-nodes.This is the 
ounterpart of the fa
t that, in various systems, two typing proofs that di�er only inuseless variable de
larations may be 
onsidered equal.Lemma 2 (�-substitution)Modulo �nal ?w-nodes and stru
ture of 
ontra
tion trees:11



uÆ x vÆ!
ut !+ (u[v=x℄)ÆLemma 3 (�-substitution)Modulo �nal ?w-nodes and stru
ture of 
ontra
tion trees:
uÆ � 
vÆ
ut! ax !� (u[[�℄(w)v=[�℄w℄)Æ

Proof: These two lemmas are proved by indu
tion on u.Theorem 2 (Simulation)If u! v then uÆ !� vÆ.Proof: We just have to apply lemmas 2 and 3. In the 
ase of �-redu
tion, the simulation is stri
t:one step in ��-
al
ulus 
orresponds to at least one step in proof-nets. On the other hand,a �-redu
tion may be translated by identity, typi
ally in the 
ase: (��[�℄u)v !� ��[�℄(u)vwith � =2 u.Remark: Due to the �-equivalen
e (next se
tion), we 
annot hope for any 
onverse result. Forexample, if u = �
[�℄�x:��0[�℄�y:(��0[
℄(y)x)t and v = �
[�℄�y:��0[�℄�x:��0[
℄(y)x, uÆ !� vÆbut v is not a redu
t of u.We now 
onsider proof-nets up to multipli
ative (i.e. 
=P and ax) redu
tions. The justi�
ationfor doing so is that these redu
tions are operationally simple: they stri
tly de
rease the size of thenet and they are lo
al, so that the heart of the dynami
s may be thought of as lying in stru
turalredu
tions.De�nition 8 (Translation ()�)The translation u� of a ��-term u is the multipli
ative normal form of the proof-net uÆ.Remark: We have de�ned three translations with the following relations:u� 1=?���! uÆ 
=P;ax����! u�With the translation ()�, the last theorem is no longer 
orre
t, for example:((��:u)v1)v2 !� (��:u[[�℄(w)v1=[�℄w℄)v2 !� ��:u[[�℄(w)v1v2=[�℄w℄but in the 
orresponding proof-net (((��:u)v1)v2)� these two steps are done in just one, so thatthe translation of the middle term is not rea
hable from the translation of the �rst one. Asking for\
onse
utive" �-redexes to be redu
ed in one step by modifying the �-redu
tion: (��:u)v1:::vn !�012



��:u[[�℄(w)v1:::vn=[�℄w℄ (where (��:u)v1:::vn is not applied to another term vn+1) does not solve theproblem sin
e as shown in the following example the sequen
e v1:::vn may be hidden in the ��-term:((�x:(��:u)v1)t)v2 !�0 ((�x:��:u[[�℄(w)v1=[�℄w℄)t)v2!� (��:u[[�℄(w)v1=[�℄w℄[t=x℄)v2 !�0 ��:u[[�℄(w)v1v2=[�℄w℄[t=x℄On the other hand ()� translates normal terms as 
ut-free proof-nets, �-redexes as !=? 
uts and�-redexes as 
=
o, 
=wo or 
=! 
uts (ex
ept in some parti
ular 
ases like (��[�℄x)v).2.4 SequentializationWe now address the question of surje
tivity of the translation ()�.De�nition 9 (��-proof-stru
ture)A ��-proof-stru
ture is a proof-stru
ture with no positive 
on
lusion, no �nal wi-node and onlystru
tural 
uts.The \no �nal wi-node" 
onstraint is not needed for theorem 3 if we want to sequentializeproof-nets as typing derivations with expli
it stru
tural rules be
ause they just add variables in the
ontext not free in the ��-term (see page 11).Remark: When a proof-stru
ture has no positive 
on
lusion, the 
orre
tness 
ondition on thenumber of ?d-nodes 
an be repla
ed by: exa
tly one dereli
tion at depth 0 and in ea
h box.Lemma 4Let R be a proof-stru
ture with a �nal negative node n, R n n is the graph obtained from R byerasing the node n. Then R n n is a proof stru
ture and if R is 
orre
t, R n n is 
orre
t.Lemma 5Let u be a term with two free �- (resp. �-) variables x1 and x2 (resp. �1 and �2), (u[x=x1 ; x=x2 ℄)�(resp. (u[�=�1 ; �=�2 ℄)�) is obtained from u� by adding a 
i-node (resp. 
o-node) between the two
on
lusions 
orresponding to x1 and x2 (resp. �1 and �2).Lemma 6Let R be a 
ut-free proof-net, if e is a negative edge either it is a 
on
lusion of R or movingdownward from e yields to a �nal negative node.Lemma 7Let R be a proof-net without any �nal negative node. If 
 is a maximal3 
ut-node in R then 
 issplitting, that is R is obtained by 
utting the negative 
on
lusion A of a proof-net R� with thepositive 
on
lusion A? of a proof-net R+. Furthermore R+ is a 
-tree.Proof: The last four results are immediate.Theorem 3 (Sequentialization)A proof-stru
ture with a distinguished 
on
lusion is the translation ()� of a ��-term if and only ifit is a ��-proof-net.3see se
tion 1.2 13



Proof: The \only if" part is immediate. Conversely, we sequentialize any ��-proof-net R with adistinguished 
on
lusion as a ��-term. We start by asso
iating distin
t �-variables to input
on
lusions and distin
t �-variables to output 
on
lusions of R. We then sequentialize R asa named term [�℄u and we de�ne the 
omplete sequentialization of R to be ��[�℄u where � isthe name asso
iated to the distinguished output 
on
lusion. The 
onstru
tion of [�℄u is doneby indu
tion on R:� If R has a �nal P-node n whose 
on
lusion ?N? P M has name �, let u be a sequen-tialization of Rn n (or of (Rn n) n n0 if ?N? is introdu
ed by a wi-node n0) with namesx for ?N? and � for M . We sequentialize R as [�℄N!M�xN :��M :u.� If R has a �nal 
o-node n whose 
on
lusion N has name �, let u be a sequentialization ofRnn with names �1 and �2 for the premises N of n. We sequentialize R as u[�=�1 ; �=�2 ℄by lemma 5.� If R has a �nal wo-node n whose 
on
lusion N has name �, let u be a sequentializationof R n n. We sequentialize R as [�℄N�ÆN :u where Æ does not o

ur in u.� If R has a �nal 
i-node n whose 
on
lusion ?N? has name x, let u be a sequentializationof R n n with names x1 and x2 for the premises ?N? of n. We sequentialize R asu[x=x1 ; x=x2 ℄ by lemma 5.� If R has no �nal negative node, we 
onsider a maximal 
ut-node whi
h is splitting bylemma 7. Let R� (resp. R+) be the proof-stru
ture above its negative (resp. positive)premise. By lemma 7, R+ is a 
-tree. We have two 
ases depending on the type of the
ut formula:{ if it is an input formula ?N?, we sequentialize R� (or R� n n0 if ?N? is introdu
edby a wi-node n0) with name x for the 
on
lusion ?N? as u. Sin
e the root of R+is !N , R+ must be 
at, i.e. R+ is a box B asso
iated to a !-node. Let v be the
omplete sequentialization of B (whose 
on
lusion N is distinguished and whoseother 
on
lusions are named as in R). We pi
k an output 
on
lusion of R� (it musthave one by the fourth remark in se
tion 1.2) with name �. We sequentialize R as[�℄M (�xN :��M :u)vN ;{ if it is an output formula N , let u be the sequentialization of R� with the new name� asso
iated to its 
on
lusion N and v1, : : : , vn be the 
omplete sequentializations ofthe boxes asso
iated to the !-leaves of R+. If � is the name of the main 
on
lusion4of the 
-tree R+, we sequentialize R as [�℄N (��N :u)v1:::vn.� If R has no �nal negative node and no 
ut at depth 0, then let n be its main initial nodewhi
h is a ?d-node by the remark above. Then the 
on
lusion of n is a 
on
lusion of Rby lemma 6. Furthermore its premise is the root of a 
-tree R+ and the 
on
lusionsof R+ are 
on
lusions of R by lemma 6, i.e. R+ = R n n. If the 
on
lusion ?M?of n has name x and the main 
on
lusion N of R+ has name �, we sequentialize Ras [�℄N (xM )v1:::vn where v1, : : : , vn are the 
omplete sequentializations of the boxesasso
iated to the !-leaves of R+.One may 
he
k that in ea
h 
ase the translation ()� applied to the 
onstru
ted term yieldsthe original proof-net (up to asso
iativity of 
ontra
tions, 
ommutations of auxiliary doorswith 
ontra
tions and neutrality of weakening w.r.t. 
ontra
tions, as explained above).4see se
tion 1.3 14



Remarks:� Maximal 
ut-nodes 
orrespond to leftmost redexes in ��-
al
ulus. The translation of theleftmost redex of a ��-term is a maximal 
ut-node and 
onversely if 
 is a maximal 
ut-node,there exists a ��-term su
h that its leftmost redex is translated as 
.� The dereli
tion at depth 0 
orresponds to the head variable of the term. If the 
on
lusion ofthis node is a 
on
lusion of the proof-net it means that the head variable of the ��-term isfree and linear.This sequentialization pro
edure yields ��-terms with a parti
ular shape: ��[�℄ 
onstru
tionssurround ea
h �-abstra
tion, ea
h appli
ation, : : : The �-equivalen
e will show that this kind of��-terms is not so pe
uliar be
ause there exists at least one su
h term in ea
h �-equivalen
e 
lass.3 The �-equivalen
eWe 
hara
terize now the identi�
ation between ��-terms indu
ed by the translation. The answerhas already been given for the �-
al
ulus in [12, 13℄ as the �-equivalen
e. We give here a \
on-servative" extension of this equivalen
e on ��-terms. However this extension has a very di�erentbehavior on ��-terms. The �-equivalen
e of �-
al
ulus is de�ned in terms of 
ommutations ofredexes, in parti
ular a normal term is only equivalent to itself, but here the (pop/pop) equationprovides identi�
ations between normal terms. We will also see a normal term equivalent to a nonnormal one.3.1 De�nitionDe�nition 10 (Atomi
 
ontexts)An atomi
 
ontext C0 is obtained by applying one of the 
onstru
tions of the ��-
al
ulus to a holeinstead of a term: C0 ::= �y:[ ℄ j �
[�℄[ ℄ j ([ ℄)uAn atomi
 named 
ontext N0 is 
onstru
ted in the same way but with named terms:N0 ::= [�℄�y:�
:[ ℄ j [�℄(�
:[ ℄)uWe say that � (resp. x) is bound in C0 if � =2 C0[�Æ[�℄x℄ (resp. x =2 C0[x℄). We say that C0 is�-free (resp. x-free) if � (resp. x) =2 C0 and if � (resp. x) is not bound in C0. And we use thesame terminology for N0.De�nition 11 (�-equivalen
e)The �-equivalen
e is the smallest 
ompatible (i.e. preserved by abstra
tions and appli
ation) equiv-alen
e relation on ��-terms 
ontaining:� generalization of �-equivalen
e on �-
al
ulus for 
ommutation of �-redexes with all the 
on-stru
tions of ��-
al
ulus,((�x:u)v)w �� (�x:(u)w)v x =2 w (�1)(�x:�y:u)v �� �y:(�x:u)v (x 6= yy =2 v (�2)(�x:��[�℄u)v �� ��[�℄(�x:u)v � =2 v (�3)15



� parti
ular ��-features giving new 
ommutations,[�0℄(��[�0℄(��:u)v)w �� [�0℄(��[�0℄(��:u)w)v (� =2 v� =2 w (push=push)[�0℄�x:��[�0℄�y:��:u �� [�0℄�y:��[�0℄�x:��:u x 6= y (pop=pop)[�0℄(��[�0℄�x:��:u)v �� [�0℄�x:��[�0℄(��:u)v (x =2 v� =2 v (push=pop)with � 6= �, � 6= �0 and �0 6= � in these three equations.� usual �- and �-redu
tions of ��-
al
ulus.[�℄��:u �� u[�=�℄ (�)��[�℄u �� u � =2 u (�)The �-redu
tion (resp. �-redu
tion) is obtained by orienting (�) (resp. (�)) from the left hand sideto the right hand side.These equations (ex
ept (�) and (�)) 
an also be fa
torized through the notion of atomi
 
ontext:C0[(�x:u)v℄ �� (�x:C0[u℄)v (�i)where C0 is x-free and no free variable of v is bound in C0,N0[N 00[u℄℄ �� N 00[N0[u℄℄ (p=p)where if � (or x) is bound in N0 (resp. N 00) then N 00 (resp. N0) is �-free (or x-free).We may justify these equations operationally by examining their behavior within Krivine'sabstra
t ma
hine [6℄. Approximatively a state of this ma
hine is a triple (t; e; s) where t is a term,e is an environment 
ontaining asso
iations (�-variable, term) and (�-variable, sta
k) and s is asta
k, that is a sequen
e of terms. The transitions are:(jump) If t is a variable x, pro
eed with its value as de�ned in e.(push) If t is an appli
ation (u)v, the argument v is pushed onto the sta
k and the ma
hine pro
eedswith u.(pop) If t is a �-abstra
tion �x:u, the �rst element of the sta
k is popped and stored with name xin the environment and the ma
hine pro
eeds with u.(store) If t is a �-abstra
tion ��:u, the sta
k is stored under the name � in the environment andexe
ution 
ontinues with u and the empty sta
k ".(restore) If t is a named term [�℄u, the sta
k is repla
ed by a 
opy of the one asso
iated to � inthe environment and exe
ution pro
eeds with u and the new sta
k.We 
an, for example, des
ribe the 
ase of (push/pop) (whi
h should enlighten its name). If we startwith the state ([�0℄(��[�0℄�x:��:u)v; e; ") where e 
ontains the asso
iations: (�0; s1) and (�0; w :: s2),the ma
hine goes through the following steps:- restore the sta
k s1;- push v on s1;- store the new sta
k v :: s1 with name �; 16



- restore the sta
k w :: s2;- pop w and store it with name x;- save the popped sta
k s2 with name �.The ma
hine rea
hes the state (u; e0; ") where e0 is e augmented with the asso
iations (�; v :: s1),(x;w) and (�; s2). One easily 
he
ks that starting with the state ([�0℄�x:��[�0℄(��:u)v; e; "), thema
hine goes through the same steps.3.2 Properties of the �-equivalen
eProposition 2Let u and v be two ��-terms, if u �� v then u ������ v.Proof: We prove that ea
h equation of the �-equivalen
e is realized by the �����-equivalen
e:� (�1), (�2) and (�3) are realized by the �-equivalen
e;� (push/push) and (push/pop) are realized by the ��-equivalen
e;� for the (pop/pop) equation we �rst show the following equivalen
e whi
h 
orresponds tothe (S3) rule in [10℄:��0 : : : [�0℄�x:��:t : : :� �x:(��0 : : : [�0℄�x:��:t : : : )x (�)� �x:��0 : : : [�0℄(�x:��:t)x : : : (�)� �x:��0 : : : [�0℄��:t : : : (�)� �x:��0 : : : t[�0=�℄ : : : (�)where the �-redu
tion also substitutes the other sub-terms [�0℄u by [�0℄(u)x. If we applytwo �-expansions in ea
h member of the (pop/pop) equation we obtain[�0℄��0[�0℄��0[�0℄�x:��[�0℄�y:��:u and [�0℄��0[�0℄��0[�0℄�y:��[�0℄�x:��:uand by applying the above equation twi
e to ea
h term we get the same one[�0℄�x:��0[�0℄�y:��0u[�0=�; �0=� ℄This shows that (pop/pop) is realized by the ����-equivalen
e.� (�) and (�) are realized by the ��-equivalen
e.Proposition 3 (Preservation properties)Let u and v be two ��-terms su
h that u �� v.� If u is normalizable then v is normalizable and their normal forms are �-equivalent.� If u has a head normal form5 then v has a head normal form.� If u is strongly normalizable then v is strongly normalizable.� If u is typable of type A then v is typable of type A.Proof: All these properties are in fa
t 
orollaries of theorem 4.5It is the natural generalization of the notion of head normal forms for the �-
al
ulus, see [4℄ for a pre
ise de�nition.17



Let us look at the kind of transformations of typing derivations realized by the �-equivalen
e,for example with the (push/pop) equation. If �; x : A ` u j � : C ! D;� : B;� and �0 ` v : C j �0,we have: �; x : A ` u j � : C ! D;� : B;� �-abs�; x : A ` ��:u : B j � : C ! D;� abs� ` �x:��:u : A! B j � : C ! D;� �� ` ��[�0℄�x:��:u : C ! D j �0 : A! B;� �0 ` v : C j �0 app�;�0 ` (��[�0℄�x:��:u)v : D j �0 : A! B;�;�0 �-name�;�0 ` [�0℄(��[�0℄�x:��:u)v j �0 : D;�0 : A! B;�;�0and �; x : A ` u j � : C ! D;� : B;� �-abs�; x : A ` ��:u : C ! D j � : B;� �0 ` v : C j �0 app�;�0; x : A ` (��:u)v : D j � : B;�;�0 ��;�0; x : A ` ��[�0℄(��:u)v : B j �0 : D;�;�0 abs�;�0 ` �x:��[�0℄(��:u)v : A! B j �0 : D;�;�0 �-name�;�0 ` [�0℄�x:��[�0℄(��:u)v j �0 : D;�0 : A! B;�;�0The �-equivalen
e realizes 
omplex identi�
ations in parti
ular between normal and non normalterms even if we 
onsider normal terms modulo �- and �-redu
tions: let t be a 
losed term andu = �x:��[�℄(��[�℄�y:�Æ[�℄x)t, v = �x:��[�℄�y:�Æ[�℄(x)t, we have u �� v (this is in fa
t a variantof (push/pop) and a parti
ular 
ase of lemma 9) but also u!+ v:u !� �x:��[�℄��[�℄�y:�Æ[�℄(x)t !� vThus there is no hope that �-equivalen
e preserves length of redu
tion as it does in �-
al
ulus.The reason is that ��-
al
ulus 
ontains linear �-redexes whi
h have no real operational meaning.More pre
isely, we are now going to show that the �-equivalen
e identi�es terms whi
h di�er onlyby linear �-redexes.De�nition 12 (Contexts)A 
ontext C is a term, with a hole in pla
e of a sub-term, de�ned in the following way:C ::= [ ℄ j �y:C j �
[�℄C j (C)uA named 
ontext N is a named term, with a hole in pla
e of a named sub-term:N ::= [ ℄ j [�℄C[�
:[ ℄℄The notions of variable bound in a 
ontext and of �-free and x-free 
ontexts are the same as foratomi
 
ontexts.De�nition 13 (Linear �-redex)A �-redex o

urring in a ��-term is linear if it has the shape (��:N [[�℄u℄)v where N is an �-freenamed 
ontext and � =2 u. The size of the �-redex is the size of the term ��:N [[�℄u℄.18



Lemma 8 (pop out)If N is x- and �0-free, � not bound in N and �0 =2 u:N [[�℄�x:u℄ �� [�℄�x:��0:N [[�0℄u℄Proof: By indu
tion on N :� If N = [ ℄: [�℄�x:u�� [�℄�x:��0[�0℄u (�)� If N = [�℄�
:[ ℄: [�℄�
[�℄�x:u�� [�℄�
[�℄�x:��0[�0℄u (�)�� [�℄�x:��0[�0℄u[�=
 ℄ (�)�� [�℄�x:��0[�℄�
[�0℄u (�)� If N = [�℄�y:C[�
:[ ℄℄:[�℄�y:C[�
:[�℄�x:u℄�� [�℄�y:��0[�0℄C[�
:[�℄�x:u℄ (�)�� [�℄�y:��0[�℄�x:��0[�0℄C[�
[�0℄u℄ by indu
tion�� [�℄�x:��0[�℄�y:��0[�0℄C[�
[�0℄u℄ (pop/pop)�� [�℄�x:��0[�℄�y:C[�
[�0℄u℄ (�)� If N = [�℄��0[
0℄C[�
:[ ℄℄:[�℄��0[
0℄C[�
[�℄�x:u℄�� [�℄��0[�℄�x:��0[
0℄C[�
[�0℄u℄ by indu
tion�� [�℄�x:��0[
0℄C[�
[�0℄u℄[�=�0 ℄ (�)�� [�℄�x:��0[�℄��0[
0℄C[�
[�0℄u℄ (�)� If N = [�℄(C[�
:[ ℄℄)v:[�℄(C[�
[�℄�x:u℄)v�� [�℄(��0[�0℄C[�
[�℄�x:u℄)v (�)�� [�℄(��0[�℄�x:��0[�0℄C[�
[�0℄u℄)v by indu
tion�� [�℄�x:��0[�℄(��0[�0℄C[�
[�0℄u℄)v (push/pop)�� [�℄�x:��0[�℄(C[�
[�0℄u℄)v (�)Lemma 9 (push out)If N is �0-free, if � is not bound in N , if �0 =2 u and if none of the free variables of v is bound inN : N [[�℄(u)v℄ �� [�℄(��0:N [[�0℄u℄)vIn parti
ular linear �-redu
tion is in
luded in �-equivalen
e.Proposition 4 (Elimination of linear �-redexes)Let u be a ��-term, there exists u0 su
h that u0 �� u and u0 has no linear �-redex.In parti
ular linear �-redu
tion terminates.Proof: We prove that ea
h linear �-redex 
an be repla
ed by a smaller �-redex or eliminated:(��:N [[�℄u℄)v�� ��[�℄(��:N [[�℄u℄)v (�)�� ��:N [[�℄(u)v℄ by lemma 919



3.3 Completeness of the �-equivalen
eTheorem 4Let t and t0 be two ��-terms, t� = t0� () t �� t0.Proof: Let t and t0 be two �-equivalent terms, we have to show that they have the same trans-lations. To do this we just look at the proof-nets 
orresponding to the eight equations of�-equivalen
e:(�1) By multipli
ative redu
tions, (((�x:u)v)w)Æ and ((�x:(u)w)v)Æ yield the same proof-net:uÆxvÆ wÆ
!! 
ut 
ut ax
whi
h eventually gives t� = t0� by ending the multipli
ative redu
tion.(�2) In the same way, by multipli
ative redu
tions from ((�x:�y:u)v)Æ and (�y:(�x:u)v)Æ, weobtain the proof-net: uÆx yvÆ P! 
ut(�3) Idem with ((�x:��[�℄u)v)Æ and (��[�℄(�x:u)v)Æ .uÆvÆ x � (�)! 
ut(push/push) The terms ([�0℄(��[�0℄(��:u)v)w)Æ and ([�0℄(��[�0℄(��:u)w)v)Æ immediatelygive the same proof-net: uÆvÆ wÆ

��0 � �0
 
ax 
ut! !
ut ax
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(pop/pop) Idem with ([�0℄�x:��[�0℄�y:��:u)Æ and ([�0℄�y:��[�0℄�x:��:u)Æ.
�0 x ��0y � uÆP P(push/pop) Idem with ([�0℄(��[�0℄�x:��:u)v)Æ and ([�0℄�x:��[�0℄(��:u)v)Æ.

uÆ � �0vÆ
�0x �P 

ut! ax

The last two 
ases are even simpler so we skip them.For the 
onverse we need some new lemmas.Lemma 10Let [�℄u be a named term 
ontaining a free �-variable � su
h that the 
on
lusion 
orresponding to� in ([�℄u)� is neither an auxiliary door of a box nor the 
on
lusion of a 
o-node. There exist an�-free 
ontext N and a ��-term u1 su
h that [�℄u = N [[�℄u1℄ with � =2 u1.Proof: If � = � then � =2 u (otherwise we would have a 
ontra
tion above the 
on
lusion
orresponding to � in ([�℄u)�) and the result is proved with N = [ ℄. If � 6= � we prove thelemma by indu
tion on u:� If u = x then � = �.� If u = �x:u0 then [�℄u0 veri�es the same hypothesis as [�℄u thus, by indu
tion hypothesis,[�℄u0 = N [[�℄u1℄ with N 6= [ ℄ sin
e � 6= �. We have N = [�℄C[�
:[ ℄℄ and [�℄u =[�℄�x:C[�
[�℄u1℄.� If u = �
[
0℄u0 then 
 6= � (otherwise � =2 [�℄u). If 
0 = � we have N = [�℄�
:[ ℄. If
0 6= �, [�℄u0 veri�es the same hypothesis as [�℄u and, by indu
tion, [�℄u0 = N [[�℄u1℄with N 6= [ ℄ thus N = [�℄C[��0:[ ℄℄ and [�℄u = [�℄�
[
0℄C[��0[�℄u1℄.� If u = (u0)v then � is not free in both u0 and v otherwise the 
orresponding 
on
lusionof ([�℄u)� would be 
on
lusion of a 
o-node and � =2 v otherwise it would be an auxiliarydoor of a box. [�℄u0 veri�es the same hypothesis as [�℄u and, by indu
tion, [�℄u0 =N [[�℄u1℄ with N 6= [ ℄ thus N = [�℄C[�
:[ ℄℄ and [�℄u = [�℄(C[�
[�℄u1℄)v.Lemma 11If u� has a �nal P-node n: 21



� if n is above the distinguished 
on
lusion then there exists a term u0 su
h that u �� �x:u0;� if n is above another 
on
lusion then there exists a term u0 su
h that u �� ��[�℄�x:u0.Proof: We begin with the se
ond point whi
h is an easy 
onsequen
e of the �rst one. Let � bethe name of (the 
on
lusion of) n and 
onsider the term v = ��[�℄u (� =2 u). By de�nition ofthe translation, v� is the same proof-net as u� but has n as distinguished 
on
lusion. By the�rst 
ase, we obtain u0 su
h that v �� �x:u0. Thus ��[�℄��[�℄u �� ��[�℄�x:u0; furthermore��[�℄��[�℄u �� u by (�) and (�) be
ause � =2 u so that u �� ��[�℄�x:u0We now turn to the �rst point whi
h is proved by indu
tion on the term u:1. If u = x then the distinguished 
on
lusion must be the 
on
lusion of an axiom node, a
ontradi
tion.2. If u = �x:u0, the result is proved.3. If u = ��[�℄u0 then � 2 [�℄u0 sin
e the distinguished 
on
lusion of u� is not below awo-node. By lemma 10, we have u = ��:N [[�℄u1℄ where N is an �-free 
ontext and� =2 u1. By indu
tion hypothesis, u1 �� �x:u0 and by lemma 8,u�� ��:N [[�℄�x:u0℄�� ��[�℄�x:��0:N [[�0℄u0℄�� �x:��0N [[�0℄u0℄4. If u = (u0)v1:::vn where n > 0 and u0 is not an appli
ation, we look at the di�erent
ases for u0:(a) u0 = x, impossible as for 1.(b) u0 = �x:u1 then ((u1)v2:::vn)� is a sub-proof-net of u� whi
h has the same �nalP-node. By indu
tion hypothesis: (u1)v2:::vn �� �y:u0 (with y 
hosen not free inv1) so u= (�x:u1)v1:::vn�� (�x:(u1)v2:::vn)v1 (�1)�� (�x:�y:u0)v1�� �y:(�x:u0)v1 (�2)(
) u0 = ��[�℄u1 then u� is obtained by the multipli
ative redu
tion of a 
ut betweenu�0 and the non 
at 
-tree 
ontaining the v�i 's. If the node above the distinguished
on
lusion of u�0 is not a P-node or an ax-node, this 
ut 
annot be multipli
ativelyredu
ed and the distinguished 
on
lusion of u� is the main 
on
lusion of the 
-treewhi
h 
ontradi
ts our hypothesis that it is 
on
lusion of the P-node n. By lemma 10,u0 = ��:N [[�℄u2℄ where N is an �-free 
ontext and � =2 u2. We use lemma 9:u= (��:N [[�℄u2℄)v1:::vn�� �
[
℄(��:N [[�℄u2℄)v1:::vn�� �
:N [[
℄(u2)v1:::vn℄then by indu
tion hypothesis (u2)v1:::vn �� �x:u0 and by lemma 8:u�� �
:N [[
℄�x:u0℄�� �
[
℄�x:��:N [[�℄u0℄�� �x:��:N [[�℄u0℄Lemma 12If u� has no �nal negative node and has a maximal 
ut-node with a non 
at 
-tree above it, thereexist u0, v1, : : : , vn su
h that: 22



� if the main 
on
lusion of the 
-tree is distinguished then we have u �� (��[�℄u0)v1:::vn;� if the main 
on
lusion of the 
-tree is not distinguished then u �� ��0[�0℄(��[�℄u0)v1:::vn.Lemma 13If u� has no �nal negative node and has a maximal 
ut-node with a 
at 
-tree above it then thereexist u0 and v su
h that u �� (�x:u0)v.We are now able to �nish the proof of theorem 4.Proof: (Theorem 4 { 
ontinued) By indu
tion on t�, following the proof of theorem 3:� If t� has a �nal P-node n above the distinguished 
on
lusion, by lemma 11, t �� �x:t0and t0 �� �x:t00. By de�nition of the translation t�0 = t� nn = t0� nn = t00�, thus t�0 = t00�,by indu
tion hypothesis t0 �� t00 and t �� t0.� If t� has a �nal P-node n above another 
on
lusion, by lemma 11, t �� ��[�℄�x:t0 andt0 �� ��[�℄�x:t00 so that t�0 = t� n n = t0� n n = t00� thus by indu
tion hypothesis t0 �� t00and t �� t0.� If t� has a �nal 
o-node or a �nal wo-node it is very similar.� If t� has a �nal 
i-node n with name x, let t0 (resp. t00) be a term with two free variablesx1 and x2 su
h that t0� = t� nn (resp. t00� = t0� nn) where x1 and x2 are the names of thepremises of n and su
h that t0[x=x1 ; x=x2 ℄ = t (resp. t00[x=x1 ; x=x2 ℄ = t0). By indu
tiont0 �� t00 thus we have t �� t0.� t� 
annot have a �nal wi-node.� If t� has no �nal negative node but some 
ut-nodes, let 
 be a maximal one. If the
-tree above the positive premise of 
 is not 
at we apply lemma 12. If it is 
at weapply lemma 13.� If t� has no �nal negative node and no 
ut then t �� (x)u1:::un and t0 �� (x)v1:::vn withui �� vi by indu
tion hypothesis inside boxes thus t �� t0.4 Pure 
aseConsidering pure proof-nets 
orresponds to applying the re
ursive equation N = !N ( N on types.This identi�es all output formulas and gives exa
tly four types: O (output formulas) and its dualI (anti output formulas); ?I (input formulas) and its dual !O (anti input formulas).
... ...

O !O II ?I OOI A A?
!O OA AA A I?I O ?I?I?
 ?w ?d


 PB!
ax 
ut

where A is either O or ?I.The translations studied before 
an be seen as translations of pure ��-
al
ulus into pure polar-ized proof-nets extending those for �-
al
ulus in [1, 12℄.All the results are still valid ex
ept, of 
ourse, strong normalization (
orollary 1.2). In parti
ular:23



Proposition 5 (Con
uen
e)The redu
tion of pure polarized proof-nets is 
on
uent.Proposition 6 (�-equivalen
e)Let t and t0 be two pure ��-terms, then t� = t0� () t �� t0.A
knowledgementsI would like to thank V. Danos for the key question of se
tion 3 and L. Regnier for personaland mathemati
al help and support. Thanks also to the referee for the important 
omments andsuggestions he made.Referen
es[1℄ Vin
ent Danos. La Logique Lin�eaire appliqu�ee �a l'�etude de divers pro
essus de normalisation(prin
ipalement du �-
al
ul). Th�ese de do
torat, Universit�e Paris VII, 1990.[2℄ Vin
ent Danos, Jean-Baptiste Joinet, and Harold S
hellinx. A new de
onstru
tive logi
: linearlogi
. Journal of Symboli
 Logi
, 62(3):755{807, September 1997.[3℄ Vin
ent Danos and Laurent Regnier. Proof-nets and the Hilbert spa
e. In Jean-Yves Girard,Yves Lafont, and Laurent Regnier, editors, Advan
es in Linear Logi
, volume 222 of LondonMathemati
al So
iety Le
ture Note Series, pages 307{328. Cambridge University Press, 1995.[4℄ Ren�e David andWalter Py. ��-
al
ulus and B�ohm's theorem. To appear in Journal of Symboli
Logi
, 2001.[5℄ Jean-Yves Girard. A new 
onstru
tive logi
: 
lassi
al logi
. Mathemati
al Stru
tures in Com-puter S
ien
e, 1(3):255{296, 1991.[6℄ Jean-Louis Krivine. Un interpr�eteur du lambda-
al
ul. Unpublished.[7℄ Olivier Laurent. Logique lin�eaire polaris�ee et logiques 
lassiques. M�emoire du magist�ereM.M.F.A.I., E
ole Normale Sup�erieure de Paris, September 1999.[8℄ Olivier Laurent. Polarized proof-nets: proof-nets for LC (extended abstra
t). In Jean-YvesGirard, editor, Typed Lambda Cal
uli and Appli
ations '99, volume 1581 of Le
ture Notes inComputer S
ien
e, pages 213{227. Springer, April 1999.[9℄ Mi
hel Parigot. ��-
al
ulus: an algorithmi
 interpretation of 
lassi
al natural dedu
tion. InPro
eedings of Internationnal Conferen
e on Logi
 Programming and Automated Dedu
tion,volume 624 of Le
ture Notes in Computer S
ien
e, pages 190{201. Springer, 1992.[10℄ Mi
hel Parigot. Classi
al proofs as programs. In Pro
eedings of Kurt G�odel Colloquium, volume713 of Le
ture Notes in Computer S
ien
e, pages 263{276. Springer, 1993.[11℄ Myriam Quatrini and Lorenzo Tortora de Fal
o. Polarisation des preuves 
lassiques et ren-versement. Compte-Rendu de l'A
ad�emie des S
ien
es de Paris, 323:113{116, 1996.[12℄ Laurent Regnier. Lambda-Cal
ul et R�eseaux. Th�ese de do
torat, Universit�e Paris VII, 1992.24



[13℄ Laurent Regnier. Une �equivalen
e sur les lambda-termes. Theoreti
al Computer S
ien
e,126:281{292, 1994.[14℄ Peter Selinger. Control 
ategories and duality: on the 
ategori
al semanti
s of the lambda-mu
al
ulus. To appear in Mathemati
al Stru
tures in Computer S
ien
e, 2001.

25


