
Polarized proof-nets and ��-alulusOlivier LAURENTInstitut de Math�ematiques de Luminy163, avenue de Luminy - ase 90713288 MARSEILLE edex 09 FRANCEolaurent�iml.univ-mrs.frAbstratWe �rst de�ne polarized proof-nets, an extension of MELL proof-nets for the polarized frag-ment of linear logi; the main di�erene with usual proof-nets is that we allow strutural rules onany negative formula. The essential properties (onuene, strong normalization in the typedase) of polarized proof-nets are proved using a redution preserving translation into usualproof-nets.We then give a redution preserving enoding of Parigot's ��-terms for lassial logi aspolarized proof-nets. It is based on the intuitionisti translation: A! B !A(B, so that itis a straightforward extension of the usual translation of �-alulus into proof-nets. We give areverse enoding whih sequentializes any polarized proof-net as a ��-term.In the last part of the paper, we extend the �-equivalene for �-alulus to ��-alulus.Interestingly, this new �-equivalene relation identi�es normal ��-terms. We eventually showthat two terms are equivalent i� they are translated as the same polarized proof-net; thus theset of polarized proof-nets represents the quotient of ��-alulus by �-equivalene.IntrodutionIn the last ten years, muh work has been done to solve the so-alled determinization problem forlassial logi: �nding some omputational interpretation of lassial proofs, similar to the Curry-Howard orrespondene for intuitionisti logi. We will be interested in two kinds of solutions thathave been proposed.� The sequent alulus approah has two main instanes: Girard's LC [5℄ is a deterministi se-quent alulus for lassial logi based on a polarization of formulas, with a semantis of proofsin oherent spaes; the LKtq system of Danos-Joinet-Shellinx [2℄ gives an extensive desrip-tion of the deterministi redution strategies that may be applied to LK. Both LC and LKtqhave translations into linear logi that preserve redutions (see also Quatrini-Tortora [11℄).� The �-alulus approah onsists in extending the �-alulus with ontrol operators typedby lassial shemes. For example one adds a new onstant all/ typed by the Peire law((A! B)! A)! A. Unfortunately the redution rules for this new onstant depend on theredution strategy (all-by-name or all-by-value), ontraditing the Churh-Rosser propertyfor �-alulus.The ��-alulus of M. Parigot [9℄ on the other hand is based on a natural dedution withmultiple onlusions and enjoys onuene. As before there are some good translations of ��-alulus into linear logi. Furthermore it has been reently given a nie ategorial semantis,1

the ontrol ategories of P. Selinger [14℄, whih as a by-produt, extends the language of typeswith a new disjuntive onnetive.As in the �-alulus where the �-equivalene [12, 13℄ identi�es terms that di�er only in theirsequential struture (e.g., (�x1:�x2:u)v1v2 and (�x2:�x1:u)v2v1), ��-alulus terms ontain pieesof information, whih are unneessary from the operational viewpoint. Indeed the ontrol at-egory semantis identi�es distint normal ��-terms. So two questions naturally arise: �nd the�-equivalene for ��-alulus; �nd some parallel syntax whih identi�es �-equivalent terms. In the�-alulus, these two questions are answered by means of a translation of intuitionisti logi intoproof-nets. However as to the present work, the translations of ��-alulus into linear logi fail tosolve these problems, essentially beause they preserve the sequential information by translating itas exponential boxes (typially the t-translation in [2℄ de�nes the enoding of the lassial arrowby: A! B !?A(?B).In this paper we set up and study a translation of ��-alulus into polarized proof-nets (PPN)for the fragment LLP of linear logi [7, 8℄. LLP is a subsystem of LL dealing with polarized formulaswhere polarities are de�ned as a linear version of LC's polarities. Polarized proof-nets allow a �neruse of exponential boxes: strutural rules, whih are reserved to formulas of the shape ?A in LL, arenow applied to any negative formula (saving uses of the ? onnetive). Dually the ut eliminationtakes advantage of the geometrial properties of polarized proof-nets for dupliating any
-tree(saving uses of the !-boxes). We prove the basi properties of PPN (onuene, normalization) byusing a redution preserving translation of polarized proof-nets into usual proof-nets whih may beseen as an analogue of CPS-translations from ��-alulus into �-alulus.We shall show that the translation of ��-alulus preserves redutions and that it is surjetive.Interestingly enough, it translates A ! B as !A(B just like the usual enoding of intuitionistilogi1. As a onsequene the translation is a straightforward extension of the �-alulus transla-tion [1, 12℄. Furthermore, sine there is very little di�erene between LLP and LC (the two systemsare equivalent in the ategorial sense), our framework oniliates LC and the ��-alulus, allowingthe use of LC as a typing system for ��-terms and endowing ��-alulus with LC struture (e.g.,its denotational semantis). In other terms we have established a Curry-Howard orrespondenebetween LC and ��-alulus.We shall also de�ne the �-equivalene for ��-alulus as an extension of the �-equivalene for�-alulus. We show that it is operationally innouous as it is inluded in the ��-equivaleneof ��-alulus. This result is slightly weaker than in the �-alulus sine it must make use of�-equivalene (whereas �-equivalene for �-terms is inluded in �-equivalene). We show that �-equivalene is omplete w.r.t. the translation: two terms are equivalent i� they are translated asthe same proof-net.For the sake of simpliity, we shall stik to simply typed ��-alulus. However our translation iseasily extendable to some riher language: pairing may be enoded by the & onnetive, Selinger'sdisjuntive onnetive may be enoded by the P onnetive. As in the �-alulus, we an use linear�rst and seond order quanti�ers to enode the lassial ones. The proof-net tehnology needed forall these extensions has been developed in [7, 8℄. Also, in the last setion we use the same trik asin the �-alulus for applying our results to the untyped ��-alulus.Note that as the �-equivalene identi�es normal ��-terms, and sine two equivalent termsorrespond to the same proof-net, it is impossible to distinguish them by evaluation in a ontext.Thus ��-alulus violates B�ohm's theorem whih enfores David and Py result, who found two1In fat the t-translation may be fatorized through ours: �rst use the LLP-translation, then use the translationof LLP into LL shown in setion 1.4. 2

normal terms that are operationally indistinguishable [4℄. It is worth noting that their two termsare not �-equivalent, from whih we may dedue that polarized proof-nets themselves do not satisfyB�ohm's theorem.1 Polarized proof-netsWe use a fragment of multipliative exponential polarized proof-nets [7, 8℄ whih has a partiularlysimple orretness riterion to enode ��-alulus.1.1 De�nitionsDe�nition 1 (Polarized formula)Starting with a set of atoms (denoted by X), we de�ne output (denoted by N , M , : : :) and antioutput (denoted by P , Q, : : :) formulas:N ::= X j ?P P NP ::= X? j !N
 PFormulas of the shape ?P (resp. !N) are alled input (resp. anti input) formulas. Negative formulas(resp. positive formulas) are input and output (resp. anti input and anti output) formulas.The negation is involutive with (?P P N)? = !P?
N? and (?P)? = !P?.The terminology \input" and \output" will beome lear in setion 2.2.De�nition 2 (Proof-struture)A proof-struture is a �nite ayli oriented graph built over the alphabet of nodes representedbelow (where the orientation is the top-bottom one), i.e. respeting for eah node: the orientation,the number of inident (top) edges (the premises of the node), the number of emergent (bottom)edges (the onlusions of the node), the typing of eah edge by a polarized formula.Eah edge is onlusion of exatly one node and premise of at most one node. Edges whih arenot premise of any node are the onlusions of the proof-struture.
... ...

N !N P!N
 P ?P N?P P NN? A A?
!N NA AA A P?P N ?P?P+ + -

- - - +
+ + - -

- - - -
+ - - +
? ?w ?d

 PB!
ax ut

where A is a negative formula.Additionally, to eah !-node with onlusions f!N;�g is assoiated a box, that is a proof-struturewith onlusions fN;�g. We say that a node ours at depth 0 in the proof-struture R if it is anode of R, and that it ours at depth k+1 in R if it ours at depth k in some box assoiated toa !-node of R. The depth of R is the maximal depth of the nodes ourring in R. We assume it isalways �nite. 3

We distinguish two kinds of ontrations (?-nodes) (resp. weakenings (?w -nodes)): one foroutput types denoted by o (resp. wo) and the other one for input types denoted by i (resp. wi).If the distintion is not needed we still use ? (resp. ?w).De�nition 3 (Edges and nodes)� An edge is positive (resp. negative) if the assoiated formula is positive (resp. negative).� A node is positive (resp. negative) if all its edges are positive (resp. negative), thus positivenodes are
-nodes and negative nodes are P-, ?- and ?w -nodes.� A ut-node is a strutural ut if its negative premise is onlusion of ?d, ?, ?w or !. Theother uts, i.e.
=P and ax, are alled multipliative uts.1.2 Corretness riterionDe�nition 4 (Corretion graph)Given a proof-struture, its orretion graph is obtained by orienting upwardly (resp. downwardly)the positive (resp. negative) edges, i.e. by reversing the orientation of positive edges, and by erasingboxes (just keeping the !-node).Sine we have de�ned two orientations on proof-strutures, we have to introdue some ter-minology to distinguish them. In the sequel, we will never mention the orientation oming fromthe de�nition of a proof-struture exept through \geometrial" terms suh as above, below, down,up, : : : To talk about the orientation oming from the orretion graph, we will use \ordering"terms suh as initial, �nal, maximal, : : :De�nition 5 (Proof-net)A proof-struture is orret or is a proof-net if:� its orretion graph is an ayli oriented graph;� the number of positive onlusions plus ?d -nodes is one;� and reursively the boxes are also orret proof-strutures.Remarks:� The omplexity of the veri�ation of orretness is linear in the size of the proof-struture(i.e. its number of nodes).� The orretion graph of a proof-struture without ut is always ayli. A path in suha orretion graph an start either on a negative edge and in this ase it goes towards aonlusion or on a positive edge and in this ase it an only go to an axiom and then towardsa onlusion, then the path ends beause the only way to ontinue is to use a ut.� A polarized proof-net has one non ?w initial node at depth 0 alled the main initial nodewhih is either a positive onlusion or a ?d-node.� A polarized proof-net with no anti input onlusion has at least one output onlusion. Indeeda polarized proof-net without anti input onlusion has an anti output edge at depth 0;starting from this edge, it is possible to go through an oriented path (of the orretion graph)ontaining only output and anti output edges yielding to an output onlusion.4

The orientation de�ned by the orretion graph and the ayliity of this graph indue a partialorder on the set of the nodes of a proof-net. A node is �nal if it is maximal at depth 0 for this order.A ut-node is a maximal ut-node if it is at depth 0 and maximal inside the subset of ut-nodes.Remark: A negative node the onlusion of whih is onlusion of the proof-struture is �nal.This would not be true anymore with 8 and & beause the orretness riterion for suh proof-netsintrodues partiular edges starting from these nodes [8℄.1.3 Cut eliminationDe�nition 6 (
-tree)The set of nodes above a positive edge e is alled its
-tree and e is alled the root of the tree (the
-tree of a
-node is the
-tree of its onlusion). It has a very partiular struture: either it isjust a box or just an axiom or it is a
-node with a box above one of its premises and another
-tree above the other.If the
-tree is a box, it is said to be at. A non at
-tree ontains exatly one axiom thenegative onlusion of whih is alled the main onlusion of the
-tree. All the other non-rootonlusions of a
-tree are the auxiliary onlusions.Remark: The
-tree above a positive edge e is the smallest sub-proof-net ontaining e, also alledthe kingdom of e. Note that the kingdom of an edge e typed by !N is the whole box of whih e isa onlusion, so that
-trees may be onsidered as generalizations of boxes for all positive edges.A ut-node always has a
-tree above its positive premise. Maximality of the ut-node entailsthat there is no other ut-node below the onlusions of the
-tree.The ut elimination steps for ax,
/P, ?d/!, i/!, wi/! and !/! redutions are the same as inusual proof-nets [1, 12℄. We add new steps for the new strutural rules whih are similar to thei/!, wi/! and !/! if we onsider
-trees as boxes.
M MM

M M N NN Ni NiNi

NiNBnB1 BnBn
B1 B1

? !ut
! ax

!ut ut
!

! ax !
??ax

5

M
Ni N Ni?w

 ?w ?wNBnB1!ut

! ax

... ...M Ni
!N 0 Nj !N 0

 N Nj NNiB

BnB1 B0!! !ut
! ax

where B0 is obtained by a ut between the M onlusion of B and the
-tree.We use the notation R! R0 if R an be redued in R0 by one step of ut elimination.Proposition 1Corretness is preserved by redution.Proof: There are two interesting ases:� For a ut between a ?d-node and a box, the main initial node was the ?d one whih isreplaed by the main initial node of the box. As for the ayliity, if a yle is reated,it must go through the box but it is impossible beause all its onlusions are negative.� For a ut on a ?-node (or ?w), we have to remark that all the onlusions of the
-treeare negative thus there is no problem to propagate the ?-node (or ?w) on them.1.4 Translation into usual proof-netsThere is an enoding of polarized proof-nets into usual multipliative exponential proof-nets whihpreserves redution. This gives a simple way to prove di�erent properties of polarized proof-nets.We pre�x output formulas with a ? so that the enoding of eah negative formula begins witha ?: X = ?X?P P N = ?(?P P N)?P = ?PThe translation of positive formulas is obtained by duality.We translate proof-nets by replaing eah P-node by the sequene P-?d and by putting a boxaround the
-tree of eah
-node. This translation emphasizes the fat that
-trees behave likeboxes. 6

BnB1! ! ax BnB1 ! ax!

!
!

Remark: This translation is the linear ounterpart of CPS-translations. Indeed, very informally,CPS-translations at by adding :: in suitable plaes whih amounts to adding ? in the orrespond-ing plaes in linear logi.If we onsider the usual translation of the intuitionisti arrow A! B !A(B (as done insetion 2.2) and apply the translation (), we obtain !?A(?B whih is the basis of the t-translationused in [2℄ to translate ��-alulus into linear logi.We have the following orrespondene between redutions:PPN redutions (R) PN redutions (R)ax (!=!)�; ax
=P ?d=!;
=Pstrutural output exponentialstrutural input (exponential) exponentialTheorem 1 (Simulation)If R !LLP R0 then R !+LL R0. Conversely if R !�LL S, let R0 be the proof-net obtained from R byapplying the orresponding redution steps, S gives R0 by reduing all its
/P-uts and its !/!-utsand ax-uts inside boxes not ontaining
-trees (in partiular if S = R1 then R !�LLP R1).Proof: The �rst statement is immediate. As to the onverse, the redution R !� S may haveredued some ?d/!-uts (resp. !/!-uts) but omitted the resulting
/P's (resp. !/!'s and ax's).This is why we have to redue the
/P-uts (resp. some !/!-uts and ax-uts) in S to obtainR0.Lemma 1 (Injetivity)The ()-translation is injetive.Corollary 1.1 (Conuene)Redution of polarized proof-nets is onuent.Proof: If R !� R1 and R !� R2 then, by theorem 1, R !� R1 and R !� R2 thus, byonuene of usual proof-nets, there exists S suh that R1 !� S and R2 !� S. Let R01and R02 be the orresponding reduts of R1 and R2, we have by theorem 1 that R01 andR02 are obtained from S by reduing the same uts, thus R01 = R02 and we an onlude bylemma 1. 7

Corollary 1.2 (Strong normalization)There is no in�nite sequene of redutions in polarized proof-nets.These properties an also be obtained with usual methods suh as those used in [1, 12℄.2 The ��-alulusThe ��-alulus has been introdued by M. Parigot in [9℄ as an extension of �-alulus whih givesan algorithmi interpretation of lassial proofs. We will see how it an be interpreted into polarizedproof-nets and how this indues new identi�ations in ��-alulus.2.1 De�nitionsDe�nition 7 (��-term)Given two disjoint denumerable sets of variables: alled �-variables (denoted by x, y, z, : : :) and�-variables (denoted by �, �, , : : :), the ��-terms are de�ned by:u ::= x j �x:u j ��[�℄u j (u)uThe � and � onstrutions are alled abstrations and (u)v is the appliation; � and � are binders.We onsider terms modulo �-onversion on �- and �-variables. We use the notations x (resp. �)2 u for \x (resp. �) free in u" and (u)v1:::vn for (:::((u)v1)v2:::)vn.For the simply typed ��-alulus, a typing judgment for the term u is � ` u : N j � where �(resp. �) ontains typing delarations for �-variables (resp. �-variables). Eah variable appears atmost one in a ontext. The derivation rules are: varx : N ` x : N j�; x : N ` u : M j � abs� ` �x:u : N !M j �� ` u : N j � :M;� �� ` ��[�℄u : M j � : N;�� ` u : N !M j � �0 ` v : N j �0 app�;�0 ` (u)v : M j �;�0The (abs) (resp. (�)) rule ontains an impliit weakening if x (resp. �) does not appear in theontext. The (app) rule ontains impliit ontrations if variables appear in both � and �0 or both� and �0. There is also an impliit ontration in the (�) rule if � appears in �.Alternatively, the �-rule may be deomposed by introduing the notion of named term [�℄u. Anamed term has no type (or has type ?) and appears in a judgment � ` [�℄u j �. The (�) rule issplit into: � ` u : N j � �-name� ` [�℄u j � : N;�8

� ` [�℄u j � :M;� �-abs� ` ��[�℄u : M j �Remark: If a ��-term u is typable in this system, the onlusion of the typing derivation is� ` u : N j � where � and � exatly ontain the free variables of u. In partiular talking about aterm or about a typing judgment is equivalent sine there is at most one typing judgment for eahterm. Moreover for this typing judgment there exists at most one typing derivation.The two redution rules are the usual ones for ��-alulus:(�x:u)v !� u[v=x℄(��:u)v !� ��:u[[�℄(w)v=[�℄w℄We use the notation u! v if u an be redued in v by one step of �- or �-redution.2.2 Translation into proof-netsWe now give a �rst translation, denoted by ()Æ, of ��-terms into proof-nets. Simple types aremapped to output formulas by:XÆ = X(N !M)Æ = !NÆ(MÆ = ?NÆ? PMÆThe translation of typed ��-terms is de�ned by indution on the typing: a proof of the sequent � `u : N j � is interpreted by a proof-net with onlusions ?�Æ?; NÆ;�Æ. There lies the justi�ation forthe input/output terminology: �-variables are typed by input formulas; �-variables (ontinuationvariables) and the term are typed by output formulas.For the purpose of the translation, we add to proof-nets a labelling of their onlusions: eahinput onlusion in ?�Æ? is labelled by the name of the orresponding �-variable in �, eah outputonlusion in �Æ is labelled by the name of the orresponding �-variable in �. The onlusion NÆis said to be distinguished and is the only one whih has no assoiated name.In the pitures, we use for the distinguished onlusion, for an old distinguishedonlusion and (�) for the old name of the distinguished onlusion.� (xN)Æ ?dxN? ?N? Nax
� (�xN :uM)Æ uÆ M?N??N? PMxP� (��M [�℄NuN)Æ 9

uÆN NNM �(�) �oThis is for the partiular ase where � 2 u and � 2 u. If � =2 u we do not need the o-node, if� =2 u we need a wo-node. Note that if � =2 u and � 2 u, the only e�et of the translation isto swap the status of the two onlusions, that is to assoiate the name � to the distinguishedonlusion (whih is no more distinguished) and forget the name of the onlusion labelledby � (whih beomes the new distinguished onlusion) leaving the proof-net unhanged.� ((uN!M)vN)Æ
uÆ !N
M?M? M?N? PM !NvÆ
! axutWe an separate in two parts the ase of ��[�℄u if we translate named terms [�℄u as proof-netswithout distinguished onlusion. The [�℄ onstrution on u introdues a ontration node if � 2 u.The �� onstrution introdues a weakening node if � =2 u.Another way to deal with named terms is to put expliitly the type ?. The two �-rules beome:� ` u : N j � �-name'� ` [�℄u : ? j � : N;�� ` [�℄u : ? j � :M;� �-abs'� ` ��[�℄u :M j �These two rules an be translated into proof-nets2 through the translation ()�:� ([�℄NuN)� u�N N�� N ?o ?� (��M :u?)�2The introdution of 1- and ?-nodes does not modify the orretness riterion.10

u� ?(�) 1M 1utThe translation ()� is the same as ()Æ for the other rules. We an reover ()Æ from ()� by reduingthe uts on onstants. Indeed, by de�nition of ��-alulus, �� and [�℄ always ome together, sothe onstant uts are always between 1-nodes and ?-nodes whih vanish by redution.The ()� translation allows to aount with a slight generalization of ��-alulus with a new rulefor ? orresponding to the onstrution ��M :u? for any u of type ? (not only named terms). Inthis ase 1-nodes are not always ut against ?-ones. Sine ? is an output formula, the ?-nodeis just a partiular ase of the wo-node. On the other hand, the 1-node introdues a new kind ofleaves for
-trees.With this extension, we an, for example, translate the C operator of Felleisen of type ::N ! Nde�ned in ��-alulus by �f::N :��N :(f)�xN :[�℄Nx:x ? �N 11
N??N?

((N ! ?)! ?)�? f(((N ! ?)! ?)! N)�N ?
?d ?P
 P?d 1

ax
! ax ut

2.3 Simulation of redutionThe translation ()Æ has also a dynami meaning: it simulates ��-redution by ut elimination inproof-nets.Until the end of the paper, we have to identify all the binary trees of ontrations with the samenumber of nodes, the sequene ?w -? with a simple edge and a i -node on two input onlusionsof a box with the same node inside the box. Another solution has been proposed in [3, 12℄ to getrid of this problem with generalized ontrations.Final ?w-nodes of a proof-net orrespond to variables in the ontext not free in the term. Asdone for typing derivations, we want to ignore them. In the sequel we will not are about suh �nal?w-nodes. In partiular we say that two proof-nets are equal if they di�er only by �nal ?w-nodes.This is the ounterpart of the fat that, in various systems, two typing proofs that di�er only inuseless variable delarations may be onsidered equal.Lemma 2 (�-substitution)Modulo �nal ?w-nodes and struture of ontration trees:11

uÆ x vÆ!ut !+ (u[v=x℄)ÆLemma 3 (�-substitution)Modulo �nal ?w-nodes and struture of ontration trees:
uÆ �
vÆut! ax !� (u[[�℄(w)v=[�℄w℄)Æ

Proof: These two lemmas are proved by indution on u.Theorem 2 (Simulation)If u! v then uÆ !� vÆ.Proof: We just have to apply lemmas 2 and 3. In the ase of �-redution, the simulation is strit:one step in ��-alulus orresponds to at least one step in proof-nets. On the other hand,a �-redution may be translated by identity, typially in the ase: (��[�℄u)v !� ��[�℄(u)vwith � =2 u.Remark: Due to the �-equivalene (next setion), we annot hope for any onverse result. Forexample, if u = �[�℄�x:��0[�℄�y:(��0[℄(y)x)t and v = �[�℄�y:��0[�℄�x:��0[℄(y)x, uÆ !� vÆbut v is not a redut of u.We now onsider proof-nets up to multipliative (i.e.
=P and ax) redutions. The justi�ationfor doing so is that these redutions are operationally simple: they stritly derease the size of thenet and they are loal, so that the heart of the dynamis may be thought of as lying in struturalredutions.De�nition 8 (Translation ()�)The translation u� of a ��-term u is the multipliative normal form of the proof-net uÆ.Remark: We have de�ned three translations with the following relations:u� 1=?���! uÆ
=P;ax����! u�With the translation ()�, the last theorem is no longer orret, for example:((��:u)v1)v2 !� (��:u[[�℄(w)v1=[�℄w℄)v2 !� ��:u[[�℄(w)v1v2=[�℄w℄but in the orresponding proof-net (((��:u)v1)v2)� these two steps are done in just one, so thatthe translation of the middle term is not reahable from the translation of the �rst one. Asking for\onseutive" �-redexes to be redued in one step by modifying the �-redution: (��:u)v1:::vn !�012

��:u[[�℄(w)v1:::vn=[�℄w℄ (where (��:u)v1:::vn is not applied to another term vn+1) does not solve theproblem sine as shown in the following example the sequene v1:::vn may be hidden in the ��-term:((�x:(��:u)v1)t)v2 !�0 ((�x:��:u[[�℄(w)v1=[�℄w℄)t)v2!� (��:u[[�℄(w)v1=[�℄w℄[t=x℄)v2 !�0 ��:u[[�℄(w)v1v2=[�℄w℄[t=x℄On the other hand ()� translates normal terms as ut-free proof-nets, �-redexes as !=? uts and�-redexes as
=o,
=wo or
=! uts (exept in some partiular ases like (��[�℄x)v).2.4 SequentializationWe now address the question of surjetivity of the translation ()�.De�nition 9 (��-proof-struture)A ��-proof-struture is a proof-struture with no positive onlusion, no �nal wi-node and onlystrutural uts.The \no �nal wi-node" onstraint is not needed for theorem 3 if we want to sequentializeproof-nets as typing derivations with expliit strutural rules beause they just add variables in theontext not free in the ��-term (see page 11).Remark: When a proof-struture has no positive onlusion, the orretness ondition on thenumber of ?d-nodes an be replaed by: exatly one derelition at depth 0 and in eah box.Lemma 4Let R be a proof-struture with a �nal negative node n, R n n is the graph obtained from R byerasing the node n. Then R n n is a proof struture and if R is orret, R n n is orret.Lemma 5Let u be a term with two free �- (resp. �-) variables x1 and x2 (resp. �1 and �2), (u[x=x1 ; x=x2 ℄)�(resp. (u[�=�1 ; �=�2 ℄)�) is obtained from u� by adding a i-node (resp. o-node) between the twoonlusions orresponding to x1 and x2 (resp. �1 and �2).Lemma 6Let R be a ut-free proof-net, if e is a negative edge either it is a onlusion of R or movingdownward from e yields to a �nal negative node.Lemma 7Let R be a proof-net without any �nal negative node. If is a maximal3 ut-node in R then issplitting, that is R is obtained by utting the negative onlusion A of a proof-net R� with thepositive onlusion A? of a proof-net R+. Furthermore R+ is a
-tree.Proof: The last four results are immediate.Theorem 3 (Sequentialization)A proof-struture with a distinguished onlusion is the translation ()� of a ��-term if and only ifit is a ��-proof-net.3see setion 1.2 13

Proof: The \only if" part is immediate. Conversely, we sequentialize any ��-proof-net R with adistinguished onlusion as a ��-term. We start by assoiating distint �-variables to inputonlusions and distint �-variables to output onlusions of R. We then sequentialize R asa named term [�℄u and we de�ne the omplete sequentialization of R to be ��[�℄u where � isthe name assoiated to the distinguished output onlusion. The onstrution of [�℄u is doneby indution on R:� If R has a �nal P-node n whose onlusion ?N? P M has name �, let u be a sequen-tialization of Rn n (or of (Rn n) n n0 if ?N? is introdued by a wi-node n0) with namesx for ?N? and � for M . We sequentialize R as [�℄N!M�xN :��M :u.� If R has a �nal o-node n whose onlusion N has name �, let u be a sequentialization ofRnn with names �1 and �2 for the premises N of n. We sequentialize R as u[�=�1 ; �=�2 ℄by lemma 5.� If R has a �nal wo-node n whose onlusion N has name �, let u be a sequentializationof R n n. We sequentialize R as [�℄N�ÆN :u where Æ does not our in u.� If R has a �nal i-node n whose onlusion ?N? has name x, let u be a sequentializationof R n n with names x1 and x2 for the premises ?N? of n. We sequentialize R asu[x=x1 ; x=x2 ℄ by lemma 5.� If R has no �nal negative node, we onsider a maximal ut-node whih is splitting bylemma 7. Let R� (resp. R+) be the proof-struture above its negative (resp. positive)premise. By lemma 7, R+ is a
-tree. We have two ases depending on the type of theut formula:{ if it is an input formula ?N?, we sequentialize R� (or R� n n0 if ?N? is introduedby a wi-node n0) with name x for the onlusion ?N? as u. Sine the root of R+is !N , R+ must be at, i.e. R+ is a box B assoiated to a !-node. Let v be theomplete sequentialization of B (whose onlusion N is distinguished and whoseother onlusions are named as in R). We pik an output onlusion of R� (it musthave one by the fourth remark in setion 1.2) with name �. We sequentialize R as[�℄M (�xN :��M :u)vN ;{ if it is an output formula N , let u be the sequentialization of R� with the new name� assoiated to its onlusion N and v1, : : : , vn be the omplete sequentializations ofthe boxes assoiated to the !-leaves of R+. If � is the name of the main onlusion4of the
-tree R+, we sequentialize R as [�℄N (��N :u)v1:::vn.� If R has no �nal negative node and no ut at depth 0, then let n be its main initial nodewhih is a ?d-node by the remark above. Then the onlusion of n is a onlusion of Rby lemma 6. Furthermore its premise is the root of a
-tree R+ and the onlusionsof R+ are onlusions of R by lemma 6, i.e. R+ = R n n. If the onlusion ?M?of n has name x and the main onlusion N of R+ has name �, we sequentialize Ras [�℄N (xM)v1:::vn where v1, : : : , vn are the omplete sequentializations of the boxesassoiated to the !-leaves of R+.One may hek that in eah ase the translation ()� applied to the onstruted term yieldsthe original proof-net (up to assoiativity of ontrations, ommutations of auxiliary doorswith ontrations and neutrality of weakening w.r.t. ontrations, as explained above).4see setion 1.3 14

Remarks:� Maximal ut-nodes orrespond to leftmost redexes in ��-alulus. The translation of theleftmost redex of a ��-term is a maximal ut-node and onversely if is a maximal ut-node,there exists a ��-term suh that its leftmost redex is translated as .� The derelition at depth 0 orresponds to the head variable of the term. If the onlusion ofthis node is a onlusion of the proof-net it means that the head variable of the ��-term isfree and linear.This sequentialization proedure yields ��-terms with a partiular shape: ��[�℄ onstrutionssurround eah �-abstration, eah appliation, : : : The �-equivalene will show that this kind of��-terms is not so peuliar beause there exists at least one suh term in eah �-equivalene lass.3 The �-equivaleneWe haraterize now the identi�ation between ��-terms indued by the translation. The answerhas already been given for the �-alulus in [12, 13℄ as the �-equivalene. We give here a \on-servative" extension of this equivalene on ��-terms. However this extension has a very di�erentbehavior on ��-terms. The �-equivalene of �-alulus is de�ned in terms of ommutations ofredexes, in partiular a normal term is only equivalent to itself, but here the (pop/pop) equationprovides identi�ations between normal terms. We will also see a normal term equivalent to a nonnormal one.3.1 De�nitionDe�nition 10 (Atomi ontexts)An atomi ontext C0 is obtained by applying one of the onstrutions of the ��-alulus to a holeinstead of a term: C0 ::= �y:[℄ j �[�℄[℄ j ([℄)uAn atomi named ontext N0 is onstruted in the same way but with named terms:N0 ::= [�℄�y:�:[℄ j [�℄(�:[℄)uWe say that � (resp. x) is bound in C0 if � =2 C0[�Æ[�℄x℄ (resp. x =2 C0[x℄). We say that C0 is�-free (resp. x-free) if � (resp. x) =2 C0 and if � (resp. x) is not bound in C0. And we use thesame terminology for N0.De�nition 11 (�-equivalene)The �-equivalene is the smallest ompatible (i.e. preserved by abstrations and appliation) equiv-alene relation on ��-terms ontaining:� generalization of �-equivalene on �-alulus for ommutation of �-redexes with all the on-strutions of ��-alulus,((�x:u)v)w �� (�x:(u)w)v x =2 w (�1)(�x:�y:u)v �� �y:(�x:u)v (x 6= yy =2 v (�2)(�x:��[�℄u)v �� ��[�℄(�x:u)v � =2 v (�3)15

� partiular ��-features giving new ommutations,[�0℄(��[�0℄(��:u)v)w �� [�0℄(��[�0℄(��:u)w)v (� =2 v� =2 w (push=push)[�0℄�x:��[�0℄�y:��:u �� [�0℄�y:��[�0℄�x:��:u x 6= y (pop=pop)[�0℄(��[�0℄�x:��:u)v �� [�0℄�x:��[�0℄(��:u)v (x =2 v� =2 v (push=pop)with � 6= �, � 6= �0 and �0 6= � in these three equations.� usual �- and �-redutions of ��-alulus.[�℄��:u �� u[�=�℄ (�)��[�℄u �� u � =2 u (�)The �-redution (resp. �-redution) is obtained by orienting (�) (resp. (�)) from the left hand sideto the right hand side.These equations (exept (�) and (�)) an also be fatorized through the notion of atomi ontext:C0[(�x:u)v℄ �� (�x:C0[u℄)v (�i)where C0 is x-free and no free variable of v is bound in C0,N0[N 00[u℄℄ �� N 00[N0[u℄℄ (p=p)where if � (or x) is bound in N0 (resp. N 00) then N 00 (resp. N0) is �-free (or x-free).We may justify these equations operationally by examining their behavior within Krivine'sabstrat mahine [6℄. Approximatively a state of this mahine is a triple (t; e; s) where t is a term,e is an environment ontaining assoiations (�-variable, term) and (�-variable, stak) and s is astak, that is a sequene of terms. The transitions are:(jump) If t is a variable x, proeed with its value as de�ned in e.(push) If t is an appliation (u)v, the argument v is pushed onto the stak and the mahine proeedswith u.(pop) If t is a �-abstration �x:u, the �rst element of the stak is popped and stored with name xin the environment and the mahine proeeds with u.(store) If t is a �-abstration ��:u, the stak is stored under the name � in the environment andexeution ontinues with u and the empty stak ".(restore) If t is a named term [�℄u, the stak is replaed by a opy of the one assoiated to � inthe environment and exeution proeeds with u and the new stak.We an, for example, desribe the ase of (push/pop) (whih should enlighten its name). If we startwith the state ([�0℄(��[�0℄�x:��:u)v; e; ") where e ontains the assoiations: (�0; s1) and (�0; w :: s2),the mahine goes through the following steps:- restore the stak s1;- push v on s1;- store the new stak v :: s1 with name �; 16

- restore the stak w :: s2;- pop w and store it with name x;- save the popped stak s2 with name �.The mahine reahes the state (u; e0; ") where e0 is e augmented with the assoiations (�; v :: s1),(x;w) and (�; s2). One easily heks that starting with the state ([�0℄�x:��[�0℄(��:u)v; e; "), themahine goes through the same steps.3.2 Properties of the �-equivaleneProposition 2Let u and v be two ��-terms, if u �� v then u ������ v.Proof: We prove that eah equation of the �-equivalene is realized by the �����-equivalene:� (�1), (�2) and (�3) are realized by the �-equivalene;� (push/push) and (push/pop) are realized by the ��-equivalene;� for the (pop/pop) equation we �rst show the following equivalene whih orresponds tothe (S3) rule in [10℄:��0 : : : [�0℄�x:��:t : : :� �x:(��0 : : : [�0℄�x:��:t : : :)x (�)� �x:��0 : : : [�0℄(�x:��:t)x : : : (�)� �x:��0 : : : [�0℄��:t : : : (�)� �x:��0 : : : t[�0=�℄ : : : (�)where the �-redution also substitutes the other sub-terms [�0℄u by [�0℄(u)x. If we applytwo �-expansions in eah member of the (pop/pop) equation we obtain[�0℄��0[�0℄��0[�0℄�x:��[�0℄�y:��:u and [�0℄��0[�0℄��0[�0℄�y:��[�0℄�x:��:uand by applying the above equation twie to eah term we get the same one[�0℄�x:��0[�0℄�y:��0u[�0=�; �0=� ℄This shows that (pop/pop) is realized by the ����-equivalene.� (�) and (�) are realized by the ��-equivalene.Proposition 3 (Preservation properties)Let u and v be two ��-terms suh that u �� v.� If u is normalizable then v is normalizable and their normal forms are �-equivalent.� If u has a head normal form5 then v has a head normal form.� If u is strongly normalizable then v is strongly normalizable.� If u is typable of type A then v is typable of type A.Proof: All these properties are in fat orollaries of theorem 4.5It is the natural generalization of the notion of head normal forms for the �-alulus, see [4℄ for a preise de�nition.17

Let us look at the kind of transformations of typing derivations realized by the �-equivalene,for example with the (push/pop) equation. If �; x : A ` u j � : C ! D;� : B;� and �0 ` v : C j �0,we have: �; x : A ` u j � : C ! D;� : B;� �-abs�; x : A ` ��:u : B j � : C ! D;� abs� ` �x:��:u : A! B j � : C ! D;� �� ` ��[�0℄�x:��:u : C ! D j �0 : A! B;� �0 ` v : C j �0 app�;�0 ` (��[�0℄�x:��:u)v : D j �0 : A! B;�;�0 �-name�;�0 ` [�0℄(��[�0℄�x:��:u)v j �0 : D;�0 : A! B;�;�0and �; x : A ` u j � : C ! D;� : B;� �-abs�; x : A ` ��:u : C ! D j � : B;� �0 ` v : C j �0 app�;�0; x : A ` (��:u)v : D j � : B;�;�0 ��;�0; x : A ` ��[�0℄(��:u)v : B j �0 : D;�;�0 abs�;�0 ` �x:��[�0℄(��:u)v : A! B j �0 : D;�;�0 �-name�;�0 ` [�0℄�x:��[�0℄(��:u)v j �0 : D;�0 : A! B;�;�0The �-equivalene realizes omplex identi�ations in partiular between normal and non normalterms even if we onsider normal terms modulo �- and �-redutions: let t be a losed term andu = �x:��[�℄(��[�℄�y:�Æ[�℄x)t, v = �x:��[�℄�y:�Æ[�℄(x)t, we have u �� v (this is in fat a variantof (push/pop) and a partiular ase of lemma 9) but also u!+ v:u !� �x:��[�℄��[�℄�y:�Æ[�℄(x)t !� vThus there is no hope that �-equivalene preserves length of redution as it does in �-alulus.The reason is that ��-alulus ontains linear �-redexes whih have no real operational meaning.More preisely, we are now going to show that the �-equivalene identi�es terms whih di�er onlyby linear �-redexes.De�nition 12 (Contexts)A ontext C is a term, with a hole in plae of a sub-term, de�ned in the following way:C ::= [℄ j �y:C j �[�℄C j (C)uA named ontext N is a named term, with a hole in plae of a named sub-term:N ::= [℄ j [�℄C[�:[℄℄The notions of variable bound in a ontext and of �-free and x-free ontexts are the same as foratomi ontexts.De�nition 13 (Linear �-redex)A �-redex ourring in a ��-term is linear if it has the shape (��:N [[�℄u℄)v where N is an �-freenamed ontext and � =2 u. The size of the �-redex is the size of the term ��:N [[�℄u℄.18

Lemma 8 (pop out)If N is x- and �0-free, � not bound in N and �0 =2 u:N [[�℄�x:u℄ �� [�℄�x:��0:N [[�0℄u℄Proof: By indution on N :� If N = [℄: [�℄�x:u�� [�℄�x:��0[�0℄u (�)� If N = [�℄�:[℄: [�℄�[�℄�x:u�� [�℄�[�℄�x:��0[�0℄u (�)�� [�℄�x:��0[�0℄u[�= ℄ (�)�� [�℄�x:��0[�℄�[�0℄u (�)� If N = [�℄�y:C[�:[℄℄:[�℄�y:C[�:[�℄�x:u℄�� [�℄�y:��0[�0℄C[�:[�℄�x:u℄ (�)�� [�℄�y:��0[�℄�x:��0[�0℄C[�[�0℄u℄ by indution�� [�℄�x:��0[�℄�y:��0[�0℄C[�[�0℄u℄ (pop/pop)�� [�℄�x:��0[�℄�y:C[�[�0℄u℄ (�)� If N = [�℄��0[0℄C[�:[℄℄:[�℄��0[0℄C[�[�℄�x:u℄�� [�℄��0[�℄�x:��0[0℄C[�[�0℄u℄ by indution�� [�℄�x:��0[0℄C[�[�0℄u℄[�=�0 ℄ (�)�� [�℄�x:��0[�℄��0[0℄C[�[�0℄u℄ (�)� If N = [�℄(C[�:[℄℄)v:[�℄(C[�[�℄�x:u℄)v�� [�℄(��0[�0℄C[�[�℄�x:u℄)v (�)�� [�℄(��0[�℄�x:��0[�0℄C[�[�0℄u℄)v by indution�� [�℄�x:��0[�℄(��0[�0℄C[�[�0℄u℄)v (push/pop)�� [�℄�x:��0[�℄(C[�[�0℄u℄)v (�)Lemma 9 (push out)If N is �0-free, if � is not bound in N , if �0 =2 u and if none of the free variables of v is bound inN : N [[�℄(u)v℄ �� [�℄(��0:N [[�0℄u℄)vIn partiular linear �-redution is inluded in �-equivalene.Proposition 4 (Elimination of linear �-redexes)Let u be a ��-term, there exists u0 suh that u0 �� u and u0 has no linear �-redex.In partiular linear �-redution terminates.Proof: We prove that eah linear �-redex an be replaed by a smaller �-redex or eliminated:(��:N [[�℄u℄)v�� ��[�℄(��:N [[�℄u℄)v (�)�� ��:N [[�℄(u)v℄ by lemma 919

3.3 Completeness of the �-equivaleneTheorem 4Let t and t0 be two ��-terms, t� = t0� () t �� t0.Proof: Let t and t0 be two �-equivalent terms, we have to show that they have the same trans-lations. To do this we just look at the proof-nets orresponding to the eight equations of�-equivalene:(�1) By multipliative redutions, (((�x:u)v)w)Æ and ((�x:(u)w)v)Æ yield the same proof-net:uÆxvÆ wÆ
!! ut ut ax
whih eventually gives t� = t0� by ending the multipliative redution.(�2) In the same way, by multipliative redutions from ((�x:�y:u)v)Æ and (�y:(�x:u)v)Æ, weobtain the proof-net: uÆx yvÆ P! ut(�3) Idem with ((�x:��[�℄u)v)Æ and (��[�℄(�x:u)v)Æ .uÆvÆ x � (�)! ut(push/push) The terms ([�0℄(��[�0℄(��:u)v)w)Æ and ([�0℄(��[�0℄(��:u)w)v)Æ immediatelygive the same proof-net: uÆvÆ wÆ

��0 � �0

ax ut! !ut ax
20

(pop/pop) Idem with ([�0℄�x:��[�0℄�y:��:u)Æ and ([�0℄�y:��[�0℄�x:��:u)Æ.
�0 x ��0y � uÆP P(push/pop) Idem with ([�0℄(��[�0℄�x:��:u)v)Æ and ([�0℄�x:��[�0℄(��:u)v)Æ.

uÆ � �0vÆ
�0x �P
ut! ax

The last two ases are even simpler so we skip them.For the onverse we need some new lemmas.Lemma 10Let [�℄u be a named term ontaining a free �-variable � suh that the onlusion orresponding to� in ([�℄u)� is neither an auxiliary door of a box nor the onlusion of a o-node. There exist an�-free ontext N and a ��-term u1 suh that [�℄u = N [[�℄u1℄ with � =2 u1.Proof: If � = � then � =2 u (otherwise we would have a ontration above the onlusionorresponding to � in ([�℄u)�) and the result is proved with N = [℄. If � 6= � we prove thelemma by indution on u:� If u = x then � = �.� If u = �x:u0 then [�℄u0 veri�es the same hypothesis as [�℄u thus, by indution hypothesis,[�℄u0 = N [[�℄u1℄ with N 6= [℄ sine � 6= �. We have N = [�℄C[�:[℄℄ and [�℄u =[�℄�x:C[�[�℄u1℄.� If u = �[0℄u0 then 6= � (otherwise � =2 [�℄u). If 0 = � we have N = [�℄�:[℄. If0 6= �, [�℄u0 veri�es the same hypothesis as [�℄u and, by indution, [�℄u0 = N [[�℄u1℄with N 6= [℄ thus N = [�℄C[��0:[℄℄ and [�℄u = [�℄�[0℄C[��0[�℄u1℄.� If u = (u0)v then � is not free in both u0 and v otherwise the orresponding onlusionof ([�℄u)� would be onlusion of a o-node and � =2 v otherwise it would be an auxiliarydoor of a box. [�℄u0 veri�es the same hypothesis as [�℄u and, by indution, [�℄u0 =N [[�℄u1℄ with N 6= [℄ thus N = [�℄C[�:[℄℄ and [�℄u = [�℄(C[�[�℄u1℄)v.Lemma 11If u� has a �nal P-node n: 21

� if n is above the distinguished onlusion then there exists a term u0 suh that u �� �x:u0;� if n is above another onlusion then there exists a term u0 suh that u �� ��[�℄�x:u0.Proof: We begin with the seond point whih is an easy onsequene of the �rst one. Let � bethe name of (the onlusion of) n and onsider the term v = ��[�℄u (� =2 u). By de�nition ofthe translation, v� is the same proof-net as u� but has n as distinguished onlusion. By the�rst ase, we obtain u0 suh that v �� �x:u0. Thus ��[�℄��[�℄u �� ��[�℄�x:u0; furthermore��[�℄��[�℄u �� u by (�) and (�) beause � =2 u so that u �� ��[�℄�x:u0We now turn to the �rst point whih is proved by indution on the term u:1. If u = x then the distinguished onlusion must be the onlusion of an axiom node, aontradition.2. If u = �x:u0, the result is proved.3. If u = ��[�℄u0 then � 2 [�℄u0 sine the distinguished onlusion of u� is not below awo-node. By lemma 10, we have u = ��:N [[�℄u1℄ where N is an �-free ontext and� =2 u1. By indution hypothesis, u1 �� �x:u0 and by lemma 8,u�� ��:N [[�℄�x:u0℄�� ��[�℄�x:��0:N [[�0℄u0℄�� �x:��0N [[�0℄u0℄4. If u = (u0)v1:::vn where n > 0 and u0 is not an appliation, we look at the di�erentases for u0:(a) u0 = x, impossible as for 1.(b) u0 = �x:u1 then ((u1)v2:::vn)� is a sub-proof-net of u� whih has the same �nalP-node. By indution hypothesis: (u1)v2:::vn �� �y:u0 (with y hosen not free inv1) so u= (�x:u1)v1:::vn�� (�x:(u1)v2:::vn)v1 (�1)�� (�x:�y:u0)v1�� �y:(�x:u0)v1 (�2)() u0 = ��[�℄u1 then u� is obtained by the multipliative redution of a ut betweenu�0 and the non at
-tree ontaining the v�i 's. If the node above the distinguishedonlusion of u�0 is not a P-node or an ax-node, this ut annot be multipliativelyredued and the distinguished onlusion of u� is the main onlusion of the
-treewhih ontradits our hypothesis that it is onlusion of the P-node n. By lemma 10,u0 = ��:N [[�℄u2℄ where N is an �-free ontext and � =2 u2. We use lemma 9:u= (��:N [[�℄u2℄)v1:::vn�� �[℄(��:N [[�℄u2℄)v1:::vn�� �:N [[℄(u2)v1:::vn℄then by indution hypothesis (u2)v1:::vn �� �x:u0 and by lemma 8:u�� �:N [[℄�x:u0℄�� �[℄�x:��:N [[�℄u0℄�� �x:��:N [[�℄u0℄Lemma 12If u� has no �nal negative node and has a maximal ut-node with a non at
-tree above it, thereexist u0, v1, : : : , vn suh that: 22

� if the main onlusion of the
-tree is distinguished then we have u �� (��[�℄u0)v1:::vn;� if the main onlusion of the
-tree is not distinguished then u �� ��0[�0℄(��[�℄u0)v1:::vn.Lemma 13If u� has no �nal negative node and has a maximal ut-node with a at
-tree above it then thereexist u0 and v suh that u �� (�x:u0)v.We are now able to �nish the proof of theorem 4.Proof: (Theorem 4 { ontinued) By indution on t�, following the proof of theorem 3:� If t� has a �nal P-node n above the distinguished onlusion, by lemma 11, t �� �x:t0and t0 �� �x:t00. By de�nition of the translation t�0 = t� nn = t0� nn = t00�, thus t�0 = t00�,by indution hypothesis t0 �� t00 and t �� t0.� If t� has a �nal P-node n above another onlusion, by lemma 11, t �� ��[�℄�x:t0 andt0 �� ��[�℄�x:t00 so that t�0 = t� n n = t0� n n = t00� thus by indution hypothesis t0 �� t00and t �� t0.� If t� has a �nal o-node or a �nal wo-node it is very similar.� If t� has a �nal i-node n with name x, let t0 (resp. t00) be a term with two free variablesx1 and x2 suh that t0� = t� nn (resp. t00� = t0� nn) where x1 and x2 are the names of thepremises of n and suh that t0[x=x1 ; x=x2 ℄ = t (resp. t00[x=x1 ; x=x2 ℄ = t0). By indutiont0 �� t00 thus we have t �� t0.� t� annot have a �nal wi-node.� If t� has no �nal negative node but some ut-nodes, let be a maximal one. If the
-tree above the positive premise of is not at we apply lemma 12. If it is at weapply lemma 13.� If t� has no �nal negative node and no ut then t �� (x)u1:::un and t0 �� (x)v1:::vn withui �� vi by indution hypothesis inside boxes thus t �� t0.4 Pure aseConsidering pure proof-nets orresponds to applying the reursive equation N = !N (N on types.This identi�es all output formulas and gives exatly four types: O (output formulas) and its dualI (anti output formulas); ?I (input formulas) and its dual !O (anti input formulas).
... ...

O !O II ?I OOI A A?
!O OA AA A I?I O ?I?I? ?w ?d

 PB!
ax ut

where A is either O or ?I.The translations studied before an be seen as translations of pure ��-alulus into pure polar-ized proof-nets extending those for �-alulus in [1, 12℄.All the results are still valid exept, of ourse, strong normalization (orollary 1.2). In partiular:23

Proposition 5 (Conuene)The redution of pure polarized proof-nets is onuent.Proposition 6 (�-equivalene)Let t and t0 be two pure ��-terms, then t� = t0� () t �� t0.AknowledgementsI would like to thank V. Danos for the key question of setion 3 and L. Regnier for personaland mathematial help and support. Thanks also to the referee for the important omments andsuggestions he made.Referenes[1℄ Vinent Danos. La Logique Lin�eaire appliqu�ee �a l'�etude de divers proessus de normalisation(prinipalement du �-alul). Th�ese de dotorat, Universit�e Paris VII, 1990.[2℄ Vinent Danos, Jean-Baptiste Joinet, and Harold Shellinx. A new deonstrutive logi: linearlogi. Journal of Symboli Logi, 62(3):755{807, September 1997.[3℄ Vinent Danos and Laurent Regnier. Proof-nets and the Hilbert spae. In Jean-Yves Girard,Yves Lafont, and Laurent Regnier, editors, Advanes in Linear Logi, volume 222 of LondonMathematial Soiety Leture Note Series, pages 307{328. Cambridge University Press, 1995.[4℄ Ren�e David andWalter Py. ��-alulus and B�ohm's theorem. To appear in Journal of SymboliLogi, 2001.[5℄ Jean-Yves Girard. A new onstrutive logi: lassial logi. Mathematial Strutures in Com-puter Siene, 1(3):255{296, 1991.[6℄ Jean-Louis Krivine. Un interpr�eteur du lambda-alul. Unpublished.[7℄ Olivier Laurent. Logique lin�eaire polaris�ee et logiques lassiques. M�emoire du magist�ereM.M.F.A.I., Eole Normale Sup�erieure de Paris, September 1999.[8℄ Olivier Laurent. Polarized proof-nets: proof-nets for LC (extended abstrat). In Jean-YvesGirard, editor, Typed Lambda Caluli and Appliations '99, volume 1581 of Leture Notes inComputer Siene, pages 213{227. Springer, April 1999.[9℄ Mihel Parigot. ��-alulus: an algorithmi interpretation of lassial natural dedution. InProeedings of Internationnal Conferene on Logi Programming and Automated Dedution,volume 624 of Leture Notes in Computer Siene, pages 190{201. Springer, 1992.[10℄ Mihel Parigot. Classial proofs as programs. In Proeedings of Kurt G�odel Colloquium, volume713 of Leture Notes in Computer Siene, pages 263{276. Springer, 1993.[11℄ Myriam Quatrini and Lorenzo Tortora de Falo. Polarisation des preuves lassiques et ren-versement. Compte-Rendu de l'Aad�emie des Sienes de Paris, 323:113{116, 1996.[12℄ Laurent Regnier. Lambda-Calul et R�eseaux. Th�ese de dotorat, Universit�e Paris VII, 1992.24

[13℄ Laurent Regnier. Une �equivalene sur les lambda-termes. Theoretial Computer Siene,126:281{292, 1994.[14℄ Peter Selinger. Control ategories and duality: on the ategorial semantis of the lambda-mualulus. To appear in Mathematial Strutures in Computer Siene, 2001.

25

