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Abstract

We first define polarized proof-nets, an extension of MELL proof-nets for the polarized frag-
ment of linear logic; the main difference with usual proof-nets is that we allow structural rules on
any negative formula. The essential properties (confluence, strong normalization in the typed
case) of polarized proof-nets are proved using a reduction preserving translation into usual
proof-nets.

We then give a reduction preserving encoding of Parigot’s Au-terms for classical logic as
polarized proof-nets. It is based on the intuitionistic translation: A — B ~~ !A — B, so that it
is a straightforward extension of the usual translation of A-calculus into proof-nets. We give a
reverse encoding which sequentializes any polarized proof-net as a Au-term.

In the last part of the paper, we extend the o-equivalence for A-calculus to Apu-calculus.
Interestingly, this new o-equivalence relation identifies normal Au-terms. We eventually show
that two terms are equivalent iff they are translated as the same polarized proof-net; thus the
set of polarized proof-nets represents the quotient of Au-calculus by o-equivalence.

Introduction

In the last ten years, much work has been done to solve the so-called determinization problem for
classical logic: finding some computational interpretation of classical proofs, similar to the Curry-
Howard correspondence for intuitionistic logic. We will be interested in two kinds of solutions that
have been proposed.

e The sequent calculus approach has two main instances: Girard’s LC [5] is a deterministic se-
quent calculus for classical logic based on a polarization of formulas, with a semantics of proofs
in coherent spaces; the LK system of Danos-Joinet-Schellinx [2] gives an extensive descrip-
tion of the deterministic reduction strategies that may be applied to LK. Both LC and LK"
have translations into linear logic that preserve reductions (see also Quatrini-Tortora [11]).

e The A-calculus approach consists in extending the A-calculus with control operators typed
by classical schemes. For example one adds a new constant call/cc typed by the Peirce law
((A— B) - A) — A. Unfortunately the reduction rules for this new constant depend on the
reduction strategy (call-by-name or call-by-value), contradicting the Church-Rosser property
for A-calculus.

The Ap-calculus of M. Parigot [9] on the other hand is based on a natural deduction with
multiple conclusions and enjoys confluence. As before there are some good translations of Ap-
calculus into linear logic. Furthermore it has been recently given a nice categorical semantics,



the control categories of P. Selinger [14], which as a by-product, extends the language of types
with a new disjunctive connective.

As in the A-calculus where the o-equivalence [12, 13] identifies terms that differ only in their
sequential structure (e.g., (Az1.Az2.u)v1vy and (Axg.\z1.u)vov1), Au-calculus terms contain pieces
of information, which are unnecessary from the operational viewpoint. Indeed the control cat-
egory semantics identifies distinct mormal Ap-terms. So two questions naturally arise: find the
o-equivalence for Au-calculus; find some parallel syntax which identifies o-equivalent terms. In the
A-calculus, these two questions are answered by means of a translation of intuitionistic logic into
proof-nets. However as to the present work, the translations of Au-calculus into linear logic fail to
solve these problems, essentially because they preserve the sequential information by translating it
as exponential boxes (typically the ¢-translation in [2] defines the encoding of the classical arrow
by: A — B~ 17A — 7B).

In this paper we set up and study a translation of A\u-calculus into polarized proof-nets (PPN)
for the fragment LLP of linear logic [7, 8]. LLP is a subsystem of LL dealing with polarized formulas
where polarities are defined as a linear version of LC’s polarities. Polarized proof-nets allow a finer
use of exponential boxes: structural rules, which are reserved to formulas of the shape ?A in LL, are
now applied to any negative formula (saving uses of the ? connective). Dually the cut elimination
takes advantage of the geometrical properties of polarized proof-nets for duplicating any ®-tree
(saving uses of the !-boxes). We prove the basic properties of PPN (confluence, normalization) by
using a reduction preserving translation of polarized proof-nets into usual proof-nets which may be
seen as an analogue of CPS-translations from Ap-calculus into A-calculus.

We shall show that the translation of Au-calculus preserves reductions and that it is surjective.
Interestingly enough, it translates A — B as !A — B just like the usual encoding of intuitionistic
logic'. As a consequence the translation is a straightforward extension of the A-calculus transla-
tion [1, 12]. Furthermore, since there is very little difference between LLP and LC (the two systems
are equivalent in the categorical sense), our framework conciliates LLC and the Ap-calculus, allowing
the use of LC as a typing system for Au-terms and endowing Ap-calculus with LC structure (e.g.,
its denotational semantics). In other terms we have established a Curry-Howard correspondence
between LC and Ap-calculus.

We shall also define the o-equivalence for Au-calculus as an extension of the o-equivalence for
A-calculus. We show that it is operationally innocuous as it is included in the Bn-equivalence
of Ap-calculus. This result is slightly weaker than in the A-calculus since it must make use of
n-equivalence (whereas o-equivalence for A-terms is included in -equivalence). We show that o-
equivalence is complete w.r.t. the translation: two terms are equivalent iff they are translated as
the same proof-net.

For the sake of simplicity, we shall stick to simply typed Au-calculus. However our translation is
easily extendable to some richer language: pairing may be encoded by the & connective, Selinger’s
disjunctive connective may be encoded by the % connective. As in the A-calculus, we can use linear
first and second order quantifiers to encode the classical ones. The proof-net technology needed for
all these extensions has been developed in [7, 8]. Also, in the last section we use the same trick as
in the A-calculus for applying our results to the untyped Apu-calculus.

Note that as the o-equivalence identifies normal Ap-terms, and since two equivalent terms
correspond to the same proof-net, it is impossible to distinguish them by evaluation in a context.
Thus Ap-calculus violates Bohm’s theorem which enforces David and Py result, who found two

Tn fact the t-translation may be factorized through ours: first use the LLP-translation, then use the translation
of LLP into LL shown in section 1.4.



normal terms that are operationally indistinguishable [4]. It is worth noting that their two terms
are not o-equivalent, from which we may deduce that polarized proof-nets themselves do not satisfy
Bohm’s theorem.

1 Polarized proof-nets

We use a fragment of multiplicative exponential polarized proof-nets [7, 8] which has a particularly
simple correctness criterion to encode Ap-calculus.

1.1 Definitions

Definition 1 (Polarized formula)
Starting with a set of atoms (denoted by X), we define output (denoted by N, M, ... ) and anti
output (denoted by P, @, ... ) formulas:

N == X | "P®N
P = X' | IN®P

Formulas of the shape 7P (resp. !N) are called input (resp. anti input) formulas. Negative formulas
(resp. positive formulas) are input and output (resp. anti input and anti output) formulas.
The negation is involutive with (?P % N)* =P+ ® Nt and (?P)*+ =P+

The terminology “input” and “output” will become clear in section 2.2.

Definition 2 (Proof-structure)
A proof-structure is a finite acyclic oriented graph built over the alphabet of nodes represented
below (where the orientation is the top-bottom one), i.e. respecting for each node: the orientation,
the number of incident (top) edges (the premises of the node), the number of emergent (bottom)
edges (the conclusions of the node), the typing of each edge by a polarized formula.

Each edge is conclusion of exactly one node and premise of at most one node. Edges which are
not premise of any node are the conclusions of the proof-structure.

N+ N IN9®P PR N
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where A is a negative formula.

Additionally, to each !-node with conclusions {!N, T'} is associated a boz, that is a proof-structure
with conclusions {N,T'}. We say that a node occurs at depth 0 in the proof-structure R if it is a
node of R, and that it occurs at depth £+ 1 in R if it occurs at depth k in some box associated to
a l-node of R. The depth of R is the maximal depth of the nodes occurring in R. We assume it is
always finite.

IN N N?P?P



We distinguish two kinds of contractions (7c-nodes) (resp. weakenings (?w-nodes)): one for
output types denoted by co (resp. wo) and the other one for input types denoted by ci (resp. wi).
If the distinction is not needed we still use ?¢ (resp. Tw).

Definition 3 (Edges and nodes)

e An edge is positive (resp. negative) if the associated formula is positive (resp. negative).

e A node is positive (resp. negative) if all its edges are positive (resp. negative), thus positive
nodes are ®-nodes and negative nodes are %-, 7¢- and ?w-nodes.

e A cutnode is a structural cut if its negative premise is conclusion of ?d, ¢, 7w or . The
other cuts, i.e. ®/% and az, are called multiplicative cuts.

1.2 Correctness criterion

Definition 4 (Correction graph)

Given a proof-structure, its correction graph is obtained by orienting upwardly (resp. downwardly)
the positive (resp. negative) edges, i.e. by reversing the orientation of positive edges, and by erasing
boxes (just keeping the !-node).

Since we have defined two orientations on proof-structures, we have to introduce some ter-
minology to distinguish them. In the sequel, we will never mention the orientation coming from
the definition of a proof-structure except through “geometrical” terms such as above, below, down,
up, ... To talk about the orientation coming from the correction graph, we will use “ordering”
terms such as initial, final, mazimal, ...

Definition 5 (Proof-net)
A proof-structure is correct or is a proof-net if:

e its correction graph is an acyclic oriented graph;

e the number of positive conclusions plus ?d-nodes is one;

e and recursively the boxes are also correct proof-structures.
Remarks:

e The complexity of the verification of correctness is linear in the size of the proof-structure
(i.e. its number of nodes).

e The correction graph of a proof-structure without cut is always acyclic. A path in such
a correction graph can start either on a negative edge and in this case it goes towards a
conclusion or on a positive edge and in this case it can only go to an axiom and then towards
a conclusion, then the path ends because the only way to continue is to use a cut.

e A polarized proof-net has one non 7w initial node at depth 0 called the main initial node
which is either a positive conclusion or a ?d-node.

e A polarized proof-net with no anti input conclusion has at least one output conclusion. Indeed
a polarized proof-net without anti input conclusion has an anti output edge at depth 0;
starting from this edge, it is possible to go through an oriented path (of the correction graph)
containing only output and anti output edges yielding to an output conclusion.



The orientation defined by the correction graph and the acyclicity of this graph induce a partial
order on the set of the nodes of a proof-net. A node is final if it is maximal at depth 0 for this order.
A cut-node is a mazimal cut-node if it is at depth 0 and maximal inside the subset of cut-nodes.

Remark: A negative node the conclusion of which is conclusion of the proof-structure is final.
This would not be true anymore with V and & because the correctness criterion for such proof-nets
introduces particular edges starting from these nodes [8].

1.3 Cut elimination

Definition 6 (®-tree)
The set of nodes above a positive edge e is called its ®-tree and e is called the root of the tree (the
®-tree of a ®-node is the ®-tree of its conclusion). It has a very particular structure: either it is
just a box or just an axiom or it is a ®-node with a box above one of its premises and another
®-tree above the other.

If the ®-tree is a box, it is said to be flat. A non flat ®-tree contains exactly one axiom the
negative conclusion of which is called the main conclusion of the ®-tree. All the other non-root
conclusions of a ®-tree are the auziliary conclusions.

Remark: The ®-tree above a positive edge e is the smallest sub-proof-net containing e, also called
the kingdom of e. Note that the kingdom of an edge e typed by !N is the whole box of which e is
a conclusion, so that ®-trees may be considered as generalizations of boxes for all positive edges.

A cut-node always has a ®-tree above its positive premise. Maximality of the cut-node entails
that there is no other cut-node below the conclusions of the ®-tree.

The cut elimination steps for az, ® /%, 7d/!, ci/!, wi/! and !/! reductions are the same as in
usual proof-nets [1, 12]. We add new steps for the new structural rules which are similar to the
ci/!, wi/! and /! if we consider ®-trees as boxes.




where B’ is obtained by a cut between the M conclusion of B and the ®-tree.

We use the notation R — R’ if R can be reduced in R’ by one step of cut elimination.

Proposition 1
Correctness is preserved by reduction.

PROOF: There are two interesting cases:

e For a cut between a 7d-node and a box, the main initial node was the ?d one which is
replaced by the main initial node of the box. As for the acyclicity, if a cycle is created,
it must go through the box but it is impossible because all its conclusions are negative.

e For a cut on a ?c-node (or ?w), we have to remark that all the conclusions of the ®-tree
are negative thus there is no problem to propagate the ?c-node (or ?w) on them. O

1.4 Translation into usual proof-nets

There is an encoding of polarized proof-nets into usual multiplicative exponential proof-nets which
preserves reduction. This gives a simple way to prove different properties of polarized proof-nets.

We prefix output formulas with a ? so that the encoding of each negative formula begins with
a’:

X = X
PRAN = (PRN)
P = 7P

The translation of positive formulas is obtained by duality.

We translate proof-nets by replacing each %-node by the sequence %-7d and by putting a box
around the ®-tree of each ®-node. This translation emphasizes the fact that ®-trees behave like
boxes.



Remark: This translation is the linear counterpart of CPS-translations. Indeed, very informally,
CPS-translations act by adding —— in suitable places which amounts to adding ? in the correspond-
ing places in linear logic.

If we consider the usual translation of the intuitionistic arrow A — B ~ !A — B (as done in
section 2.2) and apply the translation (), we obtain !7A — ?B which is the basis of the ¢-translation
used in [2] to translate Au-calculus into linear logic.

We have the following correspondence between reductions:

PPN reductions (R) PN reductions (R)
ax ~ (/D% az
®/7 ~ 1d) /7%
structural output ~ exponential
structural input (exponential) -~ exponential

Theorem 1 (Simulation)

If R =0 R then R =1, R'. Conversely if R —*, S, let R’ be the proof-net obtained from R by
applying the corresponding reduction steps, S gives R' by reducing all its ® /% -cuts and its !/!-cuts
and az-cuts inside boves not containing ®-trees (in particular if S = Ry then R —%,, R1).

PROOF: The first statement is immediate. As to the converse, the reduction R —* S may have
reduced some ?d/!-cuts (resp. !/!-cuts) but omitted the resulting ® /%’s (resp. !/!’s and az’s).
This is why we have to reduce the ® /%-cuts (resp. some !/!-cuts and az-cuts) in S to obtain
R O

Lemma 1 (Injectivity)

The ()-translation is injective.

Corollary 1.1 (Confluence)
Reduction of polarized proof-nets is confluent.

ProoF: If R —* Ry and R —* Ry then, by theorem 1, R —* R and R —* R, thus, by
confluence of usual proof-nets, there exists S such that R; —* S and Ry —* S. Let R}
and R, be the corresponding reducts of Ry and Ry, we have by theorem 1 that R_’l and
R_’2 are obtained from S by reducing the same cuts, thus R, = R_’2 and we can conclude by
lemma 1. ]



Corollary 1.2 (Strong normalization)
There is no infinite sequence of reductions in polarized proof-nets.

These properties can also be obtained with usual methods such as those used in [1, 12].

2 The Au-calculus

The Ap-calculus has been introduced by M. Parigot in [9] as an extension of A-calculus which gives
an algorithmic interpretation of classical proofs. We will see how it can be interpreted into polarized
proof-nets and how this induces new identifications in Ay-calculus.

2.1 Definitions

Definition 7 (Au-term)
Given two disjoint denumerable sets of variables: called A-variables (denoted by z, v, z, ... ) and
p-variables (denoted by «, 3, 7, ... ), the Au-terms are defined by:

u ==z | Azau | pllaju | (u)u

The X and p constructions are called abstractions and (u)v is the application; A and p are binders.
We consider terms modulo a-conversion on A- and p-variables. We use the notations z (resp. «)
€ u for “z (resp. a) free in v” and (u)vy...v, for (...((w)v1)va...)vp.

For the simply typed Au-calculus, a typing judgment for the term w is ' - u : N | A where T’
(resp. A) contains typing declarations for A-variables (resp. u-variables). Each variable appears at
most once in a context. The derivation rules are:

var
z:NFz:N|

Fx:NFu:M|A
'FXzu:N—->M|A

abs

'Fu:N|p:MA
Lk pplaju: M| a: N,A

PFu:N—=M|A T Fo:N|A
O, E(u)v: M| AA

app

The (abs) (resp. (1)) rule contains an implicit weakening if z (resp. ) does not appear in the
context. The (app) rule contains implicit contractions if variables appear in both I" and IV or both
A and A’. There is also an implicit contraction in the (u) rule if a appears in A.

Alternatively, the p-rule may be decomposed by introducing the notion of named term [a]u. A
named term has no type (or has type L) and appears in a judgment I" - [a]u | A. The (u) rule is
split into:

Thu:N|A
Cklau]a:N,A

J-name



P'Flaju|B:M,A
I'Fpplaju: M| A

-abs

Remark: If a Ay-term u is typable in this system, the conclusion of the typing derivation is
I'Fwu:N|A where I' and A exactly contain the free variables of u. In particular talking about a
term or about a typing judgment is equivalent since there is at most one typing judgment for each
term. Moreover for this typing judgment there exists at most one typing derivation.

The two reduction rules are the usual ones for Au-calculus:

(Azu)v =g ul’/4]
(pauw)v  —, pa.u[[o‘}(w)v/[a]w]

We use the notation 4 — v if u can be reduced in v by one step of - or py-reduction.

2.2 Translation into proof-nets

We now give a first translation, denoted by ()°, of Au-terms into proof-nets. Simple types are
mapped to output formulas by:

X° = X
(N = M)° = IN°— M° = ?N°t%® M°

The translation of typed Au-terms is defined by induction on the typing: a proof of the sequent T" -
uw: N | Ais interpreted by a proof-net with conclusions ?0°L N°, A°. There lies the justification for
the input/output terminology: A-variables are typed by input formulas; p-variables (continuation
variables) and the term are typed by output formulas.

For the purpose of the translation, we add to proof-nets a labelling of their conclusions: each
input conclusion in ?T°* is labelled by the name of the corresponding A-variable in T', each output
conclusion in A° is labelled by the name of the corresponding p-variable in A. The conclusion N°
is said to be distinguished and is the only one which has no associated name.

In the pictures, we use —= for the distinguished conclusion, —= for an old distinguished
conclusion and () for the old name of the distinguished conclusion.

° (xN)o

o (AzV.uM)°

o (upM[a]Vu)?



@' N

This is for the particular case where @ € v and € u. If @« ¢ u we do not need the co-node, if
B ¢ u we need a wo-node. Note that if & ¢ u and § € u, the only effect of the translation is
to swap the status of the two conclusions, that is to associate the name « to the distinguished
conclusion (which is no more distinguished) and forget the name of the conclusion labelled
by 8 (which becomes the new distinguished conclusion) leaving the proof-net unchanged.

° ((UN_)M)UN)O

We can separate in two parts the case of uf[aju if we translate named terms [a|u as proof-nets
without distinguished conclusion. The [a] construction on « introduces a contraction node if a € w.
The po construction introduces a weakening node if « ¢ w.

Another way to deal with named terms is to put explicitly the type L. The two p-rules become:

F'Fu:N|A
F'FlajJu: L|a:N,A

p-name’

F'Flaju: L|B:M,A

p-abs’
Lk upplaju: M| A

These two rules can be translated into proof-nets? through the translation ()°:

o ([¥ul)

o (uBM.ut)®

2The introduction of 1- and L-nodes does not modify the correctness criterion.

10



The translation ()¢ is the same as ()° for the other rules. We can recover ()° from ()¢ by reducing
the cuts on constants. Indeed, by definition of Ap-calculus, pf and [a] always come together, so
the constant cuts are always between 1-nodes and 1-nodes which vanish by reduction.

The ()° translation allows to account with a slight generalization of Au-calculus with a new rule
for L corresponding to the construction pBM.ut for any u of type L (not only named terms). In
this case 1-nodes are not always cut against 1-ones. Since | is an output formula, the |-node
is just a particular case of the wo-node. On the other hand, the 1-node introduces a new kind of
leaves for ®-trees.

With this extension, we can, for example, translate the C operator of Felleisen of type == N — N
defined in Ap-calculus by Af™"N.uaN.(f) Az .[a]V z:

2.3 Simulation of reduction

The translation ()° has also a dynamic meaning: it simulates Su-reduction by cut elimination in
proof-nets.

Until the end of the paper, we have to identify all the binary trees of contractions with the same
number of nodes, the sequence ?7w-7¢ with a simple edge and a ci-node on two input conclusions
of a box with the same node inside the box. Another solution has been proposed in [3, 12] to get
rid of this problem with generalized contractions.

Final ?w-nodes of a proof-net correspond to variables in the context not free in the term. As
done for typing derivations, we want to ignore them. In the sequel we will not care about such final
?w-nodes. In particular we say that two proof-nets are equal if they differ only by final ?w-nodes.
This is the counterpart of the fact that, in various systems, two typing proofs that differ only in
useless variable declarations may be considered equal.

Lemma 2 (\-substitution)
Modulo final ?w-nodes and structure of contraction trees:

11



Lemma 3 (p-substitution)
Modulo final ?w-nodes and structure of contraction trees:

PROOF: These two lemmas are proved by induction on wu. O

Theorem 2 (Simulation)
If u — v then u® —* v°.

PrOOF: We just have to apply lemmas 2 and 3. In the case of S-reduction, the simulation is strict:
one step in Ap-calculus corresponds to at least one step in proof-nets. On the other hand,
a p-reduction may be translated by identity, typically in the case: (pafa]u)v —, pojal(u)v
with a ¢ u. O

Remark: Due to the o-equivalence (next section), we cannot hope for any converse result. For

example, if u = py[a]Az.pd/[BAy.(uB'[Y](y)z)t and v = py[BAy.pf' [ Az.pa’ [Y)(y)z, u° —* v°
but v is not a reduct of w.

We now consider proof-nets up to multiplicative (i.e. ®/% and az) reductions. The justification
for doing so is that these reductions are operationally simple: they strictly decrease the size of the
net and they are local, so that the heart of the dynamics may be thought of as lying in structural
reductions.

Definition 8 (Translation ()*)
The translation u® of a Au-term u is the multiplicative normal form of the proof-net u°.

Remark: We have defined three translations with the following relations:

o UL

®/%,az
U s =T

With the translation ()®, the last theorem is no longer correct, for example:

(pocw)v)vy =y (poeul@O /0 Doy =y o[z /0]

but in the corresponding proof-net (((puo.u)vy)ve)® these two steps are done in just one, so that
the translation of the middle term is not reachable from the translation of the first one. Asking for
“consecutive” p-redexes to be reduced in one step by modifying the p-reduction: (po.u)vy...vn, =y

12



pa.u[[o‘}(“’)vl""’”/[a}w] (where (po.u)vy...v, is not applied to another term v,41) does not solve the
problem since as shown in the following example the sequence vy...v, may be hidden in the A\y-term:

(Az.(pocw)v)t)vs = (Azpaau0 /0 ],
=5 (poulO ) v = paalll )]

On the other hand ()* translates normal terms as cut-free proof-nets, f-redexes as !/? cuts and
p-redexes as ®/co, ®/wo or ®/! cuts (except in some particular cases like (uafa)z)v).

2.4 Sequentialization

We now address the question of surjectivity of the translation ()°.

Definition 9 (Au-proof-structure)
A Ap-proof-structure is a proof-structure with no positive conclusion, no final wi-node and only
structural cuts.

The “no final wi-node” constraint is not needed for theorem 3 if we want to sequentialize
proof-nets as typing derivations with explicit structural rules because they just add variables in the
context not free in the A\u-term (see page 11).

Remark: When a proof-structure has no positive conclusion, the correctness condition on the
number of 7d-nodes can be replaced by: ezactly one dereliction at depth 0 and in each boz.

Lemma 4
Let R be a proof-structure with a final negative node n, R \ n is the graph obtained from R by
erasing the node n. Then R\ n is a proof structure and if R is correct, R \ n is correct.

Lemma 5

Let u be a term with two free A- (resp. p-) variables 1 and x2 (resp. a1 and az), (u[*/z,,%/z,])°
(resp. (u[*/ays®/as))®) is obtained from u® by adding a ci-node (resp. co-node) between the two
conclusions corresponding to x1 and xo (resp. a1 and as).

Lemma 6
Let R be a cut-free proof-net, if e is a negative edge either it is a conclusion of R or moving
downward from e yields to a final negative node.

Lemma 7

Let R be a proof-net without any final negative node. If c is a mazimal® cut-node in R then c is
splitting, that is R is obtained by cutting the negative conclusion A of a proof-net R~ with the
positive conclusion AL of a proof-net R*. Furthermore R* is a @-tree.

PROOF: The last four results are immediate. O

Theorem 3 (Sequentialization)
A proof-structure with a distinguished conclusion is the translation ()* of a Au-term if and only if
it s a Ap-proof-net.

3gee section 1.2

13



PrOOF: The “only if” part is immediate. Conversely, we sequentialize any Au-proof-net R with a
distinguished conclusion as a Au-term. We start by associating distinct A-variables to input
conclusions and distinct p-variables to output conclusions of R. We then sequentialize R as
a named term [S]u and we define the complete sequentialization of R to be pa[Blu where « is
the name associated to the distinguished output conclusion. The construction of [S]u is done
by induction on R:

e If R has a final ¥-node n whose conclusion 2N+ % M has name «, let u be a sequen-
tialization of R \ n (or of (R\ n)\ n' if 2N is introduced by a wi-node n') with names
z for N+ and B for M. We sequentialize R as [a]N M \zV.uBM .

e If R has a final co-node n whose conclusion NV has name «, let u be a sequentialization of
R\ n with names «; and ay for the premises N of n. We sequentialize R as u[*/q;, %/ as)
by lemma 5.

e If R has a final wo-node n whose conclusion N has name «, let 4 be a sequentialization
of R \ n. We sequentialize R as [a]" ud".u where § does not occur in u.

e If R has a final c¢i-node n whose conclusion ? N+ has name z, let u be a sequentialization
of R \ n with names z; and z, for the premises 2N of n. We sequentialize R as
u[®/z,,"/z,] by lemma 5.

e If R has no final negative node, we consider a maximal cut-node which is splitting by
lemma 7. Let R~ (resp. R™") be the proof-structure above its negative (resp. positive)
premise. By lemma 7, R" is a ®-tree. We have two cases depending on the type of the
cut formula:

— if it is an input formula ?N', we sequentialize R~ (or R~ \ n’ if 7N' is introduced
by a wi-node n') with name z for the conclusion N+ as u. Since the root of R+
is IN, RT must be flat, i.e. R is a box B associated to a -node. Let v be the
complete sequentialization of B (whose conclusion N is distinguished and whose
other conclusions are named as in R). We pick an output conclusion of R~ (it must
have one by the fourth remark in section 1.2) with name a. We sequentialize R as
[ (AzN . ™ )oY

— if it is an output formula N, let u be the sequentialization of R~ with the new name
« associated to its conclusion NV and vq, ... , v, be the complete sequentializations of
the boxes associated to the !-leaves of R*. If 3 is the name of the main conclusion?
of the ®-tree RT, we sequentialize R as [5]" (uaN .u)vy...v,,.

e If R has no final negative node and no cut at depth 0, then let n be its main initial node
which is a ?d-node by the remark above. Then the conclusion of n is a conclusion of R
by lemma 6. Furthermore its premise is the root of a ®-tree R™ and the conclusions
of RT are conclusions of R by lemma 6, i.e. Rt = R\ n. If the conclusion ?M~+
of n has name z and the main conclusion N of R* has name «, we sequentialize R
as [a]N (z™)v;...v, where vy, ..., v, are the complete sequentializations of the boxes
associated to the !-leaves of R™.

One may check that in each case the translation ()* applied to the constructed term yields
the original proof-net (up to associativity of contractions, commutations of auxiliary doors
with contractions and neutrality of weakening w.r.t. contractions, as explained above). [

4see section 1.3
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Remarks:

e Maximal cut-nodes correspond to leftmost redexes in Ap-calculus. The translation of the
leftmost redex of a Ap-term is a maximal cut-node and conversely if ¢ is a maximal cut-node,
there exists a Au-term such that its leftmost redex is translated as c.

e The dereliction at depth 0 corresponds to the head variable of the term. If the conclusion of
this node is a conclusion of the proof-net it means that the head variable of the Au-term is
free and linear.

This sequentialization procedure yields Au-terms with a particular shape: pa[8] constructions
surround each A-abstraction, each application, ... The o-equivalence will show that this kind of
Au-terms is not so peculiar because there exists at least one such term in each o-equivalence class.

3 The o-equivalence

We characterize now the identification between Au-terms induced by the translation. The answer
has already been given for the A-calculus in [12, 13] as the o-equivalence. We give here a “con-
servative” extension of this equivalence on Au-terms. However this extension has a very different
behavior on Au-terms. The o-equivalence of A-calculus is defined in terms of commutations of
redexes, in particular a normal term is only equivalent to itself, but here the (pop/pop) equation
provides identifications between normal terms. We will also see a normal term equivalent to a non
normal one.

3.1 Definition

Definition 10 (Atomic contexts)
An atomic context Cy is obtained by applying one of the constructions of the Au-calculus to a hole
instead of a term:

Co == Myl | wlBlll [ (Du

An atomic named context Ny is constructed in the same way but with named terms:

No == [Blaypy [l | [Bl(wy-[Du

We say that « (resp. z) is bound in Cy if a ¢ Co[ud[a]z] (resp. = ¢ Cplz]). We say that Cy is
a-free (resp. z-free) if o (resp. z) ¢ Cj and if a (resp. z) is not bound in Cy. And we use the
same terminology for Nj.

Definition 11 (0-equivalence)
The o-equivalence is the smallest compatible (i.e. preserved by abstractions and application) equiv-
alence relation on Ap-terms containing:

e generalization of g-equivalence on A-calculus for commutation of A-redexes with all the con-
structions of Au-calculus,

(Az.u)v)w ~g (Az.(u)w)v ¢ w (1)
(Az. Ay.u)v ~g Ay.(Az.u)v Z’, :3 (02)
(Az.palBlu)v ~g palBl(Az.u)v ag¢u (03)
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e particular Apu-features giving new commutations,

) (pol )y~ ()bl peawyy {5%" (push/push)
[z paffNy.uBu ~y  [By.pbld ] zpan 2y (pop/pop)
@ (palp Py~ ey {700 (push/pop)

with a # B8, a # ' and o' # 3 in these three equations.
e usual p- and #-reductions of Au-calculus.

[Blpau ~o ul’/a] ()
palalu ~g u adu (9)

The p-reduction (resp. f-reduction) is obtained by orienting (p) (resp. (6)) from the left hand side
to the right hand side.
These equations (except (p) and (0)) can also be factorized through the notion of atomic context:

Co[(Az.u)v] ~g (Az.Colu])v (04)
where C is z-free and no free variable of v is bound in C,

No[Ny[u]] ~o Ng[Nolul] (p/P)
where if a (or z) is bound in Ny (resp. Nj) then N| (resp. Ny) is a-free (or z-free).

We may justify these equations operationally by examining their behavior within Krivine’s
abstract machine [6]. Approximatively a state of this machine is a triple (¢, e, s) where ¢ is a term,
e is an environment containing associations (A-variable, term) and (u-variable, stack) and s is a
stack, that is a sequence of terms. The transitions are:

(jump) If ¢ is a variable x, proceed with its value as defined in e.

(push) Iftisan application (u)v, the argument v is pushed onto the stack and the machine proceeds
with u.

(pop) Ift is a A\-abstraction Az.u, the first element of the stack is popped and stored with name z
in the environment and the machine proceeds with w.

(store) If ¢ is a p-abstraction pa.u, the stack is stored under the name « in the environment and
execution continues with u and the empty stack e.

(restore) If ¢ is a named term [a]u, the stack is replaced by a copy of the one associated to « in
the environment and execution proceeds with u and the new stack.

We can, for example, describe the case of (push/pop) (which should enlighten its name). If we start
with the state ([o/](pa[B'|A\z.uB.u)v, e, ) where e contains the associations: (¢, s1) and (8, w :: s2),
the machine goes through the following steps:

- restore the stack sq;
- push v on sy;

- store the new stack v :: s; with name q«;
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- restore the stack w :: s9;
- pop w and store it with name z;
- save the popped stack sy with name [.

The machine reaches the state (u,€’,e) where ¢’ is e augmented with the associations (o, v :: s1),
(z,w) and (B, s2). One easily checks that starting with the state ([8'| \z.uf[c/](ne.u)v,e,€), the
machine goes through the same steps.

3.2 Properties of the o-equivalence

Proposition 2
Let u and v be two Apu-terms, if u ~, v then u ~gy 00 v.

ProOOF: We prove that each equation of the o-equivalence is realized by the Snup@-equivalence:

e (01), (02) and (o3) are realized by the S-equivalence;
e (push/push) and (push/pop) are realized by the up-equivalence;

e for the (pop/pop) equation we first show the following equivalence which corresponds to
the (S3) rule in [10]:

pa! [l Azpat .o~ Az (pad L [d ) Aepact L)z (n)
~Azpd Lo |(Azpat)x . (1)
~ Az [o/J,ua.t e (B)
~Azpd Lt e (p)

where the p-reduction also substitutes the other sub-terms [o/]u by [&/](u)z. If we apply
two p-expansions in each member of the (pop/pop) equation we obtain

[/ ]! [BaB [/ e By pBou and [0 (8 18Ny pBle’ . pev.u
and by applying the above equation twice to each term we get the same one
(o e (B \y-pB'ul™ [ /5]

This shows that (pop/pop) is realized by the Snup-equivalence.
e (p) and (0) are realized by the pf-equivalence. O

Proposition 3 (Preservation properties)
Let u and v be two Au-terms such that u ~g4 v.

e If u is normalizable then v is normalizable and their normal forms are o-equivalent.
e Ifu has a head normal form® then v has a head normal form.

e [If u is strongly normalizable then v is strongly normalizable.

o If u is typable of type A then v is typable of type A.

PRrOOF: All these properties are in fact corollaries of theorem 4. O

5Tt is the natural generalization of the notion of head normal forms for the A-calculus, see [4] for a precise definition.
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Let us look at the kind of transformations of typing derivations realized by the o-equivalence,
for example with the (push/pop) equation. T,z : A u|a:C — D,f: Bj/Aand Vv :C | A/
we have:

Mz:Atu|a:C— D,B:B,A
Cx:AFpfu:B|la:C— DA
F'FXxz.ppu:A—B|la:C— DA I
'k palfAzpubu:C—-D|pf : A— B,A MEo:C|A

p-abs

abs

app
] ! . ! /
O E (pa[f \e.pfu)v : D | 5+ A— B,AA Ji-name
T [ (palf ) zuBu)y | o DS A— B AA
and
Fz:AFu|a:C— D,5: B,A
p-abs
Fz: At pauw:C — D |p:BA MMbFo:C|A app
Oz : AF (paw)v : D | B : B,AA'
T z: A pBld|(paw)v: Bl o : D, AA b
/ ’ . . 7 abs
O,V E dzpfled (pau)y : A— Bl o : DAA Ji-name

0T F [ zpufld | (pew)y | o DS A— By A A

The o-equivalence realizes complex identifications in particular between normal and non normal
terms even if we consider normal terms modulo p- and f-reductions: let ¢ be a closed term and
u = \z.uf[B](pa|Bl A y.ud[az)t, v = Ax.uB[B]| Ay.uo[B](z)t, we have u ~, v (this is in fact a variant
of (push/pop) and a particular case of lemma 9) but also u —* v:

u =y AzppBlualBlry.pdlel(z)t =, v

Thus there is no hope that o-equivalence preserves length of reduction as it does in A-calculus.
The reason is that Ap-calculus contains linear p-redexes which have no real operational meaning.
More precisely, we are now going to show that the o-equivalence identifies terms which differ only
by linear p-redexes.

Definition 12 (Contexts)
A context C is a term, with a hole in place of a sub-term, defined in the following way:

C == (] | wC | mpIC | (Clu
A named context N is a named term, with a hole in place of a named sub-term:

N oz= ] | [BICwy.[]]

The notions of variable bound in a context and of a-free and x-free contexts are the same as for
atomic contexts.

Definition 13 (Linear p-redex)
A p-redex occurring in a Au-term is linear if it has the shape (ua.N[[a]u])v where N is an a-free
named context and « ¢ u. The size of the p-redex is the size of the term pa. N[[a]u].
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Lemma 8 (pop out)
If N is z- and o -free, a not bound in N and o' ¢ u:

N{[a)\z.u] ~5 [a] \z.pa’ . N[[a|u]

PrROOF: By induction on NV:

o If N =[]
[ Az.u~y [a]Az.pod [ ]u (9)
o If N = [Bluy.[]:
[Blur[e]Az-u ~g [Bluy[e]Az.po [o'Tu (6)
~o [z pa (o Tul /)] (p)
~o [ Az pe [Bluye/Tu (p)

o If N = [B]Ay.Cluy.[]]:

[BI\y.Cluy.[a]dz.u] ~q [BNy.uf'[B']C [y [e]Az.u] (0)
~o [BIAy-uB' [a]Az.pd! [B']Clpy[a'lu] by induction
~g [] Az [BIAy.uB' [B'|Cluy[elu] - (pop/pop)
~o [ Az.pd BNy Cluy[a'lu] (9)

o If N = [Bluf'[1C[uy.[1]:
(BB [v'1C ] Az u] ~¢ [BluB'[e]Az.pa [y']Cluy[aTu] by induction
~o [a]z.pd [YC [y [ [u] [P/ 1] (p)
~o [ Az [BluB [y ]Cuy[a']u] (p)

o If N = [B](Cluy.[]])v:

[Bl(Clurla) z.ul)v ~o [B)(up'[B'Cuy[c]Az.u])v (0)
~o [B)(uB' [ Az pa [B'Clpy[a/u])v by induction
~o [a]Az.pd [B](uB'[B1Clpy[a'lu])v (push/pop)
~o [a]Az.ud [B](Cluy[e/lu))v (0)

O

Lemma 9 (push out)
If N is o-free, if a is not bound in N, if &/ ¢ u and if none of the free variables of v is bound in
N:

N{la](u)v] ~o [a](ue! Nl Tul)v
In particular linear p-reduction is included in o-equivalence.

Proposition 4 (Elimination of linear u-redexes)
Let u be a A\p-term, there exists u' such that u' ~, u and v’ has no linear p-redex.

In particular linear y-reduction terminates.
ProOOF: We prove that each linear py-redex can be replaced by a smaller py-redex or eliminated:

(na.N{[a]u])v ~ pBlB)(pa.N{[a]u])v ()
~g 1B-N{[B](u)v] by lemma 9
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3.3 Completeness of the o-equivalence

Theorem 4
Let t and t' be two \pu-terms, t* = t'* <= t ~, t'.

PROOF: Let t and #' be two o-equivalent terms, we have to show that they have the same trans-
lations. To do this we just look at the proof-nets corresponding to the eight equations of
o-equivalence:

(o1) By multiplicative reductions, (((Az.u)v)w)® and ((Az.(u)w)v)® yield the same proof-net:

which eventually gives t* = #'* by ending the multiplicative reduction.

(02) In the same way, by multiplicative reductions from ((Az.A\y.u)v)° and (Ay.(Az.u)v)°, we
obtain the proof-net:

(push/push) The terms ([¢/](upa[B'](pB.u)v)w)° and ([B'](pf[c/](pe.u)w)v)® immediately
give the same proof-net:
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(pop/pop) Idem with ([¢/]Az.pua[B')A\y.puB.u)° and ([B'|\y.uBle/ | x.paw)®.

The last two cases are even simpler so we skip them.

For the converse we need some new lemmas.

Lemma 10

Let [Blu be a named term containing a free u-variable o such that the conclusion corresponding to
a in ([Blu)® is neither an auziliary door of a box nor the conclusion of a co-node. There exist an
a-free context N and a Ap-term uy such that [Blu = N|[a]ui] with o ¢ uy.

PROOF:

If 3 = a then a ¢ u (otherwise we would have a contraction above the conclusion

corresponding to « in ([a]u)®) and the result is proved with N = []. If § # « we prove the
lemma by induction on wu:

If w =z then 8 = a.

If u = Az.v' then [B]u’ verifies the same hypothesis as [S]u thus, by induction hypothesis,
[Blv' = Nl[la]ui] with N # [] since « # . We have N = [B]C[uy.[]] and [Blu =
[B]Az.Cluy[eus].

If u = py[y]u' then v # « (otherwise o ¢ [Blu). If ¥ = a we have N = [f|uy.[]. If
v # a, [B]u’ verifies the same hypothesis as [8]u and, by induction, [S]u’ = N[[a]u]
with N (] thus N = []C[uf"[]) and [8lu = [Blurly|Cluf [o]u].

If u = (u')v then « is not free in both «' and v otherwise the corresponding conclusion
of ([a]u)® would be conclusion of a co-node and « ¢ v otherwise it would be an auxiliary
door of a box. [B]u’ verifies the same hypothesis as [f]u and, by induction, [f]u’ =
N{[eJui] with N # [] thus N = [f]C[uy.[]] and [flu = [6](Clpy[ui])v. 0

Lemma 11
If u® has a final ®-node n:
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e if n is above the distinguished conclusion then there exists a term u' such that u ~, Az.u';

e if n is above another conclusion then there exists a term u' such that u ~, pa[B]Az.u'.

PrROOF: We begin with the second point which is an easy consequence of the first one. Let 3 be
the name of (the conclusion of) n and consider the term v = pfaju (o ¢ u). By definition of
the translation, v* is the same proof-net as u® but has n as distinguished conclusion. By the
first case, we obtain u' such that v ~, Az.w'. Thus po[Bluflalu ~5 pa[f]Az.4'; furthermore
palflpBlalu ~» u by (p) and (0) because « ¢ u so that u ~, pa[f]Az.u

We now turn to the first point which is proved by induction on the term wu:

1. If w = x then the distinguished conclusion must be the conclusion of an axiom node, a
contradiction.

2. If u = Azx.ug, the result is proved.
3. If u = pafBlug then a € [Blug since the distinguished conclusion of u® is not below a
wo-node. By lemma 10, we have u = pa.N[[a]u;] where N is an a-free context and
a ¢ uy. By induction hypothesis, u1 ~, Az.u' and by lemma 8,
un~g po.N[[a]Az.u']
~g pafa] z.pa’ N[o/]u]
~g Az.po! N[ ]u]
4. If u = (ug)vi...v, where n > 0 and ug is not an application, we look at the different
cases for ug:
(a) up = z, impossible as for 1.
(b) wg = Az.uy then ((u1)va...v,)* is a sub-proof-net of u® which has the same final
X-node. By induction hypothesis: (u1)vs...v, ~s Ay.u’ (with y chosen not free in

v1) SO
u= (Az.u1)v1...0n
~g (Az.(u1)ve...vn) vy (1)
~g (Az Ay vy
~g Ny.(Az.u) vy (02)

(¢) wy = pafBluy then u® is obtained by the multiplicative reduction of a cut between
ug and the non flat ®-tree containing the »;’s. If the node above the distinguished
conclusion of u§ is not a %¥-node or an az-node, this cut cannot be multiplicatively
reduced and the distinguished conclusion of »* is the main conclusion of the ®-tree
which contradicts our hypothesis that it is conclusion of the %-node n. By lemma 10,
uy = pa.N[[a]ug] where N is an a-free context and « ¢ up. We use lemma 9:

u= (pa.Nl[a]us])vr...vn
~a Y[y (peeN[alug])vr...vn
~o 1y-N{[y](u2)vi...vn0]
then by induction hypothesis (u2)v...vy ~¢ Az.u' and by lemma 8:
u~g py-N{[y]Az.']
~o WY[YAT.pa N{[a]u']
~g Az.poN[[a]u']
O

Lemma 12
If u* has no final negative node and has a mazimal cut-node with a non flat ®-tree above it, there
exist u', v, ..., v, such that:
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e if the main conclusion of the ®-tree is distinguished then we have u ~, (pa[Blu’)vy...vp;

e if the main conclusion of the ®-tree is not distinguished then u ~, pd![B'](palBlu')v1...v,.

Lemma 13
If u® has no final negative node and has a mazimal cut-node with a flat @-tree above it then there
exist v’ and v such that u ~, (Azx.u')v.

We are now able to finish the proof of theorem 4.

PROOF: (Theorem 4 — continued) By induction on ¢*, following the proof of theorem 3:

e If t* has a final %-node n above the distinguished conclusion, by lemma, 11, ¢ ~, Az.%g
and t' ~, Az.tf,. By definition of the translation t§ = t*\n =#*\n = t°, thus t§ = #;°,
by induction hypothesis ¢y ~, t, and t ~, t'.

e If ¢{* has a final &-node n above another conclusion, by lemma 11, t ~, pa[S]A\z.ty and
t' ~y pa|B]Az.t) so that t§ = t*\ n = ¢'*\ n =t,° thus by induction hypothesis ty ~ t{,
and t ~, t.

e If ¢* has a final co-node or a final wo-node it is very similar.

e If ¢* has a final ci-node n with name z, let ¢y (resp. t,) be a term with two free variables
z1 and x9 such that p® = t*\n (resp. t," = '*\n) where 1 and z2 are the names of the
premises of n and such that £[*/5,,%/z,] = t (vesp. t4[*/z,,% /2] = t'). By induction
to ~¢ t( thus we have ¢ ~, t'.

e t° cannot have a final wi-node.

e If t* has no final negative node but some cut-nodes, let ¢ be a maximal one. If the
®-tree above the positive premise of ¢ is not flat we apply lemma 12. If it is flat we
apply lemma, 13.

e If t* has no final negative node and no cut then ¢t ~, (z)uy...u, and t' ~, (z)v;...v, with
u; ~¢ v; by induction hypothesis inside boxes thus t ~, t'. O

4 Pure case
Considering pure proof-nets corresponds to applying the recursive equation N = !N — N on types.

This identifies all output formulas and gives exactly four types: O (output formulas) and its dual
I (anti output formulas); 77 (input formulas) and its dual !O (anti input formulas).

I (0]

I 0
799

where A is either O or 71.

The translations studied before can be seen as translations of pure Au-calculus into pure polar-
ized proof-nets extending those for A-calculus in [1, 12].
All the results are still valid except, of course, strong normalization (corollary 1.2). In particular:
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Proposition 5 (Confluence)
The reduction of pure polarized proof-nets is confluent.

Proposition 6 (o-equivalence)
Let t and t' be two pure A\p-terms, then t* =t'° & t ~, t'.
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