
Polarized and Focalized

Linear and Classical Proofs

Olivier Laurent

IML–CNRS Marseille

Olivier.Laurent@pps.jussieu.fr

Myriam Quatrini

IML–CNRS Marseille

quatrini@iml.univ-mrs.fr

Lorenzo Tortora de Falco

Roma III

tortora@uniroma3.it

Abstract

We give the precise correspondence between polarized linear logic and

polarized classical logic. The properties of focalization and reversion of

linear proofs are at the heart of our analysis: we show that the tq-protocol

of normalization for the classical systems LK
η

pol and LK
η,ρ

pol perfectly fits

normalization of polarized proof-nets. Some more semantical considera-

tions allow to recover LC as a refinement of multiplicative LK
η

pol.

MSC: 03F05; 03F07; 03F52

Keywords: Classical Logic, Linear Logic, Cut-Elimination, Proof-Nets,

Denotational Semantics, Polarization, Focalization, Reversion.

Introduction

The extension of the Curry-Howard paradigm to classical logic turned out to
be possible and interesting. The last years have seen lots of attempts to extract
such a computational content from classical proofs. A possible proof-theoretical
approach is to start by defining classical systems (i.e. complete w.r.t. classical
provability) with a deterministic normalization procedure. This means that cut-
elimination enjoys some particular properties: it has a denotational semantics,
and it enjoys strong normalization and (usually) confluence. Let us quote,
among the works following this approach, Parigot’s FD and λµ-calculus [Par91,
Par92], Girard’s LC [Gir91a], LKtq and its subsystems [DJS97].

Although all this work is not entirely based on it, linear logic (LL), intro-
duced in [Gir87], seems to play a pre-eminent role, because it can be used as a
looking-glass. On the one hand LL suggests a reasonable way to make choices in
the cut-elimination procedure of classical logic, and on the other hand it orga-
nizes known solutions, thus acting as a unifying and clarifying tool (see [DJS97]).

1

Our approach follows [Gir91a] and [DJS97]: we go one step further in the linear
analysis of classical computations.

Right from the start LL was seen as a way to analyze classical logic, but it
took some years to find the “good” translations from classical into linear logic,
and the fact that they were eventually found (see [Gir91a] and [DJS97]) was
due to a better understanding of LL itself. Most notably, the works [And90,
AP91, Gir91a, DJS97] pointed out two crucial properties of LL: focalization and
reversion.

In [QTdF96], these two properties gave birth to the classical system LKη,ρ
pol ,

for which some results were stated (but not proven). In [Lau99], the same two
properties were studied in the framework of linear logic proof-nets. The starting
point of the present work was to realize that these two papers are in fact tightly
linked. We put together our knowledge on proof-nets [Lau99, Lau03, TdF03b,
TdF00], on denotational semantics [Qua96], on the linear logic approach to
classical logic [JSTdF02, TdF97, QTdF96], and focused on reversion and focal-
ization. In this paper, we study these two properties both in a classical and in a
linear framework. This leads us to consider two couples of classical/linear sys-
tems (LKη

pol/LLP and LKη,ρ
pol /LLpol) which can be considered as two “twins”, at

least if we restrict to first order quantifiers. Reversion, which is a semantically
invisible operation, is shown to be the bridge from LKη

pol/LLP to LKη,ρ
pol /LLpol.

The two twins actually correspond to two possible choices: either reduce the
classical derivation’s space by means of reversion (LKη,ρ

pol /LLpol) or extend the
linear derivation’s space by means of admissible rules (LKη

pol/LLP).

Let us now be more precise on the contents of this paper. In section 1, we
recall the main definitions and results of [Gir91a] and [DJS97], among which
the notion of decoration (a translation from classical to linear logic preserv-
ing the skeleton of the proof). The Polaro-embedding (denoted by P) defined
in [DJS97] (already implicit in [Gir91a]) is a translation of the classical system
LKη

pol into LL, which makes use of a very few amount of exponentials. This is
rather a quality of the translation, because it allows to represent classical proofs
by proof-nets with very few boxes, thus in a more geometrical way. However, the
P -embedding is not a decoration (it introduces cuts). It is then quite natural
to wonder whether there exists a restriction on classical derivations allowing to
turn this embedding into a decoration. In section 2, we define the ρ-constraint
on LKη

pol-proofs, and we show that it is complete w.r.t. classical provability and
stable w.r.t. the tq-protocol (the normalization procedure for classical logic de-
fined in [DJS97]). This yields the system LKη,ρ

pol , for which the P -embedding
of section 1 is shown to be a decoration. We then define (section 3) the polar-
ized fragment LLpol of LL which contains the P -image of LKη,ρ

pol , and its natural
extension LLP. In section 4, we show that polarized proof-nets have good prop-
erties w.r.t. normalization. The main result of section 5 is theorem 8: for the
two twins, the classical tq-normalization perfectly fits the normalization of the
corresponding polarized proof-nets. This endows classical logic with all the de-
notational semantics of LL. Section 6 is devoted to reformulate Girard’s request
for denotational isomorphisms [Gir91a] with a more syntactical flavour: we give

2

a definition of syntactical isomorphism in classical logic, which allows to recover
LC as a refinement of multiplicative LKη

pol (proposition 10). Finally, section 7
shows that second order quantification drastically separates the two twins: it
only makes sense for LKη

pol/LLP.

1 Preliminaries: linear logic and classical logic

This section is devoted to briefly recall some of the main notions introduced
in [Gir91a] and in [DJS97]. We also introduce some notations and conventions:
we essentially follow [DJS97], except for the definition of the P -embedding (see
section 1.7) which is slightly different.

1.1 Conventions

We use the (more or less) standard terminology for the sequent calculus rules,
assuming that the reader has some acquaintance with the notions of sequent,
structural and logical rules, premise and conclusion of a rule, active and context
formula in a rule, cut-formula, . . .

A(n occurrence of) formula is said to be main in a logical rule (resp. in an
axiom) when it is the conclusion of the rule containing the logical connective
introduced by the rule (resp. it is one of the two conclusions of the axiom).

In case of structural rules, if necessary, we speak of the weakened, respectively
contracted formula.

The reader can find, in appendix A, the rules of second order classical
(Gentzen) sequent calculus, to which we will refer as LK2, or simply LK. Notice
that our presentation of LK is not standard, and is very much inspired from
the works on linear logic: we stressed in appendix A the difference between
the styles of the rules. This is of course a notion coming from LL, which is
meaningless if one sticks to mere provability, but becomes crucial if one wishes
to analyze proofs and their normalization (see [Gir91a, DJS97]). We denote by
∨m (resp. ∧m) the multiplicative disjunction (resp. conjunction), and ∨a (resp.
∧a) the additive disjunction (resp. conjunction).

All the sequent calculi for classical logic we deal with in the paper are one-
sided. This is not a simple notational convention, but rather a consequence
of our approach: we decided to bet on LL to analyze classical logic, and since
linear negation is indeed involutive (one has A = A⊥⊥), classical negation is also
involutive. It is not completely clear whether or not classical negation should
be involutive in such a strong sense, but this discussion is out of the scope of
the present work.

A notable consequence of the one-sided choice, is that negation has to be
defined by De Morgan laws (respecting the style of the connectives): the dual
of ∨m (resp. ∨a) is ∧m (resp. ∧a). There is nothing to say concerning the
quantifiers, but...beware the units! One has in fact four (different) units in

3

LK: V , ¬V , F , ¬F and two kinds of atoms X and ¬X . Every unit A satisfies
¬¬A = A, but one does not have ¬V = F (and then one does not have ¬F = V).
This is again a distinction coming from LL, where one has four units.

Except for section 7, we will only consider the propositional fragment of LK
and of LL. Not all the results we will prove can be extended to second order
quantifiers (no problem for first order ones), and this is precisely what motivates
section 7.

A fragment of a logical system is a subsystem obtained by restricting the
language (i.e. by forbidding the use of some formulae). We will consider here
various subsystems of LK obtained by restricting the use of some rules which
does not imply a restriction of the language. Suppose that LK is endowed with
a normalization procedure (see section 1.3), we will say that a subsystem S of
LK is a computational subsystem when it is obtained by some restriction on
the rules, in such a way that S is complete w.r.t. provability in LK (i.e. A is
provable in LK iff it is provable in S) and stable w.r.t. the given normalization
procedure (i.e. if the proof π′ is obtained by a normalization step from the
proof π of S, then π′ is still a proof of S).

In this paper, we will only consider computational subsystems, because they
allow to study dynamical properties.

Definition 1 ((Ir)reversible rules, formulae)
The reversible (resp. irreversible) rules of LK are the ones introducing the con-
nectives ∨m, ∧a (resp. ∧m, ∨a), the units ¬V and ¬F (resp. V) and the quantifier
∀ (resp. ∃).

The main formula of a reversible (resp. an irreversible) rule is called reversible
(resp. irreversible). The formula F is irreversible.

Remark: The notion of reversible/irreversible formula is well-known in logic.
A possible definition is “a formula A is reversible iff for every proof π of the
sequent ⊢ Γ, A, there exists a proof πr of ⊢ Γ, A whose last rule is a rule
introducing A”. We shall see in the sequel that to the notion of reversible
formula a much stronger meaning can be given: not only πr does exist, but it
also has the same denotational semantics as π (see proposition 6).

1.2 Decoration

Let us now be more precise on the “bet on LL to analyze classical logic” we
previously mentioned. Our approach is based on the notion of decoration, in-
troduced by V. Danos, J.-B. Joinet and H. Schellinx.

Let us start with the following (very) simple remark: if π is any LL-proof,
we can easily get a proof of LK, by simply erasing all the exponential rules
and substituting the linear connectives by the corresponding classical ones (one
might also have to erase some redundant sequents). We obtain in such a way a

4

proof sk(π) of LK (the classical skeleton of π). We can also proceed the other
way round: a decoration of the LK-proof π′ is a proof D(π′) of LL preserving
the classical skeleton of π′, i.e. such that sk(D(π′)) = π′. One can then try to
define a normalization procedure for LK-proofs suggested by the embeddings in
LL which are decorations: the skeleton preservation is supposed to guarantee
that we did not move away from the starting proof.

This idea led to the system LKtq defined in [DJS97]: each formula comes
equipped with a mapping of the set of its subformulae into a colour space {t, q}.
(When necessary, we will make explicit the colour ε of the formula itself by
means of a superscript: Aε, with the convention ¬Aε = ¬(Aε).) The rules are
now supposed to preserve colours, i.e. colours should respect identity classes of
formulae in a proof (cf. [DJS93]).
We shall not define formally what the identity class of a(n occurrence of) formula
in an LK-proof is (for which the reader can refer to the just mentioned paper),
but we now give an explanation. The two (occurrences of) formulae conclusions
of an axiom rule belong to the same identity class, so as the two active formulae
which are premises of a cut rule: in both cases if Aε and (¬Aε)ε

′

are these two
(occurrences of) formulae, one has ε 6= ε′. There is no constraint on the colour
of the main formula of a logical rule, and in the sequent conclusion of the rule,
the colours of the subformulae of the main formula are those of the premises:
one has for example

π1

...
⊢ Aε,Γ

π2

...

⊢ Bε
′

,∆

⊢ (Aε ∧m Bε
′

)ε
′′

,Γ,∆

with an arbitrary ε′′. Finally, the two active (occurrences of) formulae in a
contraction rule belong to the same identity class and must then have the same
colour.

The reader should notice that (at least for the moment) there is no connec-
tion between the main connective of a formula and its colour. In particular, a
formula and its negation can occur in the same proof with the same colour (this
will no more be possible in the system LKη

pol of section 1.5).
Colours do not interfere with the notion of provability of a formula, and

are relevant only from a dynamical point of view: they allow to define the tq-
protocol.

1.3 Classical normalization: the tq-protocol

We now recall the definition of tq-normalization (see [DJS97]).
An occurrence of coloured formula in a sequent is said to be attractive (resp.

non-attractive) if its colour is q (resp. t): the terminology is introduced to
remind us that the subproof of the sequent containing the non-attractive active
cut-formula has to move first.

5

A logical cut is an occurrence of the cut-rule where both active formulae are
main in logical rules. A structural cut (i.e. not logical) is either of kind S1 or of
kind S2, depending on whether the attractive occurrence of the cut-formula is
main in a logical rule. If it is, then the cut (and the associated reduction step)
is of kind S2. If it is not, then the cut (and the associated reduction step) is
of kind S1. Intuitively, the number (1 or 2), after the letter “S”, indicates the
“status” of a cut or the “stage” of the reduction of a cut: at stage 1 nothing
has been done to reduce the cut, while at stage 2 (the intuition is that) a first
structural step has already been performed, and we are closer to the “logical”
step defined below (Gentzen’s key-case): S1 > S2 > L.

Let us call the subderivation containing the attractive occurrence of the cut-
formula the attracting subderivation.

Definition 2 (tq-protocol)
Reduction according to tq-protocol proceeds via two possible kinds of steps,
structural ones, S1 and S2, and logical ones, L (key-steps):

• An L-step applies when both cut-formulae are main in a logical rule. L-
steps have to be specified for each connective. We obtain as descendants
one or two cuts on the immediate subformula(e) of the cut-formula. In case
of two descendants, the order in which these cuts are applied is irrelevant,
thanks to the η-constraint, see [DJS97] and section 1.4.

• In case no L-step is applicable, necessarily an S-step applies, which con-
sists in transporting one of the cut’s subderivations up the tree of the
cut-formula’s ancestors1 in the other one, duplicating it and contracting
the context whenever passing an instance of contraction (or via the context
of a ∧a-rule); this process ends when reaching instances of introduction in
an axiom, in which case the resulting axiom-cuts are reduced immediately,
when reaching instances of introduction by weakening, which are replaced
by weakenings on the context formulae, or when reaching instances of
introduction of the main connective of the cut-formula (see figure 1).

Of course, now one needs to know which of the two subderivations has to
move. This is decided by asking whether or not the attractive cut-formula is
main in a logical rule. If the answer is “yes!”, we transport the attracting
subderivation (S2); if it is “no!”, we transport the other one (S1).

And that is it.

The main difference between tq-reduction and the standard definitions of
cut-elimination steps in sequent calculus is in the definition of the tq-structural
steps, where the complete tree of ancestors of one of the occurrences of the cut-
formula A is involved: we raise (a copy of) the transported subderivation right
up to the leaves, where an ancestor of the cut-formula was introduced. Then we
push the context-formulae of the final sequent of the transported subderivation

1The tree of ancestors of the occurrence A1 of the formula A in the sequent calculus proof
π is the tree of the occurrences of A above A1 in π. See [DJS97] for a more precise definition.

6

�
�
�
�
�
�
�
�
�
�
��

L
L

L
L

L

L
L

L
L

ax
⊢ (¬A)ε

′

, Aε

w
⊢ Aε, . . .

L
⊢ Aε, . . .

⊢ Aε, . . . ⊢ (¬A)ε
′

, . . .

⊢ . . .

@
@

@I

Figure 1: A structural cut, either of kind S1 or of kind S2, depending on whether
the attractive occurrence of the cut-formula is main in a logical rule. If it is,
then the cut (and the associated reduction step) is of kind S2. If it is not, then
the cut (and the associated reduction step) is of kind S1.

7

back down along the tree. At branchings originally due to explicit contractions
on A, the contractions now are inherited by these context-formulae. (Cf. the
complete exponential reduction of proof nets, as described in [Reg92].)

1.4 The η-constraint

In [And90, AP91], a crucial property of proofs was pointed out by the authors:
focalization. In [Gir91a], this property (the stoup) found a semantical counter-
part: central cliques of Girard’s correlation semantics. In [DJS97], the authors
show that focalization (the η-constraint) is preserved by cut-elimination.

Definition 3 (The η-constraint)
A proof of LKtq is η-constrained when every attractive (occurrence of) formula
active in an irreversible rule is main.
LKη is the subsystem of LKtq s.t. all the proofs are η-constrained.

The two following theorems are among the main results of [DJS97]: they
state that the η-constraint is both complete and stable w.r.t. the tq-procedure,
that is LKη is a computational subsystem of LKtq.

Theorem 1 (Stability)
If the proof π′ is obtained by performing some steps of tq-reduction from the
proof π of LKη, then π′ is a proof of LKη.

Theorem 2 (Completeness)
Let π be an LKtq derivation. There exists in LKtq an η-constrained derivation
πη with the same sequent conclusion as π.

We now briefly sketch the proof of completeness of LKη, introducing the
notion of η-proof (this will also explain the terminology).

An η-proof is just the obvious expansion of an axiom (this reminds of course
η-expansion of typed λ-calculus: λyAxA→By is the η-expansion of xA→B): if Ai
are the main subformulae of A, an η-proof of A (notation ηA) consists in the
axioms ⊢ Ai,¬Ai and precisely one instance of each logical rule introducing A’s
main connective and one instance of each logical rule introducing ¬A’s main
connective (see appendix C for more details). Notice that, for every formula A,
ηA = η¬A.

To prove completeness of LKη, one just has to plug pieces of η-proofs to
unconstrained LKtq-rules: every unconstrained LKtq-rule is derivable in LKη

(see [DJS97]).

Remark: To be precise, let us mention that the η-constraint is a bit stronger
than LC’s stoup, defined in [Gir91a]: in LC, attractive formulae active in ir-
reversible rules are main “up to some particular rules” (mainly reversible and
structural rules on the context). This is simply due to the fact that these rules
are “invisible” in correlation semantics. The stoup is a way to express a “lin-
earity” condition on formulae (in particular a formula in the stoup has not been

8

active in any structural rule). More precisely, we will say that a classical for-
mula A is linear in a proof π when its P -translation P (A) in the linear proof
P (π) (see paragraph 1.7) has not been active in any structural rule nor context
in any promotion rule.

1.5 Reversion

We now introduce the computational subsystem LKη
pol of LKη. In LKη

pol-proofs
the reversible/irreversible nature of a formula is linked to its tq-colour:

Definition 4 (LKη
pol)

An LKη-proof is an LKη
pol-proof when every reversible (resp. irreversible) formula

is coloured t (resp. q).

The reader should notice that in LKη
pol negation flips colours (which was not

the case up to now): if ε (resp. ε′) is the colour of the non-atomic formula A
(resp. ¬A), then ε 6= ε′.

We will often use in the sequel the following operation of “reverting a (re-
versible) formula in a proof”.

Definition 5 (Reversion)
Let A = B∨mC (resp. A = B∧aC) be an LKη

pol-formula. Let π be an LKη
pol-proof

of ⊢ Γ, A. The reversion of A in π yields a proof πr, which is obtained by:

1. substituting, in π, the axioms ⊢ A,¬A by ηA;

2. erasing the (logical) rules with main conclusion A;

3. transferring structural rules on A to the formulae B and C;

4. adding as a last rule the rule ∨m (resp. ∧a) with main conclusion A.

If A = ¬V and π is an LKη
pol-proof of ⊢ Γ, A, then the reversion of A in π yields

the proof πr, which is obtained by erasing from π the whole tree of A’s ancestors
and by adding to the thus obtained proof a rule with conclusion A = ¬V .
If A = ¬F and π is an LKη

pol-proof of ⊢ Γ, A, then the reversion of A in π yields
the proof πr, which consists in the unique rule (¬F) with conclusion ⊢ Γ,¬F .

Remark: One can also obtain the proof πr previously defined by eliminating
the cut between π and ηA (following the tq-protocol) (see [DJS97]). This shows,
by the way, that πr is indeed an LKη

pol-proof.

9

1.6 Semantics

In [Gir91a], Girard sums up the main features of what he considers as a “good”
denotational semantics:

“. . . The kind of semantics we are interested in is concrete, i.e. to each proof
π we associate a set π∗. This map can be seen as a way to define an equivalence
≈ between proofs (π ≈ π′ iff π∗ = π′∗) of the same formulae (or sequents),
which should enjoy the following:

(i) if π normalizes to π′, then π ≈ π′

(ii) ≈ is non-degenerated, i.e. one can find a formula with at least two non-
equivalent proofs

(iii) ≈ is a congruence: this means that if π and π′ have been obtained from
π0 and π′

0 by applying the same logical rule, and if π0 ≈ π′
0, then π ≈ π′

(iv) certain canonical isomorphisms are satisfied . . .”

The decoration method will allow to endow classical logic with some deno-
tational semantics: thanks to the simulation theorem (theorem 8) of section 5,
every “good” denotational semantics of linear logic proof-nets yields a “good”
denotational semantics for classical logic. In the sequel, we will often consider
the “denotational semantics of a linear proof π”. Depending on the context, we
will refer to coherent set-based or multiset-based semantics, relational seman-
tics, correlation semantics, . . . If we do not specify the kind of semantics we
are considering, this means that we are speaking of any denotational semantics
of the proof-net associated with π. We denote by [π] the interpretation or the
semantics of the LL proof(-net) π.

Notice that we did not discuss point (iv), which is indeed one of the main
ingredients of [Gir91a]: this is because it motivates our section 6.

1.7 The P -embedding

We finally come to an (explicit) relation with linear logic, by means of the so-
called Polaro-embedding (P -embedding for short). The definition of the linear
translation P (π) of the LKη

pol-proof π is delicate: on the one hand we want to
give an inductive definition of P (π), and on the other hand we have to make sure
that each time we perform a &-rule or a ⊤-rule in P (π) the context formulae
are all negative in the sense of definition 11 (this condition is essential to prove
theorem 8).

We are first going to split the set of S1-cuts in two disjoint subsets: Sax1

and S¬ax
1 . This is because we are going to translate them differently (see defi-

nition 8). The true motivation for this splitting will be clear in section 2.

Definition 6 (Kinds of cuts)
We have already seen the notion of cut of kind S1, S2 and L in section 1.3.
We refine it in the following way: an S1-cut is of kind Sax1 when the attractive

10

occurrence of the cut formula is main in an axiom, and it is of kind S¬ax
1

otherwise.
We will consider the following order on kinds corresponding to their possible

evolution during reduction: S¬ax
1 > Sax1 > S2 > L.

Say that a linear formula A is !-fix (resp. ?-fix) when the sequent ⊢ A⊥, !A
(resp. ⊢ A, !A⊥) is provable in LL. The following proposition (which is lemma 46
of [DJS97]) is a way to express the splitting of linear connectives into positive
connectives and negative connectives.

Proposition 1
The units 1, 0 (resp. ⊥,⊤) are !-fix (resp. ?-fix). The formula !A (resp. ?A) is
!-fix (resp. ?-fix), where A is any formula.
If A and B are !-fix (resp. ?-fix), then A⊗B, A⊕B, ∃XA (resp. A`B, A&B,
∀XA) are !-fix (resp. ?-fix).

Definition 7 (P -translation)
We define P (V) = 1, P (F) = 0, and if X is a classical atomic formula, then

P (Xt) = ?X, P (Xq) = !X⊥, P ((¬X)t) = ?X and P ((¬X)q) = !X⊥. For
compound formulae, we have:

A B A ∧m B
q q P (A) ⊗ P (B)
q t P (A)⊗!P (B)
t q !P (A) ⊗ P (B)
t t !P (A)⊗!P (B)

A B A ∨a B
q q P (A) ⊕ P (B)
q t P (A)⊕!P (B)
t q !P (A) ⊕ P (B)
t t !P (A)⊕!P (B)

The translations of ¬V , ¬F , A∧aB and A∨mB are obtained by duality, in
such a way that P (¬A) = P (A)⊥.

Notice that every q-formula (resp. t-formula) of LKη
pol is translated by an !-fix

(resp. ?-fix) linear formula. The definition of the P -embedding is based on this
remark.

We can summarize the different characteristics of LKη
pol-formulae with the

following table:

A P (A)
t non-attractive reversible ?-fix
q attractive irreversible !-fix

Definition 8 (P -embedding)
Let π be an LKη

pol-proof with conclusion ⊢ Γt,∆q,Πq where Πq contains the
main formula of π’s last rule, provided this formula exists and is q-coloured
(otherwise Πq is empty).

The P -embedding of LKη
pol-proofs into linear proofs associates with π a

linear proof P (π), and translates the sequent ⊢ Γt,∆q,Πq by the sequent ⊢
P (Γt), ?P (∆q), ?P (Πq).

11

We give a mutually recursive definition of the P -embedding and of the
P0-embedding which associates with π a linear proof P0(π) of the sequent
⊢ P (Γt), ?P (∆q), P (Πq). With the property that either Πq is empty and P (π) =
P0(π) or Πq is not empty and P (π) is obtained by adding a ?d-rule on P (Πq)
to P0(π). We proceed by induction on π:

• If π is an axiom ⊢ Aq, (¬A)t, then Πq = Aq and P0(π) is the LL axiom
⊢ P (A), P (A)⊥.

• If π is the logical rule with conclusion ⊢ V (in this case Πq is V), then
P0(π) is the logical rule with conclusion ⊢ 1. If π is the logical rule with
conclusion ⊢ ¬F,Γt,∆q (in this case Πq is empty), then P0(π) is the logical
rule with conclusion ⊢ ⊤, P (Γt), ?P (∆q).

• If π’s last rule is a cut rule c between π1 with sequent conclusion ⊢
Γt1,∆

q
1,Π

q
1, A

t and π2 with sequent conclusion ⊢ Γt2,∆
q
2,Π

q
2, (¬A)q , then we

have four possibilities (in fact, one should say three plus one possibilities):

– if c is logical, then P0(π) = P (π) is obtained by performing a cut
rule of LL between P0(π1) and P0(π2): one thus gets a proof of
⊢ P (Γt1), ?P (∆q

1), P (Γt2), ?P (∆q
2) (in this case Πq

1 is empty and Πq
2 is

(¬A)q).

– if c is structural of kind S2, π is translated by a cut rule between
P (π1) and P0(π2).

– if c is structural of kind Sax1 , then we proceed exactly like in the case
of an S2-cut: π is translated by a cut rule between P (π1) and P0(π2).

– if c is structural of kind S¬ax
1 , then one applies to P (π1) a promotion

rule on P (A), and finally a cut rule between the thus obtained proof
and P (π2). Of course, the promotion rule can be applied only if
every conclusion of P (π1) is ?-prefixed, and this is not the case (in
general). But we can use the ?-fix property of the P -translation of
the t-coloured formulae, and by adding some cuts we can obtain a
linear proof of ⊢ P (Γt1), ?P (∆q

1), P (Γt2), ?P (∆q
2), ?P (Πq

1). See also the
following remark for a more detailed description.

• If π’s last rule is a reversible rule (including the rule (¬V)), then one
applies, to the P -translation (not the P0-translation) of the subproof(s)
premise of the rule, the corresponding LL-rule.

• If π’s last rule is an irreversible rule, then one applies to the P0-translation
(not the P -translation) of the subproof(s) premise of the rule, the corre-
sponding LL-rule: a promotion might be necessary (it is not necessary
when the rule is η-constrained that is Πq

i is not empty), and if the context
is not ?-prefixed we have to apply some derelictions and some cuts (see
the following remark).

• If π’s last rule is a structural rule, we just apply the corresponding struc-
tural linear rule to the P -translation of the premise of the rule, except

12

when the active formula is reversible: in this case we have (again) to use
the ?-fix property of the P -translation of the t-coloured formulae (see the
following remark).

Remarks:

(i) In the language of [Gir91a], the formula contained in Πq (if any) is the
formula contained in the stoup.

(ii) Another peculiarity of our definition of the P -embedding is the splitting
of S1-cuts. The necessity of such a splitting will appear clearly in the next
section 2, see remark 2 after definition 9.

(iii) The P -embedding is not a decoration. It is easy to be convinced by the
two following examples:

1. Let us consider the following derivation in LKη
pol (with Γ = Γ1,Γ2 and

∆ = ∆1,∆2)

π1

...

⊢ At,Γt1,∆
q
1,Π

q
1

π2

...

⊢ Bq,Γt2,∆
q
2

⊢ (A ∧m B)q,Γt,∆q,Πq
1

We have to deduce from the two linear proofs obtained by deco-
rating π1 and π2 (which are, respectively, P (π1) with conclusion
⊢ P (A), P (Γ1), ?P (∆1), ?P (Π1) and P0(π2) with conclusion ⊢ P (B),
P (Γ2), ?P (∆2)) a proof of conclusion ⊢ !P (A) ⊗ P (B), P (Γ), ?P (∆),
?P (Π1). To be able to perform a promotion on P (A) as the P -
translation of formulae requires, we have to make some derelictions
on the context P (Γ1) (as soon as Γ1 contains reversible and non-
atomic formulae).

Then we have to perform cuts with the proofs of ⊢ !P (G)⊥, P (G)
(for every formula G of Γ1 that we have derelicted) using the ?-fix
property of the translation of t-formulae.

2. Let us look at the following derivation in LKη
pol, in which the formula

At is non-atomic:
π
...

⊢ At, At,Γt,∆q,Πq

⊢ At,Γt,∆q,Πq

We can obtain a proof of ⊢ ?P (A), P (Γ), ?P (∆), ?P (Π) from the se-
quent ⊢ P (A), P (A), P (Γ), ?P (∆), ?P (Π) conclusion of the LL deriva-
tion P (π) by means of two derelictions and one contraction. But we
want a proof of ⊢ P (A), P (Γ), ?P (∆), ?P (Π). We then have to per-
form a cut with the proof of ⊢ P (A), !P (A)⊥.

13

2 The ρ-constraint

The P -image of LKη
pol is a subsystem of LL. We just saw that the P -embedding

introduces some cuts. These cuts arise between the P -translation of the initial
derivations (inductively built) and some very peculiar derivations: the deriva-
tions proving the preservation of the type ! or ?. Also the following questions
arose: what happens when we eliminate exactly the cuts introduced by P? Is
it possible to characterize the set of proofs thus obtained as some subsystem
LLS of LL? Is it possible to isolate as some LKη

pol-computational subsystem (tq-
stable and complete) the part of LKη

pol which contains exactly the skeletons of
LLS derivations? (this last question is very natural according to the decoration
method). Answering to these questions lead us to the present study.

In the previous section we recalled the definition of reversion of a reversible
formula A in an LKη

pol derivation π. This operation enables us to put off some
reversible rules until the end of the derivation and can be useful to avoid the
problematic cases in the P -embedding. Moreover, we will see in section 5 (propo-
sition 6) that reversion does not adulterate the semantics of the derivation.

In this section, we introduce a supplementary requirement on the LKη
pol

derivations. This new constraint (which will be denoted by ρ) yields a new
polarized system LKη,ρ

pol for which the P -embedding in LL is a decoration. We
then show that LKη,ρ

pol is a computational subsystem of LKη
pol, i.e. it is closed by

tq-normalization and complete with respect to classical provability.
We will see in the next section that the P -image of this system in LL is

included in LLpol.

We introduce, for LKη
pol-proofs, a new constraint ρ which requires that the

derivations are reversed each time it is necessary.

Definition 9 (The ρ-constraint)
• Reversible context: Let ⊢ Γ be an LKη

pol-sequent and let A ∈ Γ. Suppose
that the sequent ⊢ Γ is a premise of a rule R in which A is active. We will
say that A is in a reversible context (resp. non-reversible context) if there
is at least one (resp. no) reversible formula in Γ\A.

• The ρ-forbidden rules: The following rules are ρ-forbidden: the structural
rules on reversible formulae; the irreversible rules or the S¬ax

1 -cuts in which
the context of the active and non-attractive occurrence is reversible.

• A ρ-constrained proof: A proof π of LKη
pol is called ρ-constrained when it

contains no ρ-forbidden rule.

Remarks:

1. The subsystem LKη,ρ
pol of LKη

pol contains exactly the classical skeletons of
the LL derivations obtained by eliminating the cuts introduced by the
P -embedding.

14

2. Notice that Sax1 -cuts (so as S2-cuts) are not ρ-constrained. In the general
case, the P -embedding of S1-cuts requires to add a dereliction on the
formula Πq (if any) and then a promotion on the t-occurrence of the cut
formula. Two essential properties of the ρ-constraint will be stability w.r.t.
cut-elimination (theorem 4) and the fact that it allows the P -embedding to
be a decoration of LKη,ρ

pol into LLpol (proposition 2). In order to obtain the
first one, Sax1 -cut cannot be ρ-constrained (unconstrained Sax1 -cut might
be created during the reduction of other cuts). As a consequence we asked
the P -embedding not to introduce a promotion rule in the case of an Sax1 -
cut, for example:

⊢ (¬A)t, Aq ⊢ (¬A)t, Bt ∨m Ct,Πq

⊢ (¬A)t, Bt ∨m Ct,Πq

↓

⊢ P (A)⊥, P (A)

⊢ P (A)⊥, P (B)` P (C), P (Π)

⊢ P (A)⊥, P (B)` P (C), ?P (Π)

⊢ P (A)⊥, P (B)` P (C), ?P (Π)

and it would not be possible to promote P (A)⊥ in ⊢ P (A)⊥, P (B) `
P (C), P (Π), as we do for an S¬ax

1 -cut.

From this point of view, the distinction between Sax1 -cuts and S2-cuts
looks rather artificial, and one would be tempted to split differently the
structural cuts: S2-cuts and Sax1 -cuts on the one hand and S¬ax

1 -cuts on
the other hand. This is what we did in definition 8, when we translated
the cut rule.

3. The ρ-constraint on cuts is not as strong as it seems: one cannot perform
a cut between two arbitrary proofs but this becomes possible after one
step of reversion of one of the proofs (see theorem 3).

4. Let us notice that the ρ-constraint and the η-constraint have not exactly
the same nature. Indeed, the ρ-constraint regards only the sequents that
are premises of some particular rules, and does not ask anything to the
rules of the subderivations premises. In this sense ρ is more local than η.

Definition 10 (Reversibility complexity)
Let A be an LKη

pol-formula. The reversibility complexity of A, that we will
denote by cA, is defined as follows:

• if A is an atomic formula or a q-coloured formula, then cA = 0;

• if A = ¬V or A = ¬F , cA = 1;

• if A = B ∧a C or B ∨m C then cA = cB + cC + 1.

15

The reversibility complexity of a sequent Γ = A1, . . . , An is the sum of the
reversibility complexity of the (occurrences of) formulae contained in Γ: cΓ =
cA1

+ · · · + cAn
.

From now on, we will use the following language convention: if π is an LKη
pol

derivation containing the rules R and R′, we will say that “the rule R′ follows
the rule R in π” when there exists a subderivation of π, containing R, and that
is a premise of R′. We will say that “the sequent Γ follows R in π” when Γ is
the sequent conclusion of a subderivation of π, containing R. We will say that
“(the occurrence of) the formula A follows the rule R in π” when A ∈ Γ and Γ
follows R in π.

Theorem 3 (Completeness)
Let π be an LKη

pol derivation. There exists in LKη
pol a ρ-constrained derivation

πρ with the same sequent conclusion as π.

Proof: The proof is by induction on the number of ρ-forbidden rules.
Let n ≥ 1 be the number of ρ-forbidden rules in π. We prove that there

exists a derivation πρ1 of the same sequent containing at most n− 1 ρ-forbidden
rules. Let us consider a ρ-forbidden rule R such that the subderivation(s) of π
premise(s) of R is (are) ρ-constrained. We distinguish three cases:

• if R is a structural rule on a reversible formula A, then we proceed by
induction on the reversibility complexity of A: we reverse A in the sub-
derivation terminating by the rule R and we apply (if necessary) the induc-
tion hypothesis. By means of this transformation we have ρ-constrained
R without introducing new ρ-forbidden rules.

• if R is an S¬ax
1 -cut then the context Γ of the t-coloured cut formula con-

tains at least a reversible formula A. We proceed by induction on the
reversibility complexity of Γ. We reverse A in the subderivation terminat-
ing by the rule R and we apply (if necessary) the induction hypothesis. By
means of this transformation we have ρ-constrainedR without introducing
new ρ-forbidden rules.

Notice that one of the effects of these reversions is that some reversible
rules have now a different position: they follow the S¬ax

1 -cut(s) generated
by R. It is important to convince oneself that this cannot violate the
η-constraint.

• if R is an irreversible rule, then the context Γ (resp. the union of the
contexts Γ and Γ′) of the formula (resp. the formulae) t-coloured and active
in R contains at least a reversible formula A. As in the foregoing case we
proceed by induction on the reversibility complexity of Γ (resp. Γ ∪ Γ′).
In order to reverse A we need to look for the place where it is possible to
perform a cut on A without breaking the η-constraint and without adding
a ρ-forbidden rule: the natural place to do so is the subproof premise of

16

the rule of π in which A is active. If such a rule does not exist then A is
among the conclusions of π and we reverse A in π.

During this transformation the reversibility complexity of the sequents
premises of R decreases, preserving the ρ-constraint and without intro-
ducing ρ-forbidden rules. �

Remark: For some LKη
pol derivation, the derivation obtained by the forego-

ing procedure is not unique. However this procedure gives derivations which
are equal up to reversions. Also, we will see in section 5 that when they are
P -embedded into LL all these derivations have the same interpretation (by
proposition 6).

In order to prove the stability of the ρ-constraint, we use the notion of
residue of a logical (resp. cut) rule of an LKtq-proof π in a proof π′, where π′

is obtained from π applying some steps of tq-reduction. We do not give here
the definition of such a notion (rather clear intuitively), which can be found for
example in [JSTdF02]. Notice that a logical cut of π to which the tq-step is
applied has no residue in π′.

The following lemma is a straightforward consequence of the stability lemma
(lemma 3) of [JSTdF02]. It basically says that the kind of a cut cannot “in-
crease” during tq-reduction.

Lemma 1
Let π be an LKtq-proof, let π′ be a tq-reduct of π and let c be a cut rule of π.
Then:

• If c is a logical cut, then all of c’s residues in π′ are logical cuts.

• If c is a structural cut of kind S2, then none of c’s residues in π′ is a
structural cut of kind S1.

• If c is a structural cut of kind Sax1 , then none of c’s residues in π′ is a
structural cut of kind S¬ax

1 .

Otherwise stated, the kind of a residue of a cut cannot be bigger than the kind
of the original cut (according to the order of definition 6).

Theorem 4 (Stability)
The ρ-constraint in LKη

pol is stable with respect to the cut elimination.

Proof: We outlined the locality of the ρ-constraint: the fact that, in an LKη
pol

derivation π, some rule satisfies the ρ-constraint does not depend on the previous
rules. It is also clear that if R is a rule of the LKη

pol derivation π following a
cut c and if π′ is obtained from π by eliminating the cut c, then R still satisfies
the ρ-constraint in π′ (using lemma 1 in the case of a cut rule R immediately
following c). We will therefore focus on the rules preceding the cut c.

We will suppose that π is obtained by performing a cut between π1 and π2:

17

π1

... R1
⊢ Γ, At

π2

... R2
⊢ ∆, (¬A)q

c
⊢ Γ,∆

Let π′ be the derivation obtained by eliminating the cut c. We have to check
that π′ still satisfies the ρ-constraint. We have to consider all the possible kinds
of cut.

• Let us suppose that c is a logical cut. We denote by B and C the A’s
main sub-formulae.

We deal with the case of the logical cut ∧m/∨m and leave the other cases
to the reader.

1
...

T
⊢ B,C, . . .

R1
⊢ At, . . .

2
...

T ′

⊢ ¬B, . . .

3
...

T ′′

⊢ ¬C, . . .
R2

⊢ (¬A)q , . . .
c

⊢ · · ·

The rule R1 is reversible, the rule R2 is irreversible. The derivation π′ is:

1
...

T
⊢ B,C, . . .

2
...

T ′

⊢ ¬B, . . .
c1

⊢ C, . . .

3
...

T ′′

⊢ ¬C, . . .
c2

⊢ · · ·

Only the rules c1 and c2 are in π′ and not in π. We have to check they
are ρ-constrained. Since the ρ-constrained cuts are necessarily S1-cuts, we
will suppose that c1 is an S1-cut.

In this case, if ¬B is q-coloured the η-constraint (in π) forces ¬B to be
main in T ′. Two cases may arise:

1. ¬B is main in a logical rule: c1 is therefore S2 not S1.

2. ¬B is main in an axiom: therefore we are in the case of a Sax1 -cut
without ρ-constraint.

If c1 is an S1-cut, we can then suppose that B is q-coloured. The formula
¬B (t-coloured and active in c1) is in the sequent conclusion of T ′. By
hypothesis π is ρ-constrained. It follows that in this sequent ¬B is in a
non-reversible context. The cut c1 satisfies the ρ-constraint.

The case of an S1-cut c2 can be dealt with in the same way.

18

In the following cases, c is a structural cut and we will show that all the
rules for which a sequent premise changed are still ρ-constrained.

It will not be necessary to deal with the residues of c in π′, since they
will necessarily be S2-cuts or logical cuts (without ρ-requirements). Moreover,
lemma 1 guarantees that every S¬ax

1 -cut in π′ is a residue of an S¬ax
1 -cut of

π. This implies, more generally, that every π′-rule which has to fulfill the ρ-
constraint is a residue of a π-rule which has itself to fulfill the ρ-constraint.

• Suppose that c is an S2-cut. The rule R2 is logical and introduces (¬A)q .
This means that At is reversible and because of the ρ-constraint it has not
been contracted nor weakened in π1; the only leaf of the tree of ancestors
of At is an axiom or a reversible rule T introducing At. The derivation π′

is then as follows (in the case of an axiom you have to replace by π2 the
subderivation of π′ with last rule c′):

...
T

⊢ At,Γ′

π2

... R2
⊢ (¬A)q,∆

c′
⊢ Γ′,∆

... R′
1⊢ Γ,∆

Note that R′
1 is the rule R1 of π (but with different premises).

We have to check that all the rules which follow c′ are ρ-constrained. This
is easy. Indeed no sequent following T (until R′

1) can be liable to the
ρ-constraint since in π the sequents which follow T contain the reversible
and non-active formula At.

• Suppose that c is S1.

If R2 is an axiom, π′ is the subderivation π1 of π (and we know by hy-
pothesis it is ρ-constrained).

Otherwise c is an S¬ax
1 -cut, and because of the ρ-constraint in π there are

no reversible formulae in Γ, which implies that π′ is ρ-constrained. �

Proposition 2
The P -embedding is a decoration of LKη,ρ

pol .

Proof: Thanks to the ρ-constraint, each time we have to perform a promotion
in LL on the P -translation of a t-coloured formula, active in an irreversible
rule or an S¬ax

1 -cut, the context is correctly modalized (the formulae are q-
coloured or atomic and then ?-prefixed). Moreover, structural rules in LKη,ρ

pol

are performed only on q-coloured or t-atomic formulae, which are ?-prefixed in
the P -translation of formulae.

19

The reader should notice that in the case of an Sax1 -cut (which is not a ρ-
constrained rule), the P -embedding does not require any promotion rule: this is
indeed the reason why we distinguished this case in definition 8. Notice also that
Sax1 -cuts cannot be ρ-constrained, because they naturally arise when reducing
a logical cut (remember the proof of theorem 4). �

3 LLP

We now turn our attention to linear logic. We already pointed out in subsec-
tion 1.7 that every q-formula (resp. t-formula) of LKη

pol is translated by a !-fix
(resp. ?-fix) linear formula. The definitions of subsection 1.7 show that a very
small subset of the set of !-fix and ?-fix linear formulae (which is itself a very
small subset of linear formulae) is enough to represent classical logic. This
suggests to precisely define and to study such a set of formulae.

We define the polarized subsystem LLpol of LL and its natural extension LLP.
We will prove in the next section some important properties of such systems
w.r.t. normalization.

Definition 11 (Polarized formulae and LLpol)
If X is any atomic (linear) formula, a polarized formula is defined by

P ::= !X⊥ | P ⊗ P | P ⊕ P | 1 | 0 | !N
N ::= ?X | N `N | N &N | ⊥ | ⊤ | ?P

without any succession of exponentials !? or ?! (except for ?!X⊥ and !?X). A
formula of the shape P (resp. N) is positive (resp. negative). In the sequel P ,
Q, . . . (resp. N , M , . . .) will denote positive (resp. negative) formulae.

LLpol is the subsystem of LL which uses only polarized formulae with the
constraint: only negative formulae can appear in the context of a &-rule and of
a ⊤-rule.

Remark: We can then reformulate proposition 2 in a more precise way: the
P -embedding is a decoration of LKη,ρ

pol whose image is contained in LLpol. One
just has to check that the P -image of every LKη,ρ

pol -proof is a proof of LLpol, and
this is immediate.

3.1 From structural rules to LLP

The study of the properties of polarized formulae will allow us to extend the
system LLpol to a richer one, LLP.

Lemma 2
Let N be a negative formula, N is ?-fix (i.e. ⊢LL !N⊥, N).

20

Proof: By induction on N . �

Lemma 3
In LL, if N is negative,

• from ⊢ Γ we can deduce ⊢ Γ, N .

• from ⊢ Γ, N,N we can deduce ⊢ Γ, N .

• from ⊢ N,N1, ..., Nk we can deduce ⊢ !N,N1, ..., Nk.

Proof:

⊢ Γ
⊢ Γ, ?N ⊢ !N⊥, N

⊢ Γ, N

⊢ Γ, N,N

⊢ Γ, ?N, ?N

⊢ Γ, ?N ⊢ !N⊥, N

⊢ Γ, N

⊢ N,N1, ..., Nk

⊢ N, ?N1, ..., ?Nk
⊢ !N, ?N1, ..., ?Nk ⊢ !N⊥

1 , N1

⊢ !N,N1, ?N2, ..., ?Nk

...
⊢ !N,N1, ..., Nk−1, ?Nk ⊢ !N⊥

k , Nk

⊢ !N,N1, ..., Nk

�

Definition 12 (LLP)
The system LLP is obtained by extending LLpol with the three rules of lemma 3,
and by defining the polarity of atomic (linear) formulae as follows: X is a
positive formula and dually X⊥ is negative.

The previous definition of polarity for the atoms allows us to define a second
order extension of LLP (see section 7).

3.2 The P -embedding is a decoration

The P -embedding translates any t-formula as a negative formula and any proof
of LKη

pol as a proof of LLpol. It is not a decoration, due to the structural rules of
LKη

pol on t-formulae and not only on formulae translated as ?A (for some A).
Observe that the LLP-rules which are not LL-rules are exactly the ones

needed to turn the P -embedding into a decoration of LKη
pol in LLP.

21

�
��� �ax �

��� cut �
��@@ ��
⊗ �

��@@ ��
`

�
��@@ ��
& �

��
⊕1 �

��
⊕2 �

��@@ ��
C

�
��

! �
��
?p �

��
?d �

��@@ ��
?c �

��
?w

�
��
1 �

��
⊥ �

��� ��
...⊤

A A⊥

A A⊥
P Q

P ⊗Q

N M

N `M

N M

N &M

P

P ⊕Q

Q

P ⊕Q

N N

N

N

!N

?P

?P

P

?P

?P ?P

?P ?P

1 ⊥
⊤ N1 Np

Figure 2: Proof-nets nodes

4 Polarized proof-nets

Proof-nets have been introduced for LL in [Gir87], but the cut elimination steps
are difficult to define for the additive connectives [Gir96, TdF03b, TdF03a].
The main point of this section is precisely to show that the constraints of LLpol

are sufficient to give a very nice definition of these cut elimination steps, thanks
to the notion of positive tree (see [Lau99]). We then move to a more general
system of proof-nets (proof-nets for LLP), for which we prove confluence and
strong normalization. The reader should notice that we are dealing with all the
linear connectives, and that in a non-polarized framework confluence is wrong for
full LL, and strong normalization has not been completely proven (see [TdF00]).

4.1 Definition

Definition 13 (Proof-structure)
A proof-structure is a finite directed acyclic graph built over the alphabet of
nodes represented in figure 2 (where the orientation is the top-down one). Edges
are typed with polarized formulae. The incident (top) edges of a node are its
premises and the emergent (bottom) edges are its conclusions. Each edge is
conclusion of exactly one node and premise of at most one node. The edges
which are not premise of a node are the conclusions of the proof-structure.
Moreover:

22

• with each !-node is associated a !-box, that is a sub-proof-structure with
conclusions Γ, N where N is the premise of the !-node and the formulae of
Γ are premises of ?p-nodes (these ?p-nodes are associated with the !-node);

• with each &-node is associated a &-box, that is two disjoint sub-proof-
structures with conclusions Γ, N and Γ,M where N and M are the two
premises of the &-node and the pairs of corresponding formulae of the two
Γ are premises of the same C-nodes (these C-nodes are associated with
the &-node).

• Every ?p-node (resp. C-node) is associated with exactly one !-node (resp.
&-node).

The !-node (resp. the &-node) of a !-box (resp. &-box) is called its main door
and the corresponding ?p-nodes (resp. C-nodes) are called the auxiliary doors.
Two boxes are either disjoint or included one in the other. The number of boxes
in which a node is included is called its depth.

Definition 14 (Polarized edges and nodes)
Edges with a positive (resp. negative) type are positive (resp. negative) edges.
The following nodes are called positive (resp. negative): ⊗, ⊕i and 1 (resp. `,
&, ?c, ?w, ⊥ and ⊤), they have only positive (resp. negative) edges.

Definition 15 (Structural tree)
The structural tree of an edge a of type N is the tree (possibly empty) containing
the edges of type N above a.

We will now define a new orientation of the edges of the proof-structures
and in the sequel we will only talk about this new orientation and never about
the orientation appearing in the definition of proof-structure (except through
the notions of premise and conclusion, up and down).

Definition 16 (Correction graph)
The correction graph of a proof-structure is obtained by:

1. erasing the conclusion edges,

2. replacing any !-box (resp. &-box) at depth 0 with its !-node and the associ-
ated ?p-nodes (resp. &-node and the associated C-nodes) by a generalized
axiom node (i.e. without premises) with the same conclusions in the re-
sulting graph,

3. orienting negative (resp. positive) edges downwardly (resp. upwardly).

Definition 17 (Correctness and Proof-nets)
A proof-structure is correct or is a proof-net if its correction graph is acyclic and
has exactly one non-weakening (and non-⊥) initial node (i.e. without incident
edge) and recursively each box contains proof-nets (one for !-boxes and two for
&-boxes).

23

�
��� �ax

�
��� cut

→

Figure 3: Axiom step

�
��� cut

�
��@@ ��
⊗ �

��@@ ��
`

→
�
��� cut

�
��� cut

Figure 4: Multiplicative step

Remark: A positive conclusion of a proof-net is conclusion of an initial node
of the correction graph thus, by the correctness criterion, a proof-net has at
most one positive conclusion.

Remark: By definitions 16 and 17, the orientation of the correction graphs
defines a partial order on the nodes of a proof-net.

We will now look at the different properties required for a good correctness
criterion for proof-nets. The first point is the preservation of the correctness
criterion w.r.t. the cut elimination steps (otherwise computation is impossible).
The second point is the sequentialization property: correct proof-structures
must correspond to proofs. A third crucial point is to study the properties of
cut elimination: termination and confluence.

4.2 Cut elimination

These proof-nets correspond to a fragment of usual proof-nets, this is why we
can use usual reduction steps for the following cuts (as described in [Dan90] for
example):

• axiom (or ax-) step: figure 3

• multiplicative (or ⊗-`-) step: figure 4

• neutral multiplicative (or 1-⊥-) step: figure 5

• additive (or &-⊕i-) step: figure 6

• contraction (or ?c-!-) step: figure 7

• weakening (or ?w-!-) step: figure 8

• dereliction (or ?d-!-) step: figure 9

24

�
��� cut

�
��
1 �

��
⊥

→ ∅

Figure 5: Neutral multiplicative step

�
�

�
�1

�
�

�
�2

�
��@@ ��
&

�
��� cut

�
��
⊕i

→

�
�

�
�i

�
��� cut

Figure 6: Additive step

�
��@@ ��
?c

�
��� cut

�
��

! �
��
?p

↓

�
��� cut

�
��

! �
��
?p

�
��� cut

�
��

! �
��
?p

�
��@@ ��
?c

Figure 7: Contraction step

�
��
?w

�
��� cut

�
��

! �
��
?p

→
�
��
?w

Figure 8: Weakening step

25

�
��
?d

�
��� cut

�
�

�
�

�
��

! �
��
?p

→
�
��� cut

�
�

�
�

Figure 9: Dereliction step

�
��

! �
��
?p

�
��� cut

�
��

! �
��
?p

↓

�
��

!

�
��� cut

�
��
?p

�
��

! �
��
?p

Figure 10: Commutative exponential step

• commutative exponential (or !-!-) step: figure 10

To define the C- and ⊤-steps, we need the notion of positive tree.

Definition 18 (Positive tree)
A positive tree is a particular proof-structure with exactly one positive conclu-
sion called its root, the other conclusions (if any) are called the leaves. We define
it by induction:

• a 1-node, a !-box or an axiom is a positive tree;

• adding a ⊗-node between the roots of two positive trees gives a positive
tree;

• adding a ⊕-node on the root of a positive tree gives a positive tree.

26

�
��� ���

...⊤

�
��� cut

�
�
�
�
��

A
A

A
A

AA
+

�
��
1

�
��

! �
��
?p

�
��� �ax

↓

�
��� ����

... ...⊤

Figure 11: Neutral additive step in polarized proof-nets

Lemma 4
A positive tree is a proof-net, more precisely it is the kingdom of its root (i.e.
the smallest sub-proof-net having the root among its conclusions).

Proof: By induction on the definition of a positive tree. �

The main property of these polarized proof-nets is that we can easily com-
plete the set of steps of the cut elimination procedure to obtain a full system:
any cut can be eliminated (as done for usual MELL proof-nets). This strongly
uses the fact that the leaves of a positive tree are negative formulae:

• neutral additive (or ⊤-) step: figure 11

If c is a cut on a conclusion N of a ⊤-node, the other premise N⊥ of c is
positive and we eliminate the cut by erasing the positive tree of N⊥ and
by adding its leaves as conclusions of the ⊤-node.

• commutative additive (or C-) step: figure 12

If c is a cut on an auxiliary door N of a &-box, the other premise N⊥ of
c is positive and we eliminate the cut by duplicating the positive tree of
N⊥ (putting a copy of the tree in each side of the &-box and contracting
the leaves with C-nodes).

Remark: For this last step, the additive critical pair of LL [TdF00] is obvi-
ously avoided by the polarization constraint: the two premises of a cut have
distinct polarities.

27

�
��@@ ��
C

�
��� cut

�
�
�
�
��

A
A

A
A

AA
+

�
��
1

�
��

! �
��
?p

�
��� �ax

↓

�
��� cut

�
�
�
�
��

A
A

A
A

AA
+

�
��
1

�
��

! �
��
?p

�
��� �ax

�
��� cut

�
�
�
�
��

A
A

A
A

AA
+

�
��
1

�
��

! �
��
?p

�
��� �ax

�
��@@ ��
C �

��@@ ��
C

Figure 12: Commutative additive step in polarized proof-nets

28

Proposition 3
The correctness of a proof-structure is preserved by any cut elimination step.

Proof: We only prove it is the case for the commutative additive step:
If the cut node c is at depth d, we have to look at the correction graph at

depth d and at the two correction graphs inside the &-box at depth d + 1. At
depth d, we erase nodes and edges preserving the proof-structure properties,
moreover we cannot create cycles and none of the erased nodes are initial ones.
At depth d + 1, we replace a proof-net by this proof-net cut against another
proof-net (by lemma 4) thus we still have a proof-net. �

4.3 Extension to LLP

As we have seen, a positive tree is duplicable and erasable, just like a !-box.
Using these properties we can generalize the structural nodes ?c, ?w and ?p to
any negative formula:

�
��
?p �

��@@ ��
?c �

��
?w

N

N

N N

N N

A cut on such a node has a positive tree above its positive premise, and this
allows to extend to LLP the reduction steps (see figure 13 for the ?c case).

From now on, by polarized proof-nets we will mean proof-nets of LLP (re-
member that LLP contains LLpol).

4.4 Sequentialization

We are going to prove that our notion of polarized proof-net (proof-structures
satisfying the correctness criterion) corresponds to sequent calculus proofs by
decomposing any proof-net into such a proof: the sequentialization theorem.

Definition 19 (Final negative node)
A negative node is final if it is at depth 0 and maximal for the partial order
induced by the orientation of the correction graph except for a &-node which
also requires that all the associated C-nodes are maximal for this order.

Theorem 5 (Sequentialization)
A proof-structure is correct iff it can be deconstructed inductively (or sequen-
tialized) into a sequent calculus proof.

29

�
��@@ ��
?c

�
��� cut

�
�
�
�
��

A
A

A
A

AA
+

�
��
1

�
��

! �
��
?p

�
��� �ax

↓

�
��� cut

�
�
�
�
��

A
A

A
A

AA
+

�
��
1

�
��

! �
��
?p

�
��� �ax

�
��� cut

�
�
�
�
��

A
A

A
A

AA
+

�
��
1

�
��

! �
��
?p

�
��� �ax

�
��@@ ��
?c �

��@@ ��
?c

Figure 13: Contraction step in polarized proof-nets

30

Proof: We consider three main steps for the sequentialization. At depth 0:

• If there is a final negative node, we can erase it and we still have a proof-net
(or two proof-nets for a &-node).

• If there is no final negative node but a cut (at depth 0), we consider a cut-
node maximal with respect to the order induced by the orientation. This
cut splits the proof-net into two proof-nets, more precisely the proof-net
above its positive premise is exactly a positive tree. Otherwise we would
have a positive tree with a node under one of its leaves and following the
orientation from this node would eventually lead to a final negative node
or to a cut (contradicting the maximality of the starting one).

• If there is no final negative node and no cut at depth 0, the proof-net is a
positive tree which may have a ?d-node under its root. This can be easily
sequentialized from the bottom to the top because a positive tree always
has a sequential structure by definition. �

A more detailed proof of sequentialization of polarized proof-nets without
additives can be found in [Lau03].

4.5 Translation into taLL and properties of normalization

The translation of MELL polarized proof-nets as MELL proof-nets described
in [Lau03] can be extended to a translation of polarized proof-nets as taLL
proof-nets. taLL is the fragment of linear logic in which the context of the &-
and ⊤-rules contains only ?-formulae [DJS97].

We decorate proofs with ? in such a way that the encoding of each negative
formula begins with a ?:

X⊥ = ?X⊥

N `M = ?(N `M)

N &M = ?(N &M)

⊥ = ?⊥
⊤ = ?⊤
?P = ?P

The translation of positive formulae is obtained by duality. We translate proof-
nets as follows:

• we replace each formula by the translated one,

• we add a ?d-node under each logical negative node: `, &, ⊥ and ⊤ (only
under the main conclusion ⊤),

• we put a !-box around the positive tree of each positive node.

This translation emphasizes the fact that positive trees behave like boxes.

31

Remark: We use here a slight extension of the taLL system of [DJS97] with a
⊤-rule (with only ?-formulae in the context). The properties proved in [DJS97]
are easy to extend to this setting (with the same proofs).

Proposition 4 (Simulation of reduction)
If R reduces to R′ by one step of cut elimination then R reduces to R′ by at
least one step of cut elimination.

R −−−−→ R′

y
y

R
+

−−−−→ R′

Proof: We only consider the case of the commutative additive step, leaving
the others to the reader.

Let c be a commutative additive cut in R, if its premises are exponential
formulae the simulation is done applying to R the same step applied to R.
Otherwise the cut elimination step applied to R duplicates the positive tree
of the positive premise of c and puts it (with the cut) inside the &-box (see
figure 12), then by translation the two copies of this positive tree are put inside
two !-boxes. In R the positive tree is already inside a !-box and the additive
commutative step duplicates this box and puts it with the cut inside the &-box
(see figure 14). �

Lemma 5 (Injectivity of the translation)
If R1 and R2 are two polarized proof-nets such that R1 = R2 then R1 = R2.

Proof: We can define a reverse translation R̃:

• in formulae, we erase each ! (resp. ?) applied on a positive (resp. negative)
formula,

• we erase ?d -nodes under negative nodes,

• we erase !-nodes under positive nodes, and we erase the associated ?p-
nodes.

It is clear that these exponentials are exactly those added by the (.) translation

(because they are the only ones which do not respect polarities) thus R̃ = R. �

Theorem 6 (Strong normalization)
There is no infinite sequence of cut elimination steps in polarized proof-nets.

Proof: A consequence of strong normalization for taLL [DJS97] by proposi-
tion 4. �

Theorem 7 (Confluence)
The normal form of a polarized proof-net is unique.

32

�
��@@ ��
C

�
��� cut

�
�
�
�
��

A
A

A
A

AA
+

�
��
1

�
��

! �
��
?p

�
��� �ax

�
��

! �
��
?p �

��
?p

↓

�
��� cut

�
�
�
�
��

A
A

A
A

AA
+

�
��
1

�
��

! �
��
?p

�
��� �ax

�
��

! �
��
?p �

��
?p

�
��� cut

�
�
�
�
��

A
A

A
A

AA
+

�
��
1

�
��

! �
��
?p

�
��� �ax

�
��

! �
��
?p �

��
?p

�
��@@ ��
C �

��@@ ��
C

Figure 14: Commutative additive step applied to the (.) translation of polarized
proof-nets

33

Proof: Let R1 and R2 be two normal forms of R, by proposition 4, R1 and R2

are two reducts of R which are obviously normal. Thus R1 = R2 by confluence
of taLL [DJS97] and by lemma 5, we have R1 = R2. �

4.6 Reversion

We are going to show how polarized proof-nets (that is proof-nets of LLP without
quantifiers) can be translated as LLpol polarized proof-nets. This means that
we have to replace ?c, ?w and ?p nodes acting on negative formulae by the
corresponding nodes acting only on ?-formulae.

We consider the following transformation of a given LLP proof-net R:

• if it contains an atomic formula X (resp. X⊥), we replace it by !X⊥ (resp.
?X);

• for each ?c, ?w or ?p node acting on a negative formula which is not
a ?-formula, we introduce a cut between the conclusion N of the node
and the proof-net associated with the expansion of

ax
⊢ N⊥, N (see

appendix D), and we eliminate this cut, the new cuts this reduction gen-
erates, . . . (we will call this sequence of reductions the complete reduction
of the cut).

Proposition 5 (Linear reversion)
If, starting with an LLP proof-net, we apply the transformation described just
above as many times as we can, we finally end with an LLpol proof-net.

Proof: It is clear that an LLP proof-net on which the transformation is the
identity is an LLpol proof-net.

We now have to prove that the repetition of the application of the transfor-
mation always terminates. If R is a polarized proof-net, we consider the multiset
containing, for each ?c, ?w or ?p node, the associated negative formula. The
result is obtained by induction on the sum of the sizes of the formulae of this
multiset. �

5 Diagrams

In this section, we show three aspects of the relation between classical and linear
logic, expressed by three commuting diagrams. We first prove (theorem 8)
that tq-normalization in LKη

pol/LKη,ρ
pol corresponds exactly to normalization of

polarized proof-nets (of LLP/LLpol). We then observe that the P -translation of
classical reversion (the bridge between LKη

pol and LKη,ρ
pol) is linear reversion (the

bridge between LLP and LLpol). Finally, we turn to denotational semantics: we
notice (proposition 6) that reversion is “semantically invisible”, and show that it
is actually the “invisible bridge” between usual coherent semantics and Girard’s
correlation semantics introduced in [Gir91a] (in the polarized framework).

34

5.1 The syntactical diagram (simulation)

The P -embedding (resp. P0-embedding) can be extended to a translation of
LKη

pol derivations into polarized proof-nets by using the natural translation of
LLP sequent calculus into polarized proof-nets.

We will show in this subsection that this P -embedding from LKη
pol into LLP is

not only a static decoration but is setting also some dynamical correspondence:
the P -embedding yields a simulation of classical reduction steps by proof-net
reduction steps.

In order to prove one of the main results of the paper (theorem 8), we (again)
use the notion of residue of a logical (resp. a cut) rule of an LKη

pol-proof π in a
proof π′, where π′ is obtained from π applying some steps of tq-reduction (see
section 2). We also use lemma 1 of section 2.

Lemma 6
If π is a proof of ⊢ Aq,Γ with Aq main in the last rule of π, the proof-net P0(π)
is a positive tree with conclusion P (A).

Proof: By induction on π using the η-constraint. �

Theorem 8
If the proof π′ in LKη

pol is obtained from π by one step of tq-reduction, the P -
image R in polarized proof-nets of π reduces to the P -image R′ of π′ by some
reduction steps.

π
P

−−−−→ R
y

y ∗

π′ P
−−−−→ R′

Proof: We will use the same notations as in definition 8. Let c be a cut rule in
the LKη

pol derivation π between two π subderivations and suppose that the active
formulae of c are At and (¬A)q . We denote by π1 the sub-proof containing At

and by π2 the sub-proof containing (¬A)q .
In order to stress the main points of the proof, we are going to describe

step by step two easy cases: c is an L-cut or an Sax1 -cut. Part of the following
discussion will be repeated later (when we will describe the more complicated
S¬ax

1 and S2 steps), but we hope that this way to argue makes the proof easier
to grasp.

In both cases (L-cut and Sax1 -cut) the reduction step does not involve a
global move (it is local). If c is an L-cut, the classical reduction is simulated
by a linear logical step (multiplicative or additive), which might be followed by
a dereliction step (depending on the kind of the cut(s) created by the logical
reduction step). If c is an Sax1 -cut, the classical reduction is simulated by a
linear axiom step.

35

Notice that this description is not very precise: it explains why the linear and
classical movements correspond to each other, but it gives no details on the fact
that the decoration of π′ can be obtained by cut-elimination from the decoration
of π. Let us consider the Sax1 case: suppose that ⊢ Γt1,∆

q
1,Π

q
1, A

t (with Πq
1 not

empty) is the sequent conclusion of π1, and that U is the rule following c in π.
By definition 8, we know that in LL we will have ⊢ P (Γt1), ?P (∆q

1), ?P (Πq
1), P (A)

as the premise (and the conclusion) of the cut rule in P (π). We need to check
that the decoration of U in P (π′) requires a dereliction on P (Πq

1). We can
exclude (because π is η-constrained) that U is an irreversible rule having as
active formula a formula of ∆q

1 or Πq
1, but we must look closely at the case

in which U is a cut (in any other case the decoration of U in P (π′) requires a
dereliction on P (Πq

1)). The delicate case is when U is a cut of kind S¬ax
1 on Πq

1 in
π and U (more precisely U’s residue) is a cut of kind S2 on Πq

1 in π′: in this case
definition 8 requires a dereliction on P (Πq

1) in P (π) but no dereliction on P (Πq
1)

in P (π′). Actually, what happens is that this dereliction disappears applying a
dereliction step, transforming the decoration of an S¬ax

1 -cut into the decoration
of an S2-cut. (We shall notice later that this is a general phenomenon: when
the kind of a cut decreases, the decoration of the new cut can be obtained from
the decoration of the old one by zero or one step of linear cut-elimination).

Similarly, in the case of the L-cut, one needs to check that the newly created
cut rule(s) are correctly decorated, which is the case.

Let us now come to the more complicated cases of the structural S¬ax
1 and

S2 steps. We are going to follow the same pattern as in the previous cases:
we first show that the linear and classical movements correspond to each other,
and then that the decoration of π′ can be obtained by cut-elimination from the
decoration of π.

We look at the different cases of cut-elimination steps, and we describe the
cut-elimination process both on the sequent calculus and on the proof-nets side.
Concerning proof-nets, three stages can be distinguished: the first one is the
reduction of the cut corresponding to c, the second one consists in applying
some axiom, weakening and dereliction steps following (on the proof-nets side)
the tq-reduction of c, finally the last stage consists in some more dereliction
steps on other cuts (different from the one corresponding to c and its residues)
necessary to obtain P (π′) = R′. We call in the sequel R̃ the proof-net obtained
after the first two stages.

The general pattern of a structural reduction step is described by figures 15
and 16:

1. Suppose that c is an S2-cut. By η-constraint, we are exactly in the case
where π2 is translated by a positive tree with root P (A)⊥ (by lemma 6).

On the sequent calculus side, the proof π′ is obtained by transporting the
sub-proof π2 upwards the sub-proof π1: each time that some contraction
rule on At or some ∧a-rule (in which At appears in the context) is gone
through, π2 is duplicated, and its conclusions are contracted. This process
stops when we arrive at:

36

�
�
�
�
�
�
�
�
�
�
��

L
L

L
L

L

L
L

L
L

ax
⊢ (¬A)ε

′

, Aε
ax1

w
⊢ Aε, . . .

w1 L
⊢ Aε, . . .

L1

S
⊢ Aε, . . . ⊢ (¬A)ε

′

, . . .
c

⊢ . . .
U

⊢ . . .

@
@

@I

Figure 15: The structural cut S¬ax
1 or S2 of the proof π.

37

,
,

,
,

,
,

,
,

,
,

,,

l
l

l
l

l
ll

l
l

l
l

l

⊢ (¬A)ε
′

, . . .
ax1

w
⊢ . . . w1

L
⊢ Aε, . . . ⊢ (¬A)ε

′

, . . .

⊢ . . . L1

S
⊢ . . .

U
⊢ . . .

Figure 16: The proof π′ obtained by an S¬ax
1 step or an S2 step from the proof

π.

38

• a weakening on At, in this case π2 is erased and we replace, in π1,
the weakening with conclusion At by weakenings on the conclusions
of π2 (different from (¬A)q);

• an axiom introducing At, in this case the resulting axiom-cut is im-
mediately reduced;

• a logical rule introducing At.

On the proof-nets side the corresponding process consists in at least one
reduction step and leads us from R to R̃: in R the positive tree with root
P (A)⊥ is duplicated each time that P (A) is conclusion of a ?c-node or of
a C-node, and new ?c-nodes or C-nodes are performed on the leaves of the
positive tree (which, remember this crucial point, are all negative formu-
lae!). If there are in the translation of π1 some ?w-nodes with conclusion
P (A), some new ?w-nodes with conclusions the leaves of the positive tree
are added. Some supplementary steps might be necessary to reduce some
axiom-cuts. And, in R̃ some logical cut nodes between P (A)⊥ and P (A)
may arise.

2. Suppose now that c is an S¬ax
1 -cut: (¬A)q is not main in the previous

rule and so it is translated in LLP by a ?-prefixed formula. So in order to
be able to perform the cut in LLP it is necessary to use a promotion rule
(!-node) on the formula P (A).

On the sequent calculus side we are in the symmetrical situation of the
previous one: to obtain π′ from π, we have to duplicate or erase π1 moving
up along π2. And of course we have the same correspondence on the proof-
nets side (except that now in a more traditional way we deal with a !-box
instead of a positive tree) as long as we have to duplicate or erase the !-box.
The simulation is slightly less immediate here. Indeed, each time that we
arrive in π′ to a logical rule or to an axiom rule there is a ?d-node under
the logical node or the axiom node on the proof-nets side. Supplementary
steps are necessary to eliminate some ?d -!-cut before recovering R̃.

Let us prove now that the decoration of π′ can be obtained by cut-elimination
from the decoration of π. We start with some general remarks:

1. the decoration of a rule T depends on the sequent(s) premise(s) of T and
sometimes on the rule(s) immediately preceding T (when there is a main
q-coloured formula in the sequent(s) premise(s) of T). More precisely, if
a sequent premise of T contains a main q-coloured formula Bq, then:

(a) Bq is active in T and T is irreversible or a cut (S2 or logical), in
which case there is no dereliction on P (B) in the decoration of T

(b) otherwise there is a dereliction on P (B) in the decoration of T .

Also, if T is the last rule of π, then its decoration might require one more
dereliction

39

2. when the kind of a cut decreases (following the order of definition 6), the
decoration of the new cut can be obtained from the decoration of the old
one by zero or one step of linear cut-elimination.

It is then rather clear that the rules which might require a different decora-
tion in π and π′ are ax1, w1, L1, S and U. We are going to check that this is
never the case. We assume that the previous rules are five different occurrences
of rules, leaving it to the reader to deal with the particular cases (for exam-
ple S = w1, S = ax1, etc...). Notice that if any of the previous rules is a cut
rule, then by lemma 1 its kind cannot increase during cut-elimination, and the
previous remark allows to settle this case.

We now distinguish all the possible cases, in π, for the five previously men-
tioned rules (excluding the case of the cut-rule just settled). For the rule ax1:

• if ax1 is an irreversible rule having (¬A)q among its active formulae, then
c is necessarily an S2-cut, P0(π2) is duplicated and both in π and π′ the
linear translation of the rule ax1 does not require any exponential rule on
the premise containing (¬A)q ;

• otherwise, if c is an S2-cut, P0(π2) is duplicated and both in π and π′ a
dereliction is added on P (A)⊥ before applying the linear version of ax1;

• otherwise, if c is an S1-cut, let ⊢ Γt1,∆
q
1,Π

q
1, A

t (with Πq
1 not empty)

be the sequent conclusion of π1. The dereliction on P (A)⊥ preceding the
linear version of ax1 in P (π) disappears during the cut-elimination process
previously described (in a dereliction reduction step), and the dereliction
on P (Πq

1) preceding (the promotion and) the linear cut in P (π) is still
present after cut-elimination, as required by the translation of the rule
ax1 of π′.

For the rule w1, simply notice that one weakening is replaced by several
weakenings and this cannot change anything to the decoration of w1. Only a
very particular case should be mentioned: when a weakening is replaced by zero
weakenings (the context is empty in the duplicated subproof). Here we might
be in trouble if w1 could be an irreversible rule having an attractive premise
among the formulae of the sequent conclusion of w: but this cannot be the case
by η-constraint.

For the rule L1:

• if c is an S2-cut, P0(π2) is duplicated and in P (π) no dereliction is needed
on any of the formulae of the sequent conclusion of L before applying
the linear version of L1, so as in P (π′) no dereliction is needed on any
of the formulae of the sequent conclusion of c before applying the linear
version of L1. This is because in such sequents there is no main q-coloured
formula. A promotion is required before applying the linear version of L1

in P (π) iff it is required before applying the linear version of L1 in P (π′).

40

• if c is an S1-cut, let ⊢ Γt1,∆
q
1,Π

q
1, A

t (with Πq
1 not empty) be the sequent

conclusion of π1. Notice that L1 cannot be η-constrained, so there has to
be a dereliction on P (A)⊥ preceding the linear version of L1 in P (π). Like
in the case of ax1, this dereliction disappears during the cut-elimination
process previously described (in a dereliction reduction step), and the
dereliction on P (Πq

1) preceding (the promotion and) the linear cut in P (π)
is still present after cut-elimination, as required by the translation of the
rule (residue of) c of π′. A promotion is required before applying the linear
version of L1 in P (π) iff it is required before applying the linear version
of L1 in P (π′).

For the rule S, there is nothing special to say, except if S becomes the last
rule of π′ (that is U does not exist): in this case we have to check that if there
is a main q-coloured formula in the conclusion of S, there is a dereliction on it
in P (π′). This is the case, because such a dereliction is also required by the
decoration of c in P (π).

For the rule U, notice that (again by η-constraint) U cannot be an irreversible
rule having an attractive premise among the formulae of the sequent conclusion
of c in π and of S in π′. If the conclusion of S contains an attractive formula
Bq, there is a dereliction on P (B) both in P (π) and in P (π′). And again, a
promotion is required before applying the linear version of U in P (π) iff it is
required before applying the linear version of U in P (π′). �

5.2 Reversions

Notice that the P -image of an LKη
pol (resp. LKη,ρ

pol) proof is an LLP (resp. LLpol)
proof. Both in the classical (section 2) and in the linear (section 4.6) case, the
subsystem is obtained by a reversion procedure. It turns out that these two
procedures coincide.

Theorem 9
If the proof π′ in LKη,ρ

pol is obtained from the proof π in LKη
pol by reversion, the

P -image R′ in polarized proof-nets of π′ is obtained by reversion of the P -image
R of π.

LKη
pol

P
−−−−→ LLP

ρ

y
yρ

LKη,ρ
pol

P
−−−−→ LLpol

Proof: Indeed let us recall that to reverse some LKη
pol derivation π in order

to obtain a ρ-constrained proof πρ we introduce and eliminate some cuts with
the adequate η-proof each time it is necessary. What happens, is that if one
applies the same treatment to the LLP proof-net R associated with P (π), then
one obtains the LLpol proof-net Rρ associated with P (πρ).

41

We just have to remark that, refining theorem 8, if we apply a complete
reduction of a cut in π this is simulated by the complete reduction of the corre-
sponding cut in (the proof-net associated with) P (π). �

5.3 The semantical diagram

We have considered from all angles the syntactical translation of polarized clas-
sical logic into LL. In order to ensure that the translation is also dynamical,
i.e. suitable with respect to the normalization process (basically, it is a dec-
oration), we observed that there were two possible choices: either reduce the
space of classical derivations by reversion (LKη,ρ

pol /LLpol) or extend the space of
linear derivations (LKη

pol/LLP). The previous sections convinced us that these
two choices were perfectly equivalent in the following sense: it is the same thing
to translate some LKη

pol derivation π into LLP and then come back into LL (in
fact LLpol) to obtain a linear derivation or to reverse π and then to decorate
it to obtain a linear derivation. We now turn our attention to the semantical
features of this analysis.

As for section 1.6, we first consider [R] to be the interpretation of the polar-
ized proof-net R in a given (arbitrary) denotational model of LLP.

We start with some immediate consequences of theorem 8.

Corollary 1
The P -embedding of LKη

pol in LLP induces a denotational semantics for LKη
pol:

if π →tq π
′ in LKη

pol then [P (π)] = [P (π′)].

Proof: If π →tq π
′ then P (π) →∗

LLP P (π′) thus [P (π)] = [P (π′)]. �

Proposition 6
Let π be an LKη

pol derivation with conclusion ⊢ Γ, and let A be a reversible
formula of Γ. If πr is the (LKη

pol) derivation obtained by reverting A in π, then
[P (π)] = [P (πr)].

Proof: We use here the content of subsection 1.5. Let ηA be the η-proof of
⊢ (¬A)q , At and let ηP (A) be the η-proof of ⊢ P (A)⊥, P (A). We will denote by
cut(ηA, π) (resp. cut(ηP (A), P (π))) the LKη

pol derivation (resp. the LL derivation)
obtained by cutting the derivations ηA and π (resp. ηP (A) and P (π)).

Remember now that cut(ηA, π) tq-reduces to πr (see the remark following
definition 5), so that the previous corollary gives [P (πr)] = [P (cut(ηA, π))]. To
conclude it is enough to note that the derivations P (cut(ηA, π)) and cut(ηP (A), P (π))
have the same interpretation (as proof-nets, the first one reduces to the second).
From this we can deduce that P (πr) and P (π) have the same interpretation since
ηP (A) is interpreted by the identity map on the space P (A). �

We can now strengthen the completeness of the ρ-constraint (expressed by
theorem 3 of section 2) in the following way:

42

Theorem 10 (Strong completeness)
Let π be an LKη

pol derivation. There exists in LKη
pol a ρ-constrained derivation

πρ with the same sequent conclusion as π. Moreover, one has [P (π)] = [P (πρ)].

Proof: To prove that [P (π)] = [P (πρ)], one simply has to notice that the
proof πρ (defined in the proof of theorem 3) is obtained from π by performing
some steps of reversion. Then one applies proposition 6. �

Notation. We consider in the sequel of the paper the usual denotational se-
mantics for linear logic [Gir87]: formulae are interpreted by coherent spaces and
derivations are interpreted by cliques. We use the multiset formulation [Gir91a]
for the web of the spaces !C and ?C. We denote by A the coherent space associ-
ated with some formula A and we denote by [π] the clique associated with the
LL derivation π.

The correlation semantics of LLP. The correlation spaces are the main
ingredient used by J.-Y. Girard in order to provide its classical logic system LC
with a denotational semantics [Gir91a].

Polarized formulae can be interpreted by correlation spaces of the corre-
sponding polarity because the structure of positive (resp. negative) correlation
space is preserved by the constructions associated with the positive (resp. neg-
ative) connectives.

The structure of correlation space enables us to generalize to polarized for-
mulae the interpretation of contraction, weakening, promotion, defined in LL
only for spaces of the form !A or ?A (which are indeed some particular cases
of correlation spaces): let π be an LLP derivation, we associate with it some
clique that we will denote JπK by using the usual inductive definition except
that we use the generalized operation for the contraction rules, the weakening
rules performed on negative formulae and the promotion rules performed with
negative contextual formulae.

Remark: Any formula of LLpol (and thus the P -translation of any LKη
pol-

formula) is naturally equipped with a correlation space structure induced by
the coherent interpretation. Every atom X is sent on !X and provided X is a
coherent space, !X is a positive correlation space. Then the constructions used
on the spaces associated with the classical polarized formulae preserve the corre-
lation structure. Thus if A is a classical polarized formula, the space associated
with P (A) is of course a coherent space but can also be seen as a correlation
space.

A denotational semantics for LKη
pol. In order to provide a denotational se-

mantics to classical derivations using the P -embedding, two choices are possible.
If π is an LKη

pol-proof, we can:

• reverse π to obtain the LKη,ρ
pol -proof πρ, translate into LLpol and compute

the coherent interpretation [P (πρ)];

43

• translate π into LLP and compute the correlation interpretation JP (π)K
(which can be seen as a coherent interpretation).

Proposition 7
Let π be an LKη

pol derivation, we have that [P (πρ)] = JP (π)K.

Proof: It is clear that the two semantics (coherent spaces versus correlation
spaces) coincide on the subsystem LKη,ρ

pol : if π′ is some LKη,ρ
pol derivation then

[P (π′)] = JP (π′)K. Moreover, by theorem 10, JP (π)K = JP (πρ)K. �

Remark: Reversion is the syntactical counterpart of correlation semantics. To
ρ-constrain a derivation means to substitute the structural rules on reversible
formulae by structural rules on their main sub-formulae. This is equivalent to
consider that the coherent spaces associated with the reversible formulae are
provided with semantical operations of contraction, weakening and promotion.
Otherwise stated, the reversible classical polarized formulae are interpreted by
negative correlation spaces.

6 Isomorphisms

In this section, we come back to “Girard’s request of denotational isomorphisms”
(point (iv) of subsection 1.6): we define a syntactical notion of classical isomor-
phism, which is not trivial, due to the fact that the cut rule of LKtq is not an
elementary operation (see section 6.2). Our notion of syntactical isomorphism
allows to recover LC as a refinement of multiplicative LKη

pol (proposition 10).

6.1 Some recalls on LC

In [Gir91a] the problem of extracting a computational content from classical
derivations was considered from a mathematical point of view: the point is to
provide classical logic with a denotational semantics. Following this approach,
the question of the properties of such a semantics arises: is it enough to obtain
a cut-elimination invariant?

Girard’s answer is that we have to maximize the isomorphisms. It means
that the structures associated with the classical formulae (in a given model)
will have to satisfy isomorphisms such as commutativity, associativity, . . . In
other words we would like to recover some boolean equivalences as semantical
isomorphisms. For example, if A, B and C are formulae respectively interpreted
by the structures A, B and C, we will require the existence of an isomorphism
between (A ∧ (B ∧ C)) and ((A ∧ B) ∧ C).

Girard showed that there exists a classical denotational semantics which
satisfies “lots of” isomorphisms: it is the correlation spaces semantics. By
means of this semantics he built the classical system LC and its cut-elimination
procedure.

44

The P -translation of LC. Let us recall that LC is the classical polarized
system with the two following main specificities:

• the LC-formulae are obtained by choosing the additive formulation for the
conjunction between two t-coloured formulae and the multiplicative one
otherwise. The P -translation of disjunction is deduced by duality;

• instead of being η-constrained the derivations are set into a peculiar se-
quent presentation: the stoup is a place in a sequent containing at most
one positive formula which is “linear” (see section 1.4).

In order to study the P -embedding of LC it is more convenient to consider
its η-constrained computational subsystem (thus stable and complete), in which
the stoup-formulation is no more useful. It is then possible to give the scheme
of the inductive P -translation of the LC-formulae in LLP:

A+ ∧B+ ↔ Aq ∧m Bq P (A) ⊗ P (B)
A+ ∧B− ↔ Aq ∧m Bt P (A) ⊗ !P (B)
A− ∧B+ ↔ At ∧m Bq !P (A) ⊗ P (B)
A− ∧B− ↔ At ∧a Bt P (A) & P (B)

The P -translation of derivations is the one of LKη
pol into LLP.

Notice that from an LKtq point of view the system LC is rather surprising:
it could be seen as an LKη

pol subsystem but with only one conjunction (and of
course one disjunction) which is now multiplicative now additive. In fact the
P -image of LC is an LLP-subsystem, the fragment containing strongly polarized
formulae.

Definition 20 (Strongly polarized linear formulae)
If X is any atomic (linear) formula, a linear formula P (resp. N) is strongly
positive (resp. strongly negative) when it is built in the following way:

P ::= !X⊥ | P ⊗ P | P ⊗ !N | !N ⊗ P | P ⊕ P | 1 | 0
N ::= ?X | N `N | N ` ?P | ?P `N | N &N | ⊥ | ⊤

Remark: For example !N or ?P ` ?P are polarized formulae which are not
strongly polarized.

6.2 About a syntactical notion of isomorphism

We can observe that the isomorphisms between correlation spaces previously
mentioned are still satisfied by the P -semantics. In order to understand what
this means for the LKη

pol derivations, we define the notion of syntactical isomor-
phism for this system. This will give a new lighting on the connective-style
choice of LC.

45

Notations: Let A be an LKη
pol-formula, we will denote by axA the LKη

pol deriva-
tion consisting in only one rule: the axiom rule ⊢ A,¬A. Recall that we denote
by ηA the η-proof with the same conclusion.

Let π (resp. π′) be an LKη
pol derivation or an LL derivation containing A

(resp. ¬A or A⊥) among its conclusions. We will denote by cutA(π, π′) the
derivation obtained by applying a cut rule on A between π and π′.

In the spirit of our analysis, let us first have a look on the syntactical notion
of isomorphism in LL.

Definition 21 (LL-isomorphisms)
Let A and B be two LL-formulae and let φ (resp. ψ) be a cut-free proof of

⊢ A⊥, B (resp. ⊢ B⊥, A). We will write A ≃φ,ψ B when [cutA(ψ, φ)] = [axB]
and [cutB(φ, ψ)] = [axA].

Remark: In the definitions of isomorphisms, we will only deal with cut-free
proofs, just because the extension to the general case does not seem to be of
any interest and would surely make the presentation heavier.

Remark: Let us recall that the interpretation of an LL derivation is a linear
map and the cut is interpreted by the composition between two maps. It is also
interesting to outline that A ≃φ,ψ B can be read as [cutB(φ, ψ)] = [ψ]◦[φ] = IdA
and [cutA(ψ, φ)] = [φ]◦ [ψ] = IdB where A and B are the structures respectively
associated with A and B. That is the structures associated with A and B are
isomorphic: A ≃ B.

Let us come back to the classical case. The most natural definition with
respect to the previous definition should be:

Definition 22 (LKη
pol-isomorphisms: “pseudo” proposition)

Let A and B be two LKη
pol-formulae and let φ (resp. ψ) be a normal proof of

⊢ ¬A,B (resp. ⊢ ¬B,A). We will write A ↔φ,ψ B when [P (cutA(ψ, φ))] =
[P (axB)] and [P (cutB(φ, ψ))] = [P (axA)].

Remark: One could give a purely syntactical definition of the previous iso-
morphism notion (without using the P -embedding neither the semantics) like
in [DJS03].

Remark: (Key example) The foregoing isomorphism definition leads to
isomorphisms between opposite-coloured formulae, for example: At ∧a Bt ↔
At ∧m Bt.

⊢ ¬At, At

⊢ ¬At ∨a ¬Bt, At
⊢ ¬Bt, Bt

⊢ ¬At ∨a ¬Bt, Bt

⊢ ¬At ∨a ¬B
t,¬At ∨a ¬B

t, At ∧m Bt

⊢ ¬At ∨a ¬Bt, At ∧m Bt

46

⊢ ¬At, At

⊢ ¬At,¬Bt, At
⊢ ¬Bt, Bt

⊢ ¬At,¬Bt, Bt

⊢ ¬At,¬Bt, At ∧a B
t

⊢ ¬At ∨m ¬Bt, At ∧a Bt

It is also clear that the structures associated with the formulae At ∧m Bt

and At ∧a Bt will not be isomorphic. This is in fact our request in the search
of a syntactical definition of isomorphism: if for some LKη

pol derivations φ and
ψ we have A ≃φ,ψ B, then the spaces associated with P (A) and P (B) should
be isomorphic.

We are going to see that the problem with the previous definition is due to
the presence of certain structural rules.

The fact that the previous definition of syntactical isomorphism does not
guarantee the existence of a semantical isomorphism is due to the cut rule
interpretation. Indeed, the semantical operation associated with such a rule is
not the composition of functions: the translation of a cut rule of LKη

pol might
involve a promotion rule (and not only a cut rule).

It seems that in classical logic the cut rule cannot be represented by an
elementary mathematical operation. This is indeed true if we consider the
functional approach (a derivation is a function) on which the Curry-Howard
correspondence is based:

Remark: An LKη
pol denotational semantics in which derivations are interpreted

by functions and the cut by the composition of functions does not exist.

Proof: It is just a reformulation of the critical pair of Y. Lafont [GLT89].
Let us consider the following LKη

pol derivation π (for simplicity the contexts are
omitted):

π1

...
⊢ Aq, . . .

π2

...

⊢ (¬A)t, Bt, . . .
cut1

⊢ Bt, . . .

π3

...

⊢ (¬B)q , . . .
cut2

⊢ · · ·

In some semantics interpreting the cut as the composition, the derivation π
would be interpreted by [π3]◦([π2]◦[π1]) = ([π3]◦[π2])◦[π1]. But ([π3]◦[π2])◦[π1]
is still associated with the following derivation π′:

π1

...
⊢ Aq, . . .

π2

...

⊢ (¬A)t, Bt, . . .

π3

...
⊢ (¬B)q , . . .

cut2
⊢ (¬A)t, . . .

cut1
⊢ · · ·

47

This is very problematic: if for example Aq (resp. (¬B)q) is weakened in π1

(resp. π3) the identification of π and π′ leads to an algorithmic inconsistency (all
the derivations of the same conclusion would be identified by the denotational
semantics). �

So, in order to be able to deduce A ≃ B from A ≃φ,ψ B, we will require that
a cut between the LKη

pol derivations φ and ψ is translated into LL by exactly
a cut. In other words (following the definition of the P -embedding) we ask
that the exponential which may prefix the cut-formulae in P (φ) and P (ψ) are
“superfluous”.

The notion of superfluous exponential is intuitive enough. An exponential is
superfluous when it is . . . superfluous! It means that this exponential is useless
in the derivation that we are considering.

Definition 23 (P -main formula)
Let A be a q-formula of the sequent conclusion of some LKη

pol derivation π. Let R
be the polarized proof-net associated with π. We denote by a the R-conclusion
edge of type ?P (A). We will say that A is P -main in π when the structural tree
of a (see definition 15) contains only C-nodes.

Remark: The fact that a formula Aq is P -main means that the ?d-nodes with
conclusion ?P (A) are “useless”: ?P (A) is not active in a structural rule nor part
of the context of a promotion rule. The introduced ? are only used for C-nodes.

Lemma 7
Let π be an LKη

pol derivation with conclusion ⊢ Γ. There is at most one P -main
formula A in Γ.

Proof: By induction on the derivation π. �

Remark: To say that a formula Aq is P -main in the LKη
pol derivation π is

equivalent to say that it is in the stoup. In the language of Girard [Gir91a],
Aq is P -main in π when the interpretation of P (π) is a central clique in the
correlation space associated with the sequent conclusion of π.

Terminology: For this reason we will speak of the centrality of an LKη
pol

derivation π when there exists a P -main formula among the conclusions of π.

6.3 The syntactical isomorphisms in LKη
pol

We are now able to give the isomorphism definition in a classical setting:

Definition 24 (LKη
pol-isomorphism)

Let A and B be two LKη
pol-formulae. We will say that A and B are (φ, ψ)-

isomorphic and we will write A ≃φ,ψ B, when φ and ψ are central cut-free LKη
pol

derivations of respectively ⊢ ¬A,B and ⊢ ¬B,A and A↔φ,ψ B.

48

Remark: Observe that if A ≃φ,ψ B then P (A) and P (B) are LL-isomorphic
(this is not the case for the example page 46).

Lemma 8
Let A and B be two LKη

pol-formulae. If Aε ≃ Bµ then ε = µ.

Proof: Otherwise, we consider the case ε = t 6= q = µ and there is no central
derivation of ⊢ ¬B,A. �

This result was not true with the previous isomorphism definition (as the
key example shows).

Proposition 8
Let A, B and C be LKη

pol-formulae and let ⊙ be an LKη
pol-connective. If A ≃φ,ψ B

then A⊙ C ≃φ′,ψ′ B ⊙ C.

Proof: We check it is the case for every connective. The important point is
the following: since the q-coloured conclusion of φ or ψ has to be P -main, we
are able to extend the derivations φ and ψ preserving the η-constraint. We
then obtain two LKη

pol derivations φ′ and ψ′ whose q-coloured conclusions are
P -main. �

Proposition 9
Let A and B be two LKη

pol-formulae. If A ≃φ,ψ B then the P -semantics identifies
the following two derivations:

π1

...
⊢ A, . . .

π2

...
⊢ ¬A, . . .

⊢ · · ·

and

π1

...
⊢ A, . . .

φ

...
⊢ ¬A,B

⊢ B, . . .

ψ

...
⊢ ¬B,A

π2

...
⊢ ¬A, . . .

⊢ ¬B, . . .

⊢ · · ·

Proof: Once more it is a consequence of centrality! �

Proposition 10
Let A and B be two t-coloured LKη

pol-formulae. We have that At ∧m Bt ≃
(At ∧a Bt) ∧m V .

49

Proof: The point is to extend the two derivations of the example page 46
(At ∧m Bt ↔ At ∧a Bt) in such a way to respect centrality. �

Remarks:

1. The foregoing proposition is the same thing as the well known isomorphism
!(A&B) ≃ !A ⊗ !B, but it was not so easy to express it in the classical
language.

2. From an LKη
pol point of view, the meaning of this proposition is that the

multiplicative conjunction between two t-coloured formulae is not “prim-
itive”: it can be decomposed into an additive conjunction and a colour
exchange.

The system LC can also be seen as (an improvement of) the multiplica-
tive fragment of LKη

pol, and this explains also that LC’s connectives are
associative, for example:

(At ∧a B
t) ∧m Cq ≃ (At ∧a B

t) ∧m (V ∧m Cq)

≃ ((At ∧a B
t) ∧m V) ∧m Cq

≃ (At ∧m Bt) ∧m Cq

≃ At ∧m Bt ∧m Cq

≃ At ∧m (Bt ∧m Cq)

3. The fundamental isomorphism !(A&B) ≃ !A ⊗ !B is the unique bridge
between the additive and multiplicative LL’s fragments. Therefore the
two fragments are not symmetrical. It is the reason why, in terms of
isomorphisms, there is a unique optimal solution: LC.

7 Second order

All what we have shown up to now is true for two twins:
the couple LKη

pol/LLP on one side and the couple LKη,ρ
pol /LLpol on the other

side. We are going to see that one (and only one) of the two has to be ruled
out as soon as one wishes to deal with second order quantification: LKη

pol/LLP
survives, LKη,ρ

pol /LLpol does not.

7.1 About the ρ-constraint

The ρ-constraint, defined for the propositional fragment, is not preserved by
reduction in a second order framework. For example:

...
⊢ Aq

...

⊢ Bt, Xt

⊢ Aq ∧m Bt, Xt

⊢ Aq ∧m Bt, ∀XXt

...
⊢ Cq

⊢ ∃X¬Xt

⊢ Aq ∧m Bt

50

↓

...
⊢ Aq

...

⊢ Bt, (¬C)t

⊢ Aq ∧m Bt, (¬C)t

...
⊢ Cq

⊢ Aq ∧m Bt

The attentive reader surely noticed that the problem is due to the replace-
ment of a t-coloured atom by an arbitrary t-coloured formula. On the linear
side (after P -translation), this yields to the replacement of an occurrence of ?X
by an arbitrary negative formula possibly contradicting LL-substitution.

This suggests to slightly modify the P -embedding at the atomic level, which
cannot be done in a too narrow LKη,ρ

pol /LLpol framework. We then move to
LKη

pol/LLP where this modification is sound.

7.2 Second order polarization

Definition 25 (LLP2)
Formulae of LLP2 are obtained as follows:

P ::= X | P ⊗ P | P ⊕ P | 1 | 0 | !N | ∃XP
N ::= X⊥ | N `N | N &N | ⊥ | ⊤ | ?P | ∀XN

We add the two following rules for second order quantifiers:

⊢ Γ, N [Y /X]

⊢ Γ, ∀XN
Y /∈ Γ, N

⊢ Γ, P [Q/X]

⊢ Γ, ∃XP

Polarized proof-nets can be extended with second order quantifiers as done
in [Gir91b, Lau99]. All the results of section 4 (preservation of correction by re-
duction, sequentialization, confluence, strong normalization, . . .) are preserved.
In particular the translation in taLL can be straightforwardly extended to sec-
ond order.

Definition 26 (P -translation and P -embedding)
We modify the definition 7 for the atoms and we add the quantifiers cases:

Xq → X
Xt → X⊥

(¬X)q → X
(¬X)t → X⊥

...
∃XAq → ∃XP (A)
∃XAt → ∃X !P (A)
∀XAq → ∀X?P (A)
∀XAt → ∀XP (A)

51

The simulation result (theorem 8) is still true, thus the P -embedding pro-
vides second order LKη

pol with any denotational semantics of LLP2 (see for ex-
ample [Qua96]).

In fact, all the analysis of the couple LKη
pol/LLP done before is extensible

without difficulty to the second order.

A The second order classical system LK2

Axiom and cut:

ax
⊢ A,¬A

⊢ Γ, A ⊢ ¬A,∆
cut

⊢ Γ,∆

Multiplicative logical rules:

⊢ Γ, A ⊢ ∆, B
∧m

⊢ Γ,∆, A ∧m B

⊢ Γ, A,B
∨m

⊢ Γ, A ∨m B

Additive logical rules:

⊢ Γ, A
∨1
a⊢ Γ, A ∨a B

⊢ Γ, B
∨2
a⊢ Γ, A ∨a B

⊢ Γ, A ⊢ Γ, B
∧a

⊢ Γ, A ∧a B

Structural rules:

⊢ Γ
W

⊢ Γ, A
⊢ Γ, A,A

C
⊢ Γ, A

Rules for the units:

V
⊢ V

⊢ Γ
¬V

⊢ Γ,¬V
¬F

⊢ Γ,¬F

Rules for the second order quantifiers (Y fresh):

⊢ Γ, A[Y /X]
∀

⊢ Γ, ∀XA

⊢ Γ, A[B/X]
∃

⊢ Γ, ∃XA

B The second order linear system LL2

Axiom and cut:

ax
⊢ A,A⊥

⊢ Γ, A ⊢ A⊥,∆
cut

⊢ Γ,∆

52

Multiplicative logical rules:

⊢ Γ, A ⊢ ∆, B
⊗

⊢ Γ,∆, A⊗B

⊢ Γ, A,B
`

⊢ Γ, A`B

Additive logical rules:

⊢ Γ, A
⊕1

⊢ Γ, A⊕B

⊢ Γ, B
⊕2

⊢ Γ, A⊕B

⊢ Γ, A ⊢ Γ, B
&

⊢ Γ, A&B

Exponential logical rules:

⊢ ?Γ, A
!

⊢ ?Γ, !A

⊢ Γ, A
?d

⊢ Γ, ?A

Structural rules:

⊢ Γ
?w

⊢ Γ, ?A
⊢ Γ, ?A, ?A

?c
⊢ Γ, ?A

Rules for the units:

1
⊢ 1

⊢ Γ
⊥

⊢ Γ,⊥
⊤

⊢ Γ,⊤

Rules for the second order quantifiers (Y fresh):

⊢ Γ, A[Y /X]
∀

⊢ Γ, ∀XA

⊢ Γ, A[B/X]
∃

⊢ Γ, ∃XA

C Classical expansion of axioms

ax
⊢ A ∧m B,¬A ∨m ¬B

ax
⊢ A,¬A

ax
⊢ B,¬B

∧m
⊢ A ∧m B,¬A,¬B

∨m
⊢ A ∧m B,¬A ∨m ¬B

ax
⊢ A ∨a B,¬A ∧a ¬B

ax
⊢ A,¬A

∨1
a⊢ A ∨a B,¬A

ax
⊢ B,¬B

∨2
a⊢ A ∨a B,¬B ∧a

⊢ A ∨a B,¬A ∧a ¬B

53

ax
⊢ V,¬V

V
⊢ V

¬V
⊢ V,¬V

ax
⊢ F,¬F ¬F

⊢ F,¬F

ax
⊢ ∃XA, ∀X¬A

ax
⊢ A,¬A

∃
⊢ ∃XA,¬A

∀
⊢ ∃XA, ∀X¬A

D Linear expansion of axioms

ax
⊢ A⊗B,A⊥ `B⊥

ax
⊢ A,A⊥

ax
⊢ B,B⊥

⊗
⊢ A⊗B,A⊥, B⊥

`
⊢ A⊗B,A⊥ `B⊥

ax
⊢ A⊕B,A⊥ &B⊥

ax
⊢ A,A⊥

⊕1

⊢ A⊕B,A⊥

ax
⊢ B,B⊥

⊕2

⊢ A⊕B,B⊥

&
⊢ A⊕B,A⊥ &B⊥

ax
⊢ !A, ?A⊥

ax
⊢ A,A⊥

?
⊢ A, ?A⊥

!
⊢ !A, ?A⊥

ax
⊢ 1,⊥

1
⊢ 1

⊥
⊢ 1,⊥

ax
⊢ 0,⊤ ⊤

⊢ 0,⊤

ax
⊢ ∃XA, ∀XA⊥

ax
⊢ A,A⊥

∃
⊢ ∃XA,A⊥

∀
⊢ ∃XA, ∀XA⊥

54

References

[And90] Jean-Marc Andreoli. Proposition pour une synthèse des paradigmes
de la programmation logique et de la programmation par objets.
Thèse de doctorat, Université Paris VI, June 1990.

[AP91] Jean-Marc Andreoli and Remo Pareschi. Linear objects: logical
processes with built-in inheritance. New Generation Computing,
9(3–4):445–473, 1991.

[Dan90] Vincent Danos. La Logique Linéaire appliquée à l’étude de divers
processus de normalisation (principalement du λ-calcul). Thèse de
doctorat, Université Paris VII, 1990.

[DJS93] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. The
structure of exponentials: uncovering the dynamics of linear logic
proofs. In G. Gottlob, A. Leitsch, and D. Mundici, editors, Compu-
tational Logic and Proof Theory, KGC ’93, volume 713 of Lecture
Notes in Computer Science, pages 159–171. Springer, 1993.

[DJS97] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. A
new deconstructive logic: linear logic. Journal of Symbolic Logic,
62(3):755–807, September 1997.

[DJS03] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. Com-
putational isomorphisms in classical logic. Theoretical Computer
Science, 294(3):353–378, February 2003.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–
102, 1987.

[Gir91a] Jean-Yves Girard. A new constructive logic: classical logic. Mathe-
matical Structures in Computer Science, 1(3):255–296, 1991.

[Gir91b] Jean-Yves Girard. Quantifiers in linear logic II. In Corsi and Sambin,
editors, Nuovi problemi della logica e della filosofia della scienza,
pages 79–90, Bologna, 1991. CLUEB.

[Gir96] Jean-Yves Girard. Proof-nets: the parallel syntax for proof-theory.
In Ursini and Agliano, editors, Logic and Algebra, New York, 1996.
Marcel Dekker.

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types,
volume 7 of Cambridge tracts in theoretical computer science. Cam-
bridge University Press, 1989.

[JSTdF02] Jean-Baptiste Joinet, Harold Schellinx, and Lorenzo Tortora de
Falco. SN and CR for free-style LKtq: linear decorations and sim-
ulation of normalization. Journal of Symbolic Logic, 67(1):162–196,
March 2002.

55

[Lau99] Olivier Laurent. Polarized proof-nets: proof-nets for LC (extended
abstract). In Jean-Yves Girard, editor, Typed Lambda Calculi and
Applications ’99, volume 1581 of Lecture Notes in Computer Science,
pages 213–227. Springer, April 1999.

[Lau03] Olivier Laurent. Polarized proof-nets and λµ-calculus. Theoretical
Computer Science, 290(1):161–188, January 2003.

[Par91] Michel Parigot. Free deduction: an analysis of computation in classi-
cal logic. In Russian Conference on Logic Programming, volume 592
of Lecture Notes in Artificial Intelligence, pages 361–380. Springer,
1991.

[Par92] Michel Parigot. λµ-calculus: an algorithmic interpretation of classi-
cal natural deduction. In Proceedings of Internationnal Conference
on Logic Programming and Automated Deduction, volume 624 of
Lecture Notes in Computer Science, pages 190–201. Springer, 1992.

[QTdF96] Myriam Quatrini and Lorenzo Tortora de Falco. Polarisation des
preuves classiques et renversement. Compte-Rendu de l’Académie
des Sciences de Paris, 323:113–116, 1996.

[Qua96] Myriam Quatrini. A denotational semantics of LC2. Archive for
Mathematical Logic, 35:1–32, 1996.

[Reg92] Laurent Regnier. Lambda-Calcul et Réseaux. Thèse de doctorat,
Université Paris VII, 1992.

[TdF97] Lorenzo Tortora de Falco. Denotational semantics for polarized (but
non-constrained) LK by means of the additives. In 5th Kurt Goedel
Colloquium KGC’97, computational logic and proof theory, volume
1289 of Lecture Notes in Computer Science, pages 290–304. Springer,
1997.

[TdF00] Lorenzo Tortora de Falco. Réseaux, cohérence et expériences obses-
sionnelles. Thèse de doctorat, Université Paris VII, January 2000.

[TdF03a] Lorenzo Tortora de Falco. The additive multiboxes. Annals of Pure
and Applied Logic, 120(1–3):65–102, January 2003.

[TdF03b] Lorenzo Tortora de Falco. Additives of linear logic and normal-
ization - Part I: a (restricted) Church-Rosser property. Theoretical
Computer Science, 294(3):489–524, February 2003.

56

