
Type Isomorphisms for Multiplicative-Additive
Linear Logic
Rémi Di Guardia ¡�
Univ Lyon, EnsL, UCBL, CNRS, LIP, F-69342, LYON Cedex 07, France

Olivier Laurent ¡�
Univ Lyon, EnsL, UCBL, CNRS, LIP, F-69342, LYON Cedex 07, France

Abstract
We characterize type isomorphisms in the multiplicative-additive fragment of linear logic (MALL),
and thus for ⋆-autonomous categories with finite products, extending a result for the multiplicative
fragment by Balat and Di Cosmo [2]. This yields a much richer equational theory involving
distributivity and annihilation laws. The unit-free case is obtained by relying on the proof-net
syntax introduced by Hughes and Van Glabbeek [10]. We then use the sequent calculus to extend
our results to full MALL (including all units).

2012 ACM Subject Classification Theory of computation → Linear logic

Keywords and phrases Linear Logic, Type Isomorphisms, Multiplicative-Additive fragment, Proof
nets, Sequent calculus, Star-autonomous categories with finite products

Related Version Conference version: https://doi.org/10.4230/LIPIcs.FSCD.2023.26

Funding This work was performed within the framework of the LABEX MILYON (ANR-10-LABX-
0070) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007),
and supported by the projects DyVerSe (ANR-19-CE48-0010), QuaReMe (ANR-20-CE48-0005) and
ReCiProg (ANR-21-CE48-0019), all operated by the French National Research Agency (ANR). This
work was also supported by the IRN Linear Logic.

1 Introduction

The question of type isomorphisms consists in trying to understand when two types in
a type system (or two formulas in a logic) are “the same”. The general question can be
described in category theory: two objects A and B are isomorphic (A ≃ B) if there exist
morphisms A

f−→ B and B
g−→ A such that f ◦ g = idB and g ◦ f = idA. f and g are the

underlying isomorphisms. Given a (class of) category, the question is then to find equations
characterizing when two objects A and B are isomorphic (in all instances of the class). The
focus here is on pairs of isomorphic objects rather than on the isomorphisms themselves.
For example, in the class of cartesian categories, one finds the following isomorphic objects:
A × B ≃ B × A, (A × B) × C ≃ A × (B × C) and A × ⊤ ≃ A. Regarding type systems
and logics, one can instantiate the categorical notion. For instance in typed λ-calculi: two
types A and B are isomorphic if there exist two λ-terms M : A→ B and N : B → A such
that λx : B.(M (N x)) =βη λx : B.x and λx : A.(N (M x)) =βη λx : A.x where =βη is
βη-equality. This corresponds to isomorphic objects in the syntactic category generated by
terms up to =βη. Similarly, type isomorphisms can also be considered in logic, following
what happens in the λ-calculus through the Curry-Howard correspondence: simply replace
λ-terms with proofs, types with formulas, β-reduction with cut-elimination and η-expansion
with axiom-expansion. In this way, type isomorphisms are studied in a wide range of theories,
such as category theory [16], λ-calculus [4] and proof theory [2]. They may be used to develop
practical tools, such as search in a library of a functional programming language [14].

Following the definition, it is usually easy to prove that the type-isomorphism relation is

mailto:remi.di-guardia@ens-lyon.fr
https://perso.ens-lyon.fr/remi.di-guardia/
mailto:olivier.laurent@ens-lyon.fr
https://perso.ens-lyon.fr/olivier.laurent/
https://doi.org/10.4230/LIPIcs.FSCD.2023.26

2 Type Isomorphisms for Multiplicative-Additive Linear Logic

a congruence. It is then natural to look for an equational theory generating this congruence.
Testing whether or not two types are isomorphic is then much easier. An equational theory
T is called sound with respect to type isomorphisms if types equal up to T are isomorphic.
It is called complete if it equates any pair of isomorphic types. Given a (class of) category,
a type system or a logic, our goal is to find an associated sound and complete equational
theory for type isomorphisms. This is not always possible as the induced theory may not be
finitely axiomatisable (see for instance [6]).

Soundness is usually the easy direction as it is sufficient to exhibit pairs of terms
corresponding to each equation. The completeness part is often harder, and there are in the
literature two main approaches to solve this problem. The first is a semantic method, relying
on the fact that if two types are isomorphic then they are isomorphic in all (denotational)
models. One thus looks for a model in which isomorphisms can be computed (more easily
than in the syntactic model) and are all included in the equational theory under consideration
(this is the approach used in [16, 12] for example). Finding such a model simple enough for
its isomorphisms to be computed, but still complex enough not to contain isomorphisms
absent in the syntax is the difficulty. The second method is the syntactic one, which consists
in studying isomorphisms directly in the syntax. The analysis of pairs of terms composing to
the identity should provide information on their structure and then on their type so as to
deduce the completeness of the equational theory (see for example [4, 2]). The easier the
equality (=βη for example) between proof objects can be computed, the easier the analysis
of isomorphisms will be.

We place ourselves in the framework of linear logic (LL) [7], the underlying question
being “is there an equational theory corresponding to the isomorphisms between formulas
in this logic?”. LL is a very rich logic containing three classes of propositional connectives:
multiplicative, additive and exponential ones. The multiplicative and additive families provide
two copies of each classical propositional connective: two copies of conjunction (⊗ and &), of
disjunction (` and ⊕), of true (1 and ⊤) and of false (⊥ and 0). The exponential family is
constituted of two modalities ! and ? bridging the gap between multiplicatives and additives
through four isomorphisms !(A & B) ≃ !A⊗ !B, ?(A⊕B) ≃ ?A ` ?B, !⊤ ≃ 1 and ?0 ≃ ⊥.
In the multiplicative fragment (MLL) of LL (using only ⊗, `, 1 and ⊥, and corresponding
to ⋆-autonomous categories), the question of type isomorphisms was answered positively
using a syntactic method based on proof-nets by Balat and Di Cosmo [2]: isomorphisms
emerge from associativity and commutativity of the multiplicative connectives ⊗ and `, as
well as neutrality of the multiplicative units 1 and ⊥. The question was also solved for the
polarized fragment of LL by one of the authors using game semantics [12]. It is conjectured
that isomorphisms in full LL correspond to those in its polarized fragment (Table 1 together
with the four exponential equations above). As a step towards solving this conjecture, we
prove the type isomorphisms in the multiplicative-additive fragment (MALL) of LL are
generated by the equational theory of Table 1 (and this applies at the same time to the class
of ⋆-autonomous categories with finite products).

This situation is much richer than in the multiplicative fragment since isomorphisms
include not only associativity, commutativity and neutrality, but also the distributivity of the
multiplicative connective ⊗ (resp. `) over the additive ⊕ (resp. &) as well as the associated
annihilation laws for the additive unit 0 (resp. ⊤) over the multiplicative connective ⊗
(resp. `). Using a semantic approach looks difficult as most of the known models of MALL
immediately come with unwanted isomorphisms not valid in the syntax: ⊤ ⊗ A ≃ ⊤ in
coherent spaces for example [7]. For this reason we use a syntactic method. We follow the
approach by Balat and Di Cosmo [2] based on proof-nets. Indeed, proof-nets provide a very

R. Di Guardia and O. Laurent 3

Commutativity A ⊗ B = B ⊗ A A ` B = B ` A A ⊕ B = B ⊕ A A & B = B & A

Associativity A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C A ` (B ` C) = (A ` B) ` C

A ⊕ (B ⊕ C) = (A ⊕ B) ⊕ C A & (B & C) = (A & B) & C

Distributivity A ⊗ (B ⊕ C) = (A ⊗ B) ⊕ (A ⊗ C) A ` (B & C) = (A ` B) & (A ` C)

Neutrality A ⊗ 1 = A A ` ⊥ = A A ⊕ 0 = A A & ⊤ = A

Annihilation A ⊗ 0 = 0 A ` ⊤ = ⊤
Table 1 Type isomorphisms in MALL

good syntax for linear logic where studying composition of proofs by cut, cut-elimination and
identity of proofs is very natural. However, already in [2] some trick had to be used to deal
with units as proof-nets are working perfectly only in the unit-free multiplicative fragment
of linear logic. If one puts units aside, there is a notion of proof-nets incorporating both
multiplicative and additive connectives in such a way that cut-free proofs are represented
in a canonical way, and cut-elimination can be dealt with in a parallel manner. This is the
syntax of proof-nets introduced by Hughes & Van Glabbeek in [10].

Our proof of the completeness of the equational theory of Table 1 goes in two steps.
First we adapt, in Section 3, the proof of Balat & Di Cosmo [2] to the setting of Hughes &
Van Glabbeek’s proof-nets [10]. This requires a precise analysis of the structure of proof-nets
because of the richer structure induced by the presence of the additive connectives. The
situation is much more complex than in the multiplicative setting since for example sub-
formulas can be duplicated through distributivity equations, breaking a linearity property
crucial in [2]. Once this is solved, it remains to add units (Section 4). By lack of a good-
enough notion of proof-nets for MALL including units, we go back to the sequent calculus to
deal with units on top of the results obtained for the unit-free fragment. This goes through
a characterization of the equality of proofs up to cut-elimination and axiom-expansion by
means of rule commutations. A result which is not surprising, but never proved before for
MALL as far as we know, and rather tedious to settle. Using it, we analyse the behaviour
of units inside isomorphisms to conclude that they can be replaced with fresh atoms, once
formulas are simplified appropriately. We can conclude by means of the unit-free case. Finally,
seeing MALL as a category, we extend our result to conclude that Table 1 (together with
A ⊸ B ≃ A⊥ ` B, De Morgan’s laws and involutivity of negation) provides the equational
theory of isomorphisms valid in all ⋆-autonomous categories with finite products (Section 5).

Full proofs are given in appendix.

2 Definitions and preliminary results

2.1 Multiplicative-Additive Linear Logic
The multiplicative-additive fragment of linear logic [7], denoted by MALL, has formulas
given by the following grammar, where X belongs to a given enumerable set of atoms:

A, B := X | X⊥ | A⊗B | A ` B | 1 | ⊥ | A & B | A⊕B | ⊤ | 0
Orthogonality (·)⊥ expands into an involution on arbitrary formulas through X⊥⊥ = X on

an atom X, 1⊥ = ⊥, ⊥⊥ = 1, ⊤⊥ = 0, 0⊥ = ⊤ and De Morgan’s laws (A⊗B)⊥ = B⊥ ` A⊥,
(A`B)⊥ = B⊥⊗A⊥, (A & B)⊥ = B⊥ ⊕A⊥, (A⊕B)⊥ = B⊥ & A⊥. The non-commutative
De Morgan’s laws are the good notion of duality, as shown in the context of cyclic linear
logic where this leads to planar proof-nets [1]. This choice in our setting will often result in
planar graphs on our illustrations, with axiom links not crossing each others.

4 Type Isomorphisms for Multiplicative-Additive Linear Logic

Sequents are lists of formulas of the form ⊢ A1, . . . , An. Sequent calculus rules are:1

ax
⊢ A⊥,A

⊢ Γ ex
⊢ σ(Γ)

⊢ A, Γ ⊢ A⊥, ∆
cut⊢ Γ, ∆

⊢ A, Γ ⊢ B, ∆ ⊗
⊢ A⊗B, Γ, ∆

⊢ A, B, Γ `⊢ A ` B, Γ 1⊢ 1
⊢ Γ ⊥⊢ ⊥, Γ

⊢ A, Γ ⊢ B, Γ
&⊢ A & B, Γ

⊢ A, Γ ⊕1⊢ A⊕B, Γ
⊢ B, Γ ⊕2⊢ A⊕B, Γ ⊤⊢ ⊤, Γ

In practice we consider exchange rules as incorporated in the conclusion of the rule above, thus
dealing with rules like: ⊢ A, B, Γ, ∆ `⊢ Γ, A ` B, ∆

. In this spirit, when we write ⊢ Γ, A, B, ∆ `⊢ Γ, A ` B, ∆
we mean that the appropriate permutation is also incorporated in the rule above.

The main difference with the multiplicative fragment of linear logic (MLL) is the &-rule,
which introduces some sharing of the context Γ. From this comes the notion of a slice [7, 8]
which is a partial proof missing some additive component. Slices are obtained by using the
same rules as proofs except for the &-rule which is replaced by its two sliced versions:

⊢ A, Γ &1⊢ A & B, Γ
⊢ B, Γ &2⊢ A & B, Γ

By unit-free MALL, we mean the restriction of MALL to formulas not involving the
units 1, ⊥, ⊤ and 0, and as such without the 1, ⊥ and ⊤-rules. When speaking of a positive
formula, we mean a formula with main connective ⊗ or ⊕, a unit 1 or 0, or an atom X. A
negative formula is one with main connective ` or &, a unit ⊥ or ⊤, or a negated atom X⊥.

2.2 Linear isomorphisms
▶ Definition 1 (Isomorphism). Two formulas A and B are isomorphic, denoted A ≃ B, if
there exist proofs π of ⊢ A⊥, B and π′ of ⊢ B⊥, A whose composition by cut over B (resp. A)
is equal to the axiom on ⊢ A⊥, A (resp. ⊢ B⊥, B) up to axiom-expansion and cut-elimination.
(Axiom-expansion and cut-elimination for MALL are recalled in Appendix A.)

Because of the analogy with the λ-calculus and since there will be no ambiguity, we use
the notation =βη for equality of proofs up to cut-elimination (β) and axiom-expansion (η).
Similarly, =β is equality up to cut-elimination only. We use the notations π

B

▷◁ π′ for the
proof obtained by adding a cut on B between π and π′, and A

π, π′

≃ B when π and π′ define an
isomorphism between A and B, that is when π

B

▷◁ π′ =βη idA and π
A

▷◁ π′ =βη idB (where
idA is the axiom-expansion of the proof of ⊢ A⊥, A containing just an axiom rule).

We aim to prove that two MALL (resp. unit-free MALL) formulas are isomorphic if and
only if they are equal in the equational theory E (resp. E†) defined as follows.

▶ Definition 2 (Equational theories). We denote by E the equational theory given on Table 1
on Page 3, while E† denotes the part not involving units, i.e. with commutativity, associativity
and distributivity only.

Given an equational theory T , the notation A =T B means that formulas A and B are
equal in the theory T . As often, the soundness part is easy (but tedious) to prove.

▶ Theorem 3 (Isomorphisms soundness, see Lemma 3 in [12]). If A =E B then A ≃ B.

1 With A and B arbitrary formulas, Γ and ∆ contexts (i.e. lists of formulas) and σ a permutation.

R. Di Guardia and O. Laurent 5

All the difficulty lies in the proof of the other implication, completeness, on which the
rest of this work focuses.

2.3 Axiom-expansion
A first simplification is that we can reduce the definition of isomorphisms to proofs with
expanded axioms only, no more using the η relation. Given an MALL proof π, we denote by
η(π) the η-normal form of π, i.e. the proof obtained by expanding iteratively all ax-rules in
π (axiom-expansion is confluent and strongly normalizing, see Appendix B.1).

▶ Proposition 4 (Reduction to axiom-expanded proofs). Let π and ϖ be MALL proofs such
that π =βη ϖ. Then η(π) =β η(ϖ) with, in this sequence, only proofs in η-normal form.

Thus, we will from now on consider only proofs with expanded axioms, manipulated
through composition by cut and cut-elimination. To prove completeness, we start with the
unit-free case by using a syntactic approach based on the proof-nets from Hughes & Van
Glabbeek [10], which are a more canonical representation of proofs [11].

2.4 Proof-nets for unit-free MALL
We use the definition of unit-free MALL proof-net from [10]. Other definitions exist, see the
original one from Girard [8], or others such as [5, 9]. Still, the definition we take is one of
the most satisfactory, from the point of view of canonicity and cut-elimination for instance
(see [10, 11], or the introduction of [9] for a comparison of alternative definitions). We recall
here quickly this definition of proof-nets. Please refer to [10] for more details.

A sequent is seen as its syntactic forest with as internal vertices its connectives and as
leaves the atoms of its formulas. We always identify a formula A with its syntactic tree T (A).
A cut pair is a formula A ∗A⊥, for a formula A; the connective ∗ is unordered. A cut sequent
[Σ] Γ is composed of a list Σ of cut pairs and a sequent Γ. When Σ = ∅ is empty, we denote
it simply by Γ. When we write a `\&-vertex, we mean a `- or &-vertex (a negative vertex);
similarly a ⊗\⊕-vertex is a ⊗- or ⊕-vertex (a positive vertex). An additive resolution of a
cut sequent [Σ] Γ is any result of deleting zero or more cut pairs from Σ and one argument
subtree of each additive connective (& or ⊕) of Σ ∪ Γ. A &-resolution of a cut sequent [Σ] Γ
is any result of deleting one argument subtree of each &-connective of Σ ∪ Γ.

An (axiom) link on [Σ] Γ is an unordered pair of complementary leaves in Σ ∪ Γ (labeled
with X and X⊥). A linking λ on [Σ] Γ is a set of links on [Σ] Γ such that the sets of the
leaves of its links form a partition of the set of leaves of an additive resolution of [Σ] Γ,
additive resolution which is denoted [Σ] Γ ↾ λ.

A set of linkings Λ on [Σ] Γ toggles a &-vertex W if both arguments (called premises) of
W are in [Σ] Γ ↾ Λ :=

⋃
λ∈Λ[Σ] Γ ↾ λ. We say a link a depends on a &-vertex W in Λ if there

exist λ, λ′ ∈ Λ such that a ∈ λ\λ′ and W is the only &-vertex toggled by {λ; λ′}. The graph
GΛ is defined as [Σ] Γ ↾ Λ with the edges from

⋃
Λ and enriched with jump edges l→W for

each leaf l and each &-vertex W such that there exists a ∈ λ ∈ Λ, between l and some l′,
with a depending on W in Λ. When Λ = {λ} is composed of a single linking, we shall simply
denote Gλ = G{λ} (which is the graph [Σ] Γ ↾ λ with the edges from λ and no jump edge).

A switch edge of a `\&-vertex N is an in-edge of N , i.e. an edge between N and one of
its premises or a jump to N . A switching cycle is a cycle with at most one switch edge of
each `\&-vertex. A `-switching of a linking λ is any subgraph of Gλ obtained by deleting a
switch edge of each `-vertex; denoting by ϕ this choice of edges, the subgraph it yields is Gϕ.

6 Type Isomorphisms for Multiplicative-Additive Linear Logic

X1 X⊥
4

& ⊕ ∗

X5 X⊥
6 X⊥

2 X3

& ⊕

X1 X⊥
2 X3 X⊥

4

& ⊕ ∗

X5 X⊥
6

Figure 1 Graphs from an example of a proof-net: from left to right Gλ1 , Gλ2 and G{λ1;λ2}

▶ Definition 5 (Proof-net). A unit-free MALL proof-net θ on a cut sequent [Σ] Γ is a set of
linkings satisfying:
(P0) Cut: Every cut pair of Σ has a leaf in θ.
(P1) Resolution: Exactly one linking of θ is on any given &-resolution of [Σ] Γ.
(P2) MLL: For every `-switching ϕ of every linking λ ∈ θ, Gϕ is a tree.
(P3) Toggling: Every set Λ ⊆ θ of two or more linkings toggles a &-vertex that is in no

switching cycle of GΛ.

These conditions are called the correctness criterion. Condition (P0) is here to prevent
unused ∗-vertices. A cut-free proof-net is one without ∗-vertices (it respects (P0) trivially).
Condition (P1) is a correctness criterion for ALL proof-nets [10] and (P2) is the Danos-
Regnier criterion for MLL proof-nets [3]. However, (P1) and (P2) together are insufficient
for cut-free MALL proof-nets, hence the last condition (P3) taking into account interactions
between the slices (see also [5] for a similar condition for example). Sets composed of a single
linking λ are not considered in (P3), for by (P2) the graph Gλ has no switching cycle.

An example of proof-net, illustrated on Figure 1, is the following. On the cut sequent
[X5 ∗X⊥

6] X1 & X⊥
2 , X3 ⊕X⊥

4 (where each Xi is an occurrence of the same atom X), set
λ1 = {(X1, X⊥

6), (X⊥
4 , X5)} and λ2 = {(X⊥

2 , X3)}. One can check {λ1; λ2} is a proof-net.
In the particular setting of isomorphisms, we mainly consider proof-nets with two con-

clusions. This allows to define a notion of duality on leaves and connectives. Consider a
cut sequent containing both A and A⊥. For V a vertex in (the syntax tree T (A) of) A, we
denote by V ⊥ the corresponding vertex in A⊥. As expected, V ⊥⊥ = V . This also respects
orthogonality for formulas on leaves: given a leaf l of A, labeled by a formula X, the label of
l⊥ is X⊥. We can also define a notion of duality on premises: given a premise of a vertex
V ∈ T (A), the dual premise of V ⊥ is the corresponding premise in T (A⊥). In other words,
if in L− V −R we consider the premise L then in R⊥ − V ⊥ − L⊥ its dual premise is L⊥.

▶ Definition 6 (Composition). Given proof-nets θ and ϑ of respective conclusions [Σ] Γ, A and
[Ξ] ∆, A⊥, the composition over A of θ and ϑ is the proof-net θ

A

▷◁ ϑ = {λ ∪ µ | λ ∈ θ, µ ∈ ϑ},
with conclusions [Σ, Ξ, A ∗A⊥] Γ, ∆.

For example, see Figure 7 with a composition of the proof-nets on Figure 5.

▶ Definition 7 (Cut-elimination). Let θ be a set of linkings on a cut sequent [Σ] Γ, and A∗A⊥

a cut pair in Σ. Define the elimination of A ∗A⊥ (or of the cut ∗ between A and A⊥) as:
(a) If A is an atom, delete A ∗A⊥ from Σ and replace any pair of links (l, A), (A⊥, m) (l

and m being other occurrences of A⊥ and A respectively) with the link (l, m).
(b) If A = A1 ⊗A2 and A⊥ = A⊥

2 ` A⊥
1 (or vice-versa), replace A ∗A⊥ with two cut pairs

A1 ∗A⊥
1 and A2 ∗A⊥

2 . Retain all original linkings.
(c) If A = A1 & A2 and A⊥ = A⊥

2 ⊕A⊥
1 (or vice-versa), replace A ∗A⊥ with two cut pairs

A1 ∗A⊥
1 and A2 ∗A⊥

2 . Delete all inconsistent linkings, namely those λ ∈ θ such that in
[Σ] Γ ↾ λ the children & and ⊕ of the cut do not take dual premises. Finally, “garbage
collect” by deleting any cut pair B ∗ B⊥ for which no leaf of B ∗ B⊥ is in any of the
remaining linkings.

R. Di Guardia and O. Laurent 7

See Figure 8 for a result on applying steps (b) and (c) to the proof-net of Figure 7.

▶ Proposition 8 (Proposition 5.4 in [10]). Eliminating a cut in a proof-net yields a proof-net.

▶ Theorem 9 (Theorem 5.5 in [10]). Cut-elimination of proof-nets is strongly normalizing
and confluent.

A linking λ on a cut sequent [Σ] Γ matches if, for every cut pair A ∗A⊥ in Σ, any given
leaf l of A is in [Σ] Γ ↾ λ if and only if l⊥ of A⊥ is in [Σ] Γ ↾ λ. A linking matches if and only
if, when cut-elimination is carried out, the linking never becomes inconsistent, and thus is
never deleted. This allows defining Turbo Cut-elimination [10], eliminating a cut in a single
step by removing inconsistent linkings.

3 Completeness for unit-free MALL

Our method relates closely to the one used by Balat and Di Cosmo in [2]. We work on proof-
nets, as they highly simplify the problem by representing proofs up to rule commutations [11].
We start by transposing the study of unit-free MALL isomorphisms to proof-nets of a
particular shape, called bipartite full (Sections 3.1 and 3.2). Then, we use the distributivity
isomorphisms to reduce the problem to special formulas, called distributed, allowing to
consider even more constrained proof-nets (Section 3.3). These are the key differences with
the proof in MLL from [2], where some properties are given for free as there are no slice
nor distributivity isomorphism. From this point the problem is similar to unit-free MLL,
with commutativity and associativity only. We conclude as in [2]: restricting the problem to
so-called non-ambiguous formulas, isomorphisms are easily characterized (Section 3.4).

3.1 Reduction to proof-nets
We desequentialize a unit-free MALL proof π (with expanded axioms) into a proof-net R(π)
by induction on π using the steps detailed on Figure 2, following [10] with the notation
θ ▷ [Σ] Γ for “θ is a set of linkings on the cut sequent [Σ] Γ”. As identified in Section 5.3.4
of [10], desequentializing with both cut and &-rules is complex, for cuts can be shared (or not)

when translating a &-rule: θ ▷ [Σ, Ξ] A, Γ ϑ ▷ [Σ, Φ] B, Γ
&

θ ∪ ϑ ▷ [Σ, Ξ, Φ] A & B, Γ
. We choose to never

share cuts (Σ = ∅), thus desequentialization is a function. The cost being that the following
&−cut commutation yields different proof-nets (contrary to the other commutations, see [11]).

π1
⊢ A, B, Γ

π2
⊢ A, C, Γ

&⊢ A, B & C, Γ
π3

⊢ A⊥, ∆
cut⊢ B & C, Γ, ∆

≡

π1
⊢ A, B, Γ

π3

⊢ A⊥, ∆
cut⊢ B, Γ, ∆

π2
⊢ A, C, Γ

π3

⊢ A⊥, ∆
cut⊢ C, Γ, ∆

&⊢ B & C, Γ, ∆

▶ Theorem 10 (Sequentialization, Theorem 5.9 in [10]). A set of linkings on a cut sequent is
a translation of a MALL proof if and only if it is a proof-net.

▶ Definition 11 (Identity proof-net). We call identity proof-net of a unit-free MALL formula
A, the proof-net corresponding to the proof idA (the axiom-expansion of ax

⊢ A⊥,A).

▶ Theorem 12 (Simulation Theorem). Let π and ϖ be unit-free MALL proof trees (with
expanded axioms). If π =β ϖ, then R(π) =β R(ϖ).

A notion of isomorphism A
θ, ϑ≃ B can be defined directly on proof-nets: θ and ϑ are two

cut-free proof-nets of respective conclusions A⊥, B and B⊥, A such that θ
B

▷◁ ϑ and ϑ
A

▷◁ θ

reduce by cut-elimination to identity proof-nets. Using the Simulation Theorem, we obtain:

8 Type Isomorphisms for Multiplicative-Additive Linear Logic

ax
{{(X, X⊥)}} ▷ [∅] X, X⊥

θ ▷ [Σ] Γ
ex

θ ▷ [Σ] σ(Γ)

θ ▷ [Σ] A, Γ ϑ ▷ [Ξ] A⊥, ∆
cut

{λ ∪ µ | λ ∈ θ, µ ∈ ϑ} ▷ [Σ, Ξ, A ∗A⊥] Γ, ∆

θ ▷ [Σ] A, Γ ϑ ▷ [Ξ] B, ∆
⊗

{λ ∪ µ | λ ∈ θ, µ ∈ ϑ} ▷ [Σ, Ξ] A⊗B, Γ, ∆
θ ▷ [Σ] A, B, Γ `

θ ▷ [Σ] A ` B, Γ

θ ▷ [Ξ] A, Γ ϑ ▷ [Φ] B, Γ
&

θ ∪ ϑ ▷ [Ξ, Φ] A & B, Γ
θ ▷ [Σ] A, Γ

⊕1
θ ▷ [Σ] A⊕B, Γ

θ ▷ [Σ] B, Γ
⊕2

θ ▷ [Σ] A⊕B, Γ

We use the implicit tracking of formula occurrences downwards through the rules.

Figure 2 Inductive definition of the translation of unit-free MALL proof trees to sets of linkings

X⊥ X

X⊥ Y ⊥ Y X

` ⊗

X⊥ Y ⊥ Y X

& ⊕

Figure 3 Identity proof-nets (from left to right: atoms, `\⊗ and &\⊕)

▶ Theorem 13 (Type isomorphisms in proof-nets). Let A and B be two unit-free MALL
formulas. If A ≃ B then there exist two proof-nets θ and ϑ such that A

θ, ϑ≃ B.

3.2 Reduction to bipartite full proof-nets
▶ Definition 14 (Full, Ax -unique, Bipartite proof-net). A cut-free proof-net is called full if any
of its leaves has (at least) one link on it. Furthermore, if for any leaf there exists a unique
link on it (possibly shared among several linkings), then we call this proof-net ax-unique.

A cut-free proof-net is bipartite if it has two conclusions, A and B, and each of its links
is between a leaf of A and a leaf of B (no link between leaves of A, or between leaves of B).

We show identity proof-nets are bipartite ax-unique, and isomorphisms are bipartite full.
Using an induction on the formula A, we can prove the following results on the identity

proof-net of A (see Figure 3 for a graphical intuition).

▶ Proposition 15.
(i) An identity proof-net is bipartite ax-unique.
(ii) The axiom links of an identity proof-net are exactly the (l, l⊥), for any leaf l.
(iii) In the identity proof-net of A, exactly one linking is on any given additive resolution of

the conclusion A.

Neither fullness, ax-uniqueness nor bipartiteness is preserved by cut anti-reduction. A
counter-example is given on Figure 4, with a non bipartite proof-net and a non full one whose
composition reduces to the identity proof-net (bipartite ax-unique by Proposition 15(i)).2
However, if both compositions yield identity proof-nets, we get bipartiteness and fullness.

2 This example gives a retraction between (A ` A⊥) ⊗ B and ((A ` A⊥) ⊗ B) ⊕ B in MALL which is not
an isomorphism (as is the retraction between A and (A ⊸ A) ⊸ A = (A ⊗ A⊥) ` A in MLL).

R. Di Guardia and O. Laurent 9

A

`

A⊥

⊗

B

B⊥

&

B⊥

`

A

⊗

A⊥

B

⊕

B

⊗

A⊥

`

A A⊥

⊗

A

`

B⊥

A

`

A⊥

⊗

B

B⊥

&

B⊥

`

A

⊗

A⊥

B

⊕

B

⊗

A⊥

`

A A⊥

⊗

A

`

B⊥

∗

Figure 4 Non bipartite proof-net (top-left), non full proof-net (top-right) and one of their
composition yielding the identity proof-net (bottom) (jump edges not represented)

▶ Lemma 16. Let θ and θ′ be cut-free proof-nets of respective conclusions A⊥, B and B⊥, A,
such that θ′ A

▷◁ θ reduces to the identity proof-net of B. For any linking λ ∈ θ, there exists
λ′ ∈ θ′ such that λ ∪ λ′ matches in the composition over B of θ and θ′, θ

B

▷◁ θ′.

Proof. Let us consider a linking λ ∈ θ, and call C the choices of premise on additive
connectives of B that λ makes. We search some λ′ ∈ θ′ making the dual choices of premise
on additive connectives of B⊥ compared to C. Consider the composition of θ and θ′ over
A. It reduces to the identity proof-net of B by hypothesis. By Proposition 15(iii), there
exists a unique linking in the identity proof-net of B corresponding to C. Furthermore, the
linkings of the identity proof-net are derived from the µ ∪ µ′ for µ a linking of θ and µ′ one
of θ′, with µ ∪ µ′ matching for a cut over A: a linking in the identity proof-net is a linking
of the form µ ∪ µ′ where axiom links (l, m) ∈ µ and (m⊥, l⊥) ∈ µ′ are replaced with (l, l⊥),
with l a leaf of B and m one of A⊥ (because an identity proof-net has only links of the form
(l, l⊥) by Proposition 15(ii)). Therefore, there exist µ ∈ θ and µ′ ∈ θ′ such that µ makes the
choices C on B and µ ∪ µ′ matches for the composition of θ and θ′ over both A and B. But
λ makes the same choices C on B as µ: λ ∪ µ′ also matches for a cut over B. ◀

▶ Corollary 17. Assuming A
θ, θ′

≃ B, θ and θ′ are bipartite.

Proof. We proceed by contradiction: w.l.o.g. there is a link a in some linking λ ∈ θ which
is between leaves of A⊥. By Lemma 16 there exists λ′ ∈ θ′ such that λ ∪ λ′ matches for
a cut over B. Whence a, which does not involve leaves of B, belongs to a linking of the
composition where cuts have been eliminated (it belongs to the linking resulting from λ∪ λ′).
But this reduction yields a bipartite proof-net by Proposition 15(i), a contradiction. ◀

▶ Lemma 18. Assume θ and θ′ are cut-free proof-nets of respective conclusions A⊥, B and
B⊥, A, and that their composition over B yields the identity proof-net of A. Then any leaf
of A⊥ (resp. A) has (at least) one axiom link on it in θ (resp. θ′).

▶ Theorem 19. Assuming A
θ, θ′

≃ B, θ and θ′ are bipartite full.

Proof. By Corollary 17, θ and θ′ are bipartite, and thanks to Lemma 18, they are full. ◀

10 Type Isomorphisms for Multiplicative-Additive Linear Logic

A B C

⊕

⊗

C⊥ A⊥ B⊥ A⊥

` `

&

A B A C

⊗ ⊗

⊕

C⊥ B⊥ A⊥

&

`

Figure 5 Proof-nets for A ⊗ (B ⊕ C) ≃ (A ⊗ B) ⊕ (A ⊗ C)

3.3 Distribution
In general, isomorphisms do not yield ax-unique proof-nets. A counter-example is distributiv-
ity: A⊗ (B⊕C) ≃ (A⊗B)⊕ (A⊗C), see Figure 5. Nonetheless, distributivity equations are
the only ones in E† not giving ax-unique proof-nets. We will restrict our study to so-called
distributed formulas. Once formulas are distributed, distributivity isomorphisms can be
ignored, and isomorphisms between distributed formulas happen to be bipartite ax-unique.

▶ Definition 20 (Distributed formula). An MALL formula is distributed if it does not have
any sub-formula of the form A⊗ (B ⊕ C), (A⊕B)⊗ C, A⊗ 1, 1⊗A, A⊕ 0, 0⊕A, A⊗ 0,
0⊗A or their duals (C & B)`A, C ` (B & A), ⊥`A, A`⊥, ⊤& A, A &⊤, ⊤`A, A`⊤
(where A, B and C are any formulas).

▶ Remark. This notion is stable by duality: if A is distributed, so is A⊥.

▶ Proposition 21. If E is complete for isomorphisms between distributed formulas, then it is
complete for isomorphisms between arbitrary formulas.

We mostly use the correctness criterion through the fact we can sequentialize, i.e. recover
a proof tree from a proof-net by Theorem 10. However, in order to prove ax-uniqueness, we
make a direct use of the correctness criterion to deduce geometric properties of proof-nets.
This part of the proof takes benefits from the specificities of this syntax. We begin with
two preliminary results. For Λ a set of linkings and W a &-vertex, ΛW denote the set of all
linkings in Λ whose additive resolution does not contain the right argument of W .

▶ Lemma 22 (Lemma 4.32 in [10], adapted). Let ω be a jump-free switching cycle in a
proof-net θ. There exists a subset of linkings Λ ⊆ θ such that ω ⊆ GΛ, ω ̸⊆ GΛW and for any
&-vertex W toggled by Λ, there exists an axiom link a ∈ ω depending on W in Λ.

For U and V vertices in a tree, their first common descendant is the vertex of the tree
which is a descendant of both U and V and which has no descendant respecting this property
(with a tree represented with its root at the bottom, which is a descendant of the leaves).

▶ Lemma 23. Let θ be a proof-net of conclusions Γ, A. If there is a jump edge l
j−→W with

l, W ∈ T (A) and W not a descendant of l, then their first common descendant C is a `.

Proof. As there is a jump l
j−→W , there exist linkings λ, λ′ ∈ θ such that W is the only &

toggled by {λ; λ′}, and a link a ∈ λ\λ′ using the leaf l. In particular, the jump l
j−→W is in

G{λ;λ′}. For l and W are both in the additive resolution of λ, both premises of C are in the
additive resolution of λ, thus C cannot be an additive connective, so not a & nor a ⊕-vertex.

Assume by contradiction that C is a ⊗. Call δ the path in T (A) from W to C, and
µ the one from C to l (see Figure 6). Then, (l j−→ W)δµ is a switching cycle in G{λ;λ′}.
According to (P3), there exists a & toggled by {λ; λ′} not in any switching cycle of G{λ;λ′}.
A contradiction, for W is the only & toggled by {λ; λ′}. Whence, C can only be a `. ◀

R. Di Guardia and O. Laurent 11

A

T (A)

l

W&

C

µ

δ

j

Figure 6 Illustration of the proof of Lemma 23

A B C

⊕

⊗

C⊥ A⊥ B⊥ A⊥

` `

&

A B A C

⊗ ⊗

⊕

C⊥ B⊥ A⊥

&

`
∗

Figure 7 Proof-nets from Figure 5 composed by cut on (A ⊗ B) ⊕ (A ⊗ C)

Now, let us prove that isomorphisms of distributed formulas are bipartite ax-unique. We
will consider proof-nets corresponding to an isomorphism that we cut and where we eliminate
all cuts not involving atoms. To give some intuition, let us consider the non-ax-unique
proof-nets of Figure 5. Composing them together by cut on (A ⊗ B) ⊕ (A ⊗ C) gives the
proof-net illustrated on Figure 7. Reducing all cuts not involving atoms yields the proof-net
on Figure 8, that we call an almost reduced composition. We stop there because of the
switching cycle produced by the two links on A (dashed in blue on Figure 8), less visible in the
non-reduced composition of Figure 7. However, reducing all cuts gives the identity proof-net,
which has no switching cycle: during these reductions, both links on A are merged. By using
almost reduced composition, we are going to prove that links preventing ax-uniqueness yield
switching cycles, and moreover that these cycles are due to non-distributed formulas only.

▶ Definition 24 (Almost reduced composition). Take θ and θ′ cut-free proof-nets of respective
conclusions A, B and B⊥, C. The almost reduced composition over B of θ and θ′ is the
proof-net resulting from the composition over B of θ and θ′ where we repeatedly reduce all
cuts not involving atoms (i.e. not applying step (a) of Definition 7).

Let us fix A and B two unit-free MALL (not necessarily distributed yet) formulas as well
as θ and θ′ such that A

θ, θ′

≃ B. By Theorem 19, θ and θ′ are bipartite full. We denote by
ϑ the almost reduced composition over B of θ and θ′. Here, we can extend our duality on
vertices and premises (defined in Section 2.4) to links.

A B C

⊕

⊗

C⊥ A⊥ B⊥ A⊥ A B A C C⊥ B⊥ A⊥

&

`
∗
∗
∗
∗

Figure 8 An almost reduced composition of the proof-nets on Figure 5

12 Type Isomorphisms for Multiplicative-Additive Linear Logic

A A⊥B B⊥
...
∗

...T (A) T (A⊥)
l . . . m m⊥ . . .

a

l⊥

a⊥

Figure 9 Illustration of Lemma 25

▶ Lemma 25. Given l a leaf of A (resp. A⊥) and m one of B⊥ (resp. B), there is an axiom
link a = (l, m) in some linking λ ∈ ϑ if and only if there is an axiom link (l⊥, m⊥) in the
same linking λ, that we will denote a⊥ = (l⊥, m⊥) (see Figure 9).

Proof. By symmetry, assume (l, m) ∈ λ ∈ ϑ. As the cut m ∗m⊥ belongs to the additive
resolution of λ (for m is inside), m⊥ is a leaf in this resolution. Thus, there is a link
(m⊥, l′) ∈ λ for some leaf l′, which necessarily belongs to A by bipartiteness of θ′. It stays to
prove l′ = l⊥. If we were to eliminate all cuts in ϑ, we would get the identity proof-net on A

by hypothesis. But eliminating the cut m ∗m⊥ yields a link (l, l′), which is not modified by
the elimination of the other atomic cuts. By Proposition 15(ii), l′ = l⊥ follows. ◀

▶ Lemma 26. Let λ be a linking of ϑ, and V an additive vertex in its additive resolution.
Then V ⊥ is also inside, with as premise kept the dual premise of the one kept for V .

▶ Lemma 27. Let W and P be respectively a &-vertex and a ⊕-vertex in ϑ, with W an
ancestor of P . Then for any axiom link a depending on W in ϑ, a also depends on P ⊥ in ϑ.

Proof. There exist linkings λ, λ′ ∈ ϑ such that W is the only & toggled by {λ; λ′} and
a ∈ λ\λ′. We consider a linking λP ⊥ defined by taking an arbitrary &-resolution of λ where
we choose the other premise for P ⊥ (and arbitrary premises for &-vertices introduced this
way): by (P1), there exists a unique linking on it. By Lemma 26, the additive resolutions
of λ and λP ⊥ (resp. λ and λ′) differ exactly on ancestors of P and P ⊥ (resp. W and W ⊥).
Thus, the additive resolutions of λ′ and λP ⊥ also differ exactly on ancestors of P and P ⊥,
for W is an ancestor of P . In particular, {λ; λP ⊥}, as well as {λ′; λP ⊥}, toggles only P ⊥. If
a ∈ λP ⊥ , then a depends on P ⊥ in {λ′; λP ⊥}. Otherwise, a depends on P ⊥ in {λ; λP ⊥}. ◀

The key result to use distributivity is that a positive vertex “between” a leaf l and a
&-vertex W in the same tree prevents them from interacting, i.e. there is no jump l

j−→W .

▶ Lemma 28. Let l
j−→W be a jump edge in ϑ, with l not an ancestor of W and l, W ∈ T (A⊥)

(resp. T (A)). Denoting by N the first common descendant of l and W , there is no positive
vertex in the path between N and W in T (A⊥) (resp. T (A)).

Proof. Let P be a vertex on the path between N and W in T (A⊥). By Lemma 23, N is a
`-vertex. We prove by contradiction that P can neither be a ⊕ nor a ⊗-vertex.

Suppose P is a ⊕-vertex. By Lemma 27, a depends on P ⊥, and so does a⊥ through
Lemma 25: there is a jump edge l⊥ j−→ P ⊥. Applying Lemma 23, the first common
descendant of l⊥ and P ⊥, which is N⊥, is a `-vertex: a contradiction as it is a ⊗-vertex.

Assume now P to be a ⊗-vertex. As there is a jump l
j−→W , there exist linkings λ, λ′ ∈ ϑ

and a leaf m of B such that W is the only & toggled by {λ; λ′} and a = (l, m) ∈ λ\λ′. For P is
a ⊗, there is a leaf p which is an ancestor of P in the additive resolution of λ, from a different

R. Di Guardia and O. Laurent 13

A⊥ A

l p

W&

P⊗

N`

l⊥p⊥

W ⊥⊕

P ⊥`

N⊥⊗

B B⊥

. . . q m m⊥q⊥ . . .

∗
∗
...

a a⊥

b b⊥

j

Figure 10 Switching cycle containing W if P is a ⊗-vertex in the proof of Lemma 28

A⊥
...

∗
∗
...

AB B⊥

T (A⊥) T (A)
l . . . l0 l1 l⊥

1 l⊥
0

. . .

a

b

l⊥

a⊥
b⊥

Figure 11 Almost reduced composition ϑ of θ and θ′ by cut over B in the proof of Theorem 29

premise of P than W ; it is used by a link b = (p, q) ∈ λ3 (see Figure 10). Then the switching
cycle l

j−→ W → P ← p b— q → ∗ ← q⊥ b⊥— p⊥ → P ⊥ → N⊥ ← l⊥ a⊥— m⊥ → ∗ ← m a— l

(dashed in blue on Figure 10) belongs to G{λ;λ′}. Contradiction: W , the only & toggled by
{λ; λ′}, cannot be in any switching cycle of G{λ;λ′} by (P3). ◀

▶ Theorem 29. Assuming A
θ, θ′

≃ B with A and B distributed, θ and θ′ are bipartite ax-unique.

Proof. We already know that θ and θ′ are bipartite full thanks to Theorem 19. We reason
by contradiction and assume w.l.o.g. that θ is not ax-unique: there exist a leaf l of A⊥ and
two distinct leaves l0 and l1 of B with links a = (l, l0) and b = (l, l1) in θ. We consider ϑ

the almost reduced composition of θ and θ′ over B, depicted on Figure 11. By Lemma 16, a

and b are also links in ϑ (for the linkings they belong to in θ have matching linkings in θ′,
and we did not eliminate atomic cuts). Using Lemma 25, we have in Gϑ a switching cycle
ω = l a— l0 → ∗ ← l⊥

0
a⊥— l⊥ b⊥— l⊥

1 → ∗ ← l1
b— l.

Let Λ be a set of linkings given by Lemma 22 applied to ω. As there are two distinct
links on l in ω ⊆ GΛ, Λ contains at least two linkings. By (P3), there exists W a & toggled
by Λ that is not in any switching cycle of GΛ. By Lemma 22, a, a⊥, b or b⊥ depends on W .
So a or b depends on W by Lemma 25; w.l.o.g. a depends on W . The vertex W belongs
to either T (A) or T (A⊥): up to considering a⊥ instead of a, W is in T (A⊥). Remark l is
not an ancestor of W : if it were, by symmetry assume it is a left-ancestor. Whence a and b

belong to ΛW , so a⊥ and b⊥ too (Lemma 25); thus ω ⊆ GΛW , contradicting Lemma 22. By
Lemma 23, the first common descendant N of l and W in T (A⊥) is a `. There is a ⊗\⊕ on
the path between the ` N and its ancestor the & W in T (A⊥), for there is no sub-formula
of the shape −` (−&−) in the distributed A⊥. This contradicts Lemma 28. ◀

3 With q ̸= m, as a and b are two distinct links in the same linking λ.

14 Type Isomorphisms for Multiplicative-Additive Linear Logic

3.4 Non-ambiguous formulas & Completeness for unit-free MALL
Once our study is restricted to bipartite ax-unique proof-nets, we can also restrict formulas.

▶ Definition 30 (Non-ambiguous formula). A formula A is said non-ambiguous if each atom
in A occurs at most once positive and once negative.

▶ Remark. This means all leaves in A are distinct. If A is non-ambiguous, so is A⊥.
For instance, X & X⊥ is non-ambiguous, whereas (A⊗B)⊕ (A⊗ C) is ambiguous. The

reduction to non-ambiguous formulas requires to restrict to distributed formulas first: in
(A⊗B)⊕ (A⊗ C) ≃ A⊗ (B ⊕ C) we need the two occurrences of A to factorize. The two
following results are a direct adaptation of Section 3 in [2].

▶ Corollary 31 (Reduction to distributed non-ambiguous formulas). The set of couples of
distributed formulas A and B such that A

θ, ϑ≃ B is the set of instances (by a substitution on
atoms) of couples of distributed non-ambiguous formulas A′ and B′ such that A′θ

′, ϑ′

≃ B′.

▶ Corollary 32. Let A and B be non-ambiguous formulas. If there exist bipartite proof-nets
θ and ϑ of respective conclusions A⊥, B and B⊥, A, then A

θ, ϑ≃ B.

We then prove the completeness of E† for unit-free MALL by reasoning as in Section 4
of [2] (with some more technicalities for we reorder not only `-vertices but also &-vertices).

▶ Theorem 33 (Isomorphisms completeness for unit-free MALL). Given A and B two unit-free
MALL formulas, if A ≃ B, then A =E† B.

4 Completeness for MALL with units

We now consider full MALL, with units, and show how to reduce it to the unit-free case.
We solve this addition purely in sequent calculus showing that, for distributed formulas,
multiplicative and additive units can be replaced by fresh atoms.

A key property of proof-nets is to define a quotient of sequent calculus proofs up to rule
commutations [11] (see Appendix A for rule commutations in MALL). Because no such notion
of proof-nets exist with units, we are forced to stay in the sequent calculus, meaning that we
have to deal with possible rule commutations. As a key example, cut-elimination in proof-nets
is confluent and leads to a unique normal form. This is not true in the sequent calculus and
we need to relate the different possible cut-free proofs obtained by cut-elimination.

▶ Theorem 34 (Confluence up to rule commutations). If π1 and π2 are cut-free proofs obtained
by cut-elimination from the same proof π, then π1 and π2 are equal up to rule commutations.

This result is not surprising but has not already been proved as far as we know for it is
rather tedious to establish. It is an important general result about sequent calculus which
we are convinced should hold for full linear logic. It can be lifted to βη-equality of proofs.

▶ Theorem 35. Let π and ϖ be βη-equal MALL proofs. Then, letting π′ (resp. ϖ′) be a
result of expanding all axioms and then eliminating all cuts in π (resp. ϖ), π′ is equal to ϖ′

up to rule commutations.

After these general properties, let us move to the question of type isomorphisms. We
need to analyse the behaviour of units in proofs equal to idA up to rule commutations. We
only do so for a distributed formula A as we have already seen it is enough in Section 3.3.

R. Di Guardia and O. Laurent 15

▶ Proposition 36. Let π be a proof equal, up to rule commutations, to idA with A distributed.
The ⊤-rules of π are of the shape ⊤⊢ ⊤, 0 (with ⊤ in A being the dual of 0 in A⊥,
or vice-versa) and ⊥-rules and 1-rules come by pairs separated with ⊕i-rules only, called a

1/ ⊕ /⊥-pattern:
1⊢ 1 ρ

⊢ F ⊥⊢ ⊥, F

where ρ is a sequence of ⊕i-rules (with ⊥ in A being the

dual of 1 in A⊥, or vice-versa). Moreover, there are no sequent in π of the shape ⊢ B & C.

Proof. The key idea is to find properties of idA preserved by all rule commutations and
ensuring the properties described in the statement. For any sequent S in the proof:
(1) the formulas of S are distributed;
(2) if ⊤ is a formula of S, then S = ⊢ ⊤, 0;
(3) if ⊥ is a formula of S, then S = ⊢ ⊥, F with F given by the following grammar

F := 1 | F ⊕ D | D ⊕ F , where the distinguished 1 is the dual of ⊥ in A⊥ if ⊥ a
sub-formula of A (or vice-versa), D is any formula, and the sub-proof of π above S is a
sequence of ⊕i rules leading to the distinguished 1;

(4) if B & C is a formula of S, then S = ⊢ B & C, F with F given by the following grammar
F := C⊥ ⊕ B⊥ | F ⊕ D | D ⊕ F , where the distinguished C⊥ ⊕ B⊥ is the dual of
B & C in A⊥ if B & C a sub-formula of A (or vice-versa), D is any formula, and in the
sub-proof of π above S the ⊕-rules of the distinguished C⊥ ⊕B⊥ are a ⊕2-rule in the
left-branch of the &-rule of B & C, and a ⊕1-rule in its right branch;

(5) if S contains several negative formulas or several positive formulas, then its negative
formulas are `-formulas.

See Appendix D.2. ◀

These properties are preserved by cut anti-reduction.

▶ Lemma 37. If A
π, π′

≃ B with π and π′ cut-free then all ⊤-rules in π and π′ are of the form
⊤⊢ ⊤, 0 and all ⊥-rules and 1-rules belong to 1/⊕ /⊥-patterns.

Moving each ⊥-rule up to the associated 1-rule (which can be done up to βη-equality)
allows us to consider units as fresh atoms introduced by ax-rules and to apply Theorem 33.

▶ Theorem 38 (Isomorphisms completeness with units). If A ≃ B then A =E B.

5 Star-autonomous categories with finite products

We prove here that the equational theory E (along A ⊸ B ≃ A⊥ `B, De Morgan’s laws and
involutivity of negation) also corresponds to the isomorphisms present in all ⋆-autonomous
categories with finite products. For the historical result of how linear logic can be seen as a
category, see [15].

We establish this result from the one on MALL, first proving that MALL (with proofs con-
sidered up to βη-equality) defines a ⋆-autonomous category with finite products (Section 5.1).
Then, we conclude using a semantic method (Section 5.2).

5.1 MALL as a star-autonomous category with finite products
The logic MALL, with proofs taken up to βη-equality, defines a ⋆-autonomous category with
finite products, that we will call MALL. Indeed, we can define it as follows.

16 Type Isomorphisms for Multiplicative-Additive Linear Logic

Objects of MALL are formulas of MALL, while its morphisms from A to B are proofs
of ⊢ A⊥, B, considered up to βη-equality.4 One can check that a proof of MALL is an
isomorphism if and only if, when seen as a morphism, it is an isomorphism in MALL.

We define a bifunctor ⊗ on MALL, associating to formulas (i.e. objects) A and B the
formula A ⊗ B and to proofs (i.e. morphisms) π0 and π1 respectively of ⊢ A⊥

0 , B0 and
⊢ A⊥

1 , B1 the following proof of ⊢ (A0 ⊗A1)⊥, B0 ⊗B1:

π0

⊢ A⊥
0 , B0

π1

⊢ A⊥
1 , B1 ⊗

⊢ A⊥
1 , A⊥

0 , B0 ⊗B1 `
⊢ A⊥

1 ` A⊥
0 , B0 ⊗B1

One can check that (MALL,⊗, 1, α, λ, ρ, γ) forms a symmetric monoidal category, where 1 is
the 1-formula, α are isomorphisms of MALL associated to (A⊗B)⊗ C ≃ A⊗ (B ⊗ C) seen
as a natural isomorphism of MALL, and similarly for λ with 1⊗A ≃ A, ρ with A⊗ 1 ≃ A,
and γ with A⊗B ≃ B ⊗A.

Furthermore, define A ⊸ B := A⊥ ` B and evA,B as the following morphism from
(A ⊸ B)⊗A to B (i.e. a proof of ⊢ A⊥ ` (B⊥ ⊗A), B):

ax
⊢ B⊥,B

ax
⊢ A⊥,A ⊗

⊢ A⊥, B⊥ ⊗A, B `
⊢ A⊥ ` (B⊥ ⊗A), B

It can be checked that MALL is a symmetric monoidal closed category with as exponential
object (A ⊸ B, evA,B) for objects A and B.

Moreover, one can also check that ⊥ is a dualizing object for this category, making MALL
a ⋆-autonomous category. This relies on the following morphism from (A ⊸ ⊥) ⊸ ⊥ to A

(which is an inverse of the curryfication of evA,⊥):

1⊢ 1

ax
⊢ A⊥,A

⊥
⊢ A⊥,⊥, A `
⊢ A⊥ `⊥, A ⊗

⊢ 1⊗ (A⊥ `⊥), A

Finally, ⊤ is a terminal object of MALL, and A & B is the product of objects A and B,
with as projections πA and πB the following morphisms respectively from A & B to A and
from A & B to B:

ax
⊢ A⊥,A ⊕2

⊢ B⊥ ⊕A⊥, A
and

ax
⊢ B⊥,B ⊕1

⊢ B⊥ ⊕A⊥, B

Therefore, MALL is a ⋆-autonomous category with finite products [15].

5.2 Isomorphisms of star-autonomous categories with finite products
We take the same notations as in the previous section (& for product, . . .). One can easily
check that isomorphisms in a ⋆-autonomous category with finite products form a congruence
(as all binary connectives define bifunctors), and that E is sound (i.e. that equations defining

4 We recall that (·)⊥ is defined by induction, making it an involution.

R. Di Guardia and O. Laurent 17

A ⊸ B ≃ A⊥ ` B X⊥⊥ ≃ X

(A⊗B)⊥ ≃ B⊥ ` A⊥ (A ` B)⊥ ≃ B⊥ ⊗A⊥

1⊥ ≃ ⊥ ⊥⊥ ≃ 1
(A & B)⊥ ≃ B⊥ ⊕A⊥ (A⊕B)⊥ ≃ B⊥ & A⊥

⊤⊥ ≃ 0 0⊥ ≃ ⊤
Table 2 De Morgan’s isomorphisms

E in Table 1 on Page 3 are isomorphisms in any ⋆-autonomous category with finite products).
Moreover the isomorphisms of Table 2 (which are equalities in MALL) also hold in any
⋆-autonomous category with finite products.

Completeness follows by Theorem 38 (isomorphisms in MALL are exactly those given by
E) and from the fact that two objects definable in the language of ⋆-autonomous categories
with finite products are equal in MALL if and only if they are related by the equational theory
generated by Table 2. For example, one can deduce (A ⊸ ⊥) ⊸ ⊥ ≃ (A⊥ ` ⊥)⊥ ` ⊥ ≃
(A⊥ ` ⊥)⊥ ≃ 1 ⊗ A⊥⊥ ≃ A⊥⊥ ≃ A (the last equation being derivable by induction on
A). Henceforth, isomorphisms valid in all ⋆-autonomous categories with finite products are
included in E enriched with Table 2.

▶ Theorem 39 (Isomorphisms in ⋆-autonomous categories with finite products). E enriched
with Table 2 is a sound and complete equational theory for isomorphisms in ⋆-autonomous
categories with finite products.

6 Conclusion

Extending the result of Balat and Di Cosmo in [2], we give an equational theory characterising
type isomorphisms in multiplicative-additive linear logic with units as well as in ⋆-autonomous
categories with finite products: the one described on Table 1 on Page 3 (together with Table 2
for ⋆-autonomous categories). Looking at the proof, we get as a sub-result that isomorphisms
for ALL (resp. unit-free ALL) are given by the equational theory E (resp. E†) restricted to
ALL formulas (and more generally this applies to any fragment of MALL, thanks to the
sub-formula property). Proof-nets were a major tool to prove completeness, as notions like
fullness and ax-uniqueness are much harder to define and manipulate in sequent calculus.
However, we could not use them for taking care of the (additive) units, because there is no
known appropriate notion of proof-nets. We have thus been forced to develop (some parts
of) the theory of cut-elimination, axiom-expansion and rule commutations for the sequent
calculus of MALL with units.

The immediate question to address is the extension of our results to the characterization
of type isomorphisms for full propositional linear logic, thus including the exponential
connectives. This is clearly not immediate since the interaction between additive and
exponential connectives is not well described in proof-nets.

A more general problem is the study of type retractions (where only one of the two
compositions yields an identity) which is also much more difficult (see for example [13]). The
question is mostly open in the case of linear logic. Even in multiplicative linear logic (where
there is for example a retraction between A and (A ⊸ A) ⊸ A = (A⊗A⊥)`A which is not
an isomorphism, and where the associated proof-nets are not bipartite), no characterization
is known. In the multiplicative-additive fragment, the problem looks even harder, with more
retractions; for instance the one depicted on Figure 4, but there also is a retraction between
A and A⊕A.

18 Type Isomorphisms for Multiplicative-Additive Linear Logic

References
1 Michele Abrusci and Elena Maringelli. A new correctness criterion for cyclic proof nets. Journal

of Logic, Language and Information, 7:449–459, 1998. doi:10.1023/A:1008354130493.
2 Vincent Balat and Roberto Di Cosmo. A linear logical view of linear type isomorphisms. In

Jörg Flum and Mario Rodríguez-Artalejo, editors, Computer Science Logic, volume 1683 of
Lecture Notes in Computer Science, pages 250–265. Springer, 1999.

3 Vincent Danos and Laurent Regnier. The structure of multiplicatives. Archive for Mathematical
Logic, 28:181–203, 1989.

4 Roberto Di Cosmo. Isomorphisms of Types. Progress in Theoretical Computer Science.
Birkhäuser, 1995.

5 Paolo Di Giamberardino. Jump from parallel to sequential proofs: Additives, 2011. https:
//hal.science/hal-00616386.

6 Marcelo Fiore, Roberto Di Cosmo, and Vincent Balat. Remarks on isomorphisms in typed
lambda calculi with empty and sum types. In Proceedings of the seventeenth annual symposium
on Logic In Computer Science, pages 147–156, Copenhagen, July 2002. IEEE, IEEE Computer
Society Press.

7 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987. doi:10.1016/
0304-3975(87)90045-4.

8 Jean-Yves Girard. Proof-nets: the parallel syntax for proof-theory. In Aldo Ursini and
Paolo Agliano, editors, Logic and Algebra, volume 180 of Lecture Notes In Pure and Applied
Mathematics, pages 97–124, New York, 1996. Marcel Dekker. doi:10.1201/9780203748671-4.

9 Willem Heijltjes and Dominic Hughes. Conflict nets: Efficient locally canonical MALL proof
nets. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), pages 437–446. ACM Press, July 2016. doi:10.1145/2933575.2934559.

10 Dominic Hughes and Rob van Glabbeek. Proof nets for unit-free multiplicative-additive linear
logic. ACM Transactions on Computational Logic, 6(4):784–842, 2005. doi:10.1145/1094622.
1094629.

11 Dominic Hughes and Rob van Glabbeek. MALL proof nets identify proofs modulo rule
commutation, 2016. https://arxiv.org/abs/1609.04693.

12 Olivier Laurent. Classical isomorphisms of types. Mathematical Structures in Computer
Science, 15(5):969–1004, October 2005.

13 Laurent Regnier and Pawel Urzyczyn. Retractions of types with many atoms, 2002. http:
//arxiv.org/abs/cs/0212005.

14 Mikael Rittri. Using types as search keys in function libraries. Journal of Functional
Programming, 1(1):71–89, 1991.

15 Robert Seely. Linear logic, ⋆-autonomous categories and cofree coalgebras. Contemporary
mathematics, 92, 1989.

16 Sergei Soloviev. The category of finite sets and cartesian closed categories. Journal of Soviet
Mathematics, 22(3):1387–1400, 1983.

http://dx.doi.org/10.1023/A:1008354130493
https://hal.science/hal-00616386
https://hal.science/hal-00616386
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1201/9780203748671-4
http://dx.doi.org/10.1145/2933575.2934559
http://dx.doi.org/10.1145/1094622.1094629
http://dx.doi.org/10.1145/1094622.1094629
https://arxiv.org/abs/1609.04693
http://arxiv.org/abs/cs/0212005
http://arxiv.org/abs/cs/0212005

R. Di Guardia and O. Laurent 19

` − ⊗ ax
⊢ A ⊗ B, B⊥ ` A⊥

η−→

ax
⊢ A⊥,A

ax
⊢ B⊥,B

⊗
⊢ A ⊗ B, A⊥, B⊥ `

⊢ A ⊗ B, B⊥ ` A⊥

& − ⊕ ax
⊢ A ⊕ B, B⊥ & A⊥

η−→

ax
⊢ B, B⊥ ⊕2

⊢ A ⊕ B, B⊥

ax
⊢ A, A⊥ ⊕1

⊢ A ⊕ B, A⊥
&

⊢ A ⊕ B, B⊥ & A⊥

⊥ − 1 ax
⊢ 1, ⊥

η−→
1⊢ 1 ⊥⊢ 1, ⊥

⊤ − 0 ax
⊢ 0, ⊤

η−→ ⊤⊢ 0, ⊤
Table 3 Axiom-expansion in the sequent calculus of MALL

In appendix are first described transformations of proofs: axiom-expansion η−→, cut-
elimination β−→ and rule commutations =c (Appendix A). Then come proofs of various
sections of the paper: about reduction to axiom-expanded proofs (Appendix B), completeness
for unit-free MALL (Appendix C) and for full MALL (Appendix D). Proofs are given in the
order their results appear in the main part.

A Transformations of sequent calculus proofs in MALL

▶ Definition 40. In the sequent calculus of MALL, we call axiom-expansion the rewriting
system η−→ described on Table 3.

▶ Definition 41. In the sequent calculus of MALL, we call cut-elimination the rewriting
system β−→ described on Tables 4 and 5 (up to commuting the two branches of a cut-rule).5

▶ Definition 42. In the sequent calculus of MALL, we call rule commutation the equational
theory =c described on Tables 6 and 7. This corresponds to rule commutations in cut-free
MALL; in particular, in a ⊤−⊗ permutation we assume the created or erased sub-proof to
be cut-free.

We denote the reflexive transitive closure of η−→ (resp. β−→, =c) by η∗
−→ (resp. β∗

−→, =∗
c).

B Proofs for the reduction to axiom-expanded proofs

This appendix contains proofs for the results stated in Section 2.3.

B.1 Axiom-expansion is confluent and strongly normalizing
▶ Proposition 43. The relation η−→ is confluent and strongly normalizing.

5 Another possible key case would be the following:
π1

⊢ A, Γ
π2

⊢ B, ∆
⊗

⊢ A ⊗ B, Γ, ∆

π3

⊢ B⊥, A⊥, Σ `
⊢ B⊥ ` A⊥, Σ

cut⊢ Γ, ∆, Σ

β−→ π2

⊢ B, ∆

π1

⊢ A, Γ
π3

⊢ B⊥, A⊥, Σ
cut

⊢ B⊥, Γ, Σ
cut⊢ Γ, ∆, Σ

This case can be simulated with the given ` − ⊗ key case and a cut − cut commutative case.

20 Type Isomorphisms for Multiplicative-Additive Linear Logic

ax
ax

⊢ A⊥,A
π

⊢ A, Γ
cut⊢ A, Γ

β−→
π

⊢ A, Γ

` − ⊗

π1

⊢ A, Γ
π2

⊢ B, ∆
⊗

⊢ A ⊗ B, Γ, ∆

π3

⊢ B⊥, A⊥, Σ `
⊢ B⊥ ` A⊥, Σ

cut⊢ Γ, ∆, Σ

β−→ π1

⊢ A, Γ

π2

⊢ B, ∆
π3

⊢ B⊥, A⊥, Σ
cut

⊢ A⊥, ∆, Σ
cut⊢ Γ, ∆, Σ

& − ⊕1

π1

⊢ A1, Γ
π2

⊢ A2, Γ
&⊢ A1 & A2, Γ

π3

⊢ A⊥2 , ∆ ⊕1
⊢ A⊥2 ⊕ A⊥1 , ∆

cut⊢ Γ, ∆

β−→
π2

⊢ A2, Γ
π3

⊢ A⊥2 , ∆
cut⊢ Γ, ∆

& − ⊕2

π1

⊢ A1, Γ
π2

⊢ A2, Γ
&⊢ A1 & A2, Γ

π3

⊢ A⊥1 , ∆ ⊕2
⊢ A⊥2 ⊕ A⊥1 , ∆

cut⊢ Γ, ∆

β−→
π1

⊢ A1, Γ
π3

⊢ A⊥1 , ∆
cut⊢ Γ, ∆

⊥ − 1 1⊢ 1

π
⊢ Γ ⊥⊢ Γ, ⊥

cut⊢ Γ

β−→
π

⊢ Γ

(No ⊤ − 0 key case as there are no rule for 0.)
Table 4 Cut-elimination in sequent calculus (key cases)

` − cut

π1

⊢ A, B, C, Γ `⊢ A, B ` C, Γ
π2

⊢ A⊥, ∆
cut⊢ B ` C, Γ, ∆

β−→

π1

⊢ A, B, C, Γ
π2

⊢ A⊥, ∆
cut⊢ B, C, Γ, ∆ `⊢ B ` C, Γ, ∆

⊗ − cut − 1

π1

⊢ A, B, Γ
π2

⊢ C, ∆
⊗

⊢ A, B ⊗ C, Γ, ∆
π3

⊢ A⊥, Σ
cut⊢ B ⊗ C, Γ, ∆, Σ

β−→

π1

⊢ A, B, Γ
π3

⊢ A⊥, Σ
cut⊢ B, Γ, Σ

π2

⊢ C, ∆
⊗

⊢ B ⊗ C, Γ, ∆, Σ

⊗ − cut − 2

π1

⊢ B, Γ
π2

⊢ A, C, ∆
⊗

⊢ A, B ⊗ C, Γ, ∆
π3

⊢ A⊥, Σ
cut⊢ B ⊗ C, Γ, ∆, Σ

β−→ π1

⊢ B, Γ

π2

⊢ A, C, ∆
π3

⊢ A⊥, Σ
cut⊢ C, ∆, Σ

⊗
⊢ B ⊗ C, Γ, ∆, Σ

& − cut

π1

⊢ A, B, Γ
π2

⊢ A, C, Γ
&⊢ A, B & C, Γ

π3

⊢ A⊥, ∆
cut⊢ B & C, Γ, ∆

β−→

π1

⊢ A, B, Γ
π3

⊢ A⊥, ∆
cut⊢ B, Γ, ∆

π2

⊢ A, C, Γ
π3

⊢ A⊥, ∆
cut⊢ C, Γ, ∆

&⊢ B & C, Γ, ∆

⊕i − cut

π1

⊢ A, Bi, Γ ⊕i⊢ A, B1 ⊕ B2, Γ
π2

⊢ A⊥, ∆
cut⊢ B1 ⊕ B2, Γ, ∆

β−→

π1

⊢ A, Bi, Γ
π2

⊢ A⊥, ∆
cut⊢ Bi, Γ, ∆ ⊕i⊢ B1 ⊕ B2, Γ, ∆

⊥ − cut

π1

⊢ A, Γ
⊥⊢ A, ⊥, Γ

π2

⊢ A⊥, ∆
cut⊢ ⊥, Γ, ∆

β−→

π1

⊢ A, Γ
π2

⊢ A⊥, ∆
cut⊢ Γ, ∆

⊥⊢ ⊥, Γ, ∆

⊤ − cut
⊤⊢ A, ⊤, Γ

π

⊢ A⊥, ∆
cut⊢ ⊤, Γ, ∆

β−→ ⊤⊢ ⊤, Γ, ∆

cut − cut

π1

⊢ A, B, Γ
π2

⊢ B⊥, ∆
cut⊢ A, Γ, ∆

π3

⊢ A⊥, Σ
cut⊢ Γ, ∆, Σ

β−→

π1

⊢ A, B, Γ
π3

⊢ A⊥, Σ
cut⊢ B, Γ, Σ

π2

⊢ B⊥, ∆
cut⊢ Γ, ∆, Σ

(No ax − cut nor 1 − cut nor 0 − cut commutative cases as the ax and 1-rules have no context and there are no rule for 0.)

Table 5 Cut-elimination in sequent calculus (commutative cases)

R. Di Guardia and O. Laurent 21

⊤⊢ A1 ` A2, ⊤, Γ
C`

⊤−→
←−
C⊤`

⊤⊢ A1, A2, ⊤, Γ `⊢ A1 ` A2, ⊤, Γ

π1

⊢ A1, A2, Γ `⊢ A1 ` A2, Γ
⊥⊢ A1 ` A2, ⊥, Γ

C`
⊥−→
←−
C⊥`

π1

⊢ A1, A2, Γ
⊥⊢ A1, A2, ⊥, Γ `⊢ A1 ` A2, ⊥, Γ

⊤⊢ A1 ⊗ A2, ⊤, Γ, ∆
C

⊗
⊤−→
←−
C⊤

⊗

⊤⊢ A1, ⊤, Γ
π

⊢ A2, ∆
⊗

⊢ A1 ⊗ A2, ⊤, Γ, ∆

π1

⊢ A1, Γ
π2

⊢ A2, ∆
⊗

⊢ A1 ⊗ A2, Γ, ∆
⊥⊢ A1 ⊗ A2, ⊥, Γ, ∆

C
⊗
⊥−→
←−
C⊥

⊗

π1

⊢ A1, Γ
⊥⊢ A1, ⊥, Γ

π2

⊢ A2, ∆
⊗

⊢ A1 ⊗ A2, ⊥, Γ, ∆

⊤⊢ A1 ⊗ A2, ⊤, Γ, ∆
C

⊗
⊤−→
←−
C⊤

⊗

π
⊢ A1, Γ ⊤⊢ A2, ⊤, ∆

⊗
⊢ A1 ⊗ A2, ⊤, Γ, ∆

π1

⊢ A1, Γ
π2

⊢ A2, ∆
⊗

⊢ A1 ⊗ A2, Γ, ∆
⊥⊢ A1 ⊗ A2, ⊥, Γ, ∆

C
⊗
⊥−→
←−
C⊥

⊗

π1

⊢ A1, Γ

π2

⊢ A2, ∆
⊥⊢ A2, ⊥, ∆
⊗

⊢ A1 ⊗ A2, ⊥, Γ, ∆

⊤⊢ A1 & A2, ⊤, Γ
C&

⊤−→
←−
C⊤

&

⊤⊢ A1, ⊤, Γ ⊤⊢ A2, ⊤, Γ
&⊢ A1 & A2, ⊤, Γ

π1

⊢ A1, Γ
π2

⊢ A2, Γ
&⊢ A1 & A2, Γ

⊥⊢ A1 & A2, ⊥, Γ

C&
⊥−→
←−
C⊥

&

π1

⊢ A1, Γ
⊥⊢ A1, ⊥, Γ

π2

⊢ A2, Γ
⊥⊢ A2, ⊥, Γ
&⊢ A1 & A2, ⊥, Γ

⊤⊢ A1 ⊕ A2, ⊤, Γ
C

⊕i
⊤−→
←−
C⊤

⊕i

⊤⊢ Ai, ⊤, Γ ⊕i⊢ A1 ⊕ A2, ⊤, Γ

π
⊢ Ai, Γ ⊕i⊢ A1 ⊕ A2, Γ

⊥⊢ A1 ⊕ A2, ⊥, Γ

C
⊕i
⊥−→
←−
C⊥

⊕i

π
⊢ Ai, Γ

⊥⊢ Ai, ⊥, Γ ⊕i⊢ A1 ⊕ A2, ⊥, Γ

⊤0⊢ ⊤0, ⊤1, Γ
C⊤

⊤−→ ⊤1⊢ ⊤0, ⊤1, Γ

π
⊢ Γ ⊥0⊢ ⊥0, Γ

⊥1⊢ ⊥0, ⊥1, Γ

C⊥
⊥−→

π
⊢ Γ ⊥1⊢ ⊥1, Γ

⊥0⊢ ⊥0, ⊥1, Γ

⊤⊢ ⊤, ⊥, Γ
C⊥

⊤−→
←−
C⊤

⊥

⊤⊢ ⊤, Γ
⊥⊢ ⊤, ⊥, Γ

(No commutation with ax, 1 nor 0 as the ax and 1-rules have no context and there are no rule for 0.)

Table 6 Rule commutations involving a unit rule

π ϕ

ϖ

η

β

φ
β

η∗

=

π ϕ

ϖ

η
β

φ1

φ2

η∗

β
∗

η∗

<

π

ϕ

ϖ ENF

β
∗

η∗

φ ENFη∗

β
∗

Figure 12 Diagrams of Lemmas 44 (left and center) and 45 (right, ENF means in η-normal form)

Proof. Strong normalization follows from the fact that a η−→ step strictly decreases the sum
of the sizes of the formulas on which an ax-rule is applied.

We use Newman’s Lemma to deduce confluence from strong normalization and local
confluence. Observe that two steps ϖ

η←− π
η−→ ϕ always commute or cancel each other, i.e.

ϖ = ϕ or there exists φ such that ϖ
η−→ φ

η←− ϕ; hence local confluence of η−→. ◀

B.2 Proof of Proposition 4

We set a(π β∗
−→ ϖ) the multiset of the sizes of the formulas in the ax key cases of these β−→

reductions. By βn

−→ we mean a sequence of n
β−→ steps, and similarly for η−→.

▶ Lemma 44. Let π, ϖ and ϕ be MALL proofs such that ϖ
β←− π

η−→ ϕ. Then there exists
φ such that ϖ

η∗
−→ φ

β←− ϕ or there exist φ1 and φ2 such that ϕ
η∗
−→ φ1

β∗
−→ φ2

η∗
←− ϖ.

Furthermore, a(ϕ β−→ φ) = a(π β−→ ϖ) in the first case and a(φ1
β∗
−→ φ2) < a(π β−→ ϖ) in

the second one. (See Figure 12 for diagrams corresponding to these cases.)

Proof. Call r the ax-rule that π
η−→ ϕ expands, and A its formula. If the cut-elimination

step is not an ax key case using r, then the two steps commute and there exists φ such
that ϕ

β−→ φ and ϖ
η−→ φ (or ϖ

η−→ · η−→ φ if r belongs to a sub-proof duplicated by
the β−→ step, or ϖ = φ if it belongs to a sub-proof erased by the β−→ step). In particular,
a(ϕ β−→ φ) = a(π β−→ ϖ) for they use the same rules.

22 Type Isomorphisms for Multiplicative-Additive Linear Logic

π
⊢ A1, A2, B1, B2, Γ `⊢ A1 ` A2, B1, B2, Γ `⊢ A1 ` A2, B1 ` B2, Γ

C`̀
−→

π
⊢ A1, A2, B1, B2, Γ `⊢ A1, A2, B1 ` B2, Γ `⊢ A1 ` A2, B1 ` B2, Γ

π1

⊢ A1, Γ

π2

⊢ A2, B1, ∆
π3

⊢ B2, Σ
⊗

⊢ A2, B1 ⊗ B2, ∆, Σ
⊗

⊢ A1 ⊗ A2, B1 ⊗ B2, Γ, ∆, Σ

C
⊗
⊗−→

π1

⊢ A1, Γ
π2

⊢ A2, B1, ∆
⊗

⊢ A1 ⊗ A2, B1, Γ, ∆
π3

⊢ B2, Σ
⊗

⊢ A1 ⊗ A2, B1 ⊗ B2, Γ, ∆, Σ

π1

⊢ A1, Γ

π2

⊢ B1, ∆
π3

⊢ A2, B2, Σ
⊗

⊢ A2, B1 ⊗ B2, ∆, Σ
⊗

⊢ A1 ⊗ A2, B1 ⊗ B2, Γ, ∆, Σ

C
⊗
⊗−→

π1

⊢ A1, Γ
π3

⊢ A2, B2, Σ
⊗

⊢ A1 ⊗ A2, B2, Γ, Σ
π2

⊢ B1, ∆
⊗

⊢ A1 ⊗ A2, B1 ⊗ B2, Γ, ∆, Σ
π1

⊢ A1, B1, Γ
π2

⊢ B2, ∆
⊗

⊢ A1, B1 ⊗ B2, Γ, ∆
π3

⊢ A2, Σ
⊗

⊢ A1 ⊗ A2, B1 ⊗ B2, Γ, ∆, Σ

C
⊗
⊗−→

π1

⊢ A1, B1, Γ
π3

⊢ A2, Σ
⊗

⊢ A1 ⊗ A2, B1, Γ, Σ
π2

⊢ B2, ∆
⊗

⊢ A1 ⊗ A2, B1 ⊗ B2, Γ, ∆, Σ
π1

⊢ B1, Γ
π2

⊢ A1, B2, ∆
⊗

⊢ A1, B1 ⊗ B2, Γ, ∆
π3

⊢ A2, Σ
⊗

⊢ A1 ⊗ A2, B1 ⊗ B2, Γ, ∆, Σ

C
⊗
⊗−→

π1

⊢ B1, Γ

π2

⊢ A1, B2, ∆
π3

⊢ A2, Σ
⊗

⊢ A1 ⊗ A2, B2, ∆, Σ
⊗

⊢ A1 ⊗ A2, B1 ⊗ B2, Γ, ∆, Σ
π1

⊢ A1, B1, Γ
π2

⊢ A2, B1, Γ
&⊢ A1 & A2, B1, Γ

π3

⊢ A1, B2, Γ
π4

⊢ A2, B2, Γ
&⊢ A1 & A2, B2, Γ

&⊢ A1 & A2, B1 & B2, Γ

C&
&−→

π1

⊢ A1, B1, Γ
π3

⊢ A1, B2, Γ
&⊢ A1, B1 & B2, Γ

π2

⊢ A2, B1, Γ
π4

⊢ A2, B2, Γ
&⊢ A2, B1 & B2, Γ

&⊢ A1 & A2, B1 & B2, Γ
π

⊢ Ai, Bj , Γ
⊕i⊢ A1 ⊕ A2, Bj , Γ ⊕j⊢ A1 ⊕ A2, B1 ⊕ B2, Γ

C
⊕i
⊕j−→

π
⊢ Ai, Bj , Γ ⊕j⊢ Ai, B1 ⊕ B2, Γ ⊕i⊢ A1 ⊕ A2, B1 ⊕ B2, Γ

π1

⊢ A1, A2, B1, Γ `⊢ A1 ` A2, B1, Γ
π2

⊢ B2, ∆
⊗

⊢ A1 ` A2, B1 ⊗ B2, Γ, ∆

C`
⊗
−→
←−
C

⊗
`

π1

⊢ A1, A2, B1, Γ
π2

⊢ B2, ∆
⊗

⊢ A1, A2, B1 ⊗ B2, Γ, ∆ `⊢ A1 ` A2, B1 ⊗ B2, Γ, ∆

π1

⊢ B1, Γ

π2

⊢ A1, A2, B2, ∆ `⊢ A1 ` A2, B2, ∆
⊗

⊢ A1 ` A2, B1 ⊗ B2, Γ, ∆

C`
⊗
−→
←−
C

⊗
`

π1

⊢ B1, Γ
π2

⊢ A1, A2, B2, ∆
⊗

⊢ A1, A2, B1 ⊗ B2, Γ, ∆ `⊢ A1 ` A2, B1 ⊗ B2, Γ, ∆
π1

⊢ A1, A2, B1, Γ `⊢ A1 ` A2, B1, Γ

π1

⊢ A1, A2, B2, Γ `⊢ A1 ` A2, B2, Γ
&⊢ A1 ` A2, B1 & B2, Γ

C`
&−→
←−
C&`

π1

⊢ A1, A2, B1, Γ
π1

⊢ A1, A2, B2, Γ
&⊢ A1, A2, B1 & B2, Γ `⊢ A1 ` A2, B1 & B2, Γ

π1

⊢ A1, A2, Bi, Γ `⊢ A1 ` A2, Bi, Γ ⊕i⊢ A1 ` A2, B1 ⊕ B2, Γ

C`
⊕i−→
←−
C

⊕i`

π1

⊢ A1, A2, Bi, Γ ⊕i⊢ A1, A2, B1 ⊕ B2, Γ `⊢ A1 ` A2, B1 ⊕ B2, Γ
π1

⊢ A1, Γ
π2

⊢ A2, B1, ∆
⊗

⊢ A1 ⊗ A2, B1, Γ, ∆

π1

⊢ A1, Γ
π3

⊢ A2, B2, ∆
⊗

⊢ A1 ⊗ A2, B2, Γ, ∆
&⊢ A1 ⊗ A2, B1 & B2, Γ, ∆

C
⊗
&−→
←−
C&

⊗

π1

⊢ A1, Γ

π2

⊢ A2, B1, ∆
π3

⊢ A2, B2, ∆
&⊢ A2, B1 & B2, ∆

⊗
⊢ A1 ⊗ A2, B1 & B2, Γ, ∆

π1

⊢ A1, B1, Γ
π2

⊢ A2, ∆
⊗

⊢ A1 ⊗ A2, B1, Γ, ∆

π3

⊢ A1, B2, Γ
π2

⊢ A2, ∆
⊗

⊢ A1 ⊗ A2, B2, Γ, ∆
&⊢ A1 ⊗ A2, B1 & B2, Γ, ∆

C
⊗
&−→
←−
C&

⊗

π1

⊢ A1, B1, Γ
π3

⊢ A1, B2, Γ
&⊢ A1, B1 & B2, Γ

π2

⊢ A2, ∆
⊗

⊢ A1 ⊗ A2, B1 & B2, Γ, ∆
π1

⊢ A1, Bi, Γ
π2

⊢ A2, ∆
⊗

⊢ A1 ⊗ A2, Bi, Γ, ∆ ⊕i⊢ A1 ⊗ A2, B1 ⊕ B2, Γ, ∆

C
⊗
⊕i−→
←−
C

⊕i
⊗

π1

⊢ A1, Bi, Γ ⊕i⊢ A1, B1 ⊕ B2, Γ
π2

⊢ A2, ∆
⊗

⊢ A1 ⊗ A2, B1 ⊕ B2, Γ, ∆
π1

⊢ A1, Γ
π2

⊢ A2, Bi, ∆
⊗

⊢ A1 ⊗ A2, Bi, Γ, ∆ ⊕i⊢ A1 ⊗ A2, B1 ⊕ B2, Γ, ∆

C
⊗
⊕i−→
←−
C

⊕i
⊗

π1

⊢ A1, Bi, Γ

π2

⊢ A2, ∆ ⊕i⊢ A2, B1 ⊕ B2, ∆
⊗

⊢ A1 ⊗ A2, B1 ⊕ B2, Γ, ∆
π1

⊢ A1, Bi, Γ
π2

⊢ A2, Bi, Γ
&⊢ A1 & A2, Bi, Γ ⊕i⊢ A1 & A2, B1 ⊕ B2, Γ

C&
⊕i−→
←−
C

⊕i
&

π1

⊢ A1, Bi, Γ ⊕i⊢ A1, B1 ⊕ B2, Γ

π2

⊢ A2, Bi, Γ ⊕i⊢ A2, B1 ⊕ B2, Γ
&⊢ A1 & A2, B1 ⊕ B2, Γ

(No commutation with ax, 1 nor 0 as the ax and 1-rule have no context and there are no rule for 0.)

Table 7 Rule commutations not involving a unit rule

R. Di Guardia and O. Laurent 23

Otherwise, the cut-elimination step is an ax key case on r, with a cut-rule we call c and a
sub-proof ρ in the other branch of c that the one leading to r. Starting from ϕ, consider the
rules introducing A⊥ in (all slices of) ρ. If any of them are ax-rules, then these are necessarily
on the formula A; expand those ax-rules, in both ϕ and ϖ (keep the same name for proofs π,
ϖ and ρ by abuse). Then, in ϕ, commute the cut-rule c with rules of ρ until reaching the rules
introducing A⊥ in all slices (which are rules of the main connective of A or ⊤-rules). Applying
the corresponding key cases or ⊤− cut commutative case (first commuting with a rule of the
expanded axiom r if A is a positive formula), then the ax key cases on strict sub-formulas of
A yields ϖ. During these ax key cases, we cut on sub-formulas of A, so on formulas of a
strictly smaller size. Therefore ϕ

η∗
−→ · β∗

−→ · η∗
←− ϖ, with a(· β∗

−→ ·) < a(π β−→ ϖ). ◀

▶ Remark. Cut-elimination β−→ preserves being in η-normal form.

▶ Lemma 45. Let π, ϖ and ϕ be proofs such that ϖ
η∗
←− π

β∗
−→ ϕ, with ϖ an η-normal proof.

There exists an η-normal proof φ such that ϖ
β∗
−→ φ

η∗
←− ϕ. This is depicted on Figure 12.

Proof. We have ϖ
ηm

←− π
βn

−→ ϕ. We reason by induction on the lexicographic order of the
triple

(
a(π β∗
−→ ϕ), n, m

)
. If n = 0 or m = 0, then the result trivially holds.

Consider the case n + 1 and m + 1. Therefore, ϖ
ηm

←− ι
η←− π

β−→ κ
βn

−→ ϕ. We apply
Lemma 44 on ι

η←− π
β−→ κ, yielding φ such that ι

β−→ φ
η∗
←− ϕ with a(ι β−→ φ) = a(π β−→ κ)

or φ1 and φ2 such that ι
η∗
−→ φ1

β∗
−→ φ2

η∗
←− κ with a(φ1

β∗
−→ φ2) < a(π β−→ κ). Both of

these cases, and the reasonings we will apply, are illustrated on the diagrams of Figure 13.
Assume to be in the first case. Applying the induction hypothesis on ϖ

ηm

←− ι
β−→ φ, with

ϖ in η-normal form, a(ι β−→ φ) = a(π β−→ κ) ≤ a(π β∗
−→ ϕ), 1 ≤ n + 1 and m < m + 1, there

exists an η-normal proof ν such that ϖ
β∗
−→ ν

η∗
←− φ. We now apply the induction hypothesis

on ν
η∗
←− φ

η∗
←− κ

βn

−→ ϕ, with ν in η-normal form, a(κ βn

−→ ϕ) ≤ a(π β∗
−→ ϕ) and n < n + 1.

We obtain an η-normal proof µ such that ν
β∗
−→ µ

η∗
←− ϕ. This concludes the first case.

Consider the second case. Using the confluence of η−→ on ϖ
ηm

←− ι
η∗
−→ φ1 (Proposition 43),

with ϖ in η-normal form, yields ϖ
η∗
←− φ1. We then apply the induction hypothesis on

ϖ
η∗
←− φ1

β∗
−→ φ2, with ϖ in η-normal form and a(φ1

β∗
−→ φ2) < a(π β∗

−→ ϕ). This yields
an η-normal proof ν such that ϖ

β∗
−→ ν

η∗
←− φ2. We use the induction hypothesis again,

this time on ν
η∗
←− φ2

η∗
←− κ

βn

−→ ϕ, with ν in η-normal form, a(κ βn

−→ ϕ) ≤ a(π β∗
−→ ϕ) and

n < n + 1. We obtain an η-normal proof µ with ν
β∗
−→ µ

η∗
←− ϕ, solving the second case. ◀

▶ Proposition 4 (Reduction to axiom-expanded proofs). Let π and ϖ be MALL proofs such
that π =βη ϖ. Then η(π) =β η(ϖ) with, in this sequence, only proofs in η-normal form.

Proof. We reason by induction on the length of the sequence π =βη ϖ. If it is of null length,
then π = ϖ and η(π) = η(ϖ). Otherwise, we have a proof ϕ such that π — ϕ =βη ϖ

with — ∈ { β−→; β←−; η−→; η←−}. By induction hypothesis, η(ϕ) =β η(ϖ) using only proofs in
η-normal form. We distinguish cases according to π — ϕ.

If π
β−→ ϕ, then as η(π) η∗

←− π we can apply Lemma 45 to obtain an η-normal proof φ

such that η(π) β∗
−→ φ

η∗
←− ϕ. Thus, φ = η(ϕ), so η(π) β∗

−→ η(ϕ) =β η(ϖ) and the result holds.
Similarly, if π

β←− ϕ then, as ϕ
η∗
−→ η(ϕ), there exists an η-normal proof φ such that

π
η∗
−→ φ

β∗
←− η(ϕ) (Lemma 45). Thus φ = η(π), and η(π) β∗

←− η(ϕ) =β η(ϖ).
Finally, if π

η−→ ϕ or π
η←− ϕ, then η(π) = η(φ) =β η(ϖ) and the conclusion follows. ◀

24 Type Isomorphisms for Multiplicative-Additive Linear Logic

π ι ϖ ENF

κ

ϕ

η ηm

β
β

n

φ

=

η∗

β

IH

ν ENF

β
∗

η∗

IH

µ ENF

β
∗

η∗

π ι ϖ ENF

κ

ϕ

η ηm

β
β

n

φ1

φ2

<

η
∗

β
∗

η∗

η
∗

IH

ν ENF

β
∗

η∗

IH

µ ENF

β
∗

η∗

Figure 13 Diagrams of the cases of the proof of Lemma 45 (ENF means in η-normal form)
In blue are uses of Lemma 44, in green of confluence of η−→ and in red of the induction hypothesis.

C Proofs for the completeness for unit-free MALL

This appendix contains proofs of results stated in Section 3 and leading to the proof of
completeness for unit-free MALL. All the sequent calculus proofs we consider in this section
have expanded axioms.

C.1 Proof of the Simulation Theorem (Theorem 12)
▶ Definition 46 (◁). Let θ and ϑ be MALL proof-nets. We denote θ ◁ ϑ if there exists a
∗-vertex C in θ such that the syntax forest of ϑ is the syntax forest of θ where the syntax
tree of C is duplicated into the syntax trees of C0 and C1 (which are different occurrences of
C), θ = θ0 ⊔ θ1

6 and ϑ = ϑ0 ⊔ ϑ1, with ϑi = θi up to assimilating Ci with C (for i ∈ {0; 1}).

▶ Lemma 47 (Simulation - β). Let π and ϖ be unit-free MALL proof trees such that π
β−→ ϖ.

We have R(π) = R(ϖ), R(π) β−→ R(ϖ) or R(π) ◁ R(ϖ).

Proof. We reason by cases according to the step π
β−→ ϖ. Recall that we desequentialize by

separating all cuts, and use the notations for steps from Definition 7. If π
β−→ ϖ is an ax

(resp. `−⊗, &−⊕) key case, then using a step (a) (resp. (b), (c)), R(π) β−→ R(ϖ). If it is a
`− cut, ⊗− cut−1, ⊗− cut−2, ⊕1− cut or ⊕2− cut commutative case, then R(π) = R(ϖ).
Finally, in a &− cut commutative case, we duplicate the cut-rule: R(π) ◁ R(ϖ). ◀

▶ Lemma 48 (◁ ⊆ =β). Let θ and θ′ be proof-nets such that θ ◁ θ′. Then θ =β θ′.

Proof. By Definition 46 of ◁, there exists a ∗-vertex C in θ, with θ = θ0 ⊔ θ1, such that θ′ is
θ where the syntax tree of C is duplicated into C0 and C1, and linkings in θ0 (respectively
θ1) use C0 (respectively C1) as C.

We reason by induction on the size of the formula A of C (and also C0 and C1); w.l.o.g.
A is positive. Applying a step of cut-elimination on C in θ yields a proof-net Θ. On the
other hand, a step of cut-elimination on C0 and C1 in θ′ yields Θ′. If A is an atom, then we
applied step (a), and we find Θ = Θ′.

If A is a ⊗-formula, i.e. A = A0⊗A1, then we applied step (b) and produced cuts A0 ∗A⊥
0

and A1 ∗ A⊥
1 in Θ, and two occurrences of these cuts in Θ′. Thus, Θ ◁ Ξ ◁ Θ′ with Ξ the

6 The symbol ⊔ means a union ∪ which happens to be between disjoint sets.

R. Di Guardia and O. Laurent 25

proof-net Θ where the cut on A0 is duplicated. By induction hypothesis, Θ =β Ξ =β Θ′. It
follows θ =β θ′ as θ

β−→ Θ =β Θ′ β←− · β←− θ′.
Finally, if A is a ⊕-formula with A = A0 ⊕ A1, then we used step (c), producing cuts

A0 ∗A⊥
0 and A1 ∗A⊥

1 in Θ, and two occurrences of these cuts in Θ′. Remark that inconsistent
linkings in θ′ for these steps are exactly those of θ, and therefore the same cuts are garbage
collected. Whence, Θ ◁ · ◁ Θ′, Θ ◁ Θ′ or Θ = Θ′ (according to the number of cuts garbage
collected). In all cases, using the induction hypothesis we conclude θ =β θ′. ◀

▶ Remark. Another proof of Lemma 48, using the Turbo Cut-elimination procedure and no
induction, is possible. We use the Turbo Cut-elimination procedure on C in θ, yielding a
proof-net Θ; we also use it in θ′ on C0 then C1, yielding Θ′. Whence, θ

β∗
−→ Θ and Θ′ β∗

←− θ′.
It stays to prove that Θ = Θ′. Remark that Θ and Θ′ can only differ by their linkings, for
they have the same syntax forest. Notice that a linking in θi, i ∈ {0; 1}, matches for C in θ

if and only if it matches for Ci in θ′ (because this linking uses Ci as C). Thence, the same
linkings stay in Θ and Θ′, and Θ = Θ′ follows.

▶ Theorem 12 (Simulation Theorem). Let π and ϖ be unit-free MALL proof trees (with
expanded axioms). If π =β ϖ, then R(π) =β R(ϖ).

Proof. This is a corollary of Lemmas 47 and 48. ◀

C.2 Proof of the Reduction to proof-net Theorem (Theorem 13)
We call B(θ) the β-normal form of the proof-net θ, with all cuts eliminated.

▶ Lemma 49. Let π, ϖ and ρ be unit-free MALL proof trees of respective sequents ⊢ A, Γ,
⊢ A⊥, ∆ and ⊢ Γ, ∆. Assume π

A

▷◁ ϖ =β ρ. Then B(R(π)) A

▷◁ B(R(ϖ)) reduces, after fully
eliminating the cut on A, to B(R(ρ)).

Proof. By the Simulation Theorem (Theorem 12), R(π A

▷◁ ϖ) =β R(ρ). By definition of R
(Section 3.1), R(π A

▷◁ ϖ) = R(π) A

▷◁ R(ϖ), so by Theorem 9 B(R(π) A

▷◁ R(ϖ)) = B(R(ρ)).
Moreover, by confluence of cut-elimination (Theorem 9), B(R(π) A

▷◁ R(ϖ)) can be obtained
by taking the β-normal forms of R(π) and R(ϖ), composing them over A and reducing this
cut. In other words, B(R(π) A

▷◁ R(ϖ)) = B(B(R(π)) A

▷◁ B(R(ϖ))), and the result follows. ◀

▶ Theorem 13 (Type isomorphisms in proof-nets). Let A and B be two unit-free MALL
formulas. If A ≃ B then there exist two proof-nets θ and ϑ such that A

θ, ϑ≃ B.

Proof. By Definition 1 of an isomorphism and Proposition 4, there exist unit-free MALL
proofs π and ϖ, respectively of ⊢ A⊥, B and ⊢ B⊥, A, such that π

B

▷◁ ϖ =β idA and
ϖ

A

▷◁ π =β idB. By Lemma 49 and as R(idA) is cut-free, B(B(R(π)) B

▷◁ B(R(ϖ))) =
B(R(idA)) = R(idA). Similarly, B(B(R(ϖ)) A

▷◁ B(R(π))) = R(idB). Thus, there exist
cut-free proof-nets θ := B(R(π)) and ϑ := B(R(ϖ)) whose composition over B (resp. A)
yields after cut-elimination the identity proof-net of A (resp. B). ◀

C.3 Proofs of the properties of identity proof-nets from Proposition 15
We prove each result separately.

▶ Lemma 50. The axiom links of an identity proof-net are exactly the (l, l⊥), for any leaf l.

Proof. By induction on the formula (see Figure 3 on Page 8). ◀

26 Type Isomorphisms for Multiplicative-Additive Linear Logic

▶ Corollary 51. An identity proof-net is bipartite ax-unique.

Proof. This follows from Lemma 50. ◀

▶ Lemma 52. Let λ be a linking of an identity proof-net and V an additive vertex in its
additive resolution. Then V ⊥ is also inside with, as premise kept, the dual premise of the
one kept for V .

Proof. Assume w.l.o.g. that the left premise of V is kept in λ. There is a left-ancestor l of
V in the additive resolution of λ, hence with a link a ∈ λ on it. By Lemma 50, a = (l, l⊥).
As l⊥ is a right-ancestor of V ⊥, the conclusion follows. ◀

▶ Lemma 53. In the identity proof-net of A, exactly one linking is on any given additive
resolution of the conclusion A.

Proof. Consider such an additive resolution R. There is an associated &-resolution R′ of
A⊥, A by taking the choices of premise of R on A and, for a &-vertex W of A⊥, taking the
dual premise chosen in R for W ⊥. By Lemma 52, a linking λ is on R if and only if it is on
R′. Meanwhile, by (P1) there is a unique linking λ on R′; thus the same holds on R. ◀

C.4 Proof of Lemma 18
▶ Lemma 18. Assume θ and θ′ are cut-free proof-nets of respective conclusions A⊥, B and
B⊥, A, and that their composition over B yields the identity proof-net of A. Then any leaf
of A⊥ (resp. A) has (at least) one axiom link on it in θ (resp. θ′).

Proof. Towards a contradiction, assume w.l.o.g. a leaf l of A⊥ has no link on it in θ. Then,
the composition over B of θ and θ′ has no link on l either. And reducing cuts cannot create
links using l, for it only takes links (l, m) and (m, n) to merge them into (l, m). However,
the identity proof-net of A is ax-unique by Proposition 15(i), thence full: contradiction. ◀

C.5 Proof of Proposition 21
▶ Proposition 21. If E is complete for isomorphisms between distributed formulas, then it is
complete for isomorphisms between arbitrary formulas.

Proof. The following rewriting system is strongly normalizing, with as normal forms distrib-
uted formulas, and each rule corresponds to a valid equality in the theory E (see Table 1):

A ⊗ (B ⊕ C) → (A ⊗ B) ⊕ (A ⊗ C) (C & B) ` A → (C ` A) & (B ` A)
(A ⊕ B) ⊗ C → (A ⊗ C) ⊕ (B ⊗ C) C ` (B & A) → (C ` B) & (C ` A)

A ⊗ 1 → A 1 ⊗ A → A A ` ⊥ → A ⊥ ` A → A

A ⊕ 0 → A 0 ⊕ A → A A & ⊤ → A ⊤ & A → A

A ⊗ 0 → 0 0 ⊗ A → 0 A ` ⊤ → ⊤ ⊤ ` A → ⊤

Consider an isomorphism A ≃ B between two arbitrary formulas A and B. Let Ad and
Bd be associated distributed formulas, obtained as normal forms of the above rewriting
system. As this rewriting system is included in E , we have A =E Ad and B =E Bd.

By soundness of E (Theorem 3) and as linear isomorphism is a congruence, we deduce
Ad ≃ A ≃ B ≃ Bd. The completeness hypothesis on E for distributed formulas yields
Ad =E Bd, and thus A =E Ad =E Bd =E B. ◀

R. Di Guardia and O. Laurent 27

C.6 Proof of Lemma 22
▶ Lemma 22 (Lemma 4.32 in [10], adapted). Let ω be a jump-free switching cycle in a
proof-net θ. There exists a subset of linkings Λ ⊆ θ such that ω ⊆ GΛ, ω ̸⊆ GΛW and for any
&-vertex W toggled by Λ, there exists an axiom link a ∈ ω depending on W in Λ.

Proof. The proof of this lemma uses some facts from [10] reproduced verbatim here. For Λ
a set of linkings and W a &-vertex, ΛW denote the set of all linkings in Λ whose additive
resolution does not contain the right argument of W . Write λ

W= λ′ if linkings λ, λ′ ∈ θ are
either equal or W is the only & toggled by {λ, λ′}. A subset Λ of a proof-net θ is saturated
if any strictly larger subset toggles more & than Λ. It is straightforward to check that:

(S1) If Λ is saturated and toggles W , then ΛW is saturated.
(S2) If Λ is saturated and toggles W and λ ∈ Λ, then λ

W= λW for some λW ∈ ΛW .

Let us now prove our lemma. Take Λ a minimal saturated subset of θ with GΛ containing
ω. Since Λ is minimal, ω ̸⊆ GΛW (using (S1)), so some edge e of ω is in GΛ but not in GΛW .
We claim that, without loss of generality, e is an axiom link. If it is indeed the case, then
e ∈ λ ∈ Λ and e /∈ λW for e /∈ ΛW , so e depends on W in Λ (using (S2)). We now prove our
claim by eliminating other possibilities step by step.

Without loss of generality, e is an edge from a leaf l to some X, because for any other
edge Y → X in ω we have l → Z1 → · · · → Zn = Y → X in ω for some leaf l, and Y → X

is in GΛW whenever l→ Z1 is in GΛW .
Still without loss of generality, e is not an edge in a syntax tree. Indeed, in such a case

e /∈ GΛW implies l /∈ GΛW . As e belongs to the switching cycle ω, let us look at the other
edge in this cycle with endpoint l, say e′. As l /∈ GΛW , we also have e′ /∈ GΛW . Remark that
e′ cannot be an edge in a syntax tree, for only one such edge has for endpoint the leaf l,
namely e. We can replace e with e′ to assume e is not an edge in a syntax tree.

As ω is jump-free, e cannot be a jump edge. The sole possibility is e being a link. ◀

C.7 Proof of Lemma 26
▶ Lemma 26. Let λ be a linking of ϑ, and V an additive vertex in its additive resolution.
Then V ⊥ is also inside, with as premise kept the dual premise of the one kept for V .

Proof. Assume w.l.o.g. that the left premise of V is kept in λ. There is a left-ancestor l of V

in the additive resolution of λ, hence with a link a ∈ λ on it. By Lemma 25, we have a⊥ ∈ λ,
using l⊥. As l⊥ is a right-ancestor of V ⊥, the conclusion follows. ◀

C.8 Proof of Corollary 31
This proof follows very closely the one for MLL of Balat & Di Cosmo (Section 3 in [2]).

In the following, we will call substitution the usual operation [A1/X1, . . . , An/Xn] of
replacement of the propositional atoms Xi of a formula by the formulas Ai. We will consider
substitutions extended to proof-nets, i.e. if σ is a substitution and θ a proof-net, σ(θ) will be
the proof-net obtained from θ by replacing all formulas Fj appearing in it by σ(Fj). We will
also use a more general notion, renaming, that may replace different occurrences of the same
atom by different formulas in a proof-net, i.e. substitute on leaves instead of atoms.

▶ Definition 54 (Renaming). An application α from the set of leaves of a proof-net θ to a
set of atoms is a renaming if α(θ), the graph obtained by substitution of each label of a leaf l

of θ by α(l), is a proof-net.

28 Type Isomorphisms for Multiplicative-Additive Linear Logic

Remark that if θ is bipartite ax-unique, then the definition of α only on leaves in one
conclusion of θ is sufficient to define a renaming α on θ. This is because every leaf of the
other conclusion is linked to exactly one leaf in this conclusion, and no leaves in a given
conclusion are linked together. Note also that if the conclusions of θ are ambiguous formulas,
then two different occurrences of the same atom can be renamed differently, unlike what
happens in the case of substitutions.

▶ Theorem 55 (Renaming preserves isomorphisms). For A and B distributed formulas, assume
A

θ, θ′

≃ B, with θ and θ′ proof-nets of respective conclusions A⊥, B and B⊥, A. If α is a renaming
of the leaves of θ, then there exists α′, a renaming of the leaves of θ′, such that α′(A)

α(θ), α′(θ′)
≃ α(B);

more precisely:
α′(θ′) is a proof-net
α(A⊥) = α′(A)⊥ and α′(B⊥) = α(B)⊥

the composition of α(θ) and α′(θ′) by cut over α(B) (resp. α′(A)) gives the identity
proof-net of α′(A) (resp. α(B)).

Proof. We first define α′. By Theorem 29, θ′ is bipartite ax-unique, so it is sufficient to define
α′ only on the occurrences of B⊥, i.e. to define α′(B⊥). We set α′(B⊥) = α(B)⊥. Then the
composition of α(θ) and α′(θ′) by cut over α(B) is a proof-net. Since cut-elimination does
not depend on labels, this composition reduces to an identity proof-net with conclusions
α(A⊥), α′(A). An induction, on the number of connectives of α(A), shows that this is the
identity proof-net of α(A⊥). Thus α(A⊥) = α′(A)⊥. But then, the composition of α′(θ′) and
α(θ) by cut over α′(A) is a proof-net, that reduces to an identity net (since cut-elimination
does not depend on labels), that is the identity proof-net of α(B). Hence, α′(A)

α(θ), α′(θ′)
≃ α(B). ◀

▶ Lemma 56 (Distributed ambiguous isomorphic formulas). Let A and B be distributed
formulas, such that A is ambiguous and A

θ, θ′

≃ B. There exists a substitution σ and distributed
formulas A′ and B′, non-ambiguous, such that A = σ(A′), B = σ(B′) and A′ϑ, ϑ′

≃ B′ for some
proof-nets ϑ and ϑ′.

Proof. The proof-nets θ and θ′ are bipartite ax-unique (Theorem 29), with conclusions
B⊥, A and A⊥, B respectively. One can define a renaming α such that α(A) has distinct
atoms (i.e. no atom of α(A) occurs twice in α(A), even one positively and one negatively),
for it is sufficient to define α only on leaves of A. In particular, α(A) is non-ambiguous.
Then, Theorem 55 gives an algorithm for defining a renaming α′ such that α′(A)

α(θ), α′(θ′)
≃ α(B),

with in particular α′(A⊥) = α(A)⊥ and α(B⊥) = α′(B)⊥. Pose A′ := α′(A) and B′ := α(B),
hence A′α(θ), α′(θ′)

≃ B′ and α(θ) has for conclusions B′⊥, A′. Formulas A′ and B′ are distributed, as
renaming acts only on leaves.

On α(θ) one can define a renaming α−1 such that α−1(A′) = A, hence α−1(B′⊥) = B⊥.
Since α(θ) is bipartite ax-unique, it is equivalent to define α−1 on α(θ) or only on leaves of A′.
Because all atoms of A′ are distinct, two distinct leaves of A′ correspond to distinct atoms of
A′. One can then define a substitution σ on atoms of A′ by σ(X) = α−1(l(X)), with l(X)
the unique leaf of A′ with label X. Thus, θ = α−1(α(θ)) = σ(α(θ)): in particular, σ(A′) = A

and σ(B′⊥) = B⊥, so σ(B′) = B. Finally, A′ and B′ are distributed non-ambiguous formulas
such that A′α(θ), α′(θ′)

≃ B′, A = σ(A′) and B = σ(B′). ◀

▶ Corollary 31 (Reduction to distributed non-ambiguous formulas). The set of couples of
distributed formulas A and B such that A

θ, ϑ≃ B is the set of instances (by a substitution on
atoms) of couples of distributed non-ambiguous formulas A′ and B′ such that A′θ

′, ϑ′

≃ B′.

R. Di Guardia and O. Laurent 29

Proof. We show each inclusion separately. Let A and B be two distributed formulas such
that A

θ, ϑ≃ B. If A or B is ambiguous, then A and B are instances of two non-ambiguous
distributed formulas A′ and B′ such that A′θ

′, ϑ′

≃ B′ by Lemma 56. Otherwise, A and B are
non-ambiguous and the result holds.

Conversely, let A′ and B′ be distributed non-ambiguous formulas such that A′θ
′, ϑ′

≃ B′,
and σ a substitution on atoms of A′ (so also on atoms of B′). Let θ′ and ϑ′ are bipartite
ax-unique proof-nets (Theorem 29). The substitution σ defines on θ′ a renaming α (any
substitution can be seen as a renaming). Let α′ be the renaming defined on ϑ′, associated to
α in Theorem 55. Since σ(A′⊥) = α(A′⊥) = (α′(A′))⊥, α′ is also the renaming induced by σ

on ϑ′. As α′(A′)
α(θ′), α′(ϑ′)
≃ α(B′) by Theorem 55, it follows σ′(A′)

α(θ′), α′(ϑ′)
≃ σ(B′). ◀

C.9 Proof of Corollary 32
▶ Lemma 57. Let θ and ϑ be bipartite proof-nets of respective conclusions A, B and B⊥, C.
Their composition over B reduces to a bipartite proof-net.

Proof. The resulting proof-net has for conclusions A, C. The only links in the new proof-net
that were not in θ nor ϑ are those resulting from the replacement of a pair of links (l, m) and
(m⊥, n) with a link (l, n), where m is a leaf of B. By bipartiteness of θ and ϑ, it follows l is
a leaf of A and n one of C, so the new axiom link is between a leaf of A and one of C. ◀

▶ Lemma 58. Let θ be a bipartite proof-net of conclusions A⊥, A, with A a non-ambiguous
formula. Axiom links of θ are of the form (l⊥, l) for l a leaf of A.

Proof. Let a be an axiom link of θ. By bipartiteness, it uses a leaf l of A and a leaf m of
A⊥. Denote by X the label of l, whence the label of m is X⊥. However, the only leaf of A⊥

with label X⊥ is l⊥, because A⊥ is non-ambiguous. Thus, m = l⊥ and a = (l, l⊥). ◀

▶ Lemma 59. Let θ be a bipartite proof-net of conclusions A⊥, A, with A a non-ambiguous
formula. Take a linking λ ∈ θ and an additive vertex V in its additive resolution. The vertex
V ⊥ is in the additive resolution of λ, and λ keeps for V ⊥ the dual premise it keeps for V .

Proof. As V is in the additive resolution (A⊥, A) ↾ λ of λ, one of its ancestor leaves, say l, is
in (A⊥, A) ↾ λ: there is a link a ∈ λ on it. By Lemma 58, a = (l, l⊥). But l⊥ is an ancestor
of V ⊥, so V ⊥ is in (A⊥, A) ↾ λ, with as premise the dual premise chosen for V . ◀

▶ Lemma 60. Let A be a non-ambiguous formula, θ and θ′ bipartite proof-nets of conclusions
A⊥, A. Then θ = θ′.

Proof. Take λ ∈ θ a linking. It is on some &-resolution R of A⊥, A. By (P1), there exists
a unique linking λ′ ∈ θ′ on R. We have to prove λ = λ′. They have the same additive
resolution, for their choice on a ⊕-vertex P is determined by the premise taken for the
&-vertex P ⊥, which is in R (Lemma 59). They have the same axiom links on this additive
resolution, because any leaf on it is linked to its dual (Lemma 58). Therefore, λ = λ′, so
θ ⊆ θ′. By symmetry, the same reasoning yields θ′ ⊆ θ, thus θ = θ′. ◀

▶ Corollary 61. Let A be a non-ambiguous formula. There is exactly one bipartite proof-net
of conclusions A⊥, A: the identity proof-net of A.

Proof. This follows from Proposition 15(i) and Lemma 60. ◀

30 Type Isomorphisms for Multiplicative-Additive Linear Logic

Al Ar

⊚ B

T (Al) T (Ar)

T (B)

l r m s

Figure 14 Illustration of the proof of Lemma 64

▶ Theorem 62 (Bipartite proof-nets for non-ambiguous formulas). Let θ and θ′ be bipartite
proof-nets of respective conclusions A⊥, B and B⊥, A, with A a non-ambiguous formula.
Then their composition over B reduces to the identity proof-net of A.

Proof. By Lemma 57, the composition of θ and θ′ by cut reduces to a bipartite proof-net, of
conclusions A⊥, A. By Corollary 61, this can only be the identity proof-net of A. ◀

▶ Corollary 32. Let A and B be non-ambiguous formulas. If there exist bipartite proof-nets
θ and ϑ of respective conclusions A⊥, B and B⊥, A, then A

θ, ϑ≃ B.

Proof. By Theorem 62 both compositions yields identity proof-nets, whence A
θ, ϑ≃ B. ◀

C.10 Isomorphisms completeness for unit-free MALL (Theorem 33)
▶ Definition 63 (Sequentializing vertex). A terminal (i.e. with no descendant) non-leaf vertex
V in a proof-net θ is called sequentializing if, depending on its kind:
⊗\∗-vertex: the removal of V in Gθ has two connected components.
⊕-vertex: the left or right syntax tree of V does not belong to Gθ (i.e. has no link on any
of its leaves in Gθ).
`\&-vertex: a terminal `\&-vertex is always sequentializing.

It is easy to check that removing a sequentializing vertex produces proof-net(s). The
sequentialization theorem affirms there exists a sequentializing vertex in a proof-net.

▶ Lemma 64. In a bipartite full proof-net with conclusions Al ⊚ Ar, B, where ⊚ ∈ {⊗;⊕},
the root of Al ⊚ Ar is not sequentializing.

Proof. Let l be a leaf of Al and r one of Ar. By bipartiteness and fullness, there are leaves
m and s of B with axiom links (l, m) and (r, s) in the proof-net (see Figure 14). As there is
a path in T (B) between m and s, whether ⊚ = ⊕ or ⊚ = ⊗, it is not sequentializing. ◀

▶ Lemma 65 (Reordering `-vertices). Let θ be a bipartite ax-unique proof-net of conclusions
A = Al ` Ar and B = Bl ⊙Br with ⊙ ∈ {⊗;⊕} and A a distributed formula. Then ⊙ = ⊗
and there exist two bipartite ax-unique proof-nets of respective conclusions A′

l, Bl and A′
r, Br

where A′
l ` A′

r is equal to Al ` Ar up to associativity and commutativity of `.

Proof. We remove all terminal (hence sequentializing) `-vertices, all in A, without modifying
the linkings. The resulting graph is a proof-net of conclusions A1, . . . , An, Bl ⊙ Br (see
Figure 15). The roots of the new trees Ai cannot be &-vertices because A is distributed:
so they are ⊗\⊕-vertices or atoms. These ⊗\⊕-vertices are not sequentializing, since by
bipartiteness and fullness every leaf of each Ai is connected to the formula Bl⊙Br (reasoning

R. Di Guardia and O. Laurent 31

Bl Br

⊙
B

T (Bl) T (Br)
T (A1) T (A2) . . . T (An)

` `... ``
`
A

Figure 15 Proof-net of Lemma 65 with all terminal `-vertices removed

as in the proof of Lemma 64). Thus, the sequentializing vertex of this proof-net is necessarily
Bl ⊙Br. It follows ⊙ = ⊗, because all leaves of B are connected to leaves in A1, . . . , An, so
if ⊙ = ⊕ then Bl⊙Br cannot be sequentializing. Removing the sequentializing Bl⊗Br gives
two proof-nets, with a bipartition of the Ai into two classes: those linked to leaves of Bl

and the others linked to leaves of Br. We recover from these proof-nets bipartite ax-unique
ones by adding `-vertices under the Ai in an arbitrary order, yielding formulas A′

l (with
those linked to Bl) and A′

r (with those linked to Br). As we only removed and put back
`-vertices, A′

l ` A′
r is equal to Al ` Ar up to associativity and commutativity of `. ◀

▶ Lemma 66 (Reordering &-vertices). Let θ be a bipartite ax-unique proof-net of conclusions
A = Al & Ar and B = Bl ⊕Br with A a distributed formula. Then there exist two bipartite
ax-unique proof-nets of respective conclusions A′

l, Bl and A′
r, Br where A′

l & A′
r is equal to

Al & Ar up to associativity and commutativity of &.

Proof. We remove all terminal &-vertices in the proof-net, then all terminal `-vertices, all in
A. The resulting graphs are proof-nets θi (for terminal negative vertices are sequentializing),
of conclusions Ai

1, . . . , Ai
ni

, Bl ⊕ Br for the i-th proof-net. An illustration is Figure 15,
except we have several of these proof-nets, having in common exactly T (B). As in the
proof of Lemma 65, the roots of the new trees Ai

j cannot be negative vertices because the
formula A is distributed: so they are ⊗\⊕-vertices or atoms. These ⊗\⊕-vertices cannot
be sequentializing, since by bipartiteness and fullness every leaf of Ai

j is connected to the
formula Bl ⊕Br (reasoning as in the proof of Lemma 64). Thus, the sequentializing vertex
of these proof-nets is necessarily Bl ⊕Br, we can remove it: for a given i, all Ai

j are linked
only to either Bl or Br. We put back the `-vertices we removed, in the very same order. We
then put back the &-vertices we removed, but in another order: we put together all θi linked
to Bl, and all those to Br, yielding two proof-nets of conclusions Bl, A′

l and Br, A′
r. These

proof-nets are bipartite ax-unique ones (because adding and removing ` does not modify
the linkings, and & is disjoint union of linkings). We indeed have A′

l & A′
r equal to Al & Ar

up to associativity and commutativity of &, because we only reordered &-vertices. ◀

We conclude by induction on the size s(A) of A, which is its number of connectives (thus
unaffected by commutation and associativity of connectives).

▶ Theorem 33 (Isomorphisms completeness for unit-free MALL). Given A and B two unit-free
MALL formulas, if A ≃ B, then A =E† B.

32 Type Isomorphisms for Multiplicative-Additive Linear Logic

Proof. By Theorem 13, there exist proof-nets θ and ϑ such that A
θ, ϑ≃ B. We prove the

following stronger result: if A
θ, ϑ≃ B for some proof-nets θ and ϑ, then A =E† B. We assume

A and B to be distributed and non-ambiguous formulas by Proposition 21 and Corollary 31.
We reason by induction on the size of A, s(A).7

If A and B are atoms (i.e. of null size), then A = B and the property holds. Otherwise,
A⊥ and B are both non atomic. By Theorem 29, θ and ϑ are bipartite ax-unique; they
have respective conclusions A⊥, B and B⊥, A. By Lemma 64, one of the formulas A⊥, B

is negative, otherwise neither the root of A⊥ nor B is sequentializing in θ, contradicting
sequentialization (Theorem 10). A symmetric reasoning on ϑ implies that the other formula
is positive. Assume w.l.o.g. that B = B0 ⊙B1 is positive (i.e. ⊙ ∈ {⊗;⊕}) and A⊥ negative.
We distinguish cases according to the kind of the roots of A⊥ and B, considering the proof-net
θ. If B a ⊗-formula and A a &-formula, we instead consider ϑ of conclusions B⊥, A, where
A is a ⊕-formula and B⊥ a `-formula. Whence, either A⊥ is a `-formula, or B and A⊥ are
respectively a ⊕-formula and a &-formula.

In the first (resp. second) case, by Lemma 65 (resp. Lemma 66) ⊙ = ⊗ (in the first case
only) and there exist two bipartite ax-unique proof-nets θ0 and θ1 of respective conclusions
A′

0
⊥

, B0 and A′
1

⊥
, B1, with A′⊥ = A′

1
⊥ ` A′

0
⊥ (resp. A′⊥ = A′

1
⊥ & A′

0
⊥) equal to A⊥ up

to associativity and commutativity of ` (resp. &). In particular, A′⊥ =E† A⊥, and s(A′
0)

and s(A′
1) are both less than s(A). To conclude, we only need bipartite proof-nets ϑ0 and

ϑ1 of respective conclusions B⊥
0 , A′

0 and B⊥
1 , A′

1. We will then apply Corollary 32 to obtain
A′

0
θ0, ϑ0≃ B0 and A′

1
θ1, ϑ1≃ B1. Thence, by induction hypothesis, A′

0 =E† B0 and A′
1 =E† B1, thus

A′ =E† B.8 As A =E† A′, we will finally conclude A =E† B.
Thus, we look for two bipartite proof-nets of respective conclusions B⊥

0 , A′
0 and B⊥

1 , A′
1.

As A
θ, ϑ≃ B, and A ≃ A′ by soundness of E† (Theorem 3), it follows using Theorem 13

that A′Θ, Θ′

≃ B for some proof-nets Θ and Θ′.9 Furthermore, Θ is a bipartite ax-unique
proof-net (Theorem 29) of conclusions B⊥, A′, i.e. of conclusions B⊥

1 ⊙⊥ B⊥
0 , A′

0 ⊚ A′
1 with

(⊙⊥,⊚) ∈ {(`,⊗); (&,⊕)}. We had a bipartite ax-unique proof-net θ0 of conclusions A′
0

⊥
, B0,

therefore the atoms or negated atoms of B0 are exactly those of A′
0. Similarly, the atoms

and negated atoms of B1 are exactly those of A′
1. Whence, no atom nor negated atom of

B0 (resp. B1) is one of A′
1 (resp. A′

0), for otherwise an atom or negated atom of A0 (resp.
A1) also occurs in A′

1 (resp A′
0), contradicting non-ambiguousness of A′. This implies that

axiom links in Θ must be between leaves of B⊥
0 and A′

0, and between leaves of B⊥
1 and A′

1.
Therefore, once we sequentialize the negative root ⊙⊥ of B⊥ in Θ, the positive root ⊚ of A′

is sequentializing. After sequentializing both, we obtain two bipartite ax-unique proof-nets,
of respective conclusions B⊥

0 , A′
0 and B⊥

1 , A′
1. ◀

D Proofs for the completeness for full MALL

This appendix contains proofs of results stated in Section 4 and leading to the proof of
completeness for full MALL. In all this section, by proof we mean a sequent calculus proof of
MALL, we never consider proof-nets.

7 Remark that s(A) = s(B), because θ is bipartite ax-unique (Theorem 29), thence A and B have the
same number of atoms, so of connectives as they are all binary ones.

8 The formula A′ is distributed for it is equal up to associativity and commutativity to the distributed A.
Whence, A′0 and A′1 are also distributed.

9 One can easily check that isomorphisms in proof-nets form equivalence classes on formulas.

R. Di Guardia and O. Laurent 33

D.1 Proof of Theorems 34 and 35
▶ Definition 67. We define the weight w(π) of a proof π by induction:

w
(

ax
⊢ A⊥,A

)
= 1.

w

 π
⊢ A, Γ

ϖ

⊢ A⊥, ∆
cut⊢ Γ, ∆

 = w(π) + w(ϖ)

w

(π
⊢ A, Γ

ϖ
⊢ B, ∆ ⊗

⊢ A⊗B, Γ, ∆

)
= w(π) + w(ϖ) + 1

w

(π
⊢ A, B, Γ `⊢ A ` B, Γ

)
= w(π) + 1

w
(1⊢ 1

)
= 1

w

(π
⊢ Γ ⊥⊢ ⊥, Γ

)
= w(π) + 1

w

(π
⊢ A, Γ

ϖ
⊢ B, Γ

&⊢ A & B, Γ

)
= max (w(π), w(ϖ)) + 1

w

(π
⊢ Ai, Γ ⊕i⊢ A1 ⊕A2, Γ

)
= w(π) + 1

w
(

⊤⊢ ⊤, Γ
)

= 1

▶ Definition 68. A block B of cut-rules in a proof π is a maximal set of cut-rules in π

such that all of these rules are a premise of another rule in the set, or use as premise the
conclusion of a rule in the set. A block can also be seen as a maximal sub-proof composed of
cut-rules only.

We call measure |B| of a block B of cut-rules in a proof π the weight of its root cut-rule,
i.e. |B| =

∑
i w(πi) where the πi are the sub-proofs whose conclusions are the premises of

the cut-rules of |B|, premises which are not the conclusion of a cut-rule.
The measure |c| of a cut-rule c in a proof π is the measure of the block it belongs to.
The measure |π| of a proof π is the multiset of the measures of its cut-rules.

▶ Remark. A block B of n cut-rules in a proof π has its measure |B| appearing n times in
|π|, once for each of its cut-rules.

▶ Lemma 69. If π
β−→ ϖ then |π| ≥ |ϖ|, with equality if and only if the β−→ step is a

cut− cut commutative step.

Proof. It suffices to compute the measure before and after each cut-elimination step. ◀

We denote by β−→ a β−→ step other than a cut − cut commutation. Also note ∼c the
equivalence closure of cut− cut commutation (which is already a symmetric relation).

▶ Lemma 70. Cut-elimination not involving the cut− cut commutation in MALL sequent
calculus is strongly normalizing. In particular, cut-elimination is weakly normalizing.

Proof. As long as there exists a cut-rule, we can choose to do a β−→ step (for instance by
considering a cut-rule with no other cut-rule above it). This strictly decreases the measure
of the proof by Lemma 69, ensuring termination. ◀

34 Type Isomorphisms for Multiplicative-Additive Linear Logic

π1 π2

π3

=c

β

ϖ1 ϖ2

β
∗

=∗
c

β
∗

πt

πl πr

β β

ϖl ϖr

β ∗

=∗
c

β
∗

π1 π2

π3

∼c

β

ϖ1

ϖ2

β
β ∗

β
∗

Figure 16 Diagrams of Lemmas 72, 73, and 74 (from left to right)

We recall =c is one rule commutation of cut-free MALL, i.e. which is not a commutation
involving a cut-rule nor a ⊤−⊗ commutation creating or deleting a sub-proof containing a
cut-rule. We denote =∗

c the equivalence closure of =c.

▶ Lemma 71. If π =c ϖ with a rule commutation not involving a ⊤-rule, then |π| = |ϖ|.

Proof. It suffices to compute the measure for both sides of each such rule commutation. ◀

▶ Lemma 72. Let π1, π2 and π3 be proofs such that π1 =c π2
β−→ π3. Then, there exist ϖ1

and ϖ2 such that π1
β

∗

−→ ϖ1 =∗
c ϖ2

β
∗

←− π3 (diagrammatically represented on Figure 16).
Furthermore, all proofs in the sequence ϖ1 =∗

c ϖ2 have measures strictly smaller than
max(|π1|, |π2|).

Proof. A first general case is when the π1 =c π2 and π2
β−→ π3 steps involve only distinct

rules, and the rules of one are neither erased nor duplicated by the other. Then they commute
and we have π1

β−→ ϖ1 =c π3 using the same steps in the other order. The result on measures
follows by Lemma 69.

Assume these steps use distinct rules, but π1 =c π2 duplicates a sub-proof containing the
rules of π2

β−→ π3 (this can happen if the =c step is a &−⊗ commutative case). Then, by
doing the β−→ step first, with π1

β−→ ϖ1, we can do the =c step after, yielding ϖ1 =c ϖ2,
with ϖ2 being π3 where we did the β−→ step on both duplicated occurrences and not just
one. Therefore, we have π3

β−→ ϖ2 by doing this step on the other duplicated occurrence.
We conclude π1

β−→ ϖ1 =c ϖ2
β←− π3, and |ϖ1| < |π1|, |ϖ2| < |π3| < |π2| by Lemma 69.

Now, consider the case where the two steps still involve distinct rules, but the π2
β−→ π3

step duplicates a sub-proof containing the rules of π1 =c π2 (which may happen if π2
β−→ π3 is

a &−cut commutative case). Then, by doing the β−→ step first, yielding π1
β−→ ϖ1, we need to

do the =c step twice, once for each occurrence, to recover π3: we get π1
β−→ ϖ1 =c ϖ2 =c π3.

The result on measures follows by Lemma 69 and because we duplicate the step =c, so
|ϖ2| ≤ max(|ϖ1|, |π3|) < max(|π1|, |π2|).

Another general case is when the rules involved in the two steps are distinct, but the
β−→ step eliminates a subtree containing the rules of the =c step (this can arise when using

a & − ⊕i key case or a ⊤ − cut commutative case). In this case, doing first the β−→ step
directly yields π3: π1

β−→ π3, with |π3| < |π1|. A =c step cannot erase a sub-proof containing
the rules of a β−→ step, for the only possible case for this is a ⊤−⊗ commutative case, and
we assumed in this case that the sub-proof erased (or created) is cut-free.

R. Di Guardia and O. Laurent 35

From now on, we suppose not to be in such situations, meaning both steps involve (at
least) one common rule. This rule cannot be a cut one, for there are no commutations
involving a cut-rule in =c. We distinguish cases according to the kind of π2

β−→ π3.

If π2
β−→ π3 is an ax key case. As an ax-rule never commutes, the two steps share no rule.

If π2
β−→ π3 is a `−⊗ key case. In this case, π2 and π3 are the following proofs:

ρ1
⊢ A, Γ

ρ2
⊢ B, ∆ ⊗

⊢ A⊗B, Γ, ∆

ρ3

⊢ B⊥, A⊥, Σ `
⊢ B⊥ ` A⊥, Σ

cut⊢ Γ, ∆, Σ
ρ4

ρ1
⊢ A, Γ

ρ2
⊢ B, ∆

ρ3

⊢ B⊥, A⊥, Σ
cut

⊢ A⊥, ∆, Σ
cut⊢ Γ, ∆, Σ

ρ4

By our assumption, π1 =c π2 was a step pushing down the ⊗ or `-rule, and up some non
cut-rule r. We can in π1 commute the cut-rule up and r down (as r cannot introduce the
formula on which we cut). This yields a proof ϖ1 such that π1

β−→ ϖ1 with this commutative
step, and ϖ1

β−→ ϖ3 using the same step as in π2
β−→ π3, unless r is a ⊤-rule, case we

will discuss in a second step, and if r is a &-rule we do it on both occurrences, obtaining
ϖ1

β−→ ϖ2
β−→ ϖ3. Thus, except if r is a ⊤-rule, we have ϖ1

β
∗

−→ ϖ3. Then, in ϖ3 we can
commute r up above one or two (according to its original position) of the cut-rules created by
this key case, yielding π3 using one or two β←− step. Therefore, π1

β−→ ϖ1
β

∗

−→ ϖ3
β

∗

←− π3.
Now, let us consider the case where the other rule r in the =c step is a ⊤-rule, say

above the ⊗ formula (the case where it is above the ` is similar). The proof π1 is

⊤⊢ A⊗B, Γ, ∆

ρ3

⊢ B⊥, A⊥, Σ `
⊢ B⊥ ` A⊥, Σ

cut⊢ Γ, ∆, Σ
ρ4

. First executing a commutative ⊤ − cut
β−→

step in π1 using this rule, we obtain ϖ1 =
⊤⊢ Γ, ∆, Σ

ρ4
. Using one or two ⊤ − cut

commutations yields π3, by putting the ⊤-rule in the corresponding ρi it was in π2. Whence,
π1

β−→ ϖ1
β

∗

←− π3. Similarly, if r is commuted with the `-rule, we obtain π1
β−→ ϖ1

β←− π3.
This concludes the study when =c is a commutation with the ⊗ or `-rule.

In both subcases, the result on measures follows by Lemma 69.

If π2
β−→ π3 is a &−⊕i key case. This case is similar to the previous one, in simpler as

we create one new cut-rule and not two. We have π2 the following proof:

ρ2
⊢ A2, Γ

ρ1
⊢ A1, Γ

&⊢ A2 & A1, Γ

ρ3

⊢ A⊥
i , ∆

⊕i
⊢ A⊥

1 ⊕A⊥
2 , ∆

cut⊢ Γ, ∆
ρ4

and π3 the next one:

ρi

⊢ Ai, Γ
ρ3

⊢ A⊥
i , ∆

cut⊢ Γ, ∆
ρ4

36 Type Isomorphisms for Multiplicative-Additive Linear Logic

The π1 =c π2 step was a commutation pushing down the & or ⊕i-rule, and another
non-cut-rule r up. We can first commute r and the cut-rule, yielding π1

β−→ ϖ1. Applying
the key case then yields ϖ1

β−→ ϖ3, unless r is a ⊤-rule, case we will discuss in a second
step, and if r is a &-rule we can do it on both occurrences, obtaining ϖ1

β−→ ϖ2
β−→ ϖ3.

Then, in ϖ3, we can commute r up above the cut-rule created by this key case, yielding π3.
Therefore, π1

β−→ ϖ1
β

∗

−→ ϖ3
β←− π3 (if r is not a ⊤-rule).

Now, let us consider the case where the other rule r in the =c step is a ⊤-rule, above
the & or ⊕ formula. First executing a ⊤− cut commutative step in π1 using this rule, we
obtain ϖ1 =

⊤⊢ Γ, ∆
ϖ3

. Then, a ⊤− cut commutation yields π3 by putting the ⊤-rule in

the corresponding ρi it was in π2. Whence, π1
β−→ ϖ1

β←− π3.
In both subcases, the result on measures follows by Lemma 69.

If π2
β−→ π3 is a ⊥− 1 key case. This case is also similar to the `−⊗ key case, in simpler

as there are less sub-proofs. We have π2 = 1⊢ 1

ρ1
⊢ Γ ⊥⊢ ⊥, Γ

cut⊢ Γ
ρ2

and π3 =
ρ1
⊢ Γ
ρ2

.

The 1-rule does not commute, so the π1 =c π2 step was a commutation pushing down the
⊥-rule, and another non-cut-rule r up. We can first commute r and the cut-rule, yielding
π1

β−→ ϖ1. Applying the key case then yields ϖ1
β−→ π3, unless r is a ⊤-rule, case we will

discuss in a second step, and if r is a &-rule we can do it on both occurrences, obtaining
ϖ1

β
∗

−→ π3.
Now, let us consider the case where the other rule r in the =c step is a ⊤-rule, above the

⊥ formula. Applying a ⊤− cut commutative step in π1 using this rule, we directly obtain
π3. Whence, π1

β−→ π3.
In both subcases, the result on measures follows by Lemma 69.

If π2
β−→ π3 is a commutative case. We have π1 =c π2 and π2

β−→ π3 having exactly
one rule in common, for the cut-rule does not belong to the commutations in =c and a
commutative cut-elimination case involves two rules. Thus, the =c step involves the rule r

that will be commuted down in the β−→ step, and call s the other rule involved in =c. These
rules r and s are not cut-rules. The proof π1 has from top to bottom r, s and cut, π2 has s,
r and cut, and π3 has s, cut and r. Assume for the moment neither r nor s is a ⊤-rule.

If the cut-rule commutes with s, we first commute s− cut then r − cut, yielding π1
β−→

ϖ1
β

∗

−→ ϖ3 (the β
∗

−→ being of length one, except if s is a &-rule, in which case we need to do
the r − cut commutation for both occurrences). The proof ϖ3 has from top to bottom cut,
r and s. We then commute r with s and then s with cut (twice if r is a &-rule), yielding
ϖ3 =c ϖ4

β
∗

←− π3. The result on measures is a consequence of Lemma 69.
Otherwise, s is a rule introducing the formula on which we cut. We first reduce in the

same way all cut-rules in the branch of the cut-rule not containing s, yielding ϖ1 from π1

through π1
β

∗

−→ ϖ1 and ϖ7 from π3 through π3
β

∗

−→ ϖ7; they share this sub-proof, and we
use the strong normalization of β−→ (Lemma 70). Denote by s⊥ the rule introducing the
dual formula of s (i.e. the other formula on which we cut), and by ρ the rules in ϖ1 (and
ϖ3) between s⊥ and the cut-rule. By commuting the cut-rule above all rules in ρ, we have
ϖ1

β
∗

−→ ϖ2 with ϖ2 having the cut-rule between s and s⊥. Doing the same commutations

R. Di Guardia and O. Laurent 37

in ϖ7 gives ϖ7
β

∗

−→ ϖ6, with ϖ6 differing from ϖ2 by having r below ρ and not above s.
Schematically we have:

π1 =
ρ1 rx sx ρ2

cutρ3

; ϖ1 =
ρ1 rx sx

ρ′
2

s⊥
ρ

cutρ3

; ϖ2 =

ρ1 rx sx

ρ′
2

s⊥
x

cutρ
ρ3

π2 =
ρ1 sx rx ρ2

cutρ3

π3 =
ρ1 s ρ2

cutx rρ3

; ϖ7 =
ρ1 sx

ρ′
2

s⊥
ρ

cutx rρ3

; ϖ6 =
ρ1 sx

ρ′
2

s⊥
x

cutρ
rρ3

Using the appropriate key case or ⊤ − cut commutative case to eliminate the cut-rule
in ϖ2, we obtain a new proof ϖ3 (as usual, if there are &-rules in ρ, we need to do so for
all duplicates). In this new proof, if any cut-rules have been introduced by the key case we
used, we can commute them with the rule r (which cannot introduce the formula of the cut,
for this is a sub-formula of the s rule, which commutes with the r rule). The produced proof
is called ϖ4, and we have ϖ2

β
∗

−→ ϖ3
β

∗

−→ ϖ4. On the other hand, we can also eliminate the
cut-rule in the same way in ϖ6, yielding a proof ϖ5 such that ϖ6

β
∗

−→ ϖ5. We have ϖ5 being
ϖ4, except the rule r is below the rules of ρ in ϖ5 and above in ϖ4. We can commute this
rule r up from ϖ5 to ϖ4, and it never commutes with a ⊤-rule there for we commute it until
reaching the cut-rule and a ⊤-rule is 0-ary, and neither does it commutes with a cut-rule as
ρ is cut-free. This yields π1

β
∗

−→ ϖ1
β

∗

−→ ϖ2
β

∗

−→ ϖ3
β

∗

−→ ϖ4 =∗
c ϖ5

β
∗

←− ϖ6
β

∗

←− ϖ7
β

∗

←− π3.
The result on measure follows by Lemmas 69 and 71.

Assume now r is a ⊤-rule while s is not. Then π1 =c π2 consists in erasing the rule s,
and π2

β−→ π3 erases the cut-rule. As before, if s and the cut commute, then we commute
them and do the ⊤− cut case, before commuting r and s: this yields π1

β−→ · β−→ · =c π3,
and the measures are as wished by Lemma 69. Otherwise, we proceed similarly as in the
previous subcase. Using the same notations, we build as before ϖ1 and ϖ2 by eliminating
cut-rules and commuting the cut-rule up until reaching the rule s⊥ introducing the other
formula of the cut-rule:

π1 =
r = ⊤x sx ρ2

cutρ3
; ϖ1 = r = ⊤x sx

ρ′
2

s⊥
ρ

cutρ3

; ϖ2 =
r = ⊤x sx

ρ′
2

s⊥
x

cutρ
ρ3

π2 = r = ⊤x ρ2
cutρ3

π3 = r = ⊤ρ3
We eliminate the cut in ϖ2, then use the ⊤-rule r to erase any introduced cut-rules, reaching
ϖ3 =

⊤ρ
ρ3

. As ρ is cut-free, we can commute r down with =∗
c (if s⊥ was a ⊤-rule, we first

use a ⊤−⊤ commutation), finally obtaining π3. Therefore π1
β

∗

−→ ϖ1
β

∗

−→ ϖ2
β

∗

−→ ϖ3 =∗
c π3.

And any proof in ϖ3 =∗
c π3 has measure at most |ϖ3| (as we only erase rules using ⊤ starting

from ϖ3) and |ϖ3| < |π1| for ϖ2
β

∗

−→ ϖ3 is a non-empty sequence (still using Lemma 69).
Finally, if s is a ⊤-rule then π1 =c π2 consists in introducing the rule r, before commuting

it down with the cut-rule in π2
β−→ π3 (or erasing the cut-rule with it if r is also a ⊤-rule).

Thus π1
β−→ · =c ·

β←− π3, by first using a ⊤−cut commutative case with s, then introducing
r through s then reintroducing the cut-rule. The result on measures follows by Lemma 69. ◀

38 Type Isomorphisms for Multiplicative-Additive Linear Logic

▶ Lemma 73. Let πt, πl and πr be MALL proofs such that πl
β←− πt

β−→ πr. Then there exist
ϖl and ϖr such that πl

β
∗

−→ ϖl =∗
c ϖr

β
∗

←− πr (diagrammatically represented on Figure 16).
Furthermore, the sequence ϖl =∗

c ϖr contains proofs of measure at most max(|πl|, |πr|).

Proof. This proof is similar to the one of Lemma 72. In all cases, the exhibited sequence =∗
c

will have length 0 or 1, thus the result on measures will follow by Lemma 69.
If the πl

β←− πt and πt
β−→ πr steps involve only distinct rules then, taking into account

that rules of one may be duplicated or erased by the other step, we have a proof ϖ such that
πl

β
∗

−→ ϖ
β

∗

←− πr. From now on, we assume not to be in this case, meaning both steps involve
(at least) one common rule. We distinguish cases according to the kinds of the β−→ steps.

If both steps are key or ⊤−cut commutative cases. As the two reductions share a rule, it
must be the cut-rule. If πl = πr we are done, otherwise we have above this cut rule two rules
of kind ax or ⊤. We can check that each of these critical pairs leads to the same resulting
proof from any choice of cut-elimination, unless both cases are ⊤− cut commutative cases,
in which case the results are equal up to a ⊤−⊤ commutation. Thus πl = πr or πl =c πr.

If one step is a key or ⊤ − cut commutative step and the other a commutative step
other than ⊤ − cut. By symmetry, assume πt

β−→ πr is the key or ⊤ − cut step. If the
cut-rules involved in these cases are distinct, then doing the commutative step cannot prevent
doing the key one, so both steps commute and we have a proof ϖ such that πl

β
∗

−→ ϖ
β

∗

←− πr

(taking into account that rules of one may be duplicated or erased by the other step).
Now, assume both reductions involve a same cut-rule. The key case must be an ax key

case or a ⊤-cut commutative case, for otherwise the commutative step cannot share a rule
with it (because the commutative step cannot be a cut− cut case). We can still do this key
step after the commutation (maybe twice in case of duplication), recovering πr if it is an
ax-key case or a proof equal to a ⊤-commutation in the ⊤− cut case (we need the ⊤-rule to
absorb with the rule sent below the cut-rule during the commutative step). Thus:

πl
β−→ πr (ax-key case and not a &− cut commutative case)

πl
β−→ β−→ πr (ax-key case and &− cut commutative case)

πl
β−→=c πr (⊤− cut commutative case and not a &− cut commutative case)

πl
β−→ β−→=c πr (⊤− cut commutative case and &− cut commutative case)

If both steps are not key nor ⊤−cut commutative steps. Here again, as the two reductions
share a rule, it must be the cut-rule. If πl ̸= πr, then in πt

β−→ πl we sent a rule from a
branch of the cut below it, and in πt

β−→ πr we do similarly on the other branch. We can do
the commutation of πt

β−→ πr in πl, and similarly the one of πt
β−→ πl in πr (maybe twice in

case of a duplication). The two resulting proofs differ exactly by the order of the two rules
below the cut-rule, so are equal up to a commutation of these rules (which are not ⊤-rules
by hypothesis). Thus, πl = πr or πl

β
∗

−→ · =c ·
β

∗

←− πr. ◀

▶ Lemma 74. Let π1, π2 and π3 be proofs such that π1 ∼c π2
β−→ π3. Then there exist ϖ1

and ϖ2 such that π1
β−→ ϖ1

β∗
−→ ϖ2

β∗
←− π3 (diagrammatically represented on Figure 16).

Proof. Remember a block of cut-rules is a maximal set of cut-rules in a proof such that all
of these rules are a premise of another rule in the set, or use as premise the conclusion of

R. Di Guardia and O. Laurent 39

a rule in the set (Definition 68). We begin by observing that two cut− cut commutations
in different blocks always commute (remark a cut− cut commutation cannot duplicate nor
erase a sub-proof). Call B the block containing the (unique) cut-rule c of π2 involved in
π2

β−→ π3. This allows to decompose π1 ∼c π2 into π1 ∼B0
c ϖ1 ∼B1

c ϖ2 . . . ϖn ∼Bn
c π2, with

∼Bi
c composed uniquely of cut− cut commutations between rules of a same block Bi, all Bi

being disjoint and different from B, except B0 = B (we can always add an empty sequence
of commutations if needed).

Given commutations in another block B′ than B, if ρ ∼B′

c π2
β−→ π3 then there exists ρ′

such that ρ
β−→ ρ′ ∼B′

c π3. Indeed, no commutation in ρ ∼B′

c π2 involves a rule of the β−→
step. If the β−→ step does not erase nor duplicate a sub-proof containing the block B′, then
we have the result by first doing the β−→ step, then commutations of ∼B′

c . If the β−→ step
erases the block B′, then ρ

β−→ π3, which is a particular case of the previous one with ∼B′

c

being equality. Finally, if β−→ duplicates B′, then we need to do each cut− cut commutation
twice to recover π3. Thus, applying this reasoning successively on blocks Bi from Bn to B1

yields π1 ∼B0
c ϖ1

β−→ π′
3 ∼B1

c ϖ′
2 . . . ϖ′

n ∼Bn
c π3. It suffices now to prove there exist κ and

κ′ such that π1
β−→ κ

β∗
−→ κ′ β∗

←− π′
3. Indeed, seeing ∼c as a particular case of β∗

−→ allows to
have π′

3
β∗
←− π3, leading to the conclusion.

Whence, we consider proofs such that π1 ∼B
c π2

β−→ π3 where β−→ involves a cut-rule in
the block B, and prove there exist κ and κ′ such that π1

β−→ κ
β∗
−→ κ′ β∗

←− π3. Call r one of
the non-cut-rules involved in π2

β−→ π3 (i.e. another rule than c). In π1, there is a cut-rule
c0 below r, belonging to B. If c0 = c and this result holds for all possible choices of r, then
we can first do β−→ in π1, then cut − cut commutations inside the rest of the block B to
obtain π3: we have π1

β−→ · β∗
−→ π3, and we are done. Thus, assume we choose an r such

that c0 ̸= c.

If r and c0 commute (with a commutative β−→ step), then we can do this commutation,
yielding some proof κ from π1. We can then commute cut-rules to bring c below r and execute
the corresponding β−→ step, yielding some proof κ′. Observe then that in π3 commuting the
rule c0 up until reaching r, then commuting it up with r and with c0 (or instead with any
cut-rules created by the β−→ step between c and r if it is a key or ⊤− cut commutative step)
yields κ′. We then have π1

β−→ κ
β∗
−→ κ′ β∗

←− π3.
Suppose now that r and c0 do not commute. This means r is a rule introducing the

formula A0 on which c0 cuts. This also implies that the π2
β−→ π3 is not a key step, because

r cannot introduce the formula A on which c cuts. Call ρ the sub-proof of π1 above c0 in the
branch not leading to r. This is also the sub-proof of π3 above c0 in the same branch, up to
bringing c0 on top of the block B by some β∗

−→ steps first (c does not belong to this branch
as it commuted with r). We reduce all cut-rules in ρ using only β−→ steps (using Lemma 70),
in the same way in both π1 and π3, obtaining a cut-free proof ρ′, in π′

1 and π′
3 respectively.

In particular, we have π1
β

∗

−→ π′
1 and π3

β∗
−→ · β

∗

−→ π′
3.

Call r⊥ the rule in ρ′ introducing the formula A⊥
0 (which is a rule of the main connective

of A⊥ or an ax or ⊤-rule), and τ the sequence of rules in ρ′ between c0 and r⊥. We commute
in π′

1 (resp. π′
3) rules of τ with c0, yielding π′

1
β

∗

−→ π′′
1 (resp. π′

3
β

∗

−→ π′′
3) as τ is cut-free,

obtaining a proof with c0 having on its premises rules r and r⊥.

We can now apply a key or ⊤ − cut commutative case on c0, yielding π′′
1

β−→ π′′′
1 and

40 Type Isomorphisms for Multiplicative-Additive Linear Logic

π

ρ κ

ρ′ κ′

π′ ϖ′

∼ c

∼
c

∼c

β β

β
∗ β ∗

ι1

ι3

β

β ∗

β
∗

ι4 ι5

β
∗β ∗

=∗
c

ι′
1 ι′

4 ι′
5

β
∗

β
∗

β
∗

=∗
c =∗

c =∗
c =∗

c

Figure 17 Diagram of the case n ̸= ∅ and k = 0 in the proof of Proposition 75
Hypotheses are depicted in black; in red is an application of Lemma 74; in green of Lemma 73; blue
parts correspond to using the induction hypothesis on the underlined proofs along to Lemma 70.

π′′
3

β−→ π′′′
3 . Observe that π′′′

1 and π′′′
3 differ only by the fact that in π′′′

1 the cut-rule c is
below, in the block B, while it is above the rules created by the key case on c0 (or erased if
it was ⊤− cut commutative case) in π′′′

3 . We can commute it up in B in π′′′
1 , then commute

it with any rules created by the case on c0 to recover π′′′
3 . Whence π1

β
∗

−→ π′
1

β
∗

−→ π′′
1

β−→
π′′′

1
β∗
−→ π′′′

3
β←− π′′

3
β

∗

←− π′
3

β
∗

←− · β∗
←− π3, and in particular π1

β−→ · β∗
−→ π′′′

3
β∗
←− π3. ◀

▶ Proposition 75. Let π and ϖ be proofs such that π =∗
c ϖ. For any normal form π′ (resp.

ϖ′) for cut-elimination of π (resp. ϖ), π′ =∗
c ϖ′.

Proof. We denote by n the maximum of the measures of the proofs on the sequence π =∗
c ϖ,

and k the length of this sequence (i.e. its number of proofs minus 1). We prove the result by
induction on the lexicographic order of (n, k).

If n = ∅, then π and ϖ are cut-free, thus their only normal form are themselves and
π =∗

c ϖ. Thus, assume from now on that n ̸= ∅, thus π has a cut and therefore ϖ has a cut
too (as =c preserves having a cut-rule).

Assume k = 0, and take π′ (resp. ϖ′) a normal form of π (resp. ϖ). Therefore,
π′ β∗
←− π = ϖ

β∗
−→ ϖ′. As n ̸= ∅, one of the β−→ step in π

β∗
−→ π′ (resp. π

β∗
−→ ϖ′) is a β−→

step. Consider a sequence leading to the first such β−→ step: we have π′ β∗
←− ρ′ β←− ρ ∼c

π ∼c κ
β−→ κ′ β∗

−→ ϖ′, thus π′ β∗
←− ρ′ β←− ρ ∼c κ

β−→ κ′ β∗
−→ ϖ′. The reasoning we will

do is illustrated on the diagram of Figure 17. Proving the result for ρ′ and κ′ is enough
to yield π′ =∗

c ϖ′. Applying Lemma 74, ρ′ β∗
−→ ι1

β∗
←− ι3

β←− κ
β−→ κ′. Using Lemma 73,

ρ′ β∗
−→ ι1

β∗
←− ι3

β
∗

−→ ι4 =∗
c ι5

β
∗

←− κ′, with proofs in ι4 =∗
c ι5 of measure at most max(|ι3|, |κ′|).

However, n = |π| = |κ| > |κ′|, n = |ρ| > |ρ′| and n = |κ| > |ι3| by Lemma 69. Therefore,
n > max(|ι3|, |κ′|) and the sequence ι4 =∗

c ι5 has proofs of measures strictly smaller than n,
and ρ′, κ′ and ι3 are sequences of null length of measure strictly smaller than n. By induction
hypothesis, we obtain that normal forms of ι4 and ι5 are related by =∗

c , and similarly between
normal forms of ρ′, between normal forms of κ′ and between normal forms of ι3. But normal
forms of ι5 are included in normal forms of κ′, those of ι4 in those of ι3, and those of ι1
in those of ρ′ and ι3. Therefore, by taking a normal form ι′

i of ιi through Lemma 70, we
have π′ =∗

c ι′
1 as normal forms of ρ′ are equal up to =∗

c , ι′
1 =∗

c ι′
4 as normal forms of ι3 are

equal up to =∗
c , ι′

4 =∗
c ι′

5 as normal forms of ι4 and those of ι3 are equal up to =∗
c , ι′

5 =∗
c ϖ′

R. Di Guardia and O. Laurent 41

π ϖ

ρ

ρ′

π′ ϖ′

=c∼c

β

β
∗

β
∗ι1

ι2 β

β
∗

β ∗

ι3 ι4

β ∗

β
∗

=∗
c

ι′
1 ι′

3 ι′
4

β
∗

β
∗

β
∗

=∗
c =∗

c =∗
c =∗

c

Figure 18 Diagram of the case n ̸= ∅ and k = 1 in the proof of Proposition 75
Hypotheses are depicted in black; in red is an application of Lemma 74; in green of Lemma 72; blue
parts correspond to using the induction hypothesis on the underlined proofs along to Lemma 70.

as normal forms of κ′ are equal up to =∗
c . Therefore, π′ =∗

c ι′
1 =∗

c ι′
4 =∗

c ι′
5 =∗

c ϖ′ and we
conclude π′ =∗

c ϖ′.
Suppose now that k = 1, thus π =c ϖ. Take π′ (resp. ϖ′) a normal form of π (resp. ϖ).

As n ̸= ∅, one of the β−→ step in π
β∗
−→ π′ is a β−→ step. We set π ∼c ρ

β−→ ρ′ β∗
−→ π′. A

diagram representing the proof of this case is depicted on Figure 18. Applying Lemma 74,
ρ′ β∗
−→ ι1

β∗
←− ι2

β←− π. We then use Lemma 72 to have ι2
β

∗

−→ ι3 =∗
c ι4

β
∗

←− ϖ, with the
sequence ι3 =∗

c ι4 having proofs of measure strictly smaller than max(|π|, |ϖ|) ≤ n. By
Lemma 69, |ρ′| < |ρ| = |π| and |ι2| < |π| ≤ n. Furthermore, ϖ can be seen as an empty
sequence of ϖ =∗

c ϖ of measure at most n. By induction hypothesis, we obtain that normal
forms of ι3 and ι4 are related by =∗

c , and similarly between normal forms of ρ′, between
normal forms of ι2 and between normal forms of ϖ. But normal forms of ι1 are included
in normal forms of ρ′ and of ι2, those of ι3 in those of ι2, and those of ι4 in those of ϖ.
Therefore, by taking a normal form ι′

i of ιi through Lemma 70, we have π′ =∗
c ι′

1 as normal
forms of ρ′ are equal up to =∗

c , ι′
1 =∗

c ι′
3 as normal forms of ι2 are equal up to =∗

c , ι′
3 =∗

c ι′
4 as

normal forms of ι3 and those of ι4 are equal up to =∗
c , ι′

4 =∗
c ϖ′ as normal forms of ϖ are

equal up to =∗
c . Therefore, π′ =∗

c ι′
1 =∗

c ι′
3 =∗

c ι′
4 =∗

c ϖ′ and we conclude π′ =∗
c ϖ′.

Lastly, assume k > 1. We have π =c ρ =∗
c ϖ. Take π′ (resp. ρ′, ϖ′) a normal form

of π (resp. ρ, ϖ) (Lemma 70). By induction hypothesis on ρ =∗
c ϖ of length k − 1 and

maximum measure at most n, it follows that ρ′ =∗
c ϖ′. Similarly on π =c ρ of length 1 < k

and maximum measure at most n, we obtain π′ =∗
c ρ′. Thus, π′ =∗

c ϖ′. ◀

▶ Theorem 34 (Confluence up to rule commutations). If π1 and π2 are cut-free proofs obtained
by cut-elimination from the same proof π, then π1 and π2 are equal up to rule commutations.

Proof. This is a particular case of Proposition 75 with π = ϖ. ◀

▶ Theorem 35. Let π and ϖ be βη-equal MALL proofs. Then, letting π′ (resp. ϖ′) be a
result of expanding all axioms and then eliminating all cuts in π (resp. ϖ), π′ is equal to ϖ′

up to rule commutations.

Proof. We have π =βη ϖ, so η(π) =β η(ϖ) by Proposition 4. This sequence can be
decomposed into η(π) = µ0

β∗
←− ν1

β∗
−→ µ1

β∗
←− ν2

β∗
−→ µ2

β∗
←− ν3 . . . νn

β∗
−→ µn = η(ϖ) for

some proofs νi and µi. Each µi has a normal form µ′
i (by Lemma 70, choosing µ′

0 = π′

and µ′
n = ϖ′). Theorem 34 applied to νi yields µ′

i−1 =∗
c µ′

i, see the diagram on Figure 19.
Thence π′ = µ′

0 =∗
c µ′

n = ϖ′. ◀

42 Type Isomorphisms for Multiplicative-Additive Linear Logic

η(π) = µ0

ν1

µ1

ν2

µ2

ν3

µ3

ν4

. . .

. . . νn

µn = η(ϖ)

β
∗ β ∗

β
∗ β ∗

β
∗ β ∗

β
∗ β ∗

π′ = µ′
0 µ′

1 µ′
2 µ′

3 . . . µ′
n = ϖ′

β
∗

β
∗

β
∗

β
∗

β
∗

=∗
c =∗

c =∗
c =∗

c =∗
c

Figure 19 Diagram of the proof of Theorem 35
In black are hypotheses; in blue are applications of Lemma 70; in red are uses of Theorem 34.

D.2 Proof of Proposition 36
▶ Proposition 36. Let π be a proof equal, up to rule commutations, to idA with A distributed.
The ⊤-rules of π are of the shape ⊤⊢ ⊤, 0 (with ⊤ in A being the dual of 0 in A⊥,
or vice-versa) and ⊥-rules and 1-rules come by pairs separated with ⊕i-rules only, called a

1/ ⊕ /⊥-pattern:
1⊢ 1 ρ

⊢ F ⊥⊢ ⊥, F

where ρ is a sequence of ⊕i-rules (with ⊥ in A being the

dual of 1 in A⊥, or vice-versa). Moreover, there are no sequent in π of the shape ⊢ B & C.

Proof. We prove a stronger property: any sequent S of a proof π obtained through a sequence
of rule commutations of cut-free MALL from idA for a distributed formula A respects:
(1) the formulas of S are distributed;
(2) if ⊤ is a formula of S, then S = ⊢ ⊤, 0;
(3) if ⊥ is a formula of S, then S = ⊢ ⊥, F with F given by the following grammar

F := 1 | F ⊕ D | D ⊕ F , where the distinguished 1 is the dual of ⊥ in A⊥ if ⊥ a
sub-formula of A (or vice-versa), D is any formula, and the sub-proof of π above S is a
sequence of ⊕i rules leading to the distinguished 1;

(4) if B & C is a formula of S, then S = ⊢ B & C, F with F given by the following grammar
F := C⊥ ⊕ B⊥ | F ⊕ D | D ⊕ F , where the distinguished C⊥ ⊕ B⊥ is the dual of
B & C in A⊥ if B & C a sub-formula of A (or vice-versa), D is any formula, and in the
sub-proof of π above S the ⊕-rules of the distinguished C⊥ ⊕B⊥ are a ⊕2-rule in the
left-branch of the &-rule of B & C, and a ⊕1-rule in its right branch;

(5) if S contains several negative formulas or several positive formulas, then its negative
formulas are `-formulas.

Remark that (5) is a corollary of properties (2), (3) and (4). As we have in =c no commutations
with a cut-rule (in particular no cut−⊤ commutation) and no ⊤−⊗ commutation creating
a sub-proof with a cut-rule, it follows π is cut-free and has the sub-formula property, making
(1) trivially true. We will prove that the fully expanded axiom respects properties (2), (3)
and (4), and that they are preserved by any rule commutation of =c.

The fully expanded axiom respects the properties We prove it by induction on the
distributed formula A. Notice that sub-formulas of A are also distributed. By symmetry,
assume A is positive.

If A ∈ {X, 1, 0} where X is an atom, then:

idA ∈ { ax
⊢ X⊥,X ;

1⊢ 1 ⊥⊢ ⊥, 1
; ⊤⊢ ⊤, 0 }

Each of these proofs respects (2), (3) and (4).
Assume the result holds for B and C, and that A = B ⊗ C. The proof idA is:

R. Di Guardia and O. Laurent 43

idB

⊢ B⊥, B

idC

⊢ C⊥, C ⊗
⊢ B⊥, C⊥, B ⊗ C `
⊢ B⊥ ` C⊥, B ⊗ C

We have to prove the sequents ⊢ B⊥, C⊥, B⊗C and ⊢ B⊥`C⊥, B⊗C respect the properties.
The latter respects (2), (3) and (4) trivially for its has neither a ⊤, ⊥ nor & formula. As
B⊥ ` C⊥ is distributed, it follows that neither B⊥ not C⊥ can be a ⊤, ⊥ or & formula, and
as such the former sequent also respects the properties.

Suppose A = B ⊕ C with sequents of B and C respecting the properties. Now, idA is:

idC

⊢ C⊥, C ⊕2
⊢ C⊥, B ⊕ C

idB

⊢ B⊥, B ⊕1
⊢ B⊥, B ⊕ C

&
⊢ C⊥ & B⊥, B ⊕ C

The sequent ⊢ C⊥ & B⊥, B ⊕ C respects (2), (3) and (4), as the ⊕ is the dual of the &.
By symmetry, we show the properties are also fulfilled by ⊢ B⊥, B ⊕ C, and they will be
respected by ⊢ C⊥, B ⊕ C with a similar proof. As the formulas are distributed, B⊥ cannot
be a ⊤ formula. If B⊥ is not a ⊥ nor & formulas, then (2), (3) and (4) hold for ⊢ B⊥, B⊕C.
If it is, then using that ⊢ B⊥, B respects (3) and (4), it follows that in B ⊕ C is also of the
required shape, as B was.

Every possible rule commutation preserves the properties We show it for each rule
commutation, using every time the notations from Tables 6 and 7 in Definition 42, on
Pages 22 and 21. By symmetry, we treat only one case for ⊗−⊗, `−⊗, &−⊗ and ⊕i −⊗
commutations.
⊤-commutations Using properties (1) and (2), we cannot do any commutation between

a ⊤-rule and a `, ⊗, &, ⊕i, ⊥ or ⊤-rule, so no commutations at all involving a ⊤-rule (we
supposed to not consider commutations with cut-rules exactly for this case).
⊥-commutations Using properties (1) and (3), we cannot do any commutation between

a ⊥-rule and a `, ⊗, & or ⊥-rule. A commutation between a ⊥ and a ⊕i-rule preserves
property (3): we have by hypothesis Γ empty and A1⊕A2 of the right shape. It also respects
(2) and (4) trivially.

C`̀ commutation We have to show the properties for ⊢ A1, A2, B1 ` B2, Γ. As ⊢ A1 `
A2, B1 `B2, Γ respects them, negative formulas of Γ are `-formulas by (5). By distributivity,
if A1 (or A2) is a negative formula, then it must be a ` one. Thus, ⊢ A1, A2, B1 ` B2, Γ
fulfills (2), (3) and (4).

C⊕i
⊕j

commutation We have to show the properties for ⊢ Ai, B1 ⊕ B2, Γ. As ⊢ A1 ⊕
A2, B1 ⊕B2, Γ respects them, negative formulas of Γ are `-formulas by (5). If Ai is positive
or a `, then we are done. Otherwise, as ⊢ Ai, Bj , Γ fulfills the properties, it follows Γ is
empty and Bj of the desired shape. By (1), Bj is not 0, thus Ai is not ⊤. Whether Ai is ⊥
or &, the sequent ⊢ Ai, B1 ⊕B2 respects the properties.

C⊗
⊗ commutation We have to show the properties for ⊢ A1 ⊗ A2, B1, Γ, ∆. As

⊢ A1 ⊗A2, B1 ⊗B2, Γ, ∆, Σ respects them, negative formulas of Γ and ∆ are `-formulas
by (5). If B1 is positive or a `, then we are done. Otherwise, as ⊢ A2, B1, ∆ fulfills the
properties, it follows ∆ is empty and B1 of the desired shape, so B1 is a 0, 1 or ⊕-formula.
This is impossible as B1 ⊗B2 is distributed by (1).

C&
& , C&` , C&̀ , C&

⊗ and C⊗
& commutations These cases are impossible by property (4).

44 Type Isomorphisms for Multiplicative-Additive Linear Logic

C&
⊕i

and C⊕i

& commutations In these cases, (4) for ⊢ A1 & A2, B1 ⊕ B2, Γ imply Γ
empty and B1 ⊕B2 of the desired shape. Thus Bi of the desired shape (B1 ⊕B2 is not the
distinguished formula as it has the same rule ⊕i in both branches of the &-rule), proving the
result for ⊢ A1 & A2, Bi. For ⊢ A1, B1 ⊕B2 (and similarly ⊢ A2, B1 ⊕B2), A1 cannot be a
⊤ by (1), and if it is a ⊥ or a &, then the hypothesis on ⊢ A1, Bi implies that the properties
are also respected in ⊢ A1, B1 ⊕B2.

C⊕̀i
and C⊕i` commutations Let us show the properties for ⊢ A1, A2, B1 ⊕ B2, Γ in

the first commutation and ⊢ A1 ` A2, Bi, Γ in the second. As they hold for ⊢ A1, A2, Bi, Γ,
negative formulas in A1, A2, Bi, Γ are `-formulas by (5) and the result follows.

C⊗
⊕i

commutation We prove ⊢ A1, B1 ⊕ B2, Γ respects the properties. As ⊢ A1 ⊗
A2, B1 ⊕B2, Γ, ∆ fulfills them, negative formulas of Γ are ` by (5). If A1 is a negative other
than a `, then for ⊢ A1, Bi, Γ respects the properties we have that Γ is empty and Bi of
the desired shape. By (1), Bi is not a 0, so A1 is not a ⊤. But then B1 ⊕B2 also have the
wished shape for A1, and ⊢ A1, B1 ⊕B2 fulfills the properties.

C⊕i
⊗ commutation We prove ⊢ A1 ⊗ A2, Bi, Γ, ∆ respects the properties. As ⊢ A1 ⊗

A2, B1 ⊕B2, Γ, ∆ fulfills them, negative formulas of Γ and ∆ are ` by (5). As A1 ⊗ A2 is
distributed (1), A1 cannot be a 0, 1 nor ⊕ formula, so by ⊢ A1, Bi, Γ fulfilling the properties
it follows that Bi cannot be a negative other than a `. The conclusion follows.

C⊗̀ commutation We prove the properties for ⊢ A1, A2, B1 ⊗ B2, Γ, ∆. As ⊢ A1 `
A2, B1 ⊗B2, Γ, ∆ respects them, by (5) negatives of Γ and ∆ can only be `-formulas. As
A1 ` A2 is distributed by (1), A1 and A2 are positive or `-formulas. The conclusion follows.

C⊗` commutation We prove the properties for ⊢ A1 ` A2, B1, Γ. As ⊢ A1, A2, B1, Γ
respects them, by (5) negative of ∆ and B1 can only be `-formulas, proving the result.

Therefore, we proved the expanded identity respects these properties, and they are
preserved by all rule commutations. The conclusion follows. ◀

D.3 Proof of Lemma 37
▶ Definition 76 (Slice). For π an MALL sequent calculus proof, consider the (non-correct)
proof tree obtained by deleting one of the two subtree of each &-rule of π (thus, in the new
proof tree, &-rules are unary):

⊢ A, Γ &1⊢ A & B, Γ
⊢ B, Γ &2⊢ A & B, Γ

The remaining rules form a slice of π. We denote by S(π) the set of slices of π.

Note the relation between slices in the sequent calculus and linkings in proof-nets: a slice
“belongs” to an additive resolution, and a &-resolution “selects” a slice from a proof.10 In this
spirit, if a proof-net θ is obtained by desequentializing a proof π, there is a bijection between
linkings in θ and slices of π. Slices satisfy a linearity property (validated by proofs of MLL
as well): any connective in the conclusion is introduced by at most one rule in a slice.

Cut-elimination can be extended from proofs to slices except that some reduction steps
produce failures for slices: when a &1 faces a ⊕1 and conversely. The reduction of the slice

⊢ A, Γ ⊕1⊢ A⊕B, Γ
⊢ B⊥, ∆ &1⊢ B⊥ & A⊥, ∆

cut⊢ Γ, ∆

10 An alternative definition of desequentialization in [10] consists in building a linking by slice.

R. Di Guardia and O. Laurent 45

is a failure since the selected sub-formulas of A⊕B and its dual do not match. Given two
slices s and r with respective conclusions ⊢ A, Γ and ⊢ A⊥, ∆, their composition by cut
s

A

▷◁ r reduces either to a slice or to a failure. Given two sets of slices S1 (all with conclusion
⊢ A, Γ) and S2 (all with conclusion ⊢ A⊥, Γ), their composition S1

A

▷◁ S2 is the set of all slices
obtained by composing a slice in S1 with a slice in S2. Given a set of slices S, its normal
form is the set of all cut-free slices obtained by reducing the cuts in the slices of S. This can
give an empty set if all slices in S lead to failures during reduction.

▶ Lemma 77. Let π1 and π2 be cut-free proofs whose composition over A reduces to a cut-free
proof ϖ. The normal form of S(π1) A

▷◁ S(π2) is S(ϖ). Moreover, for each s ∈ S(ϖ), there
exist s1 ∈ S(π1) and s2 ∈ S(π2) such that s1

A

▷◁ s2 reduces to s, and s1 and s2 make dual
choices on the additive connectives of A.

Proof. We can check that each cut-elimination steps preserves the set of slices. Moreover, if a
slice is obtained by making distinct choices on the dual occurrences of an additive connective
of a cut formula, then it reduces (in possibly many steps) to a failure. ◀

▶ Lemma 78. Let π1 and π2 be cut-free proofs of ⊢ Γ with ⊤-rules only of the shape
⊤⊢ ⊤, 0 . Assume that π1 =∗

c π2, where in this sequence there are no rule commutations
involving a ⊤-rule. Then for each slice s1 ∈ S(π1), there exists a unique s2 ∈ S(π2) such
that s1 and s2 make the same choices for additive connectives in Γ.

Proof. This can be easily checked for each possible equation in =c. ◀

▶ Lemma 79. Given a choice C of premise for additive connectives of A (but not A⊥), there
exists a unique slice of S(idA) on it, which furthermore makes on A⊥ the dual choices of C.

Proof. Direct induction on A, following the definition of idA on Table 3. ◀

▶ Lemma 80. Let π and π′ be cut-free MALL proofs respectively of ⊢ A⊥, B and ⊢ B⊥, A,
whose composition over A reduces to idB up to rule commutation. Set ρ the proof obtained
by eliminating all cuts in the composition of π and π′ over B, without using any ax or ⊥− 1
key case as well as ⊤− cut commutative case. Then for any slice s of π, there exists a slice
s′ of π′ such that s ∪ s′ has the same 0-ary rules as a slice of ρ.

Proof. Take s ∈ S(π), and denote by C the choices made in s on & and ⊕ connectives of the
formula B. Any slice of ρ has for 0-ary rules the ones of r∪r′ for r ∈ S(π) and r′ ∈ S(π′) such
that r′ makes choices on B corresponding to the dual of those of r on B⊥ (using Lemma 77).
Call ρ′ a cut-free proof resulting from cut-elimination of the composition of π and π′ over A;
by hypothesis, ρ′ =∗

c idB . By Lemma 79, there is a (unique) slice of idB with choices C on B

and dual choices C⊥ on B⊥. Applying Proposition 36 and Lemma 78, there is a slice r′ of
ρ′ with choices C and C⊥. According to Lemma 77, we have slices t ∈ S(π) and t′ ∈ S(π′)
whose composition reduces to r′. In particular, t makes choices C on B and t′ choices C⊥ on
B⊥. Therefore, t′ makes on B⊥ the dual choices of s on B, and as such the composition of s

and t′ reduces to a slice of ρ. ◀

▶ Remark. Lemma 80 is the analogue of Lemma 16 in sequent calculus.
Lemma 80 will be used to prove that & − ⊕i key cases during cut-elimination do not

erase 0-ary rules. More precisely, given A
π, π′

≃ B and considering a 0-ary rule t (typically a
⊤- or 1-rule) in π, we use this lemma to say that t is still in the reduction of π

A

▷◁ π′ before
applying any ax, ⊥ − 1 or ⊤ − cut case. This is done by taking a slice t belongs to, then

46 Type Isomorphisms for Multiplicative-Additive Linear Logic

finding an associated slice such that normalization of the composition is not a failure thanks
to the lemma, and thus the resulting slice belongs to the normal form.

▶ Lemma 37. If A
π, π′

≃ B with π and π′ cut-free then all ⊤-rules in π and π′ are of the form
⊤⊢ ⊤, 0 and all ⊥-rules and 1-rules belong to 1/⊕ /⊥-patterns.

Proof. Consider t a ⊤-rule ⊤⊢ Γ, ∆ in π, with Γ occurrences of sub-formulas of A⊥

and ∆ of B. Call s the slice it belongs to. By Lemma 80 and Proposition 36, there exists
s′ ∈ S(π′) such that s

B

▷◁ s′ reduces to a slice in which the only ⊤-rules are ⊤⊢ ⊤, 0 rules,
with ⊤ being the dual occurrence of 0. Along the reduction, t is either preserved and Γ as
well, or t is absorbed by another ⊤-rule and Γ stays in the context of a ⊤-rule. As in the
resulting proof ⊤ and 0 are not both sub-formula of A⊥, it follows Γ is a subsequent of ⊤ or
of 0. By symmetry (cutting on the other formula), ∆ is too. Moreover, Γ or ∆ must contain
a ⊤. Thus, ⊤-rules in π are of the form ⊤⊢ ⊤ , ⊤⊢ ⊤, 0 or ⊤⊢ ⊤,⊤ .

Assume there is a ⊤⊢ ⊤ rule in π, with ⊤ a sub-formula of A⊥. Again it belongs
to a slice whose reduction leads to a slice containing only ⊤-rules of the form ⊤⊢ ⊤, 0 .
This is not possible since the ⊤⊢ ⊤ rule cannot be absorbed by a ⊤− cut commutation
for it has no context in B.

Suppose now there is a ⊤⊢ ⊤,⊤ rule in π. When such a rule is absorbed by another
⊤-rule in a ⊤− cut commutation, the resulting ⊤-rule still has (at least) two ⊤-formulas.
But when reaching the normal form, we only have ⊤-rules with one ⊤-formula: contradiction.
We conclude that all ⊤-rules in π are of the form ⊤⊢ ⊤, 0 .

We now prove the part of the lemma for ⊥-rules. For this we will need the following
result: (∗) there are no sequent of the shape ⊢ D & E in π. Assume w.l.o.g. D & E is a
sub-formula of A⊥, and let s be a slice containing it (i.e. one of its two parts). By Lemma 80,
there exists a slice s′ ∈ S(π′) such that s

B

▷◁ s′ reduces to a slice satisfying Proposition 36.
Since D & E is a sub-formula of A⊥, it is not cut and the rule &i introducing D & E in s

remains in the normal form. This contradicts Proposition 36 since any &-rule must have a
non-empty context.

Set F := 1 | F ⊕D | D ⊕ F (with D an arbitrary formula). In π, we look at a possible
rule r below a sequent ⊢ F . It cannot be a ⊗-rule by distributivity, nor a `-rule has the
sequent has a unique formula, or a &-rule due to (∗). If r is a ⊕i-rule, then we keep a sequent
⊢ F , and if it is a ⊥-rule then it is one of the required shape.

As a consequence, each 1-rule is followed by some ⊕i-rules and possibly a ⊥-rule (let us
call a 1/⊕-pattern a 1-rule followed by a maximal such sequence of ⊕i-rules). If a 1/⊕-pattern
stops without a ⊥-rule below it, we have only one formula in the conclusion sequent of the
proof: impossible as π is a proof of ⊢ A⊥, B. Thus, the ⊥-rule exists and to each 1-rule we
can associate a ⊥-rule leading to 1/⊕ /⊥-pattern. Henceforth, there are at least as many
⊥-rules as 1-rules.

Now, in the normal forms, the number of 1-rules is the same as the number of ⊥-rules.
Consider a ⊥-rule r which is erased during normalization by cut over B, and let s be a slice
containing it. By Lemma 80, there exists a slice s′ ∈ S(π′) such that s

B

▷◁ s′ reduces to a
slice of the normal form. If r disappears, it must be through a ⊥− 1 key case which also
erases a 1-rule (it cannot be through a ⊤− cut commutative case as ⊤-rules are of the shape

⊤⊢ ⊤, 0). Furthermore, if we duplicate a 1-rule then it is on top of a 1/ ⊕ /⊥-pattern
and thus we duplicate a ⊥-rule as well. As a consequence, (number of ⊥-rules − number of
1-rules) can only increase during the reduction. We conclude the number of ⊥-rules is equal
to the number of 1-rules in π, and thus every ⊥-rule belongs to a 1/⊕ /⊥-pattern. ◀

R. Di Guardia and O. Laurent 47

D.4 Proof of Theorem 38

▶ Proposition 81. Taking proofs π and ϖ such that π =∗
c ϖ, we have π =βη ϖ.

Proof. By giving the reductions for each equality. For example:

π
⊢ A1, A2, B1, B2, Γ `⊢ A1 ` A2, B1, B2, Γ `⊢ A1 ` A2, B1 ` B2, Γ

ax
⊢ A2

⊥,A2
ax

⊢ A1
⊥,A1 ⊗

⊢ A⊥
2 ⊗A⊥

1 , A1, A2 `
⊢ A⊥

2 ⊗A⊥
1 , A1 ` A2

cut⊢ A1 ` A2, B1 ` B2, Γ

reduces to both

π
⊢ A1, A2, B1, B2, Γ `⊢ A1 ` A2, B1, B2, Γ `⊢ A1 ` A2, B1 ` B2, Γ

and

π
⊢ A1, A2, B1, B2, Γ `⊢ A1, A2, B1 ` B2, Γ `⊢ A1 ` A2, B1 ` B2, Γ

(according to whether the cut-rule is first commuted with the `-rule on its left or on its
right), thus the C`̀ commutation is included in =β . ◀

▶ Theorem 38 (Isomorphisms completeness with units). If A ≃ B then A =E B.

Proof. We can assume A and B to be distributed (Proposition 21). As A ≃ B, there are
proofs π and ϖ respectively of ⊢ A⊥, B and ⊢ B⊥, A, whose composition over B (resp. A) is
equal to the axiom on ⊢ A⊥, A (resp. ⊢ B⊥, B) up to βη-equality. We assume w.l.o.g. π and
ϖ to be cut-free proofs, and work only with axiom-expanded proofs thanks to Proposition 4.

Using Theorem 35, we have π
B

▷◁ ϖ
β∗
−→ · =∗

c idA and π
A

▷◁ ϖ
β∗
−→ · =∗

c idB . By Lemma 37,
π and ϖ have ⊤-rules only of the shape ⊤⊢ ⊤, 0 and ⊥ and 1-rules in 1/⊕ /⊥-patterns.
Using ⊥-commutations to move each ⊥-rule just below the 1-rule above it, we build π′ and ϖ′

such that π′ and ϖ′ have ⊤-rules only of the shape ⊤⊢ ⊤, 0 , ⊥ and 1-rules of the form
1⊢ 1 ⊥⊢ ⊥, 1

, π =∗
c π′ and ϖ =∗

c ϖ′. Whence, π′ B

▷◁ ϖ′ =∗
c π

B

▷◁ ϖ and π′ A

▷◁ ϖ′ =∗
c π

A

▷◁ ϖ. By

Theorem 35, for any normal form ρ of π′ B

▷◁ ϖ′ (resp. π′ A

▷◁ ϖ′), ρ =∗
c idA (resp. ρ =∗

c idB).
We reduce cuts in π′ B

▷◁ ϖ′ (and similarly in π′ A

▷◁ ϖ′) in the following way. First, observe

that when a ⊤-rule is above a cut-rule, then it is necessarily in a ⊤⊢ ⊤, 0
ϕ

⊢ ⊤, Γ
cut⊢ ⊤, Γ

sub-proof, that we can reduce into ϕ

⊢ ⊤, Γ
(because in this case ϕ = ⊤⊢ ⊤, 0). Secondly,

when a cut-rule has above one of its (let say left) premises a ⊥-rule (necessarily with a 1-rule
above, a property we are going to preserve through our reduction strategy):

If it is of the shape
1⊢ 1 ⊥⊢ 1,⊥

ϕ

⊢ 1, Γ
cut⊢ 1, Γ

, we commute this cut-rule with the

rules of ϕ until we reach the 1-rule introducing 1 and we reduce the obtained cut-rule
1⊢ 1 ⊥⊢ 1,⊥ 1⊢ 1

cut⊢ 1
into 1⊢ 1 . What we get is exactly ϕ.

48 Type Isomorphisms for Multiplicative-Additive Linear Logic

If it is of the shape
1⊢ 1 ⊥⊢ ⊥, 1

ϕ

⊢ ⊥, Γ
cut⊢ ⊥, Γ

, we commute the cut-rule with the

rules of ϕ until we reach the ⊥-rule introducing ⊥ and we reduce the obtained cut-rule
1⊢ 1 ⊥⊢ ⊥, 1

⊢ ∆ ⊥⊢ ⊥, ∆
cut⊢ ⊥, ∆

into ⊢ ∆ ⊥⊢ ⊥, ∆ (with ∆ = 1). What we get is exactly ϕ.

This strategy allows reaching a normal form ρ, with ⊤-rules only of the shape ⊤⊢ ⊤, 0

and ⊥ and 1-rules of the form
1⊢ 1 ⊥⊢ ⊥, 1

(this is preserved by our strategy). Furthermore,

call σ the substitution replacing ⊤, 0, ⊥ and 1-formulas respectively by X⊥, X, Y ⊥ and Y ,
for X and Y fresh atoms. We can reach σ(ρ) by cut-elimination from σ(π′)

σ(B)
▷◁ σ(ϖ′), for

the reductions we did on units could as well have been done by ax-key cases. Moreover,
σ(idA) = idσ(A), and in ρ =∗

c idA we can assume not to commute any ⊥-rule (for we start

and end with 1-rules and ⊥-rules in
1⊢ 1 ⊥⊢ ⊥, 1

shapes only, and such commutations

could only move the ⊥-rule below or above some ⊕i-rules according to Proposition 36).
Thus, σ(ρ) =∗

c idσ(A). Using Proposition 81, it follows σ(ρ) =βη idσ(A), and therefore
σ(π′)

σ(B)
▷◁ σ(ϖ′) =βη axσ(A) with axσ(A) the ax-rule on σ(A). A similar result holding for a cut

over A, we have σ(A) ≃ σ(B), these formulas being unit-free. By Theorem 33, σ(A) =E σ(B).
We conclude A =E B by substituting X by 0 and Y by 1 (as X and Y were fresh). ◀

	1 Introduction
	2 Definitions and preliminary results
	2.1 Multiplicative-Additive Linear Logic
	2.2 Linear isomorphisms
	2.3 Axiom-expansion
	2.4 Proof-nets for unit-free MALL

	3 Completeness for unit-free MALL
	3.1 Reduction to proof-nets
	3.2 Reduction to bipartite full proof-nets
	3.3 Distribution
	3.4 Non-ambiguous formulas & Completeness for unit-free MALL

	4 Completeness for MALL with units
	5 Star-autonomous categories with finite products
	5.1 MALL as a star-autonomous category with finite products
	5.2 Isomorphisms of star-autonomous categories with finite products

	6 Conclusion
	A Transformations of sequent calculus proofs in MALL
	B Proofs for the reduction to axiom-expanded proofs
	B.1 Axiom-expansion is confluent and strongly normalizing
	B.2 Proof of Proposition 4

	C Proofs for the completeness for unit-free MALL
	C.1 Proof of the Simulation Theorem (Theorem 12)
	C.2 Proof of the Reduction to proof-net Theorem (Theorem 13)
	C.3 Proofs of the properties of identity proof-nets from Proposition 15
	C.4 Proof of Lemma 18
	C.5 Proof of Proposition 21
	C.6 Proof of Lemma 22
	C.7 Proof of Lemma 26
	C.8 Proof of Corollary 31
	C.9 Proof of Corollary 32
	C.10 Isomorphisms completeness for unit-free MALL (Theorem 33)

	D Proofs for the completeness for full MALL
	D.1 Proof of Theorems 34 and 35
	D.2 Proof of Proposition 36
	D.3 Proof of Lemma 37
	D.4 Proof of Theorem 38

