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Abstract

We present a syntax for MALL (multiplicative additive
linear logic without units) proof nets which refines Girasd’
one. It is also based on the use of monomial weights for
identifying additive components (slices). Our generaliza
tion gives the possibility of representing a kind of sharing
of nodes which does not exist in Girard’s nets. This sharing
leads to the definition of a strong cut elimination procedure
for MALL.

We give a correctness criterion which is proved to be sta-
ble by reduction and to give a sequentialization theorem
with respect to the sequent calculus. Sequentialization is
proved by showing that an expansion procedure allows us
to unfold any of our proof nets into a Girard proof net.

1 Introduction

Since its inception, in 1987, linear logic (LL, [Gir87])
has changed the proof theoretical way of dealing with cut
elimination. This task was traditionally carried out by
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The main properties under consideration for a good notion
of proof nets are then the following:

e Soundness of the interpretatiothe graphs associated
with a sequent calculus proof, which are usually given
as proof structures, are indeed proof nets.

e Stability of correctnesander cut elimination.

e Sequentialization theorereach proof net is the image

of at least one proof of the sequent calculus.

Functional interpretation the interpretation of

sequent-calculus proofs into proof nets is a function.

Canonical representatioaf proofs of the sequent cal-

culus: proofs equal up to (reasonable) commutations

of rules are identified (this leads to the representation
of the corresponding free categories with proof nets).

Completeness of cut eliminatiofor any cut node in a

proof net a cut elimination step can be applied.

Locality of cut eliminationa cut elimination step only

affects the nodes connected to the cut node it is reduc-

ing.

Strong normalizatiormandconfluenceof the cut elimi-

nation procedure.

e Linear complexityof the correctness checking with re-
spect to the number of nodes.

means of sequent calculi with the consequence that the most
part of these works were engrossed by tedious commutaOne usually requires at least the first two properties to

tions of rules. This situation has changed with the acces-
sion of the new geometrical syntax for proofs, known as
proof nets Proof nets are parallel presentations of sequen-
tial proofs of linear logic: they quotient classes of equiv-
alent proofs, modulo irrelevant permutations of derivatio
rules.

The standard key ingredients of a proof net syntax are:

e a graphical syntaxpfoof structurey

e a correctness criterion (definingroof netsamong
proof structures),

e an interpretation of the sequent calculus syntax,

e a cut elimination procedure.
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hold, otherwise it is really difficult to consider the propds
proof-net syntax as a real alternative to the sequent calcu-
lus. Concerning proof nets, MLL (the Multiplicative frag-
ment of LL) is the perfect setting: all these conditions are
satisfied!

A lot of work has been done to extend these properties to
MALL (the Multiplicative Additive fragment of LL). The
syntax proposed by J.-Y. Girard in [Gir96] is a very im-
portant progress: a new (additive boxes free) syntax for
proof nets of MALL where each node of a proof struc-
ture is weighted by a nonzero monomial (conjunctions or
products) of a Boolean algebra generated by the (different)
eigenweights (variables) associated to&hrodes.

Unfortunately Girard’s proposal is not as good as for
MLL:

“Contrarily to the multiplicative case, the extant



solution is not perfect (although it has the virtue (because of the constraint on expansion of axioms): axioms
to exist)! [Gir96, page 24] can be duplicated (this is done in a local manner) or whole
“inconsistent” linkings can be erased. This erasure in not a

“ . . S . local operation but, in contrast, a completely global ohe: t
functional interpretation” property are lost. The monemi I s .
wholelinking is erased if it is inconsistent (moreover con-

ality constraint imposed on the additive weights prevents sistency is checked locally). We consider this local/globa

from the natural rgpresentatm_n of some s€ quent Cal.CUIusprocedure as a reasonable weakening of the locality prop-
proofs. There exist proofs with two possible associated

£ nets with to discriminate th erty. What would really be “foreign to the spirit of proof-
pro19h_ne S Vl\)’: nﬁ Wag/ 0 |sc|r|n:j|nbaeD Sm.h dR nets” is something in between where a (possibly complex)

IS problem has been solved by L. HUgNEs and k. Vansub-part of the net would have to be computed for applying
Glabbeek in a perfectly satisfactory way [HvG03]. By

showing how to deal with non-monomial weights in the cor- areduction step. In [Gir96], lazy procedurés given which

rectness criterion, they proposed a notion of additive proo only permits to normalize proof nets witholutconnectives
, they prop . in conclusions. This procedure applies global steps for era
net based on the formula trees of the conclusions of the

. o . . ) ) sure (see the quotation above) and avoids to deal with an
proof decorated with families of atomic axiom links (link- ( 9 ) y

ings). This corresponds to a maximal gluing of slices from kind of duplication by laziness.

. . . : Our goal is to turn the lazy cut elimination procedure de-
conclusions up to the axioms. The key point with respect fined by Girard into a complete one (this requires to deal
to Girard’s work is that this gluing was out of the scope of y P g

monomial weights. Hughes and van Glabbeek’s nets sat-wlth dup_l!cat|0n). Our pf"posa' IS b"’?sed on the monomial-
ity condition and thus will not be satisfactory enough from

isfy all the properties mentioned before (except maybe thethe canonicity point of view. The procedure we propose

complexity one which is still an open question — as far as . . T
: Lo .~ works in a local/global approach. In particular duplicatio
we know — and the locality of cut elimination that we will . . . .
of sub-nets is done in a local manner (in the same spirit as
address below). S : :
g . . duplication in interaction nets). If we keep the monomial-
Let us mention two reasons why their nets can be big- . o . S )
. . ; : : ity condition, the crucial point is to relax another one: two
ger than Girard’s nets. First, when interpreting a tensor .
different & nodes will now be allowed to share the same
rule of the sequent calculus (and the same for a cut rule), . . . o
. P : I eigenweight (under some appropriate restriction). In orde
if the left premise induces slices (thus: linkings) and the o
. . ) . to preserve monomiality, we attach to proof nets a global
right one inducesn slices then the resulting proof net has . : . .
. . . - set of equations in the algebra of weights which has to be
n - m slices. Second, axioms are required to be atomic. . : ST
. : . updated during reduction (once again this is not a local op-
As a consequence, a proof containing an axiom rule intro- .
: eration on the graph part of the net but a global one). We
ducing a compound formula must be expanded before be- . . AN
prove the following key properties of cut elimination: sta-

Ing translated into a proof net (this is perfectly naturahir bility of correctness, completeness of the procedurengtro
a categorical perspective, for example, since the categori normalization and c’onﬂuence

cal interpretation is invariant under axiom expansion). In

particular, when one wants to work with non-expanded ax-  In Section 2 we present a refinement of the original Gi-
ioms (this can have consequences on complexity questionsard’s syntax in such a way to obtain a class of proof nets
for example) or in extended settings where two disjoint for- that is stable under a general cut elimination procedure.
mula occurrences in a sequent calculus proof can be relatedNaively, the main novelty is given by the immediate and
with the same sub-formula of the conclusions (as opposediocal treatment of those cut elimination steps involving ad

to what happens in MALL), one could prefer to use Girard ditive contraction links as cut premises (Section 3). This
style proof nets. procedure is, moreover, shown to preserve the correctness

We now look at cut elimination. Cut elimination with  criterion (Section 3.1) and to be strongly normalizing (Sec
additive connectives naturally involves erasure and dapli  tion 3.2).
tion of whole sub-proofs, that is non-local operations: A proof net is now defined as a pdjir, E) wherer is
essentially a proof structugela Girard, with the exception
that here the eigenweights associated to &eodes are
not supposed to be different; moreover, all weights must be
monomial modula¥, that is, a set of null equations which
mainly guarantees that is still a proof structure after the
reduction.

Finally, we prove the sequentialization (Section 4) of
our proof nets by means of axpansiorprocedure (Sec-
tion 4.1) which allows us to unfold any proof net into a
In [HvGO3], everything happens at the level of axioms (unique) proof ne& la Girard for which a sequentialization

In particular the “canonical representation” property Hrel

“Multiplicative proof nets have a local cut-
elimination]...] The additive case involves a real
global move, which consists in setting an eigen-
weightto 0 or 1, and erase everything with weight
0. This is rather brutal, and completely foreign
to the parallel asynchronous spirit of proof-nets.
[...] This is perhaps the most promising open
guestion in this papér. [Gir96, page 26]



was already given: the expansion reestablishes the particu
lar case of a proof structure where &lhodes have different
eigenweights.

MALL is the multiplicative and additive fragment of lin-
ear logic. Formulasi, B, ... are built from literals (propo-
sitional variablesP, , ... and their negation®+, Q-+, ...)
by the binary connectives (tenso), = (par), & (with)
and @ (plug. Negation(.)* extends to arbitrary formu-
las by the de Morgan laws(A ® B)t = (AteBt),
(A¢B)t = (At @ BY), (A&B)t = (At @ BY), and
(A®B)*t = (A+t&B1). AMALL sequentl is a set of for-
mula occurrenced, ..., A,,. We omit turnstiles) since
all sequents are right-sided. Sequents are proved using th
following rules:

— T, A AAt
, T,A
r,A A,B IA B
LA A®B T, A9B
A I.,B T, A nB
T,A%B I A® B I A® B

2 MALL Proof structures

The following notion of proof structure is essentially a
refinement of that one given in [Gir96] (see Appendix A)
but, for technical reasons, we adopt the syntax of [Lau99],
with explicit n-ary additive contraction node€’]. Naively,

a MALL proof structureis an oriented graphpfe-proof
structurg with associatedveights

DEFINITION 1 A MALL pre-proof structure (PPS 7 is a

non-empty directed graph such that each edge is labelled by

a MALL formula and built on the set of nodes following the
typing constraints of Figure 1:

1. fixed a node, an entering edge is calf@@misewhile
its emergent edges are callednclusions

premise of at most one node;

. we assumel = A;
contraction(C') node;

... = Ap>1 in the additive

4. two contraction nodes cannot have a common edge.

Pending edges are callembnclusionf 7. We calllink the
graph made by a node together with its premise(s) and its
conclusion(s) (if any).

DEFINITION 2 Assume a seB of Boolean variables de-
noted byp,q,..., then amonomial weight (simply, a
weigh) w, v, ..., over B is a product (conjunction) of vari-
ables or negation of variables @&. We replacep.p by p.
Often, in a product of weights,andw, we omit “.” and we

pw pw w1 Wy,
& w

€, does not occur iw Vivj, wiw; =0 (1 < 4,5 < n)

Figure 2. Weights for & and C links

write “vw” instead of “v.w”. As usual in a Boolean alge-
bra, we define the standard order relatior” between two
feightsv andw as follows:v < w if there exists a weight
v’ s.t.v = v’.w. Moreover, we assume the following nota-
tion: 1, for the empty product), for a product where both
andp appear;e,, for a variablep or its negatiorp; then we
use the special product notatiep@u, equivalent tce,.v,
when we want to focus on thpeefix weight ¢, within the
weighte,.v (v is saidsuffix weight). We say that a weight
w depends on a variablg whene, appears inw; we say
that two weightsy andw, aredisjoint whenv.w = 0.

DEFINITION 3 A MALL proof structure (P9, is a pair
(m, E) such that:

1. E'is a set of null equations of the shapgdw = 0
wheree, is a prefix weight ove8 andw is a weight
over5 not containing any occurrence pfor p;

2. wis a MALL pre-proof structure in which we associate

a Boolean variablep over 5, called eigenweight to
each& node ofr and we use the notatiafa,,; eigen-
weights are not supposed to be differeéftien, to each
node we associate a nonzero, up g weightw of

the Boolean algebra generated ov8r= {p | &, €

7w V ¢, isaprefixinE} with the constraint that two
nodes have the same weight if they have a common
edge, except when the edge is the premisedofoa C

node; in these cases we do as follows (see Figure 2):

. each edge must be conclusion of exactly one node and

(a) if w is the weight of & node andp is its eigen-
weight thenw does not depend op and its
premise nodes must have weightsand pw;

(b) if w is the weight of &€ node andwy, ..., w,, are
the weights of its premise nodes, then we must
havew = " | w;, moduloE, with w;.w; = 0
andw; <w,Vi,jst.1<i<j<mn;

. each conclusion node has weight

. if w is a weight of a node appearing inor a weight
occurring in an equationv = 0 of £ andw depends
onp, then

n

w < (Zvl)

=1

mod E Q)



Figure 1. MALL links

e amultiplicative switching S for 7 (we write S()) is
the non oriented graph built on the nodes and edges
of ¢ () with the modification that for eacg-node we
take only one premise and we cut the remaining one
(left or right *2-switch);

e an additive switching (or simply aswitching) is a
multiplicative switching in which for eack node we
cut the (unique) premise ip(7) and we add an ori-
ented edge, callefimp, from the& node to aL node
whose weight depends on the eigenweight of &his
node. A switchingS for 7 is calledlocal when it is

Figure 3. Example of proof structure considered w.r.t. a local slic@;,c().

. ) o ) DEFINITION 5 A proof structure{r, E) is correct, so it is
wherev;, with 1 < i < n, is either the weight of &, a proof net (PN), if any local switching induced by a valu-
node or the suffix weight of an equatigy@v; = 0 of ation ¢ for (r, E) is acyclic and connected\CC).

E; moreover,
(a) >;—, vi must be a monomial weight, up i 3 Cut elimination
(b) all weightsvy, ..., v,, must be pairwise disjoint.
A nodeL with weightw depends op if w depends op. DEFINITION 6 Let L be a cut node in a proof structure

(m, E) whose premised and A+ are the respective con-
As simplification of the graph notation we may some- clusions of nodes’ andL” (with L’ # L”); then we define
times use, in the following, left-right arrow edges:Jto the result(z’, E) of reducing this cut inx, E) (we write
denote axiom links. We also omit sometimes the edge ori- (m,E) ~p, (', E')) according to the followingeduction
entation when it is clear from the context. steps

ExaMPLE 1 InFigure 3 we give an instance of proof struc- (az)-step : If L' (resp., L") is an axiom node of, then

ture: the pair(r, 0). (m, E) ~ (7', E), wheren’ is obtained by removing
We are interested in those proof structures that corre-  inm both formulasd and A+ (as well asL) and giving

spond to proofs of the sequent calculus; these proof struc-  as new conclusion td” (resp.,L’), the other conclu-

tures will be calleccorrectproof structures oproof nets sion of’ (resp.,L"), like in Figure 4. IfL”, in7’, is a

DEFINITION 4 Avaluation ¢ for a PS(r, E) is a function

that maps each eigenweightof(resp., each prefix weight 3 @ :

of E) into {0, 1}; this mapping must b&-consistentthat 1w JLW (m, E) ~ (', E) @%

is, if an equatior,@v = 0 occurs inE, theng(e,v) = 0. A A
Fixed a valuationp for (r, E) then: ‘

e aslice p(m) is the graph obtained from by keeping

only those nodes with weightogether with its emerg- Figure 4. ax-cut reduction step

ing edges; docal slicey;,.(w) is a slicep(n) where

we replaced each occurrence @f by ¢,v wherev is contraction node whose conclusignis premise of an
(possibly) the weight of the (uniqu&), node appear- other contraction node, then, by associativity, we col-

ing in the slice; lapse these two contraction nodes into a unique one.



(®/%)-step: If L’ is a ® node with premised3 and C
and L” is a’® node with premise®' and C*, then
(m, E) ~ (x', E), wherer’ is obtained by removing
in 7 the formulasA and A+ as well as the cut node
L with L’ and L and by adding two new cut nodes
with premises, respectivelig, B+ and C, C'+, like in

Figure 5.
NV
(©) ()
L (m, E) ~ (7', E)

o

Bt ct

Figure 5. (®/7)-cut reduction step

(®@;/&)-step : If L' is a&, node with weightv and B and
C as premises whose weights are, respectiyedyand
pw, andL” is a @, node with premisé3 in 7, then
(m, E) ~

(7', E"), like in Figure 6, where:

Figure 6. (&/®1)-cut reduction step

1. 7’ is obtained by

(a) removing fromr any node whose weights
s.t.v < pw together withL, L’ and L",

(b) replacing each occurrence of the weight
with w,

(c) adding a cut betweeR and B+;

2. E' is obtained by adding td all the equations
€,Qu 0 s.t. ¢qu < pw, for everyq that is
eigenweight of & node ofr whose weight i®
(in particular, p@Qw = 0 € E').

The(®2/&)-cut reduction step is analogous.

(®/C)-step: If L' is aC node andL” is a ® node, then
(m, E) ~ (7', E) wherer’ is obtained by replacing in
« the (sub-)graph of Figure 7 with that one of Figure 8.

("e/C)-step : Analogous to the previous one (where we re-
place each occurrence of with an occurrence of).

(¢,;/C)-step : If L’ is aC node andL” is a®; node, then
(r, E) ~ (7', E), wherer' is obtained by replacing

m
.
m
(', E)
Figure 8.

in  the (sub-)graph of Figure 9 with that one of Fig-
ure 10.

Figure 9.

(&/C)-step: If L' is a&, node andL” is aC node, then
(m, E) ~ (7', E) wherer’ is obtained by replacing in
« the sub-graph of Figure 11 with that one of Figure 12
(we keep only those axioms with nonzero weight).

(C/C)-step: If both L’ and L” are C' nodes, then
(m, E) ~ (7', E) wherer’ is obtained by replacing in
= the sub-graph of Figure 13 with that one of Figure 14
(we keep only those axioms with nonzero weight).

ExAaMPLE 2 Reducing the two instances of8a, /@ cut

in the proof structurd, ) of Figure 3 leads, respectively,
to the proof structuregn’, {gQp = 0}) and (z”, {GgQp =

0, g@p = 0}) of Figure 15: observe that the set of equa-
tions{g@p = 0, g@p = 0}, in the last one, forceg = 0.



Figure 11.

3.1 Stability

In this section we show that correctness of proof struc-
tures is stable (preserved) under the cut reduction steps.

LEMMA 1 (&-MUTILATION) Let(r, F) be a proof netand
let L be a cut with weighty between &, node and arp;
node ¢ = 1,2) and assumér, E) ~, (7', E'); then there
does not exist any mutilated (i.e. unaty)node inr’.

Proof— AssumeL is a cut with weightw having&, and
®1 (1 = 1) as premises and assurfig E) ~, (n', E'),
with E’ like in Definition 6. Assume, by absurdum, there
exists a nodé,, in =, whose weight i and s.t. it becomes
unary after thd. reduction; this means that, by construction
of 7/, gv < pw. Now observe that it cannot e= ¢ other-
wise, by definition of proof structure, it should bev = 0,
contradictingy < w; Then, pw must occur inv, by the
order relation <” on weights; this impliesy = 0, contra-
dicting the assumption that the unary nddgoccurs (with
nonzero weight) int’. O

THEOREM 1 (STABILITY OF CUT REDUCTION) If a proof
net(w, E) reduces in one step tor’, E'), then(s', E’) is
still a proof net.

Proof— We reason by cases.

wp w1

AL

Figure 13.

1. If (m,E) reduces to(s’, E’) by an instance of a
ax, (®/®), (©/C), (8/C), (C/®:)or(C/C)-step
of cut reduction, then it is trivial to verify thdtr’, E'),
having B’ = E, is still a proof structure; moreover,
each local switching'(7’) can be seen as a sub-graph
(possibly, collapsing the resulting unary nodes) of a
fixed switching forr.

2. If (m,E) reduces to(n’,E’) by an instance of
(®1/&,) cut reduction step (see Figure 6) then it is
easy to verify that, up td&’, (z’, E’) is still a proof
structure (recall thay = pw, moduloE"); in particu-
lar, it is easy to verify that thé®, /&,,) reduction step
preserves the technical condition (4) of Definition 3,
moreover Lemma 1 ensures that we do not mutilate
any & node except that one that is premise of the cut
involved in the reduction. Finallyx’, E') is still cor-
rect since each local switchirgfn’) can be seen as a
sub-graph of a fixed switching far.

3. Assume(r, E), like in Figure 11, reduces tar’, E’)
by a(&,/C) cutreduction step, like in Figure 12; first,
itis easy to verify thatx’, E’) is still a proof structure;
then, in order to show that each local switchifigr’)
is ACC we reason by absurdum.

Acyclic- Assume there exists a local switchisgr’)
containing a cycler; then we need to consider two
sub-cases, depending on the fact that we replace in
any local switching for’ the occurrences aof, by the
weighte,w, wherew is the weight of thek,, node in-
volved in the reduction.

— First case o does not contain any jumg from a



the same Figure 16 (we use the notatign” /v’] to
denote the substitution imof v" with v”’). In S(7) the
jump J goes from the, node to the (unique) premise
(with weightw;) of C; then, we get a local switching
(S for ) that contains clearly a cycle, contradicting
the assumptiofir, E) is correct.

Connected Assume that there exists a local switching
S(7’) that is not connected; clearly this disconnection
must be consequence of the fact that we jump from a
node&, to a nodeL such that its local weight de-
pends ory in the local switchingS(#’) but it does not
depend ory in any local switchingS for 7 (otherwise
S(7’) would be a sub-graph of some local switching
S for m contradicting the correctness ¢f, E)). So,
assume a local switching(’) with at least two sepa-
rated components; and3, such thaty (or 5) contains

a jumpJ from the &, to such a nodd.. Now, let us
suppose an other switchin§f for 7’ that is identical

to S(n’) except for the immediate jump frok, to

its (unique) premise. Clearly this switching must be
connected, otherwise we could easily find a switching
for = containingS’(#’), contradicting the assumption
(m, E) is correct. Now, inS’(7’), there must exist a
path connecting. to (3; this path cannot contairfs,

for the following reasons:

Figure 14.

(' a0 = 0)

(a) it cannot start fron and ente&:, from its con-
clusion, otherwise there would already exist in
S(n") a cycle containingz,,;

Figure 15. Examples of cut reduction (b) it cannot start fromZ and enter&, from its

unique premise inS’(n’), otherwise&, and g

would already be connected f(").

node&, to a nodel such that its (local) weight de- Therefore, inS(x'), a jump from a&, to L (the only
pends oy in the local switching5 (') but it does not thing that differsS from S”) cannot break the path con-
depend ory in any local switchings for 7. This means nectingZ and3, contradicting our assumption.

that the local switchings(n’) can be seen as a sub-

graph of some local switching for 7; so we get a 0

contradiction, since by assumptién, F) is correct. o y
REMARK 1 We could simplify the condition 2 of thig /&

—Second caser contains a jump/ fromaé;, nodeto  reduction step of Definition 6 as follows:

a nodeL such that its (local) weight depends om in

S(7’) but it does not depend anin any switchingS E' = Eu{pQw = 0} (2)

for 7. This means that has been obtained by replac-

ing in the local slice each occurrencerofresp.,p) by ~ Where we actually enlarge’ only with the equatiop@u =

an instance ofw; (resp. pw;), wherew; is the weight 0 (i.e., the unique equation having as prefix the eigenweight
of the (unique) premise of the th@ node involved in of the & node involved in the cut reduction). It is easy to
the cut reduction; clearlyy; depends ony, since it show that the Definition 3, is stable under this new &-
cannot bep = ¢. Now, independently of the fact that ~cut reduction step (where we replaced the condition 2 with

&, node occurs or not in the cycteof S(r’), we can the new one expressed by the equation 2 above). Indeed,
suppose a new switching for = that is identical to  this new cut reduction step preserves the correction itself

S for / except for the fact that one of the sub-graphs ~ However, for technical reasons connected to the sequen-
of those (A, B or C) depicted on the top of Figure 16 tialization (especially, thexpansiortechnique of Section 4)
is replaced by the corresponding one on the bottom of We prefer to retain the original definition.



Case A Case B Case C
v[pw;/p] v[pw; /p] v[pwi/p]

Figure 16.

3.2 Strong cut elimination structure, is not given the case of bath < pw; and
wy < ng).

THEOREM 2 (CONFLUENCE) Let (m, F) be a proof net 0

with two cut nodes[; and L,, and leta be the cut re-

duction (m, E) ~~r, (m,E:;) and 3 be the cut reduc- THEOREM3 (STRONG CUT ELIMINATION) We can al-

tion (m, E) ~~1, (ma, E2). Then, there exists a proof net ways reduce a proof nétr, ) into a proof net{x’, E’) that

(m*, E*) to which (m;, E;), for 1 < ¢ < 2, reduces in at is cut-free, by iterating the reduction steps of Definitign 6

most one step. this reduction is strongly terminating.

Proof— In generaky and3 are independent, that is, they Proof — If s is a sequence of reductions from a proof
have local actions that do not interfere with each other ex-net, there exists a (at least as long) sequesicef re-

cept when at least one of them ig&/®;) cut reduction  ductions fromm which does not contain any/;)-step
step. So, assumeis a (&, /@) cut reduction step and as-  erasing a cut link (we call such a sequence a cut-preserving
sumel; with weightw; and L, with weightws, then there sequence).

are two main cases: As a consequence, if we prove that we cannot find any

First Case £ is not a(&/@®;) cut reduction step, then: infinite cut-preserving sequence of reductions in our proof
) nets, we obtain strong normalization.

1. in casew; < puy We have(my, E) C (1, E1); For cut-preserving sequences, Theorem 2 can be

2. otherwise,a and 3 are independent and so we get strengthen: if(r, £) ~r, <7T1;E1>* and (m, E) ~p,

(11, E1) ~1, (7%, E*) and(m, Es) ~1, (1%, E*); <7r2,E2>,'there emstsap_roofnétr ,E >t(_) which(m;, E;),

for 1 < < 2, reduces in one step. This means that weak

Second Casej is a(&,/®1) cut reduction step, then normalization of cut-preserving reductions implies sgron
normalization of cut-preserving reductions.

We are going to prove weak normalization of unre-
stricted reduction in fact.

We show that, starting from a sétof cut links with dis-

2. in casep # ¢, then: eitherws < pu: (resp.,w; <  Jointweights and with the same logical compleifyhich

qu) a.nd so we are back to the CaS(?:' (_1),ooand 1The complexityof a cut node is the logical complexity of its cut-
(8 are independent (of course, by definition of proof formula. Thelogical complexityof a formula is inductively defined as

1. in casep = ¢ the two instances and are indepen-
dent and actually Lemma 1 ensures there is no interac-
tion between them;




is called the logical complexity of), it is possible to re-
duce all of them by generating only cuts of strictly smaller
logical complexity. This implies weak normalization by us-
ing the multiset ordering on the multiset of all the logical
complexities of all the cut links of a proof net.

Given such a sef of logical complexityk and an ele-
mentc of C, we define the size af in a switchingS as the
number of contraction nodes of logical complexitycon-
nected tac through their conclusion i¥. The size ofc is
the sum over all the switchingscontaining: of the sizes of
cin S. The size o is the sum of the sizes of its elements.
An important point is that two elements 6fnever appear
in the sameS. We show that reducing a cutihgenerates a
C’ of strictly smaller size and some additional cut links with
strictly smaller logical complexity.

O

4 Sequentialization

Sequentialization is proved by showing that an expan-
sion procedure allows us to unfold any of our proof nets
into a (unique) Girard proof net.

4.1 Expansion

DEFINITION 7 Let(r, E') be a proof structure ang a vari-
able, then:

— thedependency graphof p w.r.t. m, denoted byG?,
is the sub-graph ofr depending orp (we take only those
nodes and edges whose weights congain p): its pending
edges are calleduxiliary doorsexcept the premises of the
&, nodes (if any) which are callemhain doors

— thespreading of a weightv over a sub-graphg of
m, denoted by.[G], is the graphg in which we replace the
weightw of any node of with the (product) weightw;

— therestriction (m,, E) (resp.,(n5, E)) is obtained by
replacing in7 each occurrence gb (resp.,p) with 1 and
each occurrence of (resp.,p) with 0 and keeping only
those nodes and edges whose weights are still nonzero.

LEMMA 2 (AUXILIARY DOORS) If (mr, E) is a proof struc-
ture andp a variable, then all the auxiliary doors of the de-
pendency grapl? are only premises of contraction nodes.

Proof— It follows from the definition of proof structure; in
particular, observe that if the two premises d¢anode are
both doors of &2, then they must be main doors, ire= ¢
andp = q (or, resp.p = g andp = q). O

DEFINITION 8 A proof net(r, E) is expandablew.r.t. a
variablep (also,p-expandablgif it contains a nodd., with

usual: atoms have complexity the complexity ofA- is the same as the
complexity of A; the complexity ofB e C', wheree is any binary connec-
tive, is the sum of the complexities &f andC plus1.

weightw depending om, for which there does not exist in
m any nodek,, with weightv, such thaty < v.

DEFINITION 9 Assumg, E) is expandable w.r.t. a vari-
ablep, then(x’, E) is the graph obtained by the following
expansion step(we write (r, E) <5, (', E) for saying

that (7, E) expands tdn’, E), w.r.t. p):

1. we take the dependency graghf, with doors
Al,...,An;

. we take the spreading graphs.[GZ],...,v,.[GE],
where eachy;, for 1 < ¢ < m, is either a weight of
a node&,, of m or a suffix weight occurring in some
equatione,Qv; = 0 of E;

. we replace each occurrence@fby 1 in any nonzero
weight of each graphy;.[GE], if v; is a suffix weight
occurring in some equatio#), @v; = 0 of E;

. 7 is obtained by replacing im the graphG? with the
sum of the spreading graphs.|[GZ], ..., v,,.[GF]: each
auxiliary door 4;, with 1 < j < n, is expanded ac-
cording to the Figure 17 (the main doors remain un-
touched).

Figure 17. Expansion of an auxiliary door

A proof net that is not expandable (w.r.t. any variable) is
said inexpanded form

LEMMA 3 (STABILITY UNDER EXPANSION) If (7, F) is a
proof net that expands in one step(td, E), then(n’, E) is
still a proof net.

exp
I—>p

Proof— If (m, E) (', E), then it is easy to verify that
(', E) is still a proof structure: in particular observe that,
after thep-expansion step of the Definition 9 (see Figure 17)
in (7', E) we have

w; = (w7 Z’l}l)

i=1

©)

since by definition of proof structure, ifr, E') the weight
w; of a doorA; depends op so it must bev; < >, v,



structure itself. Moreover, w.r.t. the inclusion relatidgiha
node&, of a proof net occurs in the dependency graph of a
variableq then in genera? ¢ Gi: for instance, w.r.t. the
proof net of Figure 3, the dependency gra&jfhcontains the
two nodest,, butGZ Z G2; vice-versa, ifr is in expanded
form then,GZ C GP (see Example 3).

LEMMA 4 (CONFLUENCE OF THE EXPANSION Assume
exp

(m,B) &0 (7, E) and (1, E) &5, (my, E); then there

exists a proof ne{r*, E) s.t. (m,E) &5 (z*, E) and

exrp

<7T27 E> =p <7T*a E>
Proof— Trivially, the expansion is locally confluent. [J

LEMMA 5 (EXPANDED FORM) If (m, E) is a proof net in
expanded form then it can be mapped into a uni@ie
rard’s proof net? 7*.

Proof — Since(r, E) is a proof net in expanded form,
then for each nodé with weightw depending on an eigen-
weightp we know that there exists a unique nadg node
with weightv and s.t. w < v (the unicity is due to the
fact that the weights of all the possible, nodes are pair-
wise disjoint). This means that the proof structure is aklmos
a Girard’s proof structure, if we ignore the possibly unary
contraction nodes and the g8t that has exhausted its task
after the expansion. We need only to make sure that all
eigenweights are different. For that, it is enough to ierat
the following procedure: we fix an eigenweighof 7, then
(" {a4p = 0.q0p = 0}) if there exists inr an uniquet, node we do nothing, oth-
erwise, letL; and L, be two&, nodes, with weightsv;,
respectivelyuws; we know thatw;.w, = 0, so there exists
at least an occurrence of variable that separates them-as fol
lows: let us say, s.t.q € w; andq € ws; then we replace
moduloE; moreover, this sum is a monomial weight, mod- in any weightw of = depending op and s.t.w < w,, each
ulo E, by definition of PS. Recall that condition 3 of Defi- occurrence ofjp (resp.,gp) by an occurrence ofr (resp.,
nition 9 forces us to replace withthe occurrence of,, in qr) wherer is a new (fresh) eigenweight. We iterate this
the (Spreading) produotwj as soon as; is the suffix of an prOCGdUre until all the eigenweights are differentinThe
equatione,@u; = 0 in E; however, this fact has no effect ~resulting proof net™ is a Girard's proof net. The unicity of
on the above equation 3, sinegw; is equivalent tov;w’ this mapping follows by the confluence Lemma 4. [
up to E, if w? is w; after replacing;, with 0. o
Correctness is easy to prove, since for each switching4-2 Sequentialization
S(7') we can easily set a switchirfr) s.t. S(7') C S(n).
O

Figure 18. Examples of expansion

DEFINITION 10 A proof net(w, E), with conclusion§’, se-
quentializesnto a proofr~ of I' (we write (rr, E) = 7~
ExampLE 3 Observe that the proof structute, () of Fig- if we can inductively mapr, E) into 7~ as follows:

ure 3 and both the proof structuréds’, {g@p = 0}) and
(7", {q@p = 0,gp = 0}) of Figure 15 are only expandable
w.r.t. ¢; so, after theg-expansion they transform, respec-
tively, into the proof structure depicted on the top, on the 2

middle and on the bottom of Figure 18.

1. 7is an axiom link with conclusiond, A*, then,7~ is

the axiom-—;

m contains a terminal nodd. : 2@% s.t. once re-
moved it induces a proof-net;, which sequentializes
into (71)~ with conclusionl’, A, B; then 7~ is ob-

Note that the notion of dependency graph recalls that one tained from(m )~ by an instance of rule;

of “empiré€ defined on Girard’s proof nets (see [Gir96]), but
dislike this latter, the former one does not constitute apro 2See the formal Definition 12 in the Appendix A.




3. w contains a terminal nodé : ,?QTBE; s.t. onceremoved s not prefix of any equation i¥, or 7, is expandable w.r.t.
it induces two disjoint sequentializable proof-nets (we r, contradicting the assumption of minimality.
say, L is splitting): w1 which sequentializes intor; )~ Fact 1 implies that. also splitsr into 77; andms which,

with conclusiori’;, A andm, which sequentializesinto  trivially, p-expand tor}, respectivelyr).
(m2)~ with conclusiong’s, B andT’ = I'; W I'y; then
7w~ is obtained fromr;” andw, by an instance of
rule; FACT 2 There do not exist twé, nodes,L; with weight
wy and Lo with weightws, such thatl, € 7} and Ly € 7
(or vice-versa) except whenoccurs inw; and7 in ws (Or
vice-versa) andv;—; » < w(L) = 1.

If L = &, then the proof follows by:

4. 7 contains a terminal nodé : 125 (resp.,L : 125)
s.t. once removed it induces a proof ngt(resp.,ms)
which sequentializes intér )~ (resp., (w2)~) with

conclusionT’, A (resp., T, B); then =~ is obtained In order to show this fact we reason like in the previous
from (1)~ (resp.,(m2)~) by an instance of; (resp., case: we assume by absurdum such two nddesnd Lo;
@o) rule; then there exists a variableéhat separates; andws. Now,

either (7', E’) is expandable w.r.t.s or not. The former
5. m contains a terminal nodé. : ,&—59 S.t. once re-  case contradicts the assumption of minimality. In the sec-
moved the restrictions,, and =, are still two proof ond case there exists a nofle whose weightw is such
nets (we say[ is splitting) which sequentialize into, thatw; < w andws < w; if » = s, we have done; other-

respectively,(r; )~ with conclusiond’, A and (m3)~ wise, sincer’ is splitting, &, must occur either inr} or in
with conclusions”, B; thenr ™ is obtained fronfr ) ~ ) the casek, occurs inm) implies that eitherr, is not a
and(m2)~ by an instance of rule. proof structure, in caseis not prefix of any equation if’,

otherwiser’, must be expandable w.r4, contradicting the
LEMMA 6 (ADEQUACY) A sequent proof of" desequen-  a5sumption of minimality. Moreover, observe thap i r
tializes into a proof net with same conclusion. then the terminal nodé&, must be unique, since it weight
is 1 by definition.
Fact 2 implies that. also splitsr into 77; andn, which,
trivially, p-expand tor}, respectivelyr. O

Proof— By induction on the size of the sequent proof]

LEMMA 7 (SPLITTING) Let (7, E) be a proof net thap-

expands tar’, ) and letL be a node that split¢r’, £) LEMMA 8 (SEQUENTIALIZATION UNDER EXPANSION)

into two sub-proof nets,, E) and (3, E); then L also | g (. F) be a proof net that expands in one step to a proof
splits (r, E) into two sub-proof netgm, E) and (w2, E)  net(x/, E) that sequentializes intor’)~; then (rr, E) also

whichp-expand, respectively, tor;, F) and to(r}, E). sequentializes int¢r’) .
Proof —  AssumeL splits (x', E') into (], E') and  Proof— Assumer expands w.r.tp to«’ andr’ sequential-
(my, E'); we need to consider two cases, according to izes into ('), then we proceed by induction on the size

(the number of nodes) of (we omit the setF). The case

whenr is an axiom is trivial. Otherwise, by assumption, we

FACT 1 There do not exist twé, nodes,L; with weight know there exists a terminal nodehat once removed from

wy and Lo with weightws, such thatl; € 7} and Ly € 7 7 itinduces (at least) one sub-proof mgt{with 1 < i < 2)

(or vice-versa). which sequentializes intor})~. If we show, case by case
_ according tal, that any graphr; obtained by removing the

In order to show this fact, we reason by absurdum, and weconclusion nodd from  is also a proof net that expands to

. o
assume there ex:;t such two nodgsand L in 7 more- ./ than we can apply the induction hypothesis and conclude
over, we assume’ is minimal w.r.t. thg numbgrof possible  hatr also sequentializes inter’)~ following the schema

expansion steps; then there must exist a varialbtet sep-

If L = ®, then the proof follows by:

. ; below:
aratesw; andws, i.e.,r € wy; andr € ws (Or vice-versa), cop seq
since, by definition of proof structurey;.ws = 0. Now, (mi, E) —p (m,E) =L (m)”
w.r.t. r, (r/, E’) is either expandable or not. The former T T, r

case contradicts the assumption of minimality (actually, i
is not difficult to verify that if L is splitting in7 then it will

be still splitting in#’ after an expansion step). In the sec- If Lis a, or an®; node then it cannot be an expanded
ond case there must exist a nofde with weightw such node, otherwise sincg is a terminal node it should be ei-
thatw; < w andw, < w; sincer’ is splitting, this node  ther a node, or aC node, contradicting our assumption.
&, must occur either inr} or in 7} the case,. occurs in The cases wheh is ag or a@®; node are easy and we omit
w1 implies that eitherr), is not a proof structure, in case  them.

exp seq

<7T’E> —p <7T/7E> =L (WI)_
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Otherwise,L is a splitting® or &, node, then by Defi-
nition 10 we know that’ splits into two sub-proof nets;
and}, therefore, by the Splitting Lemma 7, we know that
m also splits into two proof nets; andr, which expand, re-
spectively, tar] and torrh; then, by induction hypothesis we
know thatr; andms sequentialize, respectively, inta] )~
and into(w}) ~; thereforesr sequentializes intor’)~. O

[Lau99]

A Appendix: Girard’s proof structures

THEOREM4 (SEQUENTIALIZATION) If (m, E) is a proof

. ; ; - : DEFINITION 11 Aproof structure ala Girard (GPS)is a
net with conclusiof’, then it sequentializes into a sequent

pre-proof structure witlhweightsassociated as follows:

proof =~ with same conclusions.

Proof — We iteratively expandr, E) until we get, by
Lemma 3, a proof netr’, E’) in expanded form which can
be mapped, by Lemma 5, to a Girard proof nétwith
the same conclusiori§ now, by Girard’s sequentialization
(see [Gir96]) we know that* sequentializes into a sequent
proof (7*)~ of I', so by Lemma 8 we conclude that also
(m, E) sequentializes intor™)~. O

5 Conclusions

The main contribution of this paper is the first definition
of a full cut elimination procedure for monomial proof nets
for multiplicative additive linear logic based on a new pos-
sibility of sharing nodes by reusing eigenweights.

As opposed to the definition of proof nets by Hughes-

1. first we associate 8oolean variable called eigen-
weightp, to each&-node (eigenweights are supposed
to be different);

2. then we associate weight a product of (negation
of) Boolean variablesy( 7, ¢, 7...) to each node, with
the constraint that two nodes have the same weight if
they have a common edge, except when the edge is the
premise of & or C-node, in these cases we do like in
Figure 2:

3. aconclusion nodéas weightl ;

4. ifw is the weight of &-node, with eigenweight, and
w’ is a weight depending op and appearing in the
proof structure theny’ < w (a weightw depends op
whenp or p occurs inw).

van Glabbeek, our extension of Girard’s definition does not DEFINITION 12 A GPSr is correct, so it is aproof net a
immediately lead to a canonical representation of proofs.la Girard (GPN), if any switching, induced by any valua-
However the kind of sharing we propose should be com-tion of r, is acyclic and connectedCC).

patible with the introduction of the exponential connegsiv

and may allow us to revisit the theory of proof nets for full THEOREMS A GPN is sequentialized into a MALL sequent

linear logic.

Another use of sharing is given by the Geometry of In-
teraction (Gol). We have to evaluate the impact on Gol of
our new sharing capabilities.

Finally the complexity of the extended correctness crite-

rion and of the cut elimination procedure have to be studied.
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