
Cut Elimination for Monomial MALL Proof Nets ∗

Olivier Laurent
CNRS - Université Paris VII

Olivier.Laurent@pps.jussieu.fr

Roberto Maieli
Università Roma III

maieli@uniroma3.it

Abstract

We present a syntax for MALL (multiplicative additive
linear logic without units) proof nets which refines Girard’s
one. It is also based on the use of monomial weights for
identifying additive components (slices). Our generaliza-
tion gives the possibility of representing a kind of sharing
of nodes which does not exist in Girard’s nets. This sharing
leads to the definition of a strong cut elimination procedure
for MALL.

We give a correctness criterion which is proved to be sta-
ble by reduction and to give a sequentialization theorem
with respect to the sequent calculus. Sequentialization is
proved by showing that an expansion procedure allows us
to unfold any of our proof nets into a Girard proof net.

1 Introduction

Since its inception, in 1987, linear logic (LL, [Gir87])
has changed the proof theoretical way of dealing with cut
elimination. This task was traditionally carried out by
means of sequent calculi with the consequence that the most
part of these works were engrossed by tedious commuta-
tions of rules. This situation has changed with the acces-
sion of the new geometrical syntax for proofs, known as
proof nets. Proof nets are parallel presentations of sequen-
tial proofs of linear logic: they quotient classes of equiv-
alent proofs, modulo irrelevant permutations of derivation
rules.

The standard key ingredients of a proof net syntax are:

• a graphical syntax (proof structures),
• a correctness criterion (definingproof nets among

proof structures),
• an interpretation of the sequent calculus syntax,
• a cut elimination procedure.

∗Partially supported by the CNR-CNRS Research ProgrammeInterac-
tion Complexityand the MIUR Research ProgrammeRete Italo-Francese
di Ricerca in Logica e Geometria della Computazione.

The main properties under consideration for a good notion
of proof nets are then the following:

• Soundness of the interpretation: the graphs associated
with a sequent calculus proof, which are usually given
as proof structures, are indeed proof nets.

• Stability of correctnessunder cut elimination.
• Sequentialization theorem: each proof net is the image

of at least one proof of the sequent calculus.
• Functional interpretation: the interpretation of

sequent-calculus proofs into proof nets is a function.
• Canonical representationof proofs of the sequent cal-

culus: proofs equal up to (reasonable) commutations
of rules are identified (this leads to the representation
of the corresponding free categories with proof nets).

• Completeness of cut elimination: for any cut node in a
proof net a cut elimination step can be applied.

• Locality of cut elimination: a cut elimination step only
affects the nodes connected to the cut node it is reduc-
ing.

• Strong normalizationandconfluenceof the cut elimi-
nation procedure.

• Linear complexityof the correctness checking with re-
spect to the number of nodes.

One usually requires at least the first two properties to
hold, otherwise it is really difficult to consider the proposed
proof-net syntax as a real alternative to the sequent calcu-
lus. Concerning proof nets, MLL (the Multiplicative frag-
ment of LL) is the perfect setting: all these conditions are
satisfied!

A lot of work has been done to extend these properties to
MALL (the Multiplicative Additive fragment of LL). The
syntax proposed by J.-Y. Girard in [Gir96] is a very im-
portant progress: a new (additive boxes free) syntax for
proof nets of MALL where each node of a proof struc-
ture is weighted by a nonzero monomial (conjunctions or
products) of a Boolean algebra generated by the (different)
eigenweights (variables) associated to the& nodes.

Unfortunately Girard’s proposal is not as good as for
MLL:

“Contrarily to the multiplicative case, the extant

solution is not perfect (although it has the virtue
to exist).” [Gir96, page 24]

In particular the “canonical representation” property andthe
“functional interpretation” property are lost. The monomi-
ality constraint imposed on the additive weights prevents
from the natural representation of some sequent calculus
proofs. There exist proofs with two possible associated
proof nets with no way to discriminate them.

This problem has been solved by D. Hughes and R. van
Glabbeek in a perfectly satisfactory way [HvG03]. By
showing how to deal with non-monomial weights in the cor-
rectness criterion, they proposed a notion of additive proof
net based on the formula trees of the conclusions of the
proof decorated with families of atomic axiom links (link-
ings). This corresponds to a maximal gluing of slices from
conclusions up to the axioms. The key point with respect
to Girard’s work is that this gluing was out of the scope of
monomial weights. Hughes and van Glabbeek’s nets sat-
isfy all the properties mentioned before (except maybe the
complexity one which is still an open question — as far as
we know — and the locality of cut elimination that we will
address below).

Let us mention two reasons why their nets can be big-
ger than Girard’s nets. First, when interpreting a tensor
rule of the sequent calculus (and the same for a cut rule),
if the left premise inducesn slices (thusn linkings) and the
right one inducesm slices then the resulting proof net has
n · m slices. Second, axioms are required to be atomic.
As a consequence, a proof containing an axiom rule intro-
ducing a compound formula must be expanded before be-
ing translated into a proof net (this is perfectly natural from
a categorical perspective, for example, since the categori-
cal interpretation is invariant under axiom expansion). In
particular, when one wants to work with non-expanded ax-
ioms (this can have consequences on complexity questions
for example) or in extended settings where two disjoint for-
mula occurrences in a sequent calculus proof can be related
with the same sub-formula of the conclusions (as opposed
to what happens in MALL), one could prefer to use Girard
style proof nets.

We now look at cut elimination. Cut elimination with
additive connectives naturally involves erasure and duplica-
tion of whole sub-proofs, that is non-local operations:

“Multiplicative proof nets have a local cut-
elimination[...] The additive case involves a real
global move, which consists in setting an eigen-
weight to 0 or 1, and erase everything with weight
0. This is rather brutal, and completely foreign
to the parallel asynchronous spirit of proof-nets.
[...] This is perhaps the most promising open
question in this paper.” [Gir96, page 26]

In [HvG03], everything happens at the level of axioms

(because of the constraint on expansion of axioms): axioms
can be duplicated (this is done in a local manner) or whole
“inconsistent” linkings can be erased. This erasure in not a
local operation but, in contrast, a completely global one: the
whole linking is erased if it is inconsistent (moreover con-
sistency is checked locally). We consider this local/global
procedure as a reasonable weakening of the locality prop-
erty. What would really be “foreign to the spirit of proof-
nets” is something in between where a (possibly complex)
sub-part of the net would have to be computed for applying
a reduction step. In [Gir96], alazy procedureis given which
only permits to normalize proof nets without& connectives
in conclusions. This procedure applies global steps for era-
sure (see the quotation above) and avoids to deal with any
kind of duplication by laziness.

Our goal is to turn the lazy cut elimination procedure de-
fined by Girard into a complete one (this requires to deal
with duplication). Our proposal is based on the monomial-
ity condition and thus will not be satisfactory enough from
the canonicity point of view. The procedure we propose
works in a local/global approach. In particular duplication
of sub-nets is done in a local manner (in the same spirit as
duplication in interaction nets). If we keep the monomial-
ity condition, the crucial point is to relax another one: two
different & nodes will now be allowed to share the same
eigenweight (under some appropriate restriction). In order
to preserve monomiality, we attach to proof nets a global
set of equations in the algebra of weights which has to be
updated during reduction (once again this is not a local op-
eration on the graph part of the net but a global one). We
prove the following key properties of cut elimination: sta-
bility of correctness, completeness of the procedure, strong
normalization and confluence.

In Section 2 we present a refinement of the original Gi-
rard’s syntax in such a way to obtain a class of proof nets
that is stable under a general cut elimination procedure.
Naively, the main novelty is given by the immediate and
local treatment of those cut elimination steps involving ad-
ditive contraction links as cut premises (Section 3). This
procedure is, moreover, shown to preserve the correctness
criterion (Section 3.1) and to be strongly normalizing (Sec-
tion 3.2).

A proof net is now defined as a pair〈π, E〉 whereπ is
essentially a proof structurèa la Girard, with the exception
that here the eigenweights associated to the& nodes are
not supposed to be different; moreover, all weights must be
monomial moduloE, that is, a set of null equations which
mainly guarantees thatπ is still a proof structure after the
reduction.

Finally, we prove the sequentialization (Section 4) of
our proof nets by means of anexpansionprocedure (Sec-
tion 4.1) which allows us to unfold any proof net into a
(unique) proof net̀a la Girard for which a sequentialization

was already given: the expansion reestablishes the particu-
lar case of a proof structure where all& nodes have different
eigenweights.

MALL is the multiplicative and additive fragment of lin-
ear logic. FormulasA, B, ... are built from literals (propo-
sitional variablesP, Q, ... and their negationsP⊥, Q⊥, ...)
by the binary connectives⊗ (tensor), O (par), & (with)
and⊕ (plus). Negation(.)⊥ extends to arbitrary formu-
las by the de Morgan laws:(A ⊗ B)⊥ = (A⊥

OB⊥),
(AOB)⊥ = (A⊥ ⊗ B⊥), (A&B)⊥ = (A⊥ ⊕ B⊥), and
(A⊕B)⊥ = (A⊥&B⊥). A MALL sequentΓ is a set of for-
mula occurrencesA1, ..., An. We omit turnstiles (⊢) since
all sequents are right-sided. Sequents are proved using the
following rules:

ax
A,A⊥

Γ, A ∆, A⊥

cut
Γ, ∆

Γ, A ∆, B
⊗

Γ, ∆, A ⊗ B

Γ, A, B
O

Γ, AOB

Γ, A Γ, B
&

Γ, A&B

Γ, A
⊕1

Γ, A ⊕ B

Γ, B
⊕2

Γ, A ⊕ B

2 MALL Proof structures

The following notion of proof structure is essentially a
refinement of that one given in [Gir96] (see Appendix A)
but, for technical reasons, we adopt the syntax of [Lau99],
with explicit n-ary additive contraction nodes (C). Naively,
a MALL proof structureis an oriented graph (pre-proof
structure) with associatedweights.

DEFINITION 1 A MALL pre-proof structure (PPS) π is a
non-empty directed graph such that each edge is labelled by
a MALL formula and built on the set of nodes following the
typing constraints of Figure 1:

1. fixed a node, an entering edge is calledpremisewhile
its emergent edges are calledconclusions;

2. each edge must be conclusion of exactly one node and
premise of at most one node;

3. we assumeA = A1 = ... = An≥1 in the additive
contraction(C) node;

4. two contraction nodes cannot have a common edge.

Pending edges are calledconclusionsof π. We calllink the
graph made by a node together with its premise(s) and its
conclusion(s) (if any).

DEFINITION 2 Assume a setB of Boolean variables de-
noted by p, q, ..., then a monomial weight (simply, a
weight) w, v, ..., overB is a product (conjunction) of vari-
ables or negation of variables ofB. We replacep.p by p.
Often, in a product of weights,v andw, we omit “.” and we

w1

C&p

...
wn

w

∀i∀j, wiwj = 0 (1 ≤ i, j ≤ n)

L1 L2 L1 Ln

pw p̄w

ǫp does not occur inw

w =
∑n

i=1
wi

Figure 2. Weights for & and C links

write “ vw” instead of “v.w”. As usual in a Boolean alge-
bra, we define the standard order relation “≤” between two
weightsv andw as follows:v ≤ w if there exists a weight
v′ s.t. v = v′.w. Moreover, we assume the following nota-
tion: 1, for the empty product;0, for a product where bothp
andp̄ appear;ǫp, for a variablep or its negationp; then we
use the special product notationǫp@v, equivalent toǫp.v,
when we want to focus on theprefix weight ǫp within the
weightǫp.v (v is saidsuffix weight). We say that a weight
w depends on a variablep whenǫp appears inw; we say
that two weights,v andw, aredisjoint whenv.w = 0.

DEFINITION 3 A MALL proof structure (PS), is a pair
〈π, E〉 such that:

1. E is a set of null equations of the shapeǫp@w = 0
whereǫp is a prefix weight overB andw is a weight
overB not containing any occurrence ofp or p̄;

2. π is a MALL pre-proof structure in which we associate
a Boolean variablep overB, called eigenweight, to
each& node ofπ and we use the notation&p; eigen-
weights are not supposed to be different. Then, to each
node we associate a nonzero, up toE, weightw of
the Boolean algebra generated overB = {p | &p ∈
π ∨ ǫp is a prefix inE} with the constraint that two
nodes have the same weight if they have a common
edge, except when the edge is the premise of a& or C
node; in these cases we do as follows (see Figure 2):

(a) if w is the weight of a& node andp is its eigen-
weight thenw does not depend onp and its
premise nodes must have weightspw and p̄w;

(b) if w is the weight of aC node andw1, ..., wn are
the weights of its premise nodes, then we must
havew =

∑n
i=1

wi, moduloE, with wi.wj = 0
andwi ≤ w, ∀i, j s.t.1 ≤ i < j ≤ n;

3. each conclusion node has weight1;

4. if w is a weight of a node appearing inπ or a weight
occurring in an equationw = 0 of E andw depends
onp, then

w ≤ (

n∑

i=1

vi) mod E (1)

⊗ O & C

A ⊗ B AOB A&B A

A B AA⊥

cut

A

ax

A

A BB A B

A ⊕ BA ⊕ B

⊕1 ⊕2

A⊥

...A1 An

Figure 1. MALL links

&p cut

&q

cut

&q

C

cut

p̄

p

p̄q̄

pq̄

1

C C

pq

p̄q

1

q̄

q

⊕1

⊕1

〈π, ∅〉

p

p̄

1

Figure 3. Example of proof structure

wherevi, with 1 ≤ i ≤ n, is either the weight of a&p

node or the suffix weight of an equationǫp@vi = 0 of
E; moreover,

(a)
∑n

i=1
vi must be a monomial weight, up toE;

(b) all weightsv1, ..., vn must be pairwise disjoint.

A nodeL with weightw depends onp if w depends onp.

As simplification of the graph notation we may some-
times use, in the following, left-right arrow edges (↔) to
denote axiom links. We also omit sometimes the edge ori-
entation when it is clear from the context.

EXAMPLE 1 In Figure 3 we give an instance of proof struc-
ture: the pair〈π, ∅〉.

We are interested in those proof structures that corre-
spond to proofs of the sequent calculus; these proof struc-
tures will be calledcorrectproof structures orproof nets.

DEFINITION 4 A valuation ϕ for a PS〈π, E〉 is a function
that maps each eigenweight ofπ (resp., each prefix weight
of E) into {0, 1}; this mapping must beE-consistent, that
is, if an equationǫp@v = 0 occurs inE, thenϕ(ǫpv) = 0.

Fixed a valuationϕ for 〈π, E〉 then:

• a sliceϕ(π) is the graph obtained fromπ by keeping
only those nodes with weight1 together with its emerg-
ing edges; alocal sliceϕloc(π) is a sliceϕ(π) where
we replaced each occurrence ofǫp by ǫpv wherev is
(possibly) the weight of the (unique)&p node appear-
ing in the slice;

• a multiplicative switching S for π (we writeS(π)) is
the non oriented graph built on the nodes and edges
of ϕ(π) with the modification that for eachO-node we
take only one premise and we cut the remaining one
(left or right O-switch);

• an additive switching (or simply aswitching) is a
multiplicative switching in which for each& node we
cut the (unique) premise inϕ(π) and we add an ori-
ented edge, calledjump, from the& node to aL node
whose weight depends on the eigenweight of this&
node. A switchingS for π is called local when it is
considered w.r.t. a local sliceϕloc(π).

DEFINITION 5 A proof structure〈π, E〉 is correct, so it is
a proof net (PN), if any local switching induced by a valu-
ationϕ for 〈π, E〉 is acyclic and connected (ACC).

3 Cut elimination

DEFINITION 6 Let L be a cut node in a proof structure
〈π, E〉 whose premisesA and A⊥ are the respective con-
clusions of nodesL′ andL′′ (with L′ 6= L′′); then we define
the result〈π′, E′〉 of reducing this cut in〈π, E〉 (we write
〈π, E〉 L 〈π′, E′〉) according to the followingreduction
steps.

(ax)-step : If L′ (resp.,L′′) is an axiom node ofπ, then
〈π, E〉 〈π′, E〉, whereπ′ is obtained by removing
in π both formulasA andA⊥ (as well asL) and giving
as new conclusion toL′′ (resp.,L′), the other conclu-
sion ofL′ (resp.,L′′), like in Figure 4. IfL′′, in π′, is a

cut

ax

wA L′

L′′

A

L′′

A

〈π, E〉 〈π′, E〉

Figure 4. ax-cut reduction step

contraction node whose conclusionA is premise of an
other contraction node, then, by associativity, we col-
lapse these two contraction nodes into a unique one.

(⊗/O)-step : If L′ is a ⊗ node with premisesB and C
andL′′ is a O node with premisesB⊥ andC⊥, then
〈π, E〉 〈π′, E〉, whereπ′ is obtained by removing
in π the formulasA and A⊥ as well as the cut node
L with L′ and L′′ and by adding two new cut nodes
with premises, respectively,B, B⊥ andC, C⊥, like in
Figure 5.

cut

cut

B C BB⊥

⊗ O

CC⊥

cut

C⊥B⊥

w

w

w〈π, E〉 〈π′, E〉

Figure 5. (⊗/O)-cut reduction step

(⊕i/&)-step : If L′ is a&p node with weightw andB and
C as premises whose weights are, respectively,pw and
p̄w, andL′′ is a⊕1 node with premiseB⊥ in π, then
〈π, E〉 〈π′, E′〉, like in Figure 6, where:

cut

&p ⊕1

B C B⊥

w

cut

B B⊥

〈π, E〉 〈π′, E ′〉

π′

pw p̄w w

Figure 6. (&/⊕1)-cut reduction step

1. π′ is obtained by

(a) removing fromπ any node whose weightv is
s.t.v ≤ p̄w together withL, L′ andL′′,

(b) replacing each occurrence of the weightpw
with w,

(c) adding a cut betweenB andB⊥;

2. E′ is obtained by adding toE all the equations
ǫq@v = 0 s.t. ǫqv ≤ p̄w, for everyq that is
eigenweight of a& node ofπ whose weight isv
(in particular, p̄@w = 0 ∈ E′).

The(⊕2/&)-cut reduction step is analogous.

(⊗/C)-step : If L′ is a C node andL′′ is a ⊗ node, then
〈π, E〉 〈π′, E〉 whereπ′ is obtained by replacing in
π the (sub-)graph of Figure 7 with that one of Figure 8.

(O/C)-step : Analogous to the previous one (where we re-
place each occurrence of⊗ with an occurrence ofO).

(⊕i/C)-step : If L′ is aC node andL′′ is a⊕i node, then
〈π, E〉 〈π′, E〉, whereπ′ is obtained by replacing

A⊥A⊥

C

cut

A⊥

A

B C

⊗

ww w1 wi wn

w

〈π, E〉

A⊥

Figure 7.

cut C ⊗ cutB

w w1

cut

cut A⊥

A⊥

A⊥

wi

wn

⊗

⊗CcutC

w

...

...

...

... ...

...

〈π′, E〉

w1

wi

wi

wn

w1

wn

Figure 8.

in π the (sub-)graph of Figure 9 with that one of Fig-
ure 10.

A⊥A⊥

C

cut

A⊥

A

w

B

⊕i
w

〈π, E〉

A⊥

w1 wi wn

Figure 9.

(&/C)-step : If L′ is a &p node andL′′ is a C node, then
〈π, E〉 〈π′, E〉 whereπ′ is obtained by replacing in
π the sub-graph of Figure 11 with that one of Figure 12
(we keep only those axioms with nonzero weight).

(C/C)-step : If both L′ and L′′ are C nodes, then
〈π, E〉 〈π′, E〉 whereπ′ is obtained by replacing in
π the sub-graph of Figure 13 with that one of Figure 14
(we keep only those axioms with nonzero weight).

EXAMPLE 2 Reducing the two instances of a&q/⊕1 cut
in the proof structure〈π, ∅〉 of Figure 3 leads, respectively,
to the proof structures〈π′, {q̄@p̄ = 0}〉 and 〈π′′, {q̄@p̄ =
0, q̄@p = 0}〉 of Figure 15: observe that the set of equa-
tions{q̄@p̄ = 0, q̄@p = 0}, in the last one, forces̄q = 0.

cut

ax

cut

⊕i ⊕i

ax

C

A⊥ A⊥

cut

w

B B

B⊥B⊥

A A

w1 wn...

...

...

...

B

〈π′, E〉

Figure 10.

A⊥A⊥

C

cut

A⊥

A

B C

w

〈π, E〉

A⊥

&p

wp wp̄ w1 wi wn

Figure 11.

3.1 Stability

In this section we show that correctness of proof struc-
tures is stable (preserved) under the cut reduction steps.

LEMMA 1 (&-MUTILATION) Let〈π, E〉 be a proof net and
let L be a cut with weightw between a&p node and an⊕i

node (i = 1, 2) and assume〈π, E〉 L 〈π′, E′〉; then there
does not exist any mutilated (i.e. unary)& node inπ′.

Proof – AssumeL is a cut with weightw having&p and
⊕1 (i = 1) as premises and assume〈π, E〉 L 〈π′, E′〉,
with E′ like in Definition 6. Assume, by absurdum, there
exists a node&q, in π, whose weight isv and s.t. it becomes
unary after theL reduction; this means that, by construction
of π′, qv ≤ p̄w. Now observe that it cannot bēp = q other-
wise, by definition of proof structure, it should bev.w = 0,
contradictingv ≤ w; Then, p̄w must occur inv, by the
order relation “≤” on weights; this impliesv = 0, contra-
dicting the assumption that the unary node&q occurs (with
nonzero weight) inπ′. �

THEOREM 1 (STABILITY OF CUT REDUCTION) If a proof
net 〈π, E〉 reduces in one step to〈π′, E′〉, then〈π′, E′〉 is
still a proof net.

Proof– We reason by cases.

cut cutB

w1

cut

cut A⊥

A⊥

A⊥

wi

wn

cutC

...

...

...

... ...

...

C

C

&p

wp

wp̄

pw1

pwi

p̄w1

p̄wi

p̄wn

pwn

&p

&p
〈π′, E〉

Figure 12.

C

A A A A⊥A⊥

C

cut

... ... A⊥

w1 wi wn v1 vj vm

w

〈π, E〉

Figure 13.

1. If 〈π, E〉 reduces to〈π′, E′〉 by an instance of a
ax, (O/⊗), (⊗/C), (O/C), (C/⊕i) or (C/C)-step
of cut reduction, then it is trivial to verify that〈π′, E′〉,
havingE′ = E, is still a proof structure; moreover,
each local switchingS(π′) can be seen as a sub-graph
(possibly, collapsing the resulting unary nodes) of a
fixed switching forπ.

2. If 〈π, E〉 reduces to〈π′, E′〉 by an instance of
(⊕1/&p) cut reduction step (see Figure 6) then it is
easy to verify that, up toE′, 〈π′, E′〉 is still a proof
structure (recall thatw = pw, moduloE′); in particu-
lar, it is easy to verify that the(⊕1/&p) reduction step
preserves the technical condition (4) of Definition 3,
moreover Lemma 1 ensures that we do not mutilate
any& node except that one that is premise of the cut
involved in the reduction. Finally,〈π′, E′〉 is still cor-
rect since each local switchingS(π′) can be seen as a
sub-graph of a fixed switching forπ.

3. Assume〈π, E〉, like in Figure 11, reduces to〈π′, E′〉
by a(&p/C) cut reduction step, like in Figure 12; first,
it is easy to verify that〈π′, E′〉 is still a proof structure;
then, in order to show that each local switchingS(π′)
is ACC we reason by absurdum.

Acyclic - Assume there exists a local switchingS(π′)
containing a cycleσ; then we need to consider two
sub-cases, depending on the fact that we replace in
any local switching forπ′ the occurrences ofǫp by the
weightǫpw, wherew is the weight of the&p node in-
volved in the reduction.

– First case: σ does not contain any jumpJ from a

cut C

cut

cut

cut

C

CCcutA

A

A cut C

...

...

...

...
...

C

...

...

A⊥

...

A⊥

...

A⊥

...

...

w1

wi

wn

w1vj

v1

vj

vm

wivj

wnvj

w1v1

wiv1

wnvm

w1vm

...
wnv1

wivm

〈π′, E〉

Figure 14.

&p cut

&q

cut

C

cut

p

pq̄

1

C C

pq

1

q̄

q

⊕1

〈π′, {q̄@p̄ = 0}〉

p̄

&p cut

cut

C

cut

1

C C

1

q

〈π′′, {q̄@p̄ = 0, q̄@p = 0}〉

p̄

p

Figure 15. Examples of cut reduction

node&q to a nodeL such that its (local) weightv de-
pends onq in the local switchingS(π′) but it does not
depend onq in any local switchingS for π. This means
that the local switchingS(π′) can be seen as a sub-
graph of some local switchingS for π; so we get a
contradiction, since by assumption〈π, E〉 is correct.

– Second case: σ contains a jumpJ from a&q node to
a nodeL such that its (local) weightv depends onq in
S(π′) but it does not depend onq in any switchingS
for π. This means thatv has been obtained by replac-
ing in the local slice each occurrence ofp (resp.,p̄) by
an instance ofpwi (resp.,p̄wi), wherewi is the weight
of the (unique) premise of the theC node involved in
the cut reduction; clearly,wi depends onq, since it
cannot bep = q. Now, independently of the fact that
&p node occurs or not in the cycleσ of S(π′), we can
suppose a new switchingS for π that is identical to
S for π′ except for the fact that one of the sub-graphs
of those (A, B or C) depicted on the top of Figure 16
is replaced by the corresponding one on the bottom of

the same Figure 16 (we use the notationv[v′′/v′] to
denote the substitution inv of v′ with v′′). In S(π) the
jumpJ goes from the&q node to the (unique) premise
(with weightwi) of C; then, we get a local switching
(S for π) that contains clearly a cycle, contradicting
the assumption〈π, E〉 is correct.

Connected- Assume that there exists a local switching
S(π′) that is not connected; clearly this disconnection
must be consequence of the fact that we jump from a
node&q to a nodeL such that its local weightv de-
pends onq in the local switchingS(π′) but it does not
depend onq in any local switchingS for π (otherwise
S(π′) would be a sub-graph of some local switching
S for π contradicting the correctness of〈π, E〉). So,
assume a local switchingS(π′) with at least two sepa-
rated components,α andβ, such thatα (or β) contains
a jumpJ from the&q to such a nodeL. Now, let us
suppose an other switchingS′ for π′ that is identical
to S(π′) except for the immediate jump from&q to
its (unique) premise. Clearly this switching must be
connected, otherwise we could easily find a switching
for π containingS′(π′), contradicting the assumption
〈π, E〉 is correct. Now, inS′(π′), there must exist a
path connectingL to β; this path cannot contains&q

for the following reasons:

(a) it cannot start fromL and enter&q from its con-
clusion, otherwise there would already exist in
S(π′) a cycle containing&q;

(b) it cannot start fromL and enter&q from its
unique premise inS′(π′), otherwise&q and β
would already be connected inS(π′).

Therefore, inS(π′), a jump from a&q to L (the only
thing that differsS fromS′) cannot break the path con-
nectingL andβ, contradicting our assumption.

�

REMARK 1 We could simplify the condition 2 of the⊕i/&
reduction step of Definition 6 as follows:

E′ = E ∪ {p̄@w = 0} (2)

where we actually enlargeE only with the equation̄p@w =
0 (i.e., the unique equation having as prefix the eigenweight
of the& node involved in the cut reduction). It is easy to
show that the Definition 3, is stable under this new⊕i/&-
cut reduction step (where we replaced the condition 2 with
the new one expressed by the equation 2 above). Indeed,
this new cut reduction step preserves the correction itself.

However, for technical reasons connected to the sequen-
tialization (especially, theexpansiontechnique of Section 4)
we prefer to retain the original definition.

&q

&pC

S(π′)

&q

S(π′)

&ppw wi

&q

&p CC

S(π′)

Case A Case B Case C

cut

&p

&q

C wi
pw

L L L

L

pwwi

pwi pwipwi

cut

S(π) S(π)

L

&pC

7→ 7→ 7→

&q &q

S(π)

wi pw wi
pw

C &p

L

cut

wi

v[pwi/p] v[pwi/p] v[pwi/p]

v[pw/p] v[pw/p] v[pw/p]

Figure 16.

3.2 Strong cut elimination

THEOREM 2 (CONFLUENCE) Let 〈π, E〉 be a proof net
with two cut nodes,L1 and L2, and letα be the cut re-
duction 〈π, E〉 L1

〈π1, E1〉 and β be the cut reduc-
tion 〈π, E〉 L2

〈π2, E2〉. Then, there exists a proof net
〈π∗, E∗〉 to which〈πi, Ei〉, for 1 ≤ i ≤ 2, reduces in at
most one step.

Proof – In generalα andβ are independent, that is, they
have local actions that do not interfere with each other ex-
cept when at least one of them is a(&/⊕i) cut reduction
step. So, assumeα is a(&p/⊕1) cut reduction step and as-
sumeL1 with weightw1 andL2 with weightw2, then there
are two main cases:
First Case: β is not a(&/⊕i) cut reduction step, then:

1. in casew2 ≤ p̄w1 we have〈π2, E2〉 ⊆ 〈π1, E1〉;

2. otherwise,α and β are independent and so we get
〈π1, E1〉 L2

〈π∗, E∗〉 and〈π2, E2〉 L1
〈π∗, E∗〉;

Second Case: β is a(&q/⊕1) cut reduction step, then

1. in casep = q the two instancesα andβ are indepen-
dent and actually Lemma 1 ensures there is no interac-
tion between them;

2. in casep 6= q, then: eitherw2 ≤ p̄w1 (resp.,w1 ≤
q̄w2) and so we are back to the case (1), orα and
β are independent (of course, by definition of proof

structure, is not given the case of bothw2 ≤ p̄w1 and
w1 ≤ q̄w2).

�

THEOREM 3 (STRONG CUT ELIMINATION) We can al-
ways reduce a proof net〈π, E〉 into a proof net〈π′, E′〉 that
is cut-free, by iterating the reduction steps of Definition 6;
this reduction is strongly terminating.

Proof – If s is a sequence of reductions from a proof
net π, there exists a (at least as long) sequences′ of re-
ductions fromπ which does not contain any(&/⊕i)-step
erasing a cut link (we call such a sequence a cut-preserving
sequence).

As a consequence, if we prove that we cannot find any
infinite cut-preserving sequence of reductions in our proof
nets, we obtain strong normalization.

For cut-preserving sequences, Theorem 2 can be
strengthen: if〈π, E〉 L1

〈π1, E1〉 and 〈π, E〉 L2

〈π2, E2〉, there exists a proof net〈π∗, E∗〉 to which〈πi, Ei〉,
for 1 ≤ i ≤ 2, reduces in one step. This means that weak
normalization of cut-preserving reductions implies strong
normalization of cut-preserving reductions.

We are going to prove weak normalization of unre-
stricted reduction in fact.

We show that, starting from a setC of cut links with dis-
joint weights and with the same logical complexity1 (which

1The complexityof a cut node is the logical complexity of its cut-
formula. Thelogical complexityof a formula is inductively defined as

is called the logical complexity ofC), it is possible to re-
duce all of them by generating only cuts of strictly smaller
logical complexity. This implies weak normalization by us-
ing the multiset ordering on the multiset of all the logical
complexities of all the cut links of a proof net.

Given such a setC of logical complexityk and an ele-
mentc of C, we define the size ofc in a switchingS as the
number of contraction nodes of logical complexityk con-
nected toc through their conclusion inS. The size ofc is
the sum over all the switchingsS containingc of the sizes of
c in S. The size ofC is the sum of the sizes of its elements.
An important point is that two elements ofC never appear
in the sameS. We show that reducing a cut inC generates a
C′ of strictly smaller size and some additional cut links with
strictly smaller logical complexity.

�

4 Sequentialization

Sequentialization is proved by showing that an expan-
sion procedure allows us to unfold any of our proof nets
into a (unique) Girard proof net.

4.1 Expansion

DEFINITION 7 Let〈π, E〉 be a proof structure andp a vari-
able, then:

– thedependency graphof p w.r.t. π, denoted byGp
π ,

is the sub-graph ofπ depending onp (we take only those
nodes and edges whose weights containp or p̄): its pending
edges are calledauxiliary doorsexcept the premises of the
&p nodes (if any) which are calledmain doors;

– thespreading of a weightv over a sub-graphG of
π, denoted byv.[G], is the graphG in which we replace the
weightw of any node ofG with the (product) weightvw;

– therestriction 〈πp, E〉 (resp.,〈πp̄, E〉) is obtained by
replacing inπ each occurrence ofp (resp.,p̄) with 1 and
each occurrence of̄p (resp., p) with 0 and keeping only
those nodes and edges whose weights are still nonzero.

LEMMA 2 (AUXILIARY DOORS) If 〈π, E〉 is a proof struc-
ture andp a variable, then all the auxiliary doors of the de-
pendency graphGp

π are only premises of contraction nodes.

Proof– It follows from the definition of proof structure; in
particular, observe that if the two premises of a&q node are
both doors of aGp

π, then they must be main doors, i.e,p = q
andp̄ = q̄ (or, resp.,̄p = q andp = q̄). �

DEFINITION 8 A proof net〈π, E〉 is expandablew.r.t. a
variablep (also,p-expandable) if it contains a nodeL, with

usual: atoms have complexity1; the complexity ofA⊥ is the same as the
complexity ofA; the complexity ofB • C, where• is any binary connec-
tive, is the sum of the complexities ofB andC plus1.

weightw depending onp, for which there does not exist in
π any node&p, with weightv, such thatw ≤ v.

DEFINITION 9 Assume〈π, E〉 is expandable w.r.t. a vari-
ablep, then〈π′, E〉 is the graph obtained by the following
expansion step(we write 〈π, E〉

exp
7→p 〈π′, E〉 for saying

that 〈π, E〉 expands to〈π′, E〉, w.r.t. p):

1. we take the dependency graphGp
π , with doors

A1, ..., An;

2. we take the spreading graphsv1.[Gp
π], ..., vm.[Gp

π],
where eachvi, for 1 ≤ i ≤ m, is either a weight of
a node&p of π or a suffix weight occurring in some
equationǫp@vi = 0 of E;

3. we replace each occurrence ofǭp by 1 in any nonzero
weight of each graphvi.[Gp

π], if vi is a suffix weight
occurring in some equationǫp@vi = 0 of E;

4. π′ is obtained by replacing inπ the graphGp
π with the

sum of the spreading graphsv1.[Gp
π], ..., vm.[Gp

π]: each
auxiliary doorAj , with 1 ≤ j ≤ n, is expanded ac-
cording to the Figure 17 (the main doors remain un-
touched).

...
v1.[G

p
π]

LjLj

Gp
π

Lj

C

... ...
Aj wj

w

A

C

... ...

A

vmwj
...v1wj

A1

j Am
jπ

exp
7→p π′

vm.[Gp
π]

w

Figure 17. Expansion of an auxiliary door

A proof net that is not expandable (w.r.t. any variable) is
said inexpanded form.

LEMMA 3 (STABILITY UNDER EXPANSION) If 〈π, E〉 is a
proof net that expands in one step to〈π′, E〉, then〈π′, E〉 is
still a proof net.

Proof – If 〈π, E〉
exp
7→p 〈π′, E〉, then it is easy to verify that

〈π′, E〉 is still a proof structure: in particular observe that,
after thep-expansion step of the Definition 9 (see Figure 17)
in 〈π′, E〉 we have

wj = (wj .

m∑

i=1

vi) (3)

since by definition of proof structure, in〈π, E〉 the weight
wj of a doorAj depends onp so it must bewj ≤

∑m

i=1
vi,

&p cut

&q

cut

&q

C

cut

p̄

p

p̄q̄

pq̄

1

C C

pq

p̄q

1

⊕1

⊕1

〈π, ∅〉

pq

pq̄

p̄q

p̄q̄

&p cut

&q

cut

C

cut

p̄

p

pq̄

1

C C

pq

1

⊕1

〈π′, {q̄@p̄ = 0}〉

pq

p̄

pq̄

&p cut

cut

C

cut

1

C C

1

p̄

p

p̄

p

〈π′′, {q̄@p̄ = 0, q̄@p = 0}〉

Figure 18. Examples of expansion

moduloE; moreover, this sum is a monomial weight, mod-
ulo E, by definition of PS. Recall that condition 3 of Defi-
nition 9 forces us to replace with0 the occurrence ofǫp in
the (spreading) productviwj as soon asvi is the suffix of an
equationǫp@vi = 0 in E; however, this fact has no effect
on the above equation 3, sinceviwj is equivalent toviw

∗
j

up toE, if w∗
j is wj after replacingǫp with 0.

Correctness is easy to prove, since for each switching
S(π′) we can easily set a switchingS(π) s.t.S(π′) ⊆ S(π).

�

EXAMPLE 3 Observe that the proof structure〈π, ∅〉 of Fig-
ure 3 and both the proof structures〈π′, {q̄@p̄ = 0}〉 and
〈π′′, {q̄@p̄ = 0, q̄p = 0}〉 of Figure 15 are only expandable
w.r.t. q; so, after theq-expansion they transform, respec-
tively, into the proof structure depicted on the top, on the
middle and on the bottom of Figure 18.

Note that the notion of dependency graph recalls that one
of “empire” defined on Girard’s proof nets (see [Gir96]), but
dislike this latter, the former one does not constitute a proof

structure itself. Moreover, w.r.t. the inclusion relation, if a
node&p of a proof net occurs in the dependency graph of a
variableq then in generalGp

π 6⊆ Gq
π: for instance, w.r.t. the

proof net of Figure 3, the dependency graphGp
π contains the

two nodes&q, butGq
π 6⊆ Gp

π ; vice-versa, ifπ is in expanded
form then,Gq

π ⊆ Gp
π (see Example 3).

LEMMA 4 (CONFLUENCE OF THE EXPANSION) Assume
〈π, E〉

exp
7→p 〈π1, E〉 and 〈π, E〉

exp
7→q 〈π2, E〉; then there

exists a proof net〈π∗, E〉 s.t. 〈π1, E〉
exp
7→q 〈π∗, E〉 and

〈π2, E〉
exp
7→p 〈π∗, E〉.

Proof– Trivially, the expansion is locally confluent. �

LEMMA 5 (EXPANDED FORM) If 〈π, E〉 is a proof net in
expanded form then it can be mapped into a uniqueGi-
rard’s proof net 2 π∗.

Proof – Since〈π, E〉 is a proof net in expanded form,
then for each nodeL with weightw depending on an eigen-
weightp we know that there exists a unique node&p node
with weight v and s.t. w ≤ v (the unicity is due to the
fact that the weights of all the possible&p nodes are pair-
wise disjoint). This means that the proof structure is almost
a Girard’s proof structure, if we ignore the possibly unary
contraction nodes and the setE, that has exhausted its task
after the expansion. We need only to make sure that all
eigenweights are different. For that, it is enough to iterate
the following procedure: we fix an eigenweightp of π, then
if there exists inπ an unique&p node we do nothing, oth-
erwise, letL1 andL2 be two&p nodes, with weightsw1,
respectively,w2; we know thatw1.w2 = 0, so there exists
at least an occurrence of variable that separates them as fol-
lows: let us sayq, s.t. q ∈ w1 andq̄ ∈ w2; then we replace
in any weightw of π depending onp and s.t.w ≤ w1, each
occurrence ofqp (resp.,qp̄) by an occurrence ofqr (resp.,
qr̄) wherer is a new (fresh) eigenweight. We iterate this
procedure until all the eigenweights are different inπ. The
resulting proof netπ∗ is a Girard’s proof net. The unicity of
this mapping follows by the confluence Lemma 4. �

4.2 Sequentialization

DEFINITION 10 A proof net〈π, E〉, with conclusionsΓ, se-
quentializesinto a proofπ− of Γ (we write〈π, E〉

seq
7→ π−)

if we can inductively map〈π, E〉 into π− as follows:

1. π is an axiom link with conclusionsA, A⊥, then,π− is
the axiom

A,A⊥ ;

2. π contains a terminal nodeL : A B
AOB

s.t. once re-
moved it induces a proof-netπ1 which sequentializes
into (π1)

− with conclusionΓ, A, B; then π− is ob-
tained from(π1)

− by an instance ofO rule;

2See the formal Definition 12 in the Appendix A.

3. π contains a terminal nodeL : A B
A⊗B

s.t. once removed
it induces two disjoint sequentializable proof-nets (we
say,L is splitting): π1 which sequentializes into(π1)

−

with conclusionΓ1, A andπ2 which sequentializes into
(π2)

− with conclusionsΓ2, B andΓ = Γ1 ⊎ Γ2; then
π− is obtained fromπ−

1
andπ−

2
by an instance of⊗

rule;

4. π contains a terminal nodeL : A
A⊕B

(resp.,L : B
A⊕B

)
s.t. once removed it induces a proof netπ1 (resp.,π2)
which sequentializes into(π1)

− (resp., (π2)
−) with

conclusionΓ, A (resp., Γ, B); then π− is obtained
from (π1)

− (resp.,(π2)
−) by an instance of⊕1 (resp.,

⊕2) rule;

5. π contains a terminal nodeL : A B
A&pB

s.t. once re-
moved the restrictionsπp and πp̄ are still two proof
nets (we say,L is splitting) which sequentialize into,
respectively,(π1)

− with conclusionsΓ, A and (π2)
−

with conclusionsΓ, B; thenπ− is obtained from(π1)
−

and(π2)
− by an instance of& rule.

LEMMA 6 (ADEQUACY) A sequent proof ofΓ desequen-
tializes into a proof net with same conclusion.

Proof– By induction on the size of the sequent proof.�

LEMMA 7 (SPLITTING) Let 〈π, E〉 be a proof net thatp-
expands to〈π′, E〉 and letL be a node that splits〈π′, E〉
into two sub-proof nets,〈π′

1, E〉 and 〈π′
2, E〉; thenL also

splits 〈π, E〉 into two sub-proof nets〈π1, E〉 and 〈π2, E〉
whichp-expand, respectively, to〈π′

1, E〉 and to〈π′
2, E〉.

Proof – AssumeL splits 〈π′, E′〉 into 〈π′
1, E

′〉 and
〈π′

2, E
′〉; we need to consider two cases, according toL.

If L = ⊗, then the proof follows by:

FACT 1 There do not exist two&q nodes,L1 with weight
w1 andL2 with weightw2, such thatL1 ∈ π′

1 andL2 ∈ π′
2

(or vice-versa).

In order to show this fact, we reason by absurdum, and we
assume there exist such two nodesL1 andL2 in π′; more-
over, we assumeπ′ is minimal w.r.t. the number of possible
expansion steps; then there must exist a variabler that sep-
aratesw1 andw2, i.e.,r ∈ w1 andr̄ ∈ w2 (or vice-versa),
since, by definition of proof structure,w1.w2 = 0. Now,
w.r.t. r, 〈π′, E′〉 is either expandable or not. The former
case contradicts the assumption of minimality (actually, it
is not difficult to verify that ifL is splitting inπ then it will
be still splitting inπ′ after an expansion step). In the sec-
ond case there must exist a node&r with weight w such
thatw1 ≤ w andw2 ≤ w; sinceπ′ is splitting, this node
&r must occur either inπ′

1 or in π′
2: the case&r occurs in

π′
1 implies that eitherπ′

2 is not a proof structure, in caser

is not prefix of any equation inE, orπ′
2 is expandable w.r.t.

r, contradicting the assumption of minimality.
Fact 1 implies thatL also splitsπ into π1 andπ2 which,

trivially, p-expand toπ′
1, respectively,π′

2.

If L = &r, then the proof follows by:

FACT 2 There do not exist two&q nodes,L1 with weight
w1 andL2 with weightw2, such thatL1 ∈ π′

1 andL2 ∈ π′
2

(or vice-versa) except whenr occurs inw1 and r̄ in w2 (or
vice-versa) andwi=1,2 ≤ w(L) = 1.

In order to show this fact we reason like in the previous
case: we assume by absurdum such two nodesL1 andL2;
then there exists a variables that separatesw1 andw2. Now,
either 〈π′, E′〉 is expandable w.r.t.s or not. The former
case contradicts the assumption of minimality. In the sec-
ond case there exists a node&s whose weightw is such
thatw1 ≤ w andw2 ≤ w; if r = s, we have done; other-
wise, sinceπ′ is splitting,&s must occur either inπ′

1 or in
π′

2: the case&s occurs inπ′
1 implies that eitherπ′

2 is not a
proof structure, in caser is not prefix of any equation inE′,
otherwiseπ′

2 must be expandable w.r.t.s, contradicting the
assumption of minimality. Moreover, observe that ifp = r
then the terminal node&p must be unique, since it weight
is 1 by definition.

Fact 2 implies thatL also splitsπ into π1 andπ2 which,
trivially, p-expand toπ′

1, respectively,π′
2. �

LEMMA 8 (SEQUENTIALIZATION UNDER EXPANSION)
Let〈π, E〉 be a proof net that expands in one step to a proof
net〈π′, E〉 that sequentializes into(π′)−; then〈π, E〉 also
sequentializes into(π′)−.

Proof– Assumeπ expands w.r.t.p to π′ andπ′ sequential-
izes into(π′)−, then we proceed by induction on the size
(the number of nodes) ofπ (we omit the setE). The case
whenπ is an axiom is trivial. Otherwise, by assumption, we
know there exists a terminal nodeL that once removed from
π′ it induces (at least) one sub-proof netπ′

i (with 1 ≤ i ≤ 2)
which sequentializes into(π′

i)
−. If we show, case by case

according toL, that any graphπi obtained by removing the
conclusion nodeL fromπ is also a proof net that expands to
π′

i, then we can apply the induction hypothesis and conclude
thatπ also sequentializes into(π′)− following the schema
below:

〈πi, E〉
exp
7→p 〈π′

i, E〉
seq
7→L (π′

i)
−

...L
...L ↓R

〈π, E〉
exp
7→p 〈π′, E〉

seq
7→L (π′)−

If L is aO, or an⊕i node then it cannot be an expanded
node, otherwise sinceL is a terminal node it should be ei-
ther a node&p or aC node, contradicting our assumption.
The cases whenL is aO or a⊕i node are easy and we omit
them.

Otherwise,L is a splitting⊗ or &q node, then by Defi-
nition 10 we know thatπ′ splits into two sub-proof netsπ′

1

andπ′
2, therefore, by the Splitting Lemma 7, we know that

π also splits into two proof netsπ1 andπ2 which expand, re-
spectively, toπ′

1 and toπ′
2; then, by induction hypothesis we

know thatπ1 andπ2 sequentialize, respectively, into(π′
1)

−

and into(π′
2)

−; therefore,π sequentializes into(π′)−. �

THEOREM 4 (SEQUENTIALIZATION) If 〈π, E〉 is a proof
net with conclusionΓ, then it sequentializes into a sequent
proofπ− with same conclusions.

Proof – We iteratively expand〈π, E〉 until we get, by
Lemma 3, a proof net〈π′, E′〉 in expanded form which can
be mapped, by Lemma 5, to a Girard proof netπ∗ with
the same conclusionsΓ; now, by Girard’s sequentialization
(see [Gir96]) we know thatπ∗ sequentializes into a sequent
proof (π∗)− of Γ, so by Lemma 8 we conclude that also
〈π, E〉 sequentializes into(π∗)−. �

5 Conclusions

The main contribution of this paper is the first definition
of a full cut elimination procedure for monomial proof nets
for multiplicative additive linear logic based on a new pos-
sibility of sharing nodes by reusing eigenweights.

As opposed to the definition of proof nets by Hughes-
van Glabbeek, our extension of Girard’s definition does not
immediately lead to a canonical representation of proofs.
However the kind of sharing we propose should be com-
patible with the introduction of the exponential connectives
and may allow us to revisit the theory of proof nets for full
linear logic.

Another use of sharing is given by the Geometry of In-
teraction (GoI). We have to evaluate the impact on GoI of
our new sharing capabilities.

Finally the complexity of the extended correctness crite-
rion and of the cut elimination procedure have to be studied.

References

[Gir87] Girard, J-Y. Linear Logic.Theoretical Com-
puter Science, 50, pp.1-102, 1987.

[Gir96] Girard, J-Y. Proof-nets: the parallel syntax
for proof theory.Logic and Algebra. Marcel
Dekker, 1996.

[HvG03] Hughes, D. and Van Glabbeek, R. Proof Nets
for Unit-free Multiplicative-Additive Linear
Logic. In Proc. of IEEE Logic in Computer Sci-
ence, 2003.

[Lau99] Laurent, O. Polarised Proof-Nets: Proof-Nets
for LC (Extended Abstract).In J.-Y. Girard,
editor, Typed Lambda Calculi and Applica-
tions 1999, LNCS 1581, pp. 213-227. Springer-
Verlag. Avril 1999.

A Appendix: Girard’s proof structures

DEFINITION 11 A proof structure à la Girard (GPS) is a
pre-proof structure withweightsassociated as follows:

1. first we associate aBoolean variable, called eigen-
weightp, to each&-node (eigenweights are supposed
to be different);

2. then we associate aweight, a product of (negation
of) Boolean variables (p, p, q, q...) to each node, with
the constraint that two nodes have the same weight if
they have a common edge, except when the edge is the
premise of a& or C-node, in these cases we do like in
Figure 2:

3. aconclusion nodehas weight1;

4. if w is the weight of a&-node, with eigenweightp, and
w′ is a weight depending onp and appearing in the
proof structure thenw′ ≤ w (a weightw depends onp
whenp or p occurs inw).

DEFINITION 12 A GPSπ is correct, so it is aproof net à
la Girard (GPN), if any switching, induced by any valua-
tion ofπ, is acyclic and connected (ACC).

THEOREM 5 A GPN is sequentialized into a MALL sequent
proof with same conclusions and vice-versa.

