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Abstract some of the main contributions: Fagin’s characterization o

NPTIME [12] on the model-theoretical side, limitations of
We give a semantic characterization of bounded com- the recursion schemata [6, 4] on the recursion-theoretical
plexity proofs. We introduce the notion @bsessional side, propositional proof complexity [7] and Buss’ Bounded
cliguein the relational model of linear logic and show that Arithmetic [5] on the proof-theoretical side. These result
restricting the morphisms of the categdRE L to obses-  contributed to the birth of a new research area, now called
sional cliques yields models &LL and SLL. Conversely,  Implicit Computational Complexity

we prove that these modgls qrelatively complete an Taking the “Curry-Howard looking glass” (a proof
LL proof whose interpretation is an obsessional clique is g 5 program whose execution corresponds to applying
always anELL/SLL proof. These results are achieved the cut-elimination procedure to the proof), the approach
by introducing a system oELL/SLL untyped proof-nets, to complexity is based on the idea that the expressive
which is both.cor.rect and complete with respect to elemen-po\,\,er of a logical system is the complexity of its cut-
tary/polynomial ime complexity. elimination/normalization procedure. Much work has been
done in the framework of typed-calculus (for exam-
ple [18]): roughly speaking, some limitations on the way
1. Introduction A-terms “communicate” allow to keep normalization poly-
nomial. From the (strictly) logical point of view, the intro
It is widely acknowledged that computational complex- duction of Linear Logic kL [13]) was an important step:
ity is a central topic in modern science: the famous P VersusLL is a refinement of intuitionistic and classical |OgiCS char-
NP question appears in several (apparently) unrelated areadcterized by the introduction of new connectives (the ex-
of pure and applied mathematics and theoretical computerfonentials) which give &ogical status to the operations of
science. Behind it, lies our capability of handling resasrc ~ €rasing and copying (corresponding to teuctural rules
and of keeping control on their use: a crucial point for the of intuitionistic and classical logics). This shed a nevhtig
contemporary computer scientist. The difficulty of the prob 0n the duplication process responsible of the “explosion”
lem seems related to our yet incomplete understanding ofof the size (and time) during the cut-elimination procedure
the very nature of polynomial time. and led to a first result in [16]. But, in this Bounded Lin-
Many of the scientists who tried to fathom the secrets €ar Logic, polynomials appear explicitly. A notable break-
of polytime produced alternative definitions of computabil through is Girard’s Light Linear Logicl{.L [15]): a very
|ty within a given bound, without any expncit reference careful handling olL'’s eXponentials allows the author to
to the bound itself. Usually, these characterizations arekeep enough control on the duplication process. He proves
driven by the cultural background of their authors, who ex- that a functionf is representable itLL if and only if
pect some help from the techniques developed in their ownf is polytime. More recently, other “light systems” have
fields of research. This approach (having among his fore-been introduced by Asperti and Roversi [1, 2], Danos and
runners Kalmar and his inductive definition of the class Joinet [10], Lafont [17] and others: several simplificaton
of elementary recursive functions dating back to 1943) are proposed and suggest that is only one among the
involves various branches of mathematical logic: (finite) Possible solutions (rather a research theme than a logical
model theory, recursion theory, proof-theory. Let us quote System).
*Supported by the project “Coop. Italia/France CNR-CNR$3188". Since the beginnin_g [15], light S_ys_tems are presented as
tSupported by the French project “ANR JC@3380 No-Cost". subsystems dfL obtained by restricting the use of the ex-
tSupported by the Italian project “FOLLIA". ponentials: some principles (formulas) provabld_in do




not hold in light systems. However, a more geometric per- whichcaninterpret polytime proofs. For this purpose, noth-
spective on light logic is possible. It comes from the in- ing like full completeness/surjectivity (“every elemerft o
troduction of proof-nets, a geometric way of representing the structure interpreting a provable formula is the interp
computations; actually one of the most important conse-tation of a proof”) is required (by the way, in the models
guences of the logical status given bly to the structural  we consider, this property fails). The idea we develop here
rules. Light proofs have been presented in [15] as prod$-net is to choose a light system and a denotational modeLof
and the geometric view was corroborated by a crucial prop-and to prove that ahL proof 7 is a proof of the chosen
erty of light proof(-net)s:stratification Computations are  light system if and only if the interpretatidpr] of = sat-
performed layer by layer: the so-callddpthof the proof- isfies some given (semantic) property. In order to obtain a
net (a geometric parameter) is invariant during computatio model of the light system, we then need to check that the
This viewpoint was stressed in [10], where the authors give property has a “good behaviour” (mainly, it must be sta-
a geometric characterization of those proof-nets with an el ble with respect to composition). Notice that in case we
ementary cut-elimination: the system is not modified and a succeed, we get (much) more than a modetlelatively
global condition on the graph representation of proofs al- completemodel, whose morphisms aexactlythe ones of
lows to isolate the “elementary” ones. A similar work for theLL model satisfying the semantic property. Of course,
LLL has been done in [20]. We feel these results are little the “quality” of the model will depend on the “quality” of
steps towards a more abstract vision of bounded complexitythe semantic property. The property we propose is obses-

Among the questions and problems arisen from [15], the siona!ity: i'g is very simplg ano! rather natural, however (as
quest of a denotational semantics (a semantics of proofs irf*Plained in the conclusion) it does not say much on the
logical terms, or more generally a model) suitable for light €/€ments which are not interpretations of proofs.
systems is maybe the main one: hopefully, such a seman- In this work, we choose as light logical systeEisL for
tics will inspire a new mathematical point of view on the elementary time an&LL for polynomial time, as model
nature of polytime. Indeed, the general goal of denotationa the relational one (but coherent semantics would also do).
semantics is to give a “mathematical” counterpart to syntac These choices are discussed in the conclusion. We intro-
tical devices such as proofs and programs, thus bringing toduce the notion obbsessional cliquea clique is obses-
the fore their essential properties. It maps the concrate sy sional when it is closed with respect to the (appropriate)
tactical objects to an algebraic, geometric, categorical, —action of the monoidV* (definition 3). We prove that an
description, which stresses basic invariants and, sorestim LL proofr is a proof of ELL/SLL if and only if [« is ob-
eventually results in improvements of the syntak:itself sessional (with the appropriate variant 6LL/SLL) and
comes from a denotational model of second order intuition- that obsessionality is a property with a “good behaviour”
istic logic. The basic pattern is to associate with every for (as mentioned above).

mula/type some structure and with every proof/program of  One of the (striking) features of obsessional cliques is the
the formula/type an element of the structure (calledrits  absence of any explicit reference to stratification: thisise
terpretatior). Clearly, interpretind-L proofs allows to in-  to be an interesting achievement, and a small step towards
terpret proofs of a given light system but gives no infor- a truly semantic view of bounded complexity. What can be
mation on the “lightness” of proofs; the point is to find a certainly affirmed is that our analysis is not syntax-driven
denotational semantics of a light system whigimota de- but a natural refinement of tools introduced for other pur-
notational semantics &fL. To our knowledge only two pro-  poses. Technically speaking, the starting point of thiskwor
posals [21, 3] have been made up to now. While technically is the notion of obsessional experiment introduced in [25]:
rather different ([21] is based on game semantics and [3] onit was used to “rebuild” am.L proof from its interpretation
coherent semantics), the two works are similar in spiré: th in (relational or coherent) semantics. In general this is no
structures (games, coherent spaces) associated witkalogic possible: there are differebk proofs with the same seman-
formulas are modified, so that the principles valid.Ilnbut tics as it is shown in [25]. However, the relational (resp.
not in the chosen light system do not hold in the semantics.coherent) interpretation of a proof (and more precisely the

One can also mention the works by M. Hofmaegtral. in- result of an obsessional experiment of the proof) is enough
troducing realisability models where resource-boundssine to rebuild that part of the proof allowing to distinguihL
is explicitly required on realisers (see [8] for example). (resp.SLL) proofs from the others.

We propose a new approach to the semantics of proofs of Roughly speaking, obsessional cliques have been intro-
light systems. Following the same spirit of the previously duced following the idea that, in case the clique is the in-
mentioned geometric perspective on light logic, instead of terpretation of a proof-net, obsessional experimentséhav
modifying the structures associated with logical formulas all to be available”. It turned out (and this was raopri-
we look for a property of the elements of the structures ori obvious) that obsessional cliques compose and yield
(the interpretations of proofs) characterizing those elets a model of propositionaELL (resp.SLL): the category



OREL (resp.SREL), as proved in section 2. One could In SLL, binary integers are represented by proofs of
prove a relative completeness theorem in the style of theo-W = VX?(B® X @ X )% X% X whereB = VX X%

rem 4 in a propositional framework, but one would not ob- X2 (X ® X)), and predicates over integers are represented
tain a “semantic characterization of bounded time complex- by proofs of- W+, ..., W+, B which do not contain any
ity”: the considered fragments are not expressive enough to?m-rule (for the application of a predicate to an argumentin
represent all elementary (resp. polynomial) computations W, we first have to duplicate it the appropriate number of
In ELL/SLL, the second order quantifiers are necessary totimes). As shown in [19], representable predicateSlih
encode polytime computations [19]. Instead of dealing with are exactly polynomial time predicates.

the semantics of second order quantifiers (which is deli-

cate), we moved from the typed to the untyped framework, 2.2. Obsessional relational model

thus avoiding the difficulty, in the spirit of [11]. The com-

plexity of the cut-elimination procedures of [15, 17] does Notations.If E is a set, we denote byt ¢(E) the set of

not depend on the complexity of cut-formulas, but only finite multisets of elements df (i.e. the free commutative

on the graph representation of the proofs as proof-netsmonoid generated b¥). [] is the empty multiset ang is

The elementary/polynomial complexity bound can thus be the commutative monoid law. Ifi, ..., z,, are elements of
straightforwardly extended from the typed to the untyped F andky, ..., k, are natural number§ z1, ..., knzy] is
case. Conversely, whatever can be represented in a typethe multiset containing, copies ofz1, ..., k,, copies ofz,,.
framework can also be represented in an untyped one: sim-
ply forget types!

In the spirit of the semantics o¥f-calculus (a model of
the untyped\-calculus is a model of the typedcalculus
with a reflexive object), we decided to first present the typed
framework (section 2) and move later to the untyped one.
Section 3 is devoted to introduce (untyped) nets, an exten-Definition 1 (N-set)
sion of Danos-Regnier’s untyped proof-nets. In section 4, A N-setis given by a setd and a functionk,a) — a(*
following [10], we define untype8LL andSLL netsinge-  fromN* x A to A, called theaction which is an action of
ometric terms. Finally, we prove the main result of the paper the monoid(N*, -, 1) on 4 (that isaV) = a anda**) =
in section 5: we introduce a space for “untyped obsession-(a(k))(’“’))-
ality” in the spirit of the relational model and of the other
models of the untyped-calculus. We adapt the notion of
experiment of a proof-net (introduced in [13]) to define a
model of our untyped nets and we prove the relative com-

The categoryREL of sets and relations is one of the
simplest models ofL. The interpretation of connectives is
givenby:l =1 ={x},® =% =xand! =7 = M.

In the spirit of coherent spaces, we adijuesof A (de-
notede C A) the subsets oAfl.

The constructions df-sets are obtained from the corre-
sponding constructions of sets and the actions are built in
the following way:

e onl = {x}, we use the only possible action

pleteness theorem (theorem 4). o the action ol x B is given by(a, b)® = (™, p*))
e if t € N, we definel; A (resp.?;A) as theN-set with
2. Typed case underlying setM s (A) and the action oh A (resp.?; A)
is given by:

After a short presentation of the two systeEisL and s 0] = [ag’@, .. ,a%k)] if n<t
SLL, we are going to extend the relational model of linear o [k‘agk), o ka%’“)] ifn >t
logic with an action ofN* (the set of positive integers) on L
sets in order to define denotational models of these two sys-P€finition 2 (Category NREL)

tems. The categorWREL is given by:
e objects:N-sets
2.1. Second ordeELL and SLL e morphismsNREL(A, B) isthe set of cliques ol x B

The categoriesSREL and NREL are equivalent cate-

We consider the two subsysteBkL [15] andSLL [17] gories, thusNREL is a model ofLL.
of LL which respectively correspond to elementary timeand  We are now able to define the key notion of this paper.
polynomial time complexities. See figures 1 and 2Eat

and figures 1 and 3 fBLL. Definition 3 (Obsessional clique)

In ELL, integers are represented by proofs Bf = kﬁ%ge aN-set, a clique: is obsessionaif Va € ¢, Vk €
VX?2(X ® X1) ® (X% X), and functions are repre- arr ee
sented by proofs df UL, I?U. As shown in [15, 10], repre-  Proposition 1 (CategoryOREL)

sentable functions iELL are exactly elementary time func- The categonfOREL is the subcategory dfiREL with all
tions. objects and only obsessional cliques as morphisms.



The x-autonomous structure MREL respects obses-
sionality: the cligue§A x B) x C ~ A x (B x (),
Ax B ~ Bx AandA x 1 ~ A are all obsessional,
andifx C A x C andy C B x D are obsessional then
zxy = {((a,b),(c,d) | (a,c) € z A (b,d) € y} C
(A x B) x (C x D) is obsessional.

Concerning the exponential structure:

elf z ©C A x B is obsessional, !z
{([al, e ,an], [bl, e ,bn]) | V1 S ) S n, (ai,bi)
z} C 4 A x ! B is obsessional for any

o {(([a1,---,an],[b1,---,bn]),[(a1,b1),. .., (an,bn)])} C
(A x 1,B) x l;(A x B) is obsessional for any

o {(x,[nx]) | n € N} C 1 x !;1 is obsessional for any

e {([a1,...,an],(a1,...,a,))} C 1tA x [, Ais obses-
sional fort > n. In particular ifn = 0, {([],*x)} C
I;A x 1is obsessional for any

o {(u+v,(u,v)} T logA x (lpA x 1pA) is obsessional.

Conversely, obsessionality allows to “refute” the usual
representation of various principles:

e contraction is not obsessional ip4 x (1;A x I, A) as

soonag > 0

¢ digging is not obsessional IpA x !;!; A for anyt

e dereliction is not obsessional ipA x A

S

Theorem 1
OREL is a model of propositional (additive-freELL, in-
terpreting every formula of typed by !y A.

Proof. We have shown that the required constructions pre-
serve obsessionality, and using the faithful fundtomto
REL givenbyU (A, ) = AandU(z) = zif 2 C Ax B,
we can show that all the required diagrams commute_]

Definition 4 (Category SRELY)
The categorySREL is given by:
e objects: an object is a set with a family of actions in-
dexed byN giving it N-set structure$A,, ) en
e morphisms: elements BSREL((An)nen, (Bn)nen)
are cligues: of A x B such that there exists some N
with foranyn > t, 2 is an obsessional clique df, x B,,

Any N-setA can be turned into an object $IREL by
choosing all the actions of the family to be the actiordof
In the same spirit, constructions on objectNREL can
be turned into constructions on objectsSRE L by apply-
ing them for eacn. As specific constructions, we define:
!(An)neN = ('nAn)nEN and?(An)nGN = (?nAn)nEN

Theorem 2
SREL is a model of propositional (additive-fre8) L.

Proof. As for ELL, using a forgetful functorint®&L. O

1in a parallel work, B. Redmond [22] is developing a categairiater-
pretation ofSLL. It seems thaS'RE L can be obtained by applying one of
his constructions. The relationships has to be investigiateher.

3. Nets

We extend Danos-Regnier’s notion of untyped proof-
nets [9, 23] to a more liberal notion which contains the di-
rect translation of second order multiplicative exporenti
LL.

Definition 5 (Proof-structure)

A proof-structureis a finite directed acyclic graplwhose
nodes are defined together with an arity and a codréy,

a given number of incident edges called firemisseof

the node and a given number of emergent edges called the
conclusion®f the node. The valid nodes are the following:

nodes | ax | cut | ®, ¥,7c | 1,1,7w | !,7d,?p
arity 0] 2 2 0 1
coarity | 2 | O 1 1 1

We allow edges with a source but no target, they are called
conclusionf the proof-structure.
Some edges are labelled with theymbol according to
the following rules:
e conclusions ofx, 1, 1, ®, % and!-nodes are not la-
belled,
e conclusions ofd, 7c, 7w and?p-nodes ar€-labelled,
e premisses ofc and?p-nodes aré€-labelled.
Moreover, a proof-structur® has to satisfy the follow-
ing two properties:
¢ !-box condition:
- with every!-noden is associated a subgragi’ of
R, such that one of the conclusionsBf is the con-
clusion ofn and every other conclusion @& (there
might be no other conclusion) is the conclusion of a
?p-node. B™ is called aboxand it is represented by
a rectangular framen is called themain doorof B™
- with every 7p-nodep is associated the boB™ of
some!-noden, such that the conclusion pfis con-
clusion of B"™. The node is called arauxiliary door
of B™.
e nesting conditionitwo boxes are either disjoint or in-
cluded one in the other.

We will often speak of a box, a node or an edge of a
proof-structureR contained in a box3 of R. In case of
nodes, we will not consider the doors Bfas nodes con-
tained inB. Thedepthof an edge is the number of boxes
containing it. Thedepthof R is the maximal depth of its
edges.

The? labels are the only kind of typing we consider. It
is somehow the heart of linear logic: the distinction be-
tween duplicable/erasable formulas and the others. The
reader should notice that these labels introduce contdrain

2When drawing a proof-structure we represent edges oriergtetbwn
so that we may speak of moving upwardly or downwardly in thepby
and of nodes or edges “above” or “under” a given node/edge.
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Figure 1. Second order LL formulas.
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Figure 4. A (normal) net, the (maximal) exponential tree of t  he left premisse of the %-node and the
associated exponential bundle of branches.



on proof-structures: for example the conclusion ofaan
node cannot be the premise of@node.

Definition 6 (Net)

Let R be a proof-structure and I, , . . ., By be the boxes
of R with depth zero. WithR is naturally associated an
undirected grapli‘z with a given set of pairs of edges:

e substitute for each bok; (1 < i < k), a node with the

conclusions of the doors of the box as conclusions,

¢ keep the othe®-depth nodes and forget the orientation,

e associate with ever§f-node (resp?c-node) ofR with

depth zero the (unordered) pair of its premisses.

A switching S of R is the choice of an edge for every
pair of Gz . With each switchingb is associated a subgraph
S(R) of Gr: for every pair ofGr, erase the edges 6ir
which are selected hy.

We say thaRR is anetwhen:

o for every switchingS of R, S(R) is acyclic,

o for every boxB; (1 < i < k), the proof-structuré;

contained inB; is a net.

Due to the weak conditions we put on the way nodes can

Proposition 3 (Preservation of correction)
If R is a net andR reduces taR’/, thenR’ is a net.

Proof. R’ is clearly a proof-structure. The fact that, more-
over,R’ is a net is standard (see [9]). O

We said that we are extending the Danos-Regnier’s no-
tion of untyped proof-nets. Indeed, a Danos-Regnier’s un-
typed proof-net (see [9] for the precise definition) is a net:
the edges labelled byl become?-labelled and the other
labels are erased.

Notice that cut-eliminatiordoes nothold for nets, for
two different reasons:

e Deadlocks normal nets might contain cuts. Take two
cut-free nets and connect them by means ofienode
whose premisses are not dual. Such a graph is a normal
net which is not cut-free: theutnode cannot be elimi-
nated according to definition 8.

e The calculusis untypedome nets have no normal form.
Danos-Regnier’s untyped proof-nets were able to encode
the untyped\-calculus. This is still the case for our nets,

be used, we cannot guarantee that we have a way to reduce Which means that the cut-elimination procedure applied

all cuts. This is strongly different from what happens with
Danos-Regnier’s untyped proof-nets where a weak notion
of typing is enough to ensure reducibility of aoytnode.
The two edges premisses ofat-node arelualwhen:
e they are conclusions of@-node and of a-node,
e they are conclusions of enode and of al -node,
e one is conclusion of &node and the other one s
labelled.

Definition 7 (Deadlock)

A cutnode of a net is aleadlockwhen the premisses of
the cutnode are not dual edges and none of the two is the
conclusion of arax-node.

Definition 8 (Cut-elimination)
The reduction steps are defined as usual [13]:

to the nets corresponding to the fixpoints of the untyped
A-calculus never leads to a normal net.

Proposition 4 (Confluence)

If a net’R reduces toR; and R, by some sequences of
reductions, then there exists a et such that botiR; and
R can be reduced t&'.

Remark 1
Proof-nets were introduced in [13]. For additive-free sec-
ond orderlL, the notion currently used (and that we con-
sider here) is obtained by combining [13, 9, 14], like in [24]
With every proof-net is naturally associated a net: sim-
ply forget formulas and erase the quantifier nodes. Notice
that such a net is always deadlock-free. Conversely, it is
sometimes possible to label a (deadlock-free) net by means

e ax-step: this step applies when one of the premisses ofof LL formulas (in such a way that the type ofdabelled

thecutnode is the conclusion of axx-node. In this case
one erases as usual both th#-node and thax-nodé.
7% /®-step: for a cut betweenZ-node and &-node.
1 /1-step: for a cut between_a-node and d-node.
7d-step: for a cut between7-node and &-node.
?w-step: for a cut betweenav-node and &-node.
7c-step: for a cut between?@-node and &-node.
7p-step: for a cut between-node and &-node.

Proposition 2

If the procedure of cut-elimination cannot be applied to the
netR, then every cut-node & is a deadlock (in particular,

‘R might be cut-free). We catlormalsuch a neiR.

SNotice that there is a choice when performing this step, sedaoth
the premisses of theutnode are premisses of ar-node: clearly, the two
possibilities yield the same graph after reduction.

edge is of the shapgA) thus obtaining a proof-net: when
this is the case we say that the netyigable

With every sequent calculus proof (of additive-free sec-
ond ordelLL) is associated a proof-net, and thus a net.

Proposition 5 (Simulation)

If R is a proof-net, let us denote By~ the net associated
with R. If R~ reduces taS~ in one reduction step theR
reduces taS in at leastone reduction step.

Proof. This is because cut-elimination for proof-nets does

not depend on the formulas labelling the edges of the proof-
nets (only the nodes matter). One might have more than
one step fromR to S because of the presence of second

order nodes in proof-nets (which are not present in the cor-
responding nets). O



Proposition 6

The exponential bundle of branches of an edge of a net

¢ The reduct of any typable net is typable (thus deadlock- is the exponential bundle of branches associated with its ex

free).
e Every typable net is strongly normalizing.
e The normal form of a typable netis unique and cut-free.

4. UntypedELL and SLL

We are going to define restrictions of nets corresponding

to (untyped versions of) the systefakL [15] andSLL [17].

Definition 9 (Exponential tree)
An exponential treds a tree whose nodes are: bin&ig
nodes, unaryp-nodesf-ary w-nodes and@-ary 7d-nodes.
Let a be a?-labelled edge of the néR, its exponential
treeis given according to the node it is conclusion of:
o for a?d-node, the exponential tree afis
o for a?w-node, the exponential tree afis
o fora?p-node whose premisseds the exponential tree
of a is obtained by adding #-node under the root of the

exponential tree of’:

o for a?c-node whose premisses areanda”, the expo-
nential tree ofx is obtained by adding ac-node under
the roots of the exponential treesdfanda’:

An exponential tree oR is maximalif it is the exponential
tree of a?-labelled edge which is not a premisse offaor
7c-node inRR.

Definition 10 (Exponential bundle of branches)
An exponential bundle of branchés a multiset of non-
empty total ordersife. “filiform” trees or branche}.

The exponential bundle of branches associated with an

exponential tree is obtained in the following way:

o if the root of the tree is &d-node, then (the tree is re-
duced to thig’d-node and) the bundle is reduced to one
branch which is itself reduced to one node

o if the root of the tree is &p-node under a tre@, we
consider the bundl& associated witty” and we add a
node under each branch

o if the root of the tree is &w-node, then (the tree is
reduced to thiw-node and) the associated bundle is
empty

o if the root of the tree is &c-node under the treef;
and7;, and if the associated bundles &eandF,, we
obtain the (multiset) union af; and F.

This mainly corresponds to extracting the multiset of
branches ending withd-nodes in the tree.

ponential tree. The exponential bundles of branches of a
net are the exponential bundles associated with its maximal
exponential trees (see figure 4 for an example).

Definition 11 (Untyped ELL and SLL)
The systemsiELL anduSLL are defined as restrictions on
nets:
e a netis inuELL if its exponential bundles of branches
are all of the shape:

that is with only branches of length
e anetis inuSLL if its exponential bundles of branches
are all of one of the following two shapes:

that is either with only branches of lengttor the bundle
containing exactly one branch of length

These constraints on nets are not preserved by arbitrary
reduction, but it is possible to define a strategy which pre-
serves them: each time we reduce a cut withlabelled
premisse, we reduce the newly created cuts until the expo-
nential tree of the original-labelled edge has been com-
pletely destroyed. In particular, R € uELL (resp.R €
uSLL) then its normal form is inuELL (resp.uSLL). See
appendix A for more details.

Proposition 7 (Complexity of representable functions)
e f is an elementary time function from integers to inte-
gers iff it is representable inELL.
e P is a polynomial time predicate over binary integers
iff it is representable in SLL.

Proof. See appendix B. O

5. Semantics

By adapting the notion of obsessional clique of sec-
tion 2.2 to the untyped syntactical setting we have devel-
oped in the previous section, it is now possible to define
models ofuELL anduSLL.

5.1. A space for untyped obsessionality

We definepointsby the following grammar:
zuo=1Lllezz|zBx|lu|u o= [z, ...
where[xy, ..., z,] denotes a finite multiset of point®? is

the set of all point§ and?D is the subset o) containing
only elements of the shap@. A cliqueis a subset oD.

, T

“We can also defindy = {1, 1}, Dpt1 = Dn U {(®,z,y) |
(z,y) € DRAYU{(B,2,9) | (z,y) € DEYU{(,, ) | b € My (Dn)}U
{7 ) | v € My (Dn)}, andD = Ui o Dn.



We define the duaf of the pointz by T = L, |
Lzy =287y, 2By = T7, 1, ...,2T0]
@, . Ty and?[z, ... xy] = T, L, T

Definition 12 (Experiment)

An experimentof a netR is defined by induction on the
depth of R. Itis a labelling of thed)-depth edges with ele-
ments ofD such that:

o if the edge is’-labelled, the label is an element'ab

o if z is the label of a conclusion of aax-node, the label
of the other one i¥

o if z is the label of a premisse ofaut-node, the label of
the other one i

e if x is the label of the conclusion of &node (resp.
1-node) then: = 1 (resp.x = 1)

¢ if x andy are the labels of the premisses okanode
(resp.%¥-node) then the label of the conclusionis y
(resp.x B y)

e if x is the label of the premisse of’a-node then the
label of the conclusion i3[x]

o if x is the label of the conclusion of &v-node then

=7[]
o if x andy are the labels of the premisses of@node,
they have the shape= 7u andy = 7v, and the label of
the conclusion must by + v)
e if x is the label of the conclusion of &node and
z1, ..., T, are the labels of the conclusions of the
auxiliary doors of the corresponding box then we must
havex = ![yi,...,yx] and there must exist experi-
ments of the content of the box associating the labels
yi, 2ut, ..., 7ul, with the conclusions of the content of
the box with the property; = ?(u} + --- + pk) for
1<j<n.
Theresultof an experiment is the poirgt- - ((z1 % x2) %
x3)...) %™ x, wherezq, ..., z, are the labels of the con-
clusions of the net. The semantifR] of a netR is the set
of the results of its experiments, thus a clique.

An h-experiments an experiment which takes exactly
experiments in the content of each box.

Theorem 3 (Correctness)
If R reduces taR’ then[R] = [R’].

Proof. See [13] for coherent semantics, the relational case
we consider here is almost the same.

Remark 2

A 1-experiment is obtained by putting exactly one label on
each conclusion of eacdx-node of a net (in fact a pair of
dual labels for the pairs of conclusions of #eenodes), and

by propagating labels in a top-down way (in particular when
crossing a box, we just propagate labels with- ![x] for

the main door). Thisis always possible for a cut-free net and
thus experiments of cut-free nets always exist. This entalil

that the semantics of a net having a cut-free normal form is
never empty.

Definition 13 (Action)
Let ¢ > 0 be a natural number, thieactionon D is the
function (k, z) — (z)gk) fromN* x D to D given by:

(M =1 (L)® = |
@oy) = @M e @y
@By = @) 3 ()
Ger ey = L@ @) i<t
HT1y ooy XTnl)s ![k(:rl)gk),---,k(xn)gk)] o>t
W @) ® @) i<t
(21, zn))y = {?[k(m),(gk), k@) >t

A clique c is t-obsessionalif Vo € ¢, Vk €
N*, (x)§k> € c. A clique c is obsessional front if for

anyt’ > t, cis t’-obsessional.

c

5.2. Models ofuELL and uSLL

If we defineD; asD equipped with theé-action, thenD,
and(D;);en arereflexive objectsespectively irORE L and
SREL. Meaning thatl, 1, Dy ® Do, Dy % Dy, !Dy and
?Dy are retracts oDy in OREL (and the same faiD; ) ;en
in SREL).

Proposition 8 (Models)
e (0-obsessional cliques iv are a model of ELL.
¢ Cligues which are obsessional from sotrege a model
of uSLL.

5.3. Relative completeness

We are going to prove a converse of this last proposi-
tion. While every proof iruELL/USLL is interpreted by an
obsessional cligué{obsessional fouELL and obsessional
from somet for uSLL), it is clear that there exist obses-
sional cliques which are not the interpretation of a proof of
the corresponding systeroELL or uSLL) mainly because
the relational model is not complete fbt (and even not
for MLL which is included in botluELL anduSLL and for
which any clique is obsessional). Nevertheless, we can ask
this question for a clique for which we already know that
it is the interpretation of ahL-proof: if this clique is ob-
sessional, is it the interpretation otl&LL/uSLL-proof? A
positive answer is what we catlative completenesnd it
will be the main result of the paper: theorem 4.

Definition 14 (h-point)
For a givenh € N, h-pointsare the elements d induc-
tively given by:



e 1 and.l areh-points the sizes of the labels associated (by some experiment used

e  ®yandz % y areh-points if z andy areh-points to build e, either at depth) or inside a box) with the-

e ?[x1,...,xy,] is anh-pointif z1, ..., xz, areh-points labelled edges oR which are not premisse of p or 7c-

o l[x1,...,z,] is anh-pointif n = h andzy, ..., x, are node. We conclude with lemma 1.

h-points See appendix E for more details. O

Lemma 1 (h-points and h-experiments) We have already seen (remark 2) hbvexperiments are
LetR be a cut-free net and be the result of an experiment  pyjit. It is immediate that the resuttof such an experiment
e of R, z is anh-point iff e is anh-experiment. is al-point withVn € 7 (z), n < cosizéR).

More generally, starting from Bexperiment, we can re-

Proot. See appendi €. = peat ith times in each box. This is always possible for a
Definition 15 (?-trees) cut-free net and gives @nexperiment thus ah-point.
:;]%tfcg\?ei/nbiliement oD, T{(z) s the subset o defined Theorem 4 (Relative completeness)
e 7(1)= T-(L) =10 LetR be a cut-free net,
° T(m ® ) T(xBy)="T(x )U T(y) e R € UELL iff [R] is 0-obsessional
7 (M1 ! T,)) = g'(xl) ‘U Tg(;m ) e R € uSLL iff [R] is obsessional from some
TClen - swa]) = {0} U T(zl) U T (wn) Proof. We have already seen (see proposition 8) that i

UELL then[R] is 0-obsessional.
Let 2 be the result of d-experiment ofR and leth be
a natural number such that > cosiz¢R). If [R] is 0-

Lemma 2 (Action on ?-trees)
Letx be an element ab, h > 0 and¢ > 0 be two natural

numbers, we have: _ ) “R _
T((m)(h)) _ ob_sessm_nal, one h&s)_o € [[R]] which is anh-point. If
¢ ‘R is not inuELL, then it contains an exponential bundle of
{hn|neT(@)An>tpU{n|neT(z)An<t} branches such that:
e abranch contains at least three nodes: by lemma 3 there

Proof. See appendix D. = existsn € T((z){") such thath" = ny...no with
With the baseh representation of a number(denoted ; > 1(j > 2) thusn > h*. This iS impossible since,
by @"), it is possible to associate an exponential bundle of by lemma 2, the elements &f((z ) ) are bounded by
branches. 17" = n ...no, we consider the bundle con- h - cosiz€R) < hZ.
tainingng + - - - + ng branches and: for ea¢h< i < k, we e a branch has length: by lemma 3 there exists €
haven; branches of length+ 1. For exampleﬁ3 = 102 T((z )(h)) such tha@” = ny, ...ngwithng > 1. Thisis
and the corresponding exponential bundle is: impossible, by lemma 2, since the sizes of the multisets
of (x)éh) are all multiples ofh.
We have already seen (see proposition 8) thaR ife
® PS USLL then[R] is obsessional from sonie
Conversely, there exists some> cosiz¢R) such that
The contraction sizeosiz¢R) of a netR is the max-  [R] is t-obsessional. Let: be thet-point obtained by

imum number of branches of its exponential bundles of repeatingt times in each box d-experiment ofR. By

branches. In particular, iR is a net associated with a se- lemma 3, the elements &, +-pointe[R] £ (¥) are bounded.
uent calculus proof in SLL, its contraction size is the ; : : ; h

9 P Since z is a t-point, we can easily check th@)g )

maximal width of the?m-rules ofr. also at-point (for anyh € N*). If we consider the fam-

Lemma 3 (Computation of bundles of branches) ily of ¢-points((x){"))ren- of [R], boundedness entails by
Let R be a cut-free net, i, > cosizéR) and if z is an ~ lemma 2 thatvn € 7(z), n < t. By lemma 3, any ex-
h-point of [R] then7 (z) is the set of allx such tharw” is ponential bundle of branches T corresponds to a natural
an exponential bundle of branches/f numbern, (with @* = ny, ... ng) belonging to7 (). Since

n < t, we have eithek = 1,ny = 1 andng = 0, ork = 0.
Proof. Using h > cosizéR), we first show that, in any  So thatR is in uSLL. |
h-experiment, the size of the multiset associated with a
labelled edge is wheren” corresponds to the exponential The restriction to cut-free nets is perfectly reasonable
bundle of branches of this edge. since the encoding of elementary/polynomial time algo-

We can now verify, by induction ofR, that if = is the rithms is done with typable nets. As shown in proposition 6,
result of an experiment of R then7 (z) contains exactly  the reduction of such nets leads to cut-free normal forms



(and by correctness of the model, the interpretation of a netAcknowledgments. We would like to thank P. Baillot
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6. Conclusion

Let us first comment on different choices we made:
e The multiplicative-exponential setting is powerful

lated to the topics of this paper.

enough to express elementary/polynomial time in our References
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Appendix

A. Preservation of uELL and uSLL by reduc-
tion

An exponential cuis a cut between &-labelled edge
and the conclusion of &node. Every exponential cut
comes with a box: the one associated with!thede whose
conclusion is a premisse of the cut, to which we refer as the
c-box.

If ¢ is an exponential cut iR and R’ is obtained by
reducinge in R, theone-step residuedf ¢ in R’ (which are
also exponential cuts) are given by:
if ¢is a?dcut, it has no one-step residue,
if ¢ is a?w cut, it has no one-step residue,
if ¢is a?p cut, its unique one-step residue is the new cut
obtained fronx,
if cis a?ccut, its one-step residues are the two new cuts
obtained fronx.

The residuesof ¢ are given by: a one-step residue is a
residue and a one-step residue of a residue is a residue.

A sequence of reductiorigcalizeson an exponential cut
c if it starts by reducing: and then only reduces residues
of ¢. A complete reductionf an exponential cut is a se-
guence of reductions which focalizes @and leads to a net
without any residue of (thus it is a maximal sequence of
reductions focalizing on).

An edgea dominatesan exponential cut if one of the
auxiliary doors of the-box is in the exponential tree of

If cis an exponential cuty dominatesc and7 is the
exponential tree of thé-labelled premisse of, grafting ¢
on a means: if7; is the exponential tree af, for every
auxiliary doorn of the c-box belonging td7;, we consider
the exponential tre@; of the premisse of,, we replace the
?d-nodes of7 by copies of7; and we graft the resulting
tree instead ofi (and73) in 7;.

We consider a neéR, an exponential cutin R, an edge
a which is a root of a maximal exponential tree and which
dominates: in R, and a nefR’ such thatR reduces taR’
by a sequence of reductions focalizingorf we still call a
the unique edge AR’ corresponding ta, the tree obtained
by graftingc ona in R is the same as the tree obtained
by grafting all the residues efona in R'. We show it in
the particular case whekeis the conclusion of an auxil-
iary door of thec-box. By induction on the length of the
reduction fromR to R’, we look at each possible reduction
step (using the notatiorig, 7; and7; as given above, the
assumption om corresponding t@; obtained fromZ; by
adding a’p-node):

e 7d-step: before reductioi is a?d-node and the result
of grafting is thusZ;, while after reduction we directly
have7; (there is no grafting);



e 7w-step: before reductiof is a?w-node and the result
of grafting is thus just @w-node, while after reduction
we directly have &w-node (there is no grafting);
?p-step: before reductiof is a?p-node under a treg’
and the graft give§ with ?d-nodes replaced by copies
of 75, while after reduction the graft gives %-node
under?7’ with 7d-nodes replaced by copies®f (that is
the same as before reduction);

?c-step: before reductiofi is a?c-node under two trees
7’ and7” and the graft give§ with ?d-nodes replaced
by copies of7;, while after reduction the graft gives a
?c-node undef7’ with ?d-nodes replaced by copies of
7> and7” with ?d-nodes replaced by copies ?f (that

is the same as before reduction).

Let ¢ be an exponential cut iR and leta be an edge
which dominateg and which is the root of a maximal ex-
ponential tree, we consider a complete reduction fsbm

R to someR’. By the result above, the exponential tree
of a in R’ is the same as the one obtained by graftiran

a in R. We now show that grafting an exponential cut on
the root of a maximal exponential tree preserves the fact of
being inuELL and the same farSLL:

e In UELL, during a graft, we replac&d-nodes in7
(which contains exactly onép-node on the branches
leading to theséd-nodes) by copies of; (which can-
not contain a’p-node on a branch leading to?d leaf)
and we put the result in place of a subtree with root a
?p-node in7; (which contains no othetp-nodes on a
branch leading to ad-node), in this way we get anELL
valid exponential bundle of branches.

In USLL, we are necessarily grafting on a tréewhich

In a net without any multiplicative cut, we can define a
notion of 7-path a 7-path is a path starting from!anode,
going downward from one of the auxiliary doors of its box
through only?-labelled edges until it reaches an exponential
(non deadlock) cut then it goes to therode premisse of the
cut, and so on... These paths stop in deadlock cuts, in
edges which are not premisse of a node withcanclusion
and in conclusions of the net.

An exponential cut isnaximalif there is no?-path from
it going from its! premisse to another exponential cut (such
maximal cuts always exist by correctness of nets). If we
restrict our complete reductions of exponential cuts to-max
imal exponential cuts, we can check that such a reduction
never modifies the exponential tree of another exponential
cut.

We remark that the reduction of a multiplicative cut de-
creases the number of nodes of the net and that the complete
reduction of a maximal exponential cut at depttiecreases
the number of nodes at depthWe can deduce that the full
reduction of a net at depth can be done in a number of
steps bounded by the square of the size of the net.

Finally, since each reduction step can at most double the
size of the net, we conclude that the reduction of a net can be
done in a number of steps bounded by a tower of exponen-
tials applied to the size of the original net and whose height
depends linearly on the depth of the original net (since the
(complete) reduction steps can only decrease this depth).

The representation of the integeris given by a net of
size linear inm and depthl. If f is represented by a net of
depthd then the normalization of cut with» is thus done
in elementary time with respect to

gives an exponential bundle of branches restrictedtoone k. the polynomial time correctness foBLL, we first

branch of lengtR2. It is easy to check that grafting on
such a tree leads to the same bundle agfor

Moreover, if 77 is the tree reduced to orvel-node and
one?p-node, then grafting on7; leads to7 (thus new
trees are never created during complete reduction in this
particular case).

B. Proof of proposition 7

Thesizeof a netR is its number of nodes.

For completeness, we just apply the results of sec-
tion 2.1, and we translate the proofs representing funstion
and predicates into nets.

For the elementary time correctness @il L, we con-
sider a particular reduction strategy:

a. we reduce all the multiplicative.¢. non-exponential)
cuts

b. we apply complete reductions to the exponential cuts (in
order to stay iruELL)

based on the fact that the reduction of an exponential cut in

UELL cannot create new multiplicative cuts at its own depth.

associate a polynomidl’z (X) to any netR of uSLL:

e if it contains no box, theVz (X) is its number ofax,
®, %, 1, L and?d-nodes,

o if it contains boxesBj, ..., By containing the nets
Ri, ..., Ri, and N is the number ofax, ®, %%, 1, L
and?d-nodes at depth, thenWx(X) = N + X(1 +
Wry (X)) + -+ X (1 + Wg, (X))

Assumingn > 1, any multiplicative reduction decreases

Wr(n). Moreover if we consider a complete exponential
reduction, we have two possible cases for the exponential
bundle of branches:

e only one branch of lengtB: the reduction replaces a
termX + X (1+Wx(X)) by XWx(X). Moreover this
complete reduction takes as many steps as the size of the
cut exponential tree;

e p branches of length: the reduction replaces a term
p+ X (14 Wg(X)) by pWg(X). Moreover this com-
plete reduction takes as many steps as the size of the cut
exponential tree;

so that ifn is bigger than the sizes of all the exponential
trees occurring during the reduction®fthen the length of



the reduction ofR is bounded byiVx (n).

The representation of a binary integeof lengthn is
given by a net of size linear in, depth0 and containing
one exponential tree which is of size smaller thant- 1. A
predicateP is represented by a net withott-node. As a
consequence, the normalization{havingk conclusions
corresponding tdV-+) cut with k£ copies ofb is done in at
mostWp(2n + 1) + k£ O(n) steps which is a polynomial
in n. We use here the fact that during the normalization
of the whole net, all the exponential trees will be copies (or
subtrees) of the ones bhs shown at the end of appendix A.

C. Proof of lemma 1

By induction onR:

e If R has a finabx 1, 1, ®, %, 7d, 7w or ?c-node, the
result is immediate by induction hypothesis.

e If R has two connected components, we also apply the
induction hypothesis to the components.

e If R is reduced to a box is obtained from some ex-
perimentsy, ..., e, in the box. Ifz is anh-point, the
size of the multiset associated with the conclusion of the
-node ish thusn = h, and the results o, ..., ey
are h-points so that, by induction hypothesis, they are
all h-experiments and finally is anh-experiment. Ife
is anh-experiment, then the size of the multiset associ-
ated with the conclusion of thenode ish, n = h and
e1, ..., ep areh-experiments thus, by induction hypoth-
esis, their results are-points and finally: is anh-point.

D. Proof of lemma 2

By induction onz:

e T((1)") = 7(1) = ¢ and the same fat.
e by induction hypothesis:

T((@ o) = T(@);" © v);")

=T ((@){") uT(()")

={hn|neT(x)An>1t}
U{n|neT(x)An <t}
U{hn|neT(y) An >t}
U{n|neT(y) An<t}

={hn|neT(x)UT(y) An>t}
U{n|neT(x)UT(y) An <t}

={n|neT(zy)An>t}
U{n|neT(xzoy) An<t}

o if k<t

T((Nzy,- .- ,xk])gh))
= T([(x)", ..., (@)
=T ((z1){") U UT((zx){")

U {hn|n €T (z;) An >t}
1<i<k

u U {n|neT(x;)An <t}

1<i<k

U{n|n€ U T(xi)/\ngt}

hn|ne U T(x;)) An >t

1<i<k

1<i<k
={hn|neT(r,...,2]) An >t}
U{n|neT(z,...,zx]) An <t}
o if k>t
T((f, - o)) = T, R )

= T((z1){") U UT ()"

and we conclude in the same way
o if k<t
T (s, ..., 2))!
=T, @)
= (B UT((z)") U+ UT((20)]")
={k}u |J {mnlneT(w)Arn>t}

1<i<k

u U {n|neT(x;)An <t}

1<i<k
{k}U{hn|nE U T(xi)/\n>t}
1<i<k
U{n|n€ U T(zi)/\ngt}
1<i<k
{hn|n€ ({k}u U T(:L'l)) /\n>t}
1<i<k

U{n|n€ ({k}U U T(x») /\ngt}
1<i<k

={hn|neT?z1,...,zk]) An>t}
U{n|neT(?x,...,zk]) An <t}

h))



oif k>t ¢ If R is reduced to a box, by induction hypothesis applied

*) to the experiments, ...,e, used in the box to build the
T((?[x1,- - ax]) ) experiment, we know that the results associated with the
— T(7Th (h), o h (h) premisse of a givefip-node are all of sizes wheren
(lh(er), ) (@)D ) corresponds to the exponential bundle of branches of this
= {hk}UT ((x1); ") U---UT((z); ) edge. By definition the label of the conclusion of thyis
= {hk} U U {hn|n €T (x;) An>t} node is of sizen and%h is precisely the exponential
1<i<k bundle of this edge.

We now show, by induction oR, that if z is the result of an

experiment of R then7 (z) contains exactly the sizes of

the labels associated (by some experiment used to build
} either at depttd or inside a box) with thé-labelled edges

U lJ {nlneT@)rn<t}
1<i<k

of R which are not premisse of?p or 7c-node:
e If R has a finalax, 1, L, ® or #¥-node, the result is
} immediate by induction hypothesis.

:{hk}u{hn|n€ U T(zi)An >t

1<i<k

e If R has a final’d-node, ife’ is the restriction of to
the subnet without this final node andaif is its result,

U{n|n€ U T(zi))An<t
x is obtained fromx’ by replacing someg by ?[y]. As a
) An > t}
[ ]

1<i<k

consequencd, (z) = 7 (') U{1}, and we conclude by
induction hypothesis.
If R has a finalw-node, ife’ is the restriction ot to the
) } subnet without this final node andf is its result,z is
An<t

:{hn|n€ ({kz}u U T (z;)

1<i<k

obtained fromx’ by adding somé&[]. As a consequence,
T(xz) = T(z') U {0}, and we conclude by induction
={hn|neT(x,...,zx]) An >t} hypothesis.
If R has a final?’c-node (with conclusiore and pre-
U eT(?xy,...,xx]) An<t e i -
{nln (7l ) A <t} missesz andb), if ¢’ is the restriction ot to the subnet
without this final node and if’ is its result,z is ob-

U{n|n€ ({kz}u U T (z;)

1<i<k

E. Proof of lemma 3 tained froma’ by replacing a paif i, ?v (which are the
labelsa andb) by ?(u + v) (which is the label of).
We first show that, in anyji-experiment, the size of the By induction hypothesis7 (z') = 7o U {m,n} where
multiset associated with 2labelled edge is: wheren” m is the size ofy andn is the size ofv, and we have
corresponds to the exponential bundle of branches of this 7 (z) = 7o U {m + n} corresponding to the fact that
edge. By induction ofR: andb are no more roots of maximal exponential trees in
e If R has a finalax, 1, L, ® or #¥-node, the result is R (due to the?’c-node), whilec is.
immediate by induction hypothesis. ¢ If R has two connected components, we apply the in-
¢ If R has a final’d-node, the size of the multiset associ- duction hypothesis to the components.
ated with its conclusion i$ with T* = 1 (for the other ~ ® If R is reduced to a box withp auxiliary doors,
edges we apply the induction hypothesis). if e1, ..., e, are the experiments used in the box,
e If R has a finalw-node, the size of the multiset associ- 21, ..., 2 are their results, andy] (with n} the size
ated with its conclusion i8 with 0 = 0 (for the other of y!) is the label associated by, to the j" aux-
edges we apply the induction hypothesis). iliary door then, by induction hypothesig (z;) =
e If R has a final?c-node, we apply the induction hy- T, U {n{,...,nf}. And we conclude by7 (z) =
pothesis to the net without this node and we just have to U1§i§k 7; U {Zlgigk ni.., Zlgigk ny}.
prove the result for the conclusion of the node. We know ~ We conclude with lemma 1: it is anh-point of [R]
that the sizes of the labels of the premissesamndn ~ then it is the result of ah-experiment ofR. So that7 (z)

with corresponding exponential bundles of brandiés contains the sizes of the labels of the roots of the maximal
andn”, thus the size of the label of the conclusion is €xponential trees (by the second part of the proof) which are
m + n and the exponential bundle of this edge (which all then such tham” is an exponential bundle of branches
has strictly less thah elements sinceosizéR) < h) is of R (by the first part of the proof).
preciselym + 1.

¢ If R has two connected components, we apply the in-
duction hypothesis to the components.



