
An Introduction to Proof Nets

Olivier . Laurent @ens-lyon.fr

September 2, 2016

Abstract

We give some basic results of the theory of proof nets for multiplicative linear logic and
multiplicative exponential linear logic with mix. The relation between proof nets and the
lambda-calculus is precisely described.

1 Multiplicative Proof Nets

1.1 Multiplicative Linear Logic

We assume given a denumerable set of atoms X, Y , . . . The formulas of multiplicative linear
logic (MLL) are defined as:

A,B ::= X | X⊥ | A⊗B | A`B

The connective (.)⊥ is extended into an involution on all formulas by:

(X⊥)⊥ = X (A⊗B)⊥ = A⊥ `B⊥ (A`B)⊥ = A⊥ ⊗B⊥

For example:

(X⊥ ⊗ (X ` Y ⊥))⊥
⊥

= (X⊥
⊥ ` (X ` Y ⊥)⊥)⊥

= (X ` (X⊥ ⊗ Y ⊥⊥))⊥

= (X ` (X⊥ ⊗ Y))⊥

= X⊥ ⊗ (X⊥ ⊗ Y)⊥

= X⊥ ⊗ (X⊥
⊥ ` Y ⊥)

= X⊥ ⊗ (X ` Y ⊥)

Sequents are sequences of formulas denoted ` Γ. The sequent calculus rules of MLL are:

ax
` A⊥, A

` Γ, A ` A⊥,∆
cut` Γ,∆

` Γ, A ` ∆, B ⊗` Γ,∆, A⊗B
` Γ, A,B `` Γ, A`B

The formal definition of the system requires to add the exchange rule:

` Γ ex(ρ)
` ρ(Γ)

where ρ is a permutation. However the precise use of this rule and the careful usage of the
order of formulas in sequents add a lot of useless technicalities to the results we want to present
here. We will thus do in the following as if sequents were multisets of formulas even if this is
not strictly speaking a valid way of defining them.

1

@ens-lyon.fr

1.2 Forgetting Sequential Structure

ax
` A,A⊥

ax
` B,B⊥ ⊗

` A⊗B,A⊥, B⊥
ax

` C,C⊥ ⊗
` (A⊗B)⊗ C,A⊥, B⊥, C⊥ `
` (A⊗B)⊗ C,A⊥ `B⊥, C⊥

ax
` A,A⊥

ax
` B,B⊥ ⊗

` A⊗B,A⊥, B⊥
cut

` (A⊗B)⊗ C,A⊥, B⊥, C⊥ `
` (A⊗B)⊗ C,A⊥ `B⊥, C⊥

ax
` A,A⊥

ax
` B,B⊥ ⊗

` A⊗B,A⊥, B⊥
ax

` C,C⊥ ⊗
` (A⊗B)⊗ C,A⊥, B⊥, C⊥ `
` (A⊗B)⊗ C,A⊥ `B⊥, C⊥

ax
` A,A⊥

ax
` B,B⊥ ⊗

` A⊗B,A⊥, B⊥
cut

` (A⊗B)⊗ C,A⊥, B⊥, C⊥ `
` (A⊗B)⊗ C,A⊥ `B⊥, C⊥

A A⊥ B B⊥

A⊗B
A A⊥ B B⊥

A⊗B

C C⊥

(A⊗B)⊗ C
A⊥ `B⊥

A⊥ `B⊥

1.3 Proof Structures

Definitions and abstract properties of graphs we are going to use can be found in Appendix A.

A proof structure is a directed multigraph e-labelled with multiplicative formulas (the label
of an edge is called its type) and n-labelled with {ax, cut,⊗,`, c} (the incoming edges of a node
are called its premisses, the outgoing edges are its conclusions) such that:

• Each node labelled ax has exactly two conclusions (and no premisse) which are labelled
A and A⊥ for some A.

• Each node labelled cut has exactly two premisses (and no conclusion) which are labelled
A and A⊥ for some A. It is called a cut.

• Each node labelled ⊗ has exactly two premisses and one conclusion. These two premisses
are ordered. The smallest one is called the left premisse of the node, the biggest one is
called the right premisse. The left premisse is labelled A, the right premisse is labelled B
and the conclusion is labelled A⊗B, for some A and B.

• Each node labelled ` has exactly two ordered premisses (as for ⊗ nodes) and one conclu-
sion. The left premisse is labelled A, the right premisse is labelled B and the conclusion
is labelled A`B, for some A and B.

2

• Each node labelled c has exactly one premisse (and no conclusion). Such a premisse of c
node is called a conclusion of the proof structure.

The nodes with label c are simply represented as bullets in pictures. Nodes with all their con-
clusions connected to c nodes are called terminal (in particular cut nodes are always terminal).
Nodes which are not labelled with c are called internal nodes of the proof structure.

By definition a non-empty proof structure must contain at least one ax node (they are the
only nodes with no premisse).

Example 1.1 (Proof Structure)
In the graphical representation of a proof structure, we do not mention explicitly the direction
of edges, but we draw them in such a way that direction in represented in a top-down way:

ax

`
ax

`

ax
A

A⊗ A⊥

⊗

⊗

A⊥ ` A

A

A

A⊥ ` A

A⊥

(A⊗ A⊥)⊗ (A⊥ ` A)

A⊥ A⊥

This proof structure has 9 nodes (7 internal ones), 2 conclusions with types respectively (A ⊗
A⊥)⊗ (A⊥ `A) and A⊥ `A, and 2 terminal nodes above these conclusions:

• a ⊗ node with left premisse typed A⊗ A⊥, right premisse typed A⊥ ` A and conclusion
typed (A⊗A⊥)⊗ (A⊥ `A);

• a ` node with left permisse typed A⊥, right premisse typed A and conclusion typed
A⊥ `A.

A proof π of the sequent calculus MLL can be translated into a proof structure ps(π). A proof
with conclusion sequent ` A1, . . . , Ak is translated into a proof structure with k conclusions
labelled respectively A1, . . . , Ak and thus k nodes labelled c. There is a bijection between
internal nodes of ps(π) and the rules of π which are not exchange rules, in such a way that each
node is labelled with the name of its corresponding rule.

The translation is defined by induction on the structure of the proof:

• An (ax) rule ax
` A⊥, A is translated into an ax node with conclusions labelled A⊥ and

A which have c nodes as targets.

ax

A⊥ A

• If π1 is translated into S1 = ps(π1) and π2 is translated into S2 = ps(π2), then to the

proof

π1
` Γ, A

π2

` A⊥,∆
cut` Γ,∆

we associate the proof structure S obtained from S1 and

S2 by removing the c nodes with premisses e1 labelled A and e2 labelled A⊥, and by
introducing a new cut node with premisses e1 and e2.

3

cutΓ A ∆A⊥

S1 S2

• If π1 is translated into S1 = ps(π1) and π2 is translated into S2 = ps(π2), then to the

proof

π1
` Γ, A

π2
` ∆, B ⊗` Γ,∆, A⊗B

we associate the proof structure S obtained from S1 and S2

by removing the c nodes with premisses e1 labelled A and e2 labelled B, and by introducing
a new ⊗ node with premisses e1 and e2 and with conclusion a new edge labelled A ⊗ B
which is itself the premisse of a new c node.

⊗
∆Γ A B

A⊗B

S1 S2

• If π1 is translated into S1 = ps(π1), then to the proof

π1
` Γ, A,B `` Γ, A`B

we associate the

proof structure S obtained from S1 by removing the c nodes with premisses e1 labelled A
and e2 labelled B, and by introducing a new ` node with premisses e1 and e2 and with
conclusion a new edge labelled A`B which is itself the premisse of a new c node.

`
Γ A B

A`B

S1

1.4 Correctness

Not any proof structure represents (or is the translation of) a proof in the sequent calculus
MLL. This leads to the study of correctness criteria to try to delineate a sub-set of “valid”
proof structures which belong to the image of the translation ps.

Here are a few examples of proof structures which do not correspond to any proof of MLL:

⊗

ax
A A⊥

A⊗ A⊥

4

ax

cut

A A⊥

ax ax
BA⊥

`
A

A⊥ `B

B⊥

``
ax axax

⊗

(A⊥ `B)⊗ (B⊥ ` C)

A⊥ `B B⊥ ` C

B B⊥
CA⊥A C⊥

``` `

⊗

ax

ax

ax

ax

ax

(B⊥ ` C⊥)⊗ (E⊥ `D⊥)

B⊥ ` C⊥ E⊥ `D⊥

B B⊥

⊗ ⊗

(D ` A⊥)⊗ EC ⊗ (A`B)

D⊥ D

A A⊥

E⊥ E

D ` A⊥

C C⊥

A`B

1.4.1 Correctness Criteria

Given a proof structure S, let P be the set of its ` nodes, a switching of S is a function
ϕ : P → {left, right}. The switching graph Sϕ associated with ϕ is the labelled directed
multigraph obtained from S by modifying the target of the ϕ(P ) premisse of each ` node P
into a new c node.

5



`

`

`
A

A`B

B

or

left

right

A proof structure with p ` nodes induces 2p switchings and thus 2p switching graphs. A
switching graph is not a proof structure in general since its ` nodes have only one premisse.

A connected component of a switching graph is a connected component of its underlying
(undirected) multigraph.

Acyclicity. A multiplicative proof structure is acyclic if its switching graphs do not contain
any undirected cycle.

An acyclic multiplicative proof structure is called a multiplicative proof net.

Connectedness.

Lemma 1.2 (Connected Components)
Let S be a proof structure, the number of connected components of its (undirected) acyclic
switching graphs are the same.

Proof: If N is the number of nodes of S, P its number of ` nodes and E its number of edges,
any switching graph of S has N +P nodes and E lines. By Lemma A.1, any such acyclic
multigraph has N + P − E connected components. 2

A multiplicative proof net is connected if its switching graphs have exactly one connected
component.

Thanks to the previous lemma, this is equivalent to checking that one switching graph is
connected.

1.4.2 Soundness

Proposition 1.3 (Soundness of Correctness)
The translation of a sequent calculus proof of MLL is a connected multiplicative proof net.

Proof: By induction on the structure of the MLL proof π. Let S be the proof structure
associated with π, and we also need to consider two sub-proofs π1 and π2 of π with
associated proof structures S1 and S2.

• The proof structure below has a unique switching graph which has no undirected
cycle and a unique connected component.

6



ax

A⊥ A

• If π is obtained from π1 and π2 with a (cut) rule, a switching graph Sϕ of S is obtained
by connecting through a cut node a switching graph Sϕ1 of S1 and a switching graph
Sϕ2 of S2.

cutΓ A ∆A⊥

Sϕ1 Sϕ2

We can deduce that no switching graph of S contains an undirected cycle and they
all have a unique connected component.

• If π is obtained from π1 and π2 with a (⊗) rule, a switching graph Sϕ of S is obtained
by connecting through a ⊗ node a switching graph Sϕ1 of S1 and a switching graph
Sϕ1 of S2.

⊗
∆Γ A B

A⊗B

Sϕ1 Sϕ2

We can deduce that no switching graph of S contains an undirected cycle and they
all have a unique connected component.

• If π is obtained from π1 with a (`) rule, a switching graph Sϕ of S is obtained by
putting a ` node connected to a c node instead of a c node in some switching graph
Sϕ1 of S1.

`
Γ A B

A`B

Sϕ1

or `
Γ A B

A`B

Sϕ1

We can deduce that no switching graph of S contains an undirected cycle and they
all have a unique connected component. 2

1.4.3 Sequentialization

We want to associate an MLL proof with each connected multiplicative proof net. This is called
the sequentialization process, for it requires to turn the graph structure of proof nets into the
more sequential tree structure of sequent calculus proofs.

In order to help the reuse of some of the results, we consider here a simple generalization of
proof structures where ax nodes are replaced with hyp nodes:

7



• Each node labelled hyp has at least one conclusion (and no premisse). If the conclusions of
an hyp node are labelled A1, . . . , An (n > 0), the sequent ` A1, . . . , An must be provable
in MLL.

ax nodes are clearly a particular case of these new hyp nodes since ` A,A⊥ is provable for any
A in MLL by means of an (ax) rule. For the purpose of sequentialization, we associate any proof
of ` A1, . . . , An with an hyp node with conclusions labelled A1, . . . , An.

A switching path of a proof structure is a simple undirected path of one of its switching
graphs. A switching path in a switching graph Sϕ can be seen as a an undirected path of the
proof structure S itself (this might only require to “rename” c nodes of Sϕ, which are not in S,
into the corresponding ` nodes). A strong switching path is a switching path whose first edge
is not the premisse of a ` node.

Lemma 1.4 (Concatenation of Switching Paths)
If γ is a switching path, γ′ is a strong switching path with t(γ) = s(γ′), and if γ and γ′ are
disjoint (no common edge) then their concatenation γγ′ is a switching path.

If γ is strong then γγ′ as well.

Proof: By hypotheses, the path γγ′ is a simple undirected path. If it is not a switching path,
then there exists a ` node P with premisses e1 and e2 and with conclusion e0 such that:

• either γγ′ contains (e1,+)(e2,−) or (e2,+)(e1,−) but this is not possible since it
cannot occur inside γ or γ′ by hypotheses and it cannot occur at the source of γ′

since γ′ is strong,

• or γγ′ contains both (e1,+)(e0,+) or (e0,−)(e1,−), and (e2,+)(e0,+) or (e0,−)(e2,−),
but this is not possible otherwise the path would contain twice e0 while it is a simple
path.

If γ is strong, then either it is empty and γγ′ = γ′ is strong or γ is not empty and the
first edge of γγ′ is the first edge of γ thus it is strong. 2

Lemma 1.5 (Cyclic Strong Switching Paths)
In a proof net, there is no strong switching path whose target is its source.

Proof: Let Rϕ be a switching graph containing a strong switching path γ with target equal
to its source (up to identifying c nodes not in R with their corresponding ` node). If the
source n of γ is not a ` node, γ defines a cycle in Rϕ, a contradiction. Otherwise, let ϕ′

be obtained from ϕ by connecting the last edge of γ with n (note we may have ϕ′ = ϕ),
γ is a cycle in Rϕ′

, a contradiction. 2

A terminal ⊗ node T of a proof structure is called splitting if by removing it (as well as its
conclusion edge and the c node it is connected to) and by adding two new c nodes as targets
of the premisses of T , one obtains two disjoint proof structures.

Lemma 1.6 (Blocking `)
Let R be a connected proof net, if T is a terminal ⊗ node which is not splitting and if e1 and
e2 are its premisses, there exists a ` node P with premisses e′1 and e′2 such that e1 is connected
to e′1 by a strong switching path γ1 and e2 is connected to e′2 by a strong switching path γ2, with
γ1 and γ2 disjoint and not containing the conclusion e′0 of P .

Such a ` node is called a blocking ` of the ⊗ node, the two paths γ1 and γ2 are called
blocking paths.

8



Proof: Since T is not splitting, there is a simple undirected path γ connecting e1 and e2 in
R (without going through T ). By acyclicity, γ does not belong to any switching graph of
R. We consider an arbitrary switching graph Rϕ of R. By acyclicity and connectedness
of Rϕ, removing T from Rϕ defines exactly two connected components R1 containing e1
and R2 containing e2. Since γ is not included in Rϕ, there must be a ` node P in γ such
that a premisse e′1 of P is in R1 and the other premisse e′2 of P is in R2. Let γ1 (resp.
γ2) be the part of γ included in R1 (resp. R2), γ1 (resp. γ2) gives us a strong path from
e1 to e′1 (resp. from e2 to e′2).

Now assume γ1 contains e′0 (or similarly for γ2), then if ϕ′ is obtained from ϕ by modifying
the premisse of P connected with P , one obtains a cycle inRϕ′

by concatenating the prefix
of γ1 ending with e′0 and γ2. This would thus contradict the acyclicity of Rϕ′

. 2

A descent path is a maximal (with respect to the prefix relation) directed path from a node
(downwards) to a conclusion or a cut. A descent path is always a strong switching path. Such
a path is unique for all nodes but hyp nodes which have as many descent paths as conclusions.
A node has all its descent paths of length 1 if and only if it is a terminal node or a premisse of
a cut.

Theorem 1.7 (Sequentialization)
Any connected multiplicative proof net is the translation of a sequent calculus proof of MLL.

Proof: By induction on the number of internal nodes of the connected proof net R plus its
number of cuts, we build an MLL proof with a rule associated with each internal node of
R.

If R with conclusions Γ contains a cut node, we turn it into a ⊗ node T (with a new
conclusion edge labelled A⊗A⊥ and a new associated c node). By induction hypothesis,
there exists a proof π′ associated with the thus obtained connected proof net. If R is the
(⊗) rule of π′ associated with T , we obtain π by turning R into a (cut) rule:

` ∆1, A

π′

... ` ∆2, B ⊗
` ∆1,∆2, A⊗A⊥

...

` Γ, A⊗A⊥

7→
` ∆1, A

π
... ` ∆2, A

⊥
cut` ∆1,∆2

...
` Γ

We can now assume R is cut free.

Using Lemma 1.6, we assume a blocking ` node (with its two corresponding blocking
paths) is associated with each terminal non splitting ⊗ node.

Since R is connected it cannot be empty and thus it must contain at least one hyp node
(they are the only nodes with no premisse).

If R contains a terminal hyp node with conclusions labelled A1, . . . , An, then by connect-
edness, R is reduced to this hyp node (with its conclusions and the associated c nodes).
We sequentialize it into a proof of ` A1, . . . , An in MLL (the last rule of the proof is the
rule associated with the hyp node).

Otherwise, we follow a non trivial (length at least 2) descent path from a non terminal hyp
node. We reach a terminal ` or ⊗ node. If we reach a ` node P , we remove it (as well
as its conclusions and the associated c nodes) and we replace it with two new c nodes.
Let R′ be the thus obtained connected proof net, by induction hypothesis there exists a
corresponding MLL proof π′. The proof π associated with R is then:

9



π′

` Γ, A,B `` Γ, A`B

The last (`) rule is the rule associated with P .

If we reach a splitting ⊗ node T , we remove it (as well as its conclusions and the associated
c nodes) and we replace it with two new c nodes. Let R′1 and R′2 be the two thus obtained
connected proof nets, by induction hypothesis there exist two corresponding MLL proofs
π′1 and π′2. The proof π associated with R is then:

π′1
` Γ, A

π′2
` ∆, B ⊗` Γ,∆, A⊗B

The last (⊗) rule is the rule associated with T .

If we reach a non splitting ⊗ node, we start building a sequence of terminal non splitting
⊗ nodes in the following way: if we arrive to the ⊗ node T by its premisse e1, we go to the
associated blocking ` node P through the strong switching path starting from the other
premisse e2 of T , we then follow the descent path from P , we reach a terminal node. If it
is a non splitting ⊗ node, we extend our sequence, otherwise we are in one of the above
cases. It is thus enough to prove that this sequence cannot be infinite. Since R contains
a finite number of nodes, such an infinite sequence must correspond to a cyclic path in
R. We now show this infinite sequence would induce a cycle in a switching graph of R
contradicting correctness.

Let γ be the path used to build the sequence, we look at it and we stop when we arrive
to a node belonging to a blocking path of a previously met ⊗ node (not necessarily the
blocking path of this ⊗ node we went through) or to a descent path of a previously met
` node. If we stop on a descent path on a node n, then the suffix of the considered path
starting from the conclusion of n contradicts Lemma 1.5. If we stop on a node n in a
blocking path γb1 of a ⊗ node T whose other blocking path is γb2 and whose blocking `
node is P , and if n was visited from its conclusion to its premisse in γb1, we consider the
concatenation γb2γPnγ̄

b
n (γPn being the sub-path of γ from P to n and γbn the sub-path

of γb1 from T to n). By Lemma 1.4, this is a strong switching path, and we contradict
Lemma 1.5. If n was visited from a premisse to its conclusion in γb1, the situation is similar
to the case where n was in a descent path. 2

It is then natural to try to analyse the kernel of the translation ps by understanding when
two different sequent calculus proofs are mapped to the same proof structure. One can prove
that it is the case if and only if one can transform one of the two proofs to the other by some
permutations of the order of application of rules.

In a cut-free sequent calculus proof or proof structure, the formulas used in the ax rules or
nodes are occurrences of sub-formulas of the conclusions of the proof or proof structure. Two
proofs are mapped to the same proof structure if and only if the pairing of such occurrences of
formulas given by ax rules are the same in the two proofs.

1.5 Cut Elimination

If we propose proof nets as an alternative to sequent calculus to study proofs in (multiplicative)
linear logic, we need to be able to deal with cut elimination in this new syntax without referring
to the sequent calculus.

10



Cut elimination in proof nets is defined as a graph rewriting procedure, which acts through
local transformations of the proof net.

We first define the transformation on proof structure, but we will restrict immediately after
to the case of proof nets.

1.5.1 Reductions Steps

We consider two reductions steps:

→a

ax

A A⊥

cut

A A

` B⊥A⊥ A A⊥B B⊥

A⊥ `B⊥

A B
⊗

A⊗B

→m

cut
cut

cut

In the a step, the two edges of type A in the left-hand side are supposed to be distinct.
One can check that in a proof net any cut belongs to a redex: if the sources of the premisses

of the cut are not ax nodes, they must be ⊗ or ` nodes and, due to the typing constraints,
they cannot be both ⊗ nodes or both ` nodes. Moreover, by acyclicity, the sources of the
two premisses of a cut cannot be the same ax node. As a consequence normal forms for the
reduction of multiplicative proof structures which are proof nets are exactly cut-free proof nets.

1.5.2 Preservation of Correctness

Lemma 1.8 (Preservation of Acyclicity)
If R is a multiplicative proof net and R → R′ then R′ is a proof net.

Proof: We consider the two steps:

• Through an a step, a switching graph of the reduct can be turned into a switching
graph of the redex by replacing the edge of type A with a path of length 3 going
through the ax node and through the cut node. One of these two switching graphs
is then acyclic if and only if the other one is.

• Through an m step, a switching graph S of the reduct gives rise to two switching
graphs Sl and Sr in the redex depending of the {left, right} choice for the ` node

11



which disappears through the reduction. Assume there is a cycle in S. It must go
through at least one of the cuts otherwise it is a cycle in Sl and Sr. If it goes through
the cut between A and A⊥ thus the premisses of this cut are connected in S (without
using the cut) and then we have a cycle in Sl, a contradiction. Similarly it cannot
be a cycle using only the cut between B and B⊥. If it uses both cuts, the premisses
A and B are connected in S and we have a cycle in both Sl and Sr, or the premisses
A and B⊥ are connected in S and we have a cycle in Sr. 2

Remember that, thanks to Lemma 1.2, all the switching graphs of a multiplicative proof net
have the same number of connected components.

Lemma 1.9 (Preservation of Connected Components)
If R is a multiplicative proof net and R → R′ then the number of connected components of the
switching graphs of R′ is the same as for the switching graphs of R.

Proof: The switching graphs are acyclic in both R and R′ (see Lemma 1.8). We can thus
use Lemma A.1. We consider the two reduction steps. In each case, we loose two nodes
and two edges thus the number of connected components is not modified.

In particular a reduct of a connected multiplicative proof net is a connected proof net.

1.5.3 Properties

If we consider cut elimination as a computational process on proof nets, the two key properties
we want to prove about it are termination and uniqueness of the result. If the existence of a
terminating reduction strategy (weak normalization) allowing to reach a cut-free proof net from
any proof net is enough from the point of few of logical consistency, it is more satisfactory from
a computational point of view to prove that any reduction will eventually terminate (strong
normalization).

Lemma 1.10 (Sub-Confluence)
The reduction of multiplicative proof nets is sub-confluent.

Proof: There are two kinds of critical pairs:

• a/a (shared cut)

ax ax

A A⊥

cut

A A⊥

a

��

a

		
ax

A A⊥

12



• a/a (shared ax)

ax

cut cut

A A⊥ AA⊥

a

��

a

		

cut

AA⊥

In all the other situations, two different reductions from a given proof net commute:

.
(1)

~~

(2)

  .

(2)   

.

(1)~~.

since they cannot overlap. 2

Proposition 1.11 (Convergence)
The reduction of multiplicative proof nets is convergent.

Proof: Confluence is obtained by Proposition B.1 and Lemma 1.10. Moreover, the reduction
is s-decreasing where s is the number of nodes of the proof net. We conclude with
Proposition B.5. 2

1.6 The Mix Rules

We consider an extension of LL which will make the study of exponential proof nets easier.

The two mix rules are the nullary mix rule (void) and the binary mix rule (mix).

void`
` Γ ` ∆

mix` Γ,∆

Lemma 1.12 (Sociability of (void))
If π is a proof in MLL with (void) and (mix) rules, by applying (possibly many times) the
transformation:

void`

...
` Γ

mix` Γ

7→
...
` Γ

we obtain either the proof void` or a proof without the (void) rule.

Proof: The transformation described can only be applied a finite number of times (the num-
ber of rules strictly decreases). Assume we apply it as many times as possible. If the
obtained proof contains an occurrence of the (void) rule, it is the only rule of the proof
since the only possible rule below it is (mix) (it must admit the empty sequent ` as a
premisse) but then the transformation can be applied one more time, a contradiction. 2

13



We can interpret these two rules as proof structures constructions.
The (void) rule is translated into the empty proof structure.
The (mix) rule applied to two proofs π1 and π2 which translate into the proof structures S1

and S2 leads to the disjoint union of S1 and S2.

Γ ∆

S1 S2

One can note that the transformation given on Lemma 1.12 does not modify the associated
proof structure.

Proposition 1.13 (Soundness and Sequentialization with (void))
A multiplicative proof structure is the translation of a sequent calculus proof of MLL with (void)
if and only if it is acyclic and its switching graphs have at most one connected component.

Proof: By Lemma 1.12, for soundness it is enough to apply Proposition 1.3 and to see that
the empty proof structure (obtained from the (void) rule) has empty switching graphs
thus is acyclic and with no connected component.

Concerning sequentialization, since the only multigraph with no connected component
is the empty one, the only multiplicative proof structure with switching graphs with no
connected component is the empty one which is the translation of the (void) rule. For
acyclic and connected multiplicative proof structures, we apply Theorem 1.7. 2

Lemma 1.14 (Connection)
If R is a cut-free multiplicative proof net which is a connected directed multigraph and which is
not a connected proof net, there exists a ` node in R such that R′ obtained by transforming it
into a ⊗ node is still a multiplicative proof net.

Proposition 1.15 (Soundness and Sequentialization with (mix))
A multiplicative proof structure is the translation of a sequent calculus proof of MLL with (mix)
if and only if it is acyclic and its switching graphs have at least one connected component.

Note that asking the switching graphs to have at least one connected component is equivalent
to ask them not to be empty and thus it is equivalent to ask the proof structure itself not to be
empty.

Proof: The only if part is given by Proposition 1.3 for the MLL rules, and the translation of
the (mix) rule does not introduce cycles and is not empty (since the translations of the
premisses satisfy these properties).

We turn to the if part, and consider an acyclic proof structure S. As for the proof of
Theorem 1.7, we can transform cut nodes into ⊗ nodes and focus on the cut-free case.
We go by induction on the number of connected components of the proof structure as a
directed multigraph (not of its switching graphs). The proof structure has at least one
connected component since its switching graphs do.

• If there is 1 component, we go by induction on the number k of connected components
of the switching graphs of S (which is the same for all switching graphs thanks to
Lemma 1.2). If k = 1, we apply Theorem 1.7. If k > 1, using Lemma 1.14, we obtain
a multiplicative proof net S ′ by turning a ` node into a ⊗ node T . By induction
hypothesis, there is a sequent calculus proof π′ associated with S ′. By focussing on
the (⊗) rule corresponding to T in π′, we can decompose it into:

14



π′1
` Γ, A

π′2
` B,∆ ⊗` Γ, A⊗B,∆

...
` Σ

One can see the following proof is a sequentialization of S:

π′1
` Γ, A

π′2
` B,∆

mix` Γ, A,B,∆ `` Γ, A`B,∆

...
` Σ

• If there are n+ 1 (n > 0) components, we add a ` node P between two conclusions
of S belonging to different connected components. The obtained proof structure S ′
has n components, so by induction hypothesis we obtain a sequent calculus proof π′

corresponding to S ′. π′ contains an occurrence of (`) rule corresponding to P . By
reversibility of the (`) rule, we transform π′ into π′′ by moving down this occurrence
of rule so that it becomes the last rule of the proof. If π′′′ is the premisse of the last
rule of π′′, one can check π′′′ is a sequentialization of S. 2

Proposition 1.16 (Soundness and Sequentialization with (void) and (mix))
A multiplicative proof structure is the translation of a sequent calculus proof of MLL with (void)
and (mix) if and only if it is acyclic.

Proof: By Lemma 1.12, soundness is obtained from Propositions 1.13 and 1.15

Concerning sequentialization, almost as in Proposition 1.13, either the proof structure is
empty and it is the translation of the (void) rule, or we apply Proposition 1.15 2

2 Multiplicative Exponential Proof Nets

We introduce now the exponential connectives which provides linear logic with real expressive
power. The rewriting theory of proof nets becomes much richer.

2.1 Multiplicative Exponential Linear Logic with Mix

The formulas of multiplicative exponential linear logic (MELL) are defined as:

A,B ::= X | X⊥ | A⊗B | A`B | !A | ?A

The connective (.)⊥ is extended into an involution on all formulas by:

(!A)⊥ = ?A⊥ (?A)⊥ = !A⊥

For MELL, we consider the rules of MLL as well as the two mix rules, together with:

?w0` ?A
` Γ, ?A, ?A

?c` Γ, ?A

` Γ, A
?d` Γ, ?A

` ?Γ, A
!` ?Γ, !A

Due to the presence of mix rules, our presentation of the weakening rule (?w0) is equivalent

to the more traditional one ` Γ
?w` Γ, ?A

. The two rules are inter-derivable:

` Γ
?w0` ?A
mix` Γ, ?A

void`
?w` ?A

15



2.2 Proof Structures

boxes B, main door, with explicit ?p nodes (auxiliary doors)
content of a box
The ?-tree of an edge of type ? is defined inductively by:

• If the edge is conclusion of an ax node, its ?-tree is empty.

• If the edge is conclusion of a ?d node, its ?-tree is this ?d node.

• If the edge is conclusion of a ?w node, its ?-tree is this ?w node.

• If the edge is conclusion of a ?c node, its ?-tree is this ?c node together with the ?-trees
of the two premisses of the ?c node.

• If the edge is conclusion of a ?p node, its ?-tree is this ?p node together with the ?-tree of
the its premisse.

The size of a ?-tree is its number of nodes.
descent path (bis): from a node downwards to a conclusion or to a cut or to a premisse of !

node (that is we do not continue down through an ! node)

2.3 Correctness Criterion

acyclicity
sequentialization

2.4 Cut Elimination

2.4.1 Reductions Steps

A numbered proof net is a proof net together with a strictly positive natural number, as well as
a strictly natural number associated with each box. All these natural numbers are called labels
of the numbered proof net. Numbered proof nets will mainly be a tool to prove properties of
the normalization of proof nets. We define reduction steps on numbered proof nets, but the
corresponding notion for proof nets can simply be obtained by forgetting labels.

• a: n 7→ n+ 1

• m: n 7→ n+ 1

• d: n,m 7→ n+m+ 1

• c: n,m 7→ n,m,m

• w: n,m 7→ n

• p: n,m, k 7→ n,m, k

Lemma 2.1 (Preservation of Correctness)
If R is a proof net and R → R′ then R′ is a proof net.

16



2.4.2 Properties

The goal of this section is to prove the convergence of the reduction of proof nets.

Lemma 2.2 (Numbered Congruence)
If R is a proof net containing R0 as a sub proof net a depth 0, if R0 equipped with label m
reduces to R′0 with label m′ then R reduces to R′ where R′ is obtained from R by replacing R0

with R′0 and the label of R′ is n+m′ −m (where n is the label of R).

Proposition 2.3 (Local Confluence)
The reduction of numbered proof nets is locally confluent.

Proof: • a/a (shared cut)

n

a
��

a
��

n+ 1

• a/a (shared ax)

n

a
��

a
��

n+ 1

• d/in

n,m
d
uu

in
((

n+m+ 1

in
))

n,m′

d
ww

n+m′ + 1

• c/in

n,m

c

uu

in

%%
n,m,m

in
''

n,m′

c

||

n,m′,m

in
''
n,m′,m′

• w/in

n,m

w

��

in
%%
n,m′

wyy
n

17



• p/in (left side)

n,m, k
p
ww

in
''

n,m, k

in
&&

n,m′, k

pww
n,m′, k

• p/in (right side)

n,m, k
p
ww

in
''

n,m, k

in
&&

n,m, k′

pww
n,m, k′

• d/p

n,m, k

d

��

p
((
n,m, k

dzz
n+m+ 1, k

• c/p

n,m, k
c

uu p

$$

n,m,m, k
c

uu
n,m,m, k, k

p ))

n,m, k

c

zz

n,m,m, k, k

p ))
n,m,m, k, k

• w/p

n,m, k
w
yy

p
''

n, k

w &&

n,m, k

www
n

• p/p

n,m, k, l
p

ss
p
))

n,m, k, l

p ((

n,m, k, l

p

zz

n,m, k, l

p ((
n,m, k, l

2

18



Proposition 2.4 (Weak Normalization)
The reduction of proof nets is weakly normalizing.

Proof: We define a size associated with each cut of a proof net R. It is a pair of natural
numbers (s, t) where s is the size of the cut formula (i.e. the size of the types of the
premisses of the cut node) and t is the size of the ?-tree above the ? premisse of the cut
if any, and t = 0 otherwise. These pairs are ordered lexicographically. The cut size of the
proof net R is the multiset of the sizes of its cuts. Thanks to the multiset ordering, the
cut sizes are well ordered.

We now prove that it is always possible to reduce a cut in a proof net R in a way which
makes its size strictly decrease. By Proposition B.5, this proves the weak normalization
property.

A cut is of exponential type if the types of its premisses are !A and ?A⊥ for some A. Note
the source of the premisse with type !A of a cut of exponential type must be an ax node
or an ! node.

• If R contains an a redex for which the cut is not of exponential type, we reduce it.
A cut disappears and the sizes of the other cuts are not modified.

• If R contains an m redex, we reduce it. If A⊗B and A⊥ `B⊥ are the types of the
premisses of the cut, we replace a cut of size (sA + sB + 1, 0) by two cuts of sizes
(sA, ) and (sB, ) (and the sizes of the other cuts are not modified), thus the cut size
of the proof net strictly decreases.

• If R has only cuts of exponential types, we consider the following relation on cuts:
c ≺ c′ if one of the following two properties holds:

– The !A premisse of c has an ax node as source and there is a descent path from
the ?A⊥ conclusion of this ax node to c′.

– The !A premisse of c has an ! node with box B as source and there is a descent
path from an auxiliary door of B to c′.

We are going to show that ≺ is an acyclic relation on the cuts of R. Let us consider
a minimal cycle c0 ≺ c1 ≺ · · · ≺ cn with n > 0 and cn = c0, it induces a path in
R (enriched with the edges from the main door of each box to its auxiliary doors):
from each ci we go to the ? premisse of ci+1 by going to the ! premisse of ci reaching
the main door of the box Bi (or an ax node) then we go to an auxiliary door of Bi
(or to the ? conclusion of the ax node) and we follow the descent path until the ?
premisse of ci+1 (we cannot reach its ! premisse since descent paths stop when going
down on the premisse of an ! node). In the case of a minimal cycle, the induced path
is a simple undirected path, and all the cuts under consideration must have the same
depth since the depth always decreases along the ≺ relation. Moreover each ` node
is crossed from one of its premisses to its conclusion. By considering a switching
graph which contains all the ci’s (they live in the same boxes) and which connects
the ` nodes of the path with the premisse contained in the path, we would obtain a
cycle which contradicts the acyclicity of the proof net.

Let us now consider the set C of all cuts which are maximal for the ≺ relation (it
is finite and not empty since the set of cuts is finite and the relation ≺ is acyclic),
and let c be a cut of C of maximal depth, we reduce c. The reduction of c does not
modify the size of any other cut since:

– If c is maximal for ≺, has a box B above its ! premisse, then any cut in B which
is maximal for ≺ is maximal in R, so if there is a cut in B there is a maximal

19



cut in B for ≺ with bigger depth than c (this contradicts the choice of c, thus
the content of B is cut free).

– The reduction of c does not modify the type of any other cut.

– The reduction of c can only modify the ?-trees of cuts c′ such that c ≺ c′ (and
there is no such c′ thanks to the choice of c).

If the reduction step is an a or w step, a cut disappears, thus the cut size strictly
decreases. If the reduction step is a d step, a cut of size (s + 1, 1) is replaced by a
cut of size (s, ), thus the cut size strictly decreases. If the reduction step is a c or p
step, a cut of size (s, t) is replaced by 2 or 1 cut(s) of size(s) (s, t′) with t′ < t, thus
the cut size strictly decreases. 2

We define some sub-reduction relations:

• The →am reduction is the reduction of proof nets obtained by considering only →a and
→m steps.

• The →6w reduction is the reduction of proof nets restricted to non w steps.

• The →6c reduction is the reduction of proof nets restricted to non c steps.

Lemma 2.5 (Strong am Normalization)
The →am reduction of proof nets is strongly normalizing.

Proof: We use Proposition B.5, since the number of nodes of proof nets is strictly decreasing
along an a or m reduction step. 2

Lemma 2.6 (Strong w Normalization)
The →w reduction of proof nets is strongly normalizing.

Proof: We use Proposition B.5, since the number of nodes of proof nets is strictly decreasing
along a w reduction step. 2

Lemma 2.7 (Sub-Commutation of am and non c)
The reduction relations →am and →6c sub-commute.

Proof: This easily comes by looking at the proof of Proposition 2.3. 2

Lemma 2.8 (Quasi-Commutation of w over non w)
The →w reduction of proof nets quasi-commutes over the →6w reduction.

Proof: Assume we have R →w R′ →6w R′′. If the →w and the →6w steps do not overlap, we
directly have commutation and by first applying the→6w step, one obtains R →6w R′′′ →w

R′′.
R

w

}}
6w
""

R′

6w !!

R′′′

w||
R′′

The only possible overlapping is when the→ 6w step acts on a box containing the→w step,
but then by looking at the /in cases of the proof of Proposition 2.3, we can see we can

20



close the diagrams in an appropriate way:

.
w

~~

d

  .

d   

.

w
~~.

.
w

~~

c

!!.

c
��

.
w}}.

w}}.

.
w

~~

p

  .

p
  

.

w
~~.

2

Lemma 2.9 (Weak non w Normalization)
The →6w reduction of numbered proof nets is weakly normalizing.

Proof: We can use the same proof as for Proposition 2.4, by using the following remarks.

We consider the non w cut size of a proof net to be the multiset of the sizes of the non w
cuts of R.

Reducing a cut of non exponential type makes the non w cut size strictly decrease.

If c ≺ c′ (for the ≺ relation of the proof of Proposition 2.4) then c′ cannot be a w cut.
Thus if there are non w cuts in R, the set C contains non w cuts. We now choose c to be
of maximal depth among the non w elements of C, and we reduce c. The only difference
with the proof of Proposition 2.4 is that the box above c might contain some w cuts. We
then see that the non w cut size strictly decreases. 2

Lemma 2.10 (Increasing non w Reduction)
The reduction →6w on numbered proof nets is µ-increasing where, for a numbered proof net R,
µ(R) = l2 + p with:

• l is the sum of all the labels of R,

• p is the sum of the depths of the boxes of R.

Proof: We analyse each non w step R → 6w R′, we note l′ the sum of the labels of R′ and p′

the sum of the depths of the boxes of R′.

• a: µ(R′) > µ(R) (l′ = l + 1 and p′ = p).

• m: µ(R′) > µ(R) (l′ = l + 1 and p′ = p).

• d: Let n be the label at the current depth in R and the same for n′ in R′, if m is the
label of the box, we have n′ = n+m+ 1 and the other labels are not modified thus
l′ = l+1. Let D be the depth of R, the depth of the opened box is at most D. Let B
be the number of boxes in R, there are at most B−1 boxes inside the opened box in
R. The opened box disappears, the depth of the boxes inside it decreases by 1, and
the depth of the other boxes is not modified. We thus have p′ ≥ p−D−(B−1). Since
all the labels are strictly positive numbers, we have l > B ≥ D. We can deduce:

µ(R′) = l′2 + p′ > (l + 1)2 + p− 2l = l2 + 2l + 1 + p− 2l = µ(R) + 1

• c: The label of the duplicated box is duplicated (as well as for the labels of all the
boxes included in it) and the other labels are not modified thus l′ > l. New boxes
are created (the duplicated one and the new boxes in the copy) and the depth of the
other boxes is not modified thus p′ ≥ p and µ(R′) > µ(R).

21



• p: We have l′ = l. The depth of the right box, as well as the depth of all the boxes
included in it, increases by 1. The depth of all the other boxes is not modified thus
p′ > p and µ(R′) > µ(R). 2

Theorem 2.11 (Convergence)
The reduction of proof nets is convergent.

Proof: We first prove the strong normalization of the →6w reduction by means of Proposi-
tion B.8: we have Lemmas 2.10 and 2.9, and we can check in the proof of Proposition 2.3
that diagrams with a →6w b and a →6w c can be closed into b →∗6w d and c →∗6w d (that is
there is no need for w steps in closing the diagram).

We now apply Proposition B.11 to →w and →6w, using Lemmas 2.8 and 2.6 to obtain
strong normalization.

We conclude with confluence by Newman’s Lemma (Proposition B.7) using Proposi-
tion 2.3. 2

2.5 Generalized ? Nodes

We now consider a modified syntax for the exponential connectives in proof nets. The goal is
to make more canonical the representation of ?-trees in proof nets. We want a syntax able to
realize the fact that the differences between the following ?-trees do not matter:

?A
?A ?A

?A
?A

vs
?A ?A

?A ?A
?A

?A vs ?A ?A
?A

vs ?A ?A
?A

Among the different kinds of nodes we used for exponential proof nets, we replace ?d, ?c,
?w and ?p nodes by two new kinds of nodes:

• Nodes labelled p have exactly one premisse and one conclusion. The label of the premisse
is the same as the label of the conclusion.

• Nodes labelled ? have an arbitrary number n ≥ 0 of premisses and one conclusion. The
labels of the premisses are the same formula A and the label of the conclusion is ?A.

In a proof structure, we add the constraint that a p node must be above a p node or above a ?
node. In particular it cannot be above a conclusion node.

It is not possible to represent arbitrary proofs of the sequent calculus MELL in this new
syntax. We need the slight restriction that the principal connectives of the formulas introduced
by (ax) rules is not ? or !. Note however there is an easy transformation of proofs ensuring this
property:

ax
` !A, ?A⊥ 7→

ax
` A,A⊥

?d
` A, ?A⊥

!
` !A, ?A⊥

This is an instance of the general notion of axioms expansion of proofs of MELL.
Instead of translating sequent calculus proofs, we will define a translation of the previous

proof nets (with ax nodes not introducing formulas with principal connective ? or !) into the
new syntax.

22



translation (.)? from proof nets to proof nets with ? nodes (just for information): replace
maximal ?-trees by a ? node with chains of p nodes above it

correctness
reduction
translation (.)cw into proof nets: use degenerate binary trees (left comb trees)

Lemma 2.12 (Translation of Correctness)
Let S be a proof structure with ? nodes, S is acyclic if and only if Scw is acyclic.

Proposition 2.13 (Simulation)
The translation (.)cw is an injective strict simulation which preserves normal forms from proof
nets with ? nodes into proof nets.

Lemma 2.14 (Preservation of Correctness)
Let R be a proof net with ? nodes which reduces into R′, R′ is a proof net.

Proof: By Lemma 2.12, Rcw is acyclic. By Proposition 2.13, Rcw →+ R′cw, thus by
Lemma 2.1 R′cw is acyclic. By Lemma 2.12 again, R′ is acyclic. 2

Proposition 2.15 (Convergence)
The reduction of proof nets with ? nodes is convergent.

Proof: We have strong normalization by Propositions B.9 and 2.13 and Theorem 2.11.

Concerning confluence, by Proposition B.1 and Theorem 2.11, proof nets have the unique
normal form property. By Propositions B.10 and 2.13, proof nets with ? nodes have the
unique normal form property. By Propositions B.6, B.5, proof nets with ? nodes are
confluent thanks to strong normalization. 2

3 Translation of the Lambda-Calculus

3.1 The Lambda-Calculus inside Linear Logic

Given a denumerable set of λ-variables x, y, . . . , the terms of the λ-calculus (or λ-terms) are:

t, u ::= x | λx.t | t u

where λ is a binder for x in λx.t and terms are considered up to α-renaming of bound variables.
We assume given a denumerable set of ground types α, β, . . . The simple types of the

λ-calculus are:
τ, σ ::= α | τ → σ

Typing judgements are of the shape Γ ` t : τ where Γ is a finite partial function from
λ-variables to simple types. The typing rules of the simply typed λ-calculus are:

var
Γ, x : τ ` x : τ

Γ, x : τ ` t : σ
abs

Γ ` λx.t : τ → σ
Γ ` t : τ → σ Γ ` u : τ app

Γ ` t u : σ

We assume given a bijection (.)• from the ground types of the simply typed λ-calculus to
the atoms of linear logic. We extend it to any simple type by:

(τ → σ)• = ?τ•⊥ ` σ•

L,M ::= X | ?L⊥ `M

23



3.2 Directed Proof Nets

D,E ::= X | D ` E | ?U
U, V ::= X⊥ | U ⊗ V | !D

L ( D and L⊥ ( U
with generalized ? nodes: appropriate definition of the orientation of edges
mention cut-free correctness

3.3 The Translation

into directed proof nets using only sub-formulas of L (or dual) and only D conclusions

3.3.1 Definition

Pre-translation (.)◦

ax
` L⊥, L

?d
` ?L⊥, L

?w
` ?Γ⊥, ?L⊥, L

` ?Γ⊥, ?L⊥,M `
` ?Γ⊥, ?L⊥ `M

` ?Γ⊥, ?L⊥ `M

` ?Γ⊥, L
!

` ?Γ⊥, !L
ax

`M⊥,M ⊗
` ?Γ⊥, !L⊗M⊥,M

cut
` ?Γ⊥, ?Γ⊥,M

?c
` ?Γ⊥,M

By looking at the proof of Lemma 2.7, one can see →am is sub-confluent thus it satisfies
the unique normal form property (Proposition B.1). Moreover →am is strongly normalizing
(Lemma 2.5), thus we can define the multiplicative normal form NFam(R) of a proof net R as
its unique →am normal form.

We define the translation t• of λ-term t by t• = NFam(t◦).

3.3.2 Simulations

Substitution Lemma for (.)◦

(.)◦ is a strict simulation of β-reduction
translation (.)• of a β-redex: (λy.t)u

` ?Γ⊥, ?L⊥,M

` ?Γ⊥, L
!

` ?Γ⊥, !L
cut

` ?Γ⊥,M

cuts correspond to β-redexes through (.)•

(.)• is an injective strict simulation of β-reduction which preserves normal forms
convergence of the simply typed λ-calculus

24



3.3.3 Image

We already mentioned that proof nets obtained from λ-term by means of the (.)•:

• only contain edges labelled with sub-formulas of formulas generated by the grammar L
(or of their dual),

• and only contain exponential cuts.

One can remark as well that all conclusions are labelled with formulas of the shape L or ?L⊥.
A proof net satisfying these three conditions is called a λ-proof net.

Theorem 3.1 (Sequentialization)
Any λ-proof net is the image of a λ-term through the translation (.)•.

3.3.4 Kernel

The σ-reduction is the congruence on λ-terms generated by:

((λy.t)u) v →σ (λy.(t v))u y /∈ v
(λy.λx.t)u→σ λx.((λy.t)u) x /∈ u

The σ-equivalence is the equivalence relation generated by the σ-reduction.

Lemma 3.2 (Strong Normalization)
The σ-reduction is strongly normalizing.

The σ-reduction is not locally confluent, as one can see with the following example:

(λy.λz.x)u v
σ

uu
σ

))
(λy.((λz.x) v))u

UU

σ ��

(λz.((λy.x)u)) v

UU

σ��

with y /∈ v and z /∈ u.
A λ-term is called a canonical form if it is of the shape:

−→
λz.
−−−−→
β(y, u).(x−→v )

where β(y, u).t = (λy.t)u and all the −→u s and −→v s are themselves canonical forms.
Note that β-normal forms are exactly canonical forms without β-redex.

Lemma 3.3 (σ-Normal Forms)
A λ-term is a σ-normal form if and only if it is a canonical form.

Proof: We prove, by induction on its size, that any λ-term t which is a σ-normal form is a

canonical form. We can always write t in a unique way as t =
−→
λz.( −→v ) where = x or

= β(y, u).t′. In the first case, t is a canonical form (the −→v s are themselves σ-normal
forms thus canonical forms by induction hypothesis). In the second case, by induction
hypothesis, t′ is a canonical form (and u as well), moreover it does not start with a λ
(otherwise we have a σ-redex in t). If the sequence −→v is not empty, we have a σ-redex in

t as well. We can conclude that t =
−→
λz.β(y, u).t′ with u and t′ in canonical form and t′

not starting with a λ, which makes t a canonical form.

Conversely, there is no σ-redex in a canonical form. 2

Theorem 3.4 (σ-Equivalence)
Let t and t′ be two λ-terms, t• = t′• if and only if t 'σ t′.

25



3.4 Untyped Lambda-Calculus

The untyped λ-calculus can be seen as the result of quotienting the types of the simply typed
λ-calculus by means of an equation o = o → o. Any variable can then be seen as typed with
type o and the typing rules become:

var
Γ, x : o ` x : o

Γ, x : o ` t : o
abs

Γ ` λx.t : o
Γ ` t : o Γ ` u : o app

Γ ` t u : o

The information provided by these rules is mainly a super-set of the list of free variables of the
term.

One can similarly quotient formulas of linear logic by means of the equation o = !o ( o,
that is o = ?o⊥ ` o. This entails that the set of the sub-formulas of formulas generated from
the atom o by the unique construction ?o⊥ ` o and of their dual (up to the quotient) contains
four elements: o, ι = o⊥, !o and ?ι. It is then possible to translate λ-terms as proof net with
edges labelled with these four formulas.

4 Further Reading

We suggest an incomplete list of related papers.

4.1 Historical Papers

• The original paper on linear logic which introduces proof nets [Gir87]. The correctness
criterion used there is the long trip criterion and the proof technique for sequentialization
is based on the theory of empires.

• The definition of the acyclic-connected correctness criterion we use here [DR89].

• The definition of the σ-equivalence on λ-terms [Reg94].

4.2 Sequentialization

• A sequentialization proof based on the acyclic-connected criterion and using empires [Gir91].

• [Dan90]

• [BdW95]

• The sequentialization proof we used here [Lau13].

4.3 Rewriting Properties

• [Ter03]

• [Dan90]

• [PTdF10]

4.4 Extensions of the Syntax

• Units [BCST96, Hug13]

• Quantifiers [Gir91]

• Additive connectives [Gir96, HvG05]

26



4.5 Relations with the Lambda-Calculus

• [Reg94]

• [DCKP03]

4.6 Complexity

• [Gue11]

27



A Graphs

Given a set E, P1,2(E) is the set of all its subsets containing one or two elements. ε is the
empty sequence. If s is a finite sequence of elements of a set E and if e is in E then s · e is the
finite sequence obtained by adding e at the end of s.

A.1 Multigraphs

A multigraph is a triple (N ,L, e) where N is the set of nodes, L is the set of lines, and e (the
endpoints) is a function from L to P1,2(N ). A loop is a line with only one endpoint.

A multigraph is finite if it has finitely many nodes and lines.
A path in a multigraph (N ,L, e) is a pair σ = (ns, σl) where ns is a node (the source of

the path) and σl is a finite sequence of lines (li)0≤i<N (with N ∈ N) which can be constructed
inductively by the following two rules:

• for any node n, (n, ε) is a path with target n, called an empty path and noted εn,

• if (ns, σl) is a path with target nt and l is a line with e(l) = {nt, n′t} then (ns, σl · l) is a
path with target n′t.

The length of the path is N . A cycle in a multigraph is a path of length at least 1 from a node
to itself (i.e. the source and the target are the same node).

Two nodes are connected if there is a path from one to the other. A connected component of
a multigraph is a maximal non-empty subset of its nodes which are all connected together. A
multigraph is connected if any two nodes are connected, that is if it has exactly one connected
component.

Lemma A.1 (Acyclic Connected Components)
In a finite acyclic multigraph, the number of connected components is the number of nodes minus
the number of lines.

Proof: By induction on the number of nodes.

• The empty multigraph has no node, no line and no connected component.

• Assume the multigraph contains at least one node. Let n be a node, if it has p lines
attached to it, we remove the node and all these lines, we loose one node, p lines and
we create p− 1 connected components (we cannot create more than p− 1 connected
components, and if we create strictly less than p − 1 connected components, there
was a cycle in the multigraph). We can then apply the induction hypothesis. 2

Lemma A.2 (Acyclicity and Connectedness)
A multigraph with k lines and k + 1 nodes is acyclic if and only if it is connected.

Proof: If the multigraph is acyclic, we apply Lemma A.1. If the multigraph is connected, we
go by induction on the number of nodes:

• If there is 1 node, there is no line and the multigraph is acyclic.

• If there are at least k ≥ 2 nodes, there are k − 1 lines. By connectedness each node
has at least one line attached to it. Each line touches at most two nodes thus there
must be a node n which is an endpoint of only one line l. We erase n and l, and we
apply the induction hypothesis. 2

28



A.2 Directed Multigraphs

A directed multigraph is a quadruple G = (N , E , s, t) where N is the set of nodes, E is the set of
edges, and s (the source) and t (the target) are functions from E to N .

A directed multigraph is finite if it has finitely many nodes and edges.
Let n be a node and e be an edge, if s(e) = n then e is called an outgoing edge of n. If

t(e) = n then e is called an incoming edge of n.
A (possibly infinite) undirected path in a directed multigraph (N , E , s, t) is a pair γ = (ns, γe)

where ns is a node (the source of the path, also noted s(γ)) and γe is a (possibly infinite) sequence
of pairs (ei, εi)0≤i<N (with N ∈ N∪{∞}) where ei is an edge and εi is a sign in {−,+} such that
sγ(e0) = ns and, for any 0 < i < N , tγ(ei−1) = sγ(ei) (where sγ(ei) = s(ei) and tγ(ei) = t(ei) if
εi = +, and sγ(ei) = t(ei) and tγ(ei) = s(ei) if εi = −). The length of the undirected path is N .
It is finite if N is finite. We also use the notation εn for the empty undirected path (n, ε) which
has length 0. The target t(γ) of a finite undirected path γ = (ns, (ei, εi)0≤i<N ) is tγ(eN−1) if
N ≥ 1, and ns if N = 0. A node n is internal to an undirected path γ of length N , if n = sγ(ei)
with i > 0 (or equivalently n = tγ(ei) with i < N − 1). An undirected path is simple if it does
not contain twice the same edge.

A directed multigraph is (weakly) connected if any two nodes are connected by an undirected
path.

A finite undirected path γ of length at least 1 is an undirected cycle if t(γ) = s(γ).
If γ = (ns, γe) is a finite undirected path with target nt and γ′ = (nt, γ

′
e) is an undirected

path, their concatenation γγ′ is the undirected path (ns, γe·γ′e). We have γεnt = γ and εntγ
′ = γ′.

γ is a prefix of γγ′.
If γ = (ns, (ei, εi)0≤i<N ) is an undirected path and 0 ≤ k ≤ l < N , one defines the sub-paths

γk,l = (sγ(ek), (ei, εi)k≤i<l) and the suffixes γk = (sγ(ek), (ei, εi)k≤i<N ) of γ.
If γ = (ns, (ei, εi)0≤i<N ) is a finite undirected path, its reverse is the finite undirected path

γ̄ = (t(γ), (eN−i−1, ε̄N−i−1)0≤i<N ) with +̄ = − and −̄ = +.

If G = (N , E , s, t) is a directed multigraph, its underlying multigraph is the multigraph
G = (N , E , e) where e(e) = {s(e), t(e)}. There is an undirected path from n to n′ in G if and
only if there is a path from n to n′ in G. There is an undirected cycle in G if and only if there
is cycle in G. G is connected if and only if G is connected.

A directed path in a directed multigraph is an undirected path with + signs only. A directed
cycle in a directed multigraph is a directed path which is an undirected cycle. A directed acyclic
multigraph is a directed multigraph with no directed cycle.

Lemma A.3 (Directed Acyclic Pre-Order)
In a directed acyclic multigraph, the relation n 4 n′ if there exists a (finite) directed path from
n to n′ is a pre-order relation.

Proof: Thanks to the empty path εn, we have n 4 n, and thanks to concatenation, if n 4 n′

and n′ 4 n′′ then n 4 n′′. 2

A.3 Labelled Multigraphs

Given a set of labels L, a multigraph (resp. directed multigraph) is e-labelled with L if it comes
with a function from L (resp. E) to L. It is n-labelled with L if it comes with a function from
N to L.

29



B Abstract Reduction Systems

We present some basic results about rewriting theory in the setting of abstract reduction sys-
tems. The material presented here is strongly inspired from [Ter03].

B.1 Definitions and Notations

An abstract reduction system (ARS) A is a pair (A,→) where A is a set and → is a binary
relation on A (i.e. a subset of A×A).

Given an ARS A = (A,→), we use the following notations:

• a→ b if (a, b) ∈ →. b is called a 1-step reduct of a.

• a← b if b→ a.

• a→= b if a = b or a→ b (→= is the reflexive closure of →).

• a →+ b if there exists a finite sequence (ak)0≤k≤N (N ≥ 1) of elements of A such that
a = a0, aN = b and for 0 ≤ k ≤ N − 1, ak → ak+1 (→+ is the transitive closure of →).

• a→∗ b if a = b or a→+ b (→∗ is the reflexive transitive closure of→). b is called a reduct
of a.

• a ' b if there exists a finite sequence (ak)0≤k≤N (N ≥ 0) of elements of A such that
a = a0, aN = b and for 0 ≤ k ≤ N − 1, ak → ak+1 or ak ← ak+1 (' is the reflexive
symmetric transitive closure of →).

• If a is an element of A, the restriction of A to a is the ARS A �a = (A �a,→∩(A �a×A �a))
where A �a = {b ∈ A | a→∗ b} (i.e. the set of all reducts of a).

A sequence (ak)0≤k<N (with N ∈ N such that N ≥ 1, or N = ∞) of elements of A, such that
ak−1 → ak for each 0 < k < N , is called a reduction sequence (starting from a0 and ending on
aN−1, if N 6= ∞). When N ∈ N, the reduction sequence is finite and its length is N − 1. We
use the notation a →k b if there exists a finite reduction sequence of length k starting from a
and ending on b.

B.2 Confluence

An ARS (A,→) has the diamond property if for any a, b and c in A with a → b and a → c,
there exists some d in A such that both b→ d and c→ d. Thus diagrammatically:

a

�� ��
b

��

c

��
d

An ARS (A,→) is sub-confluent if for any a, b and c in A with a→ b and a→ c, there exists
some d in A such that both b→= d and c→= d. Thus diagrammatically:

a

�� ��
b

= ��

c

=��
d

30



An ARS (A,→) is locally confluent if for any a, b and c in A with a → b and a → c, there
exists some d in A such that both b→∗ d and c→∗ d. Thus diagrammatically:

a

�� ��
b

∗ ��

c

∗��d

An ARS (A,→) is confluent if for any a, b and c in A with a→∗ b and a→∗ c, there exists
some d in A such that both b→∗ d and c→∗ d. Thus diagrammatically:

a
∗ �� ∗��
b

∗ ��

c

∗��d

An ARS (A,→) is thus confluent if (A,→∗) has the diamond property.
A normal form in an ARS (A,→) is an element a of A such that there is no b in A with

a→ b (i.e. a has no reduct, but itself). A →-minimal element is a normal form of (A,←).
An ARS (A,→) has the (weak) unique normal form property if for any a in A and any two

normal forms b and c in A with a→∗ b and a→∗ c, we have b = c. Thus diagrammatically:

a
∗ �� ∗��
b

UU
��

c
UU
��

Proposition B.1 (Confluence Properties)
For any ARS,

• diamond property =⇒ sub-confluent =⇒ confluent =⇒ locally confluent,

• confluent =⇒ unique normal form.

Proof: We prove the four implications:

• If a→ b and a→ c, the diamond property gives some d such that b→ d and c→ d,
thus b→= d and c→= d.

• By induction on the length of the reduction sequence from a to b. The following
figure might help.

a
∗ ~~

∗��

.

�� ��b

= ��

.

=�� ∗ ��

c

∗��.

∗ ��

.

∗��d

– If a = b, we have b→∗ c and c→∗ c.

31



– If a→ b, we use an induction on the length of the reduction sequence from a to
c:

∗ If a = c, we have b→∗ b and c→∗ b.
∗ If a→ c, by sub-confluence, there exists d such that b→= d and c→= d.

∗ If a→ c′ and c′ →∗ c, by sub-confluence, we have some d′ such that b→= d′

and c′ →= d′. If c′ = d′ we have b→∗ c and c→∗ c. If c′ → d′, by induction
hypothesis, there exists d such that d′ →∗ d and c→∗ d (thus b→∗ d).

– If a →∗ a′ and a′ → b, by induction hypothesis we have d′ such that a′ →∗ d′
and c →∗ d′. By the case above, there exists d such that b →∗ d and d′ →∗ d.
We then conclude with c→∗ d.

• If a→ b and a→ c, confluence gives some d such that b→∗ d and c→∗ d.

• If a→∗ b and a→∗ c with b and c normal forms, confluence gives some d such that
b →∗ d and c →∗ d. But since b and c are normal forms, we must have b = d and
c = d. 2

B.3 Normalization

An ARS (A,→) is weakly normalizing if for any a in A there exists a normal form b in A such
that a→∗ b (b is a reduct of a).

An ARS (A,→) is well founded if every non-empty subset ofA contains a→-minimal element.

Lemma B.2 (Well Foundedness)
An ARS (A,→) is well founded if and only if it satisfies the following induction principle:

∀P, (∀b((∀a, a→ b⇒ Pa)⇒ Pb))⇒ ∀b, Pb

Proof: In the first direction, given a predicate P such that ∀b((∀a, a→ b⇒ Pa)⇒ Pb), we
define B to be {a ∈ A | ¬Pa}. If B is empty we are done: P is valid for all the elements
of A. Otherwise, by well foundedness, B has a →-minimal element b. The hypothesis on
P thus gives us Pb which contradicts the fact that b ∈ B.

In the second direction, given a subset B of A with no →-minimal element, we define the
predicate Px as x /∈ B ∧ (∀a, a→ x⇒ a /∈ B). Let b be such that ∀a, a→ b⇒ Pa, that
is ∀a, a → b ⇒ (a /∈ B ∧ (∀c, c → a ⇒ c /∈ B)), thus in particular ∀a, a → b ⇒ a /∈ B.
As a consequence, if b ∈ B, it is →-minimal in B, a contradiction. Finally we have
b /∈ B ∧ (∀a, a → b ⇒ a /∈ B) that is Pb. We can conclude ∀b, Pb by induction and thus
∀b, b /∈ B that is B is empty. 2

An ARS (A,→) is strongly normalizing if (A,←) is well founded. That is any non-empty
subset B of A contains an element with no 1-step reduct in B.

An ARS is convergent if it is both confluent and strongly normalizing.

Lemma B.3 (Descending Chain Condition)
A strongly normalizing ARS (A,→) does not contain any infinite reduction sequence.

Proof: Let (ak)0≤k<∞ be an infinite reduction sequence, we define B = {a ∈ A | ∃k ∈ N, a =
ak}. B is not empty since a0 ∈ B, thus it contains an element b with no 1-step reduct in
B. There exists some k such that b = ak and thus b→ ak+1, a contradiction. 2

The converse property is a consequence of the Axiom of Dependent Choices.

Lemma B.4 (Transitive Strong Normalization)
If (A,→) is strongly normalizing then (A,→+) is strongly normalizing.

32



Proof: Let B be an non-empty subset of A, we define B′ = {a ∈ A | ∃b ∈ B, a →∗ b}. B′
is not empty (B ⊆ B′) thus B′ contains an element b with no 1-step reduct for → in B′.
Since b →∗ c with c ∈ B implies b = c (if b → b′ →∗ c then b′ is in B′ and is a 1-step
reduct of b), we have b ∈ B and b has no 1-step reduct for →+ in B. 2

An ARS (A,→) is µ-decreasing if µ is a function from A to a set with a well founded relation
< such that whenever a→ b, we have µ(a) > µ(b).

An ARS (A,→) is weakly µ-decreasing if µ is a function from A to a set with a well founded
relation < such that, for any a in A which is not a normal form, there exists some b in A such
that a→ b and µ(a) > µ(b).

An ARS (A,→) is µ-increasing if µ is a function from A to N such that whenever a→ b, we
have µ(a) < µ(b).

Proposition B.5 (Normalization Properties)
For any ARS, µ-decreasing for some µ =⇒ strongly normalizing =⇒ weakly µ-decreasing for
some µ =⇒ weakly normalizing.

Proof: Let A = (A,→) be an ARS.

• Let B be a non-empty subset of A and E be its image by µ. E is a non-empty set
and < is a well founded relation thus E has a <-minimal element e. Let b be such
that µ(b) = e, b has no 1-step reduct in B otherwise we would have b→ c and thus
e = µ(b) > µ(c) with µ(c) ∈ E contradicting the <-minimality of e in E.

• Since A is strongly normalizing, it is id-decreasing where id is the identity function.
If a is not a normal form, let b be any 1-step reduct of a, we have id(a)→ id(b).

• Given an a in A, µ(A �a ) is a non-empty set (µ(a) ∈ µ(A �a )) and < is a well
founded relation thus µ(A �a ) has a <-minimal element e. Let c be such that
µ(c) = e, a →∗ c since c ∈ A �a , and c is a normal form. Otherwise there exists d
such that c→ d and e = µ(c) > µ(d) contradicting the <-minimality of e in µ(A �a ).
2

Proposition B.6 (Weak Normalization and Confluence)
For any ARS, weakly normalizing ∧ unique normal form =⇒ confluent.

Proof: If a→∗ b and a→∗ c, by weak normalization, there exist two normal forms b′ and c′

such that b →∗ b′ and c →∗ c′, thus a →∗ b′ and a →∗ c′. By uniqueness of the normal
form, we have b′ = c′. 2

Proposition B.7 (Newman’s Lemma)
For any ARS, strongly normalizing ∧ locally confluent =⇒ confluent.

Proof: LetA = (A,→) be a strongly normalizing and locally confluent ARS, since the relation
← is well founded, we can reason by induction on it (Lemma B.2). We prove this way
that for any a, A �a is confluent. We assume that for any 1-step reduct a′ of a, A �a′ is
confluent. Assume a →∗ b and a →∗ c. If a = b or a = c the result is immediate. If
a → b′ →∗ b and a → c′ →∗ c, by local confluence, we have d′ such that b′ →∗ d′ and
c′ →∗ d′. By confluence of A �b′ , there exists d′′ such that b →∗ d′′ and d′ →∗ d′′, thus
c′ →∗ d′′. By confluence of A �c′ , there exists d such that d′′ →∗ d and c →∗ d, thus
b→∗ d and we conclude.

33



a

}}   
b′

∗ �� ∗   

c′

∗��
∗��

b

∗ ��

d′

∗~~

c

∗��

d′′

∗   d

2

Proposition B.8 (Increasing Normalization)
For any ARS and any µ, locally confluent ∧ µ-increasing ∧ weakly normalizing =⇒ strongly
normalizing.

Proof: Let A = (A,→) be an ARS, we first prove by induction on k that a →∗ b with b
normal form and µ(b)− µ(a) ≤ k implies A �a is strongly normalizing.

• If k = 0, a is a normal form, A �a = {a} and the result is immediate.

• If k > 0, we can decompose the reduction sequence from a to b into a→ c→∗ b. We
have µ(c) > µ(a) thus µ(b) − µ(c) < k with c →∗ b and, by induction hypothesis,
A �c is strongly normalizing. By Propositions B.7 and B.1, A �c also has the unique
normal form property.

Let d be an arbitrary 1-step reduct of a, by local confluence, there exists some e such
that both c →∗ e and d →∗ e. By weak normalization, let f be a normal from of e,
we necessarily have f = b (unique normal form of c) thus d →∗ b, µ(b) − µ(d) < k
(since µ(d) > µ(a)) and, by induction hypothesis, A �d is strongly normalizing.

a

��

// c
∗ //

∗��

b �� //

d ∗
// e ∗

// f �� //

Now let B be an non-empty subset of A �a . If a is in B and has no 1-step reduct
in B, we are done. Otherwise, we have a → d →∗ b for some d and some b ∈ B.
We have proved that A �d is strongly normalizing. We define B′ = B ∩ A �d . B′

is a non-empty set since it contains b and thus it has an element c with no 1-step
reduct in B′. c also belongs to B and has no 1-step reduct in B by construction (c
is a reduct of d so any reduct of c is a reduct of d as well).

Given a non-empty subset B of A, let a be an element of B, by weak normalization, a has
a normal form b thus A �a is strongly normalizing. By defining B′ = B ∩A �a , we prove
just as above that B contains an element with no 1-step reduct in B, showing that A is
strongly normalizing. 2

B.4 Simulation

Let A = (A,→A) and B = (B,→B) be two ARSs, a function ϕ from A to B is a simulation if
for every a and a′ in A, a →A a′ entails ϕ(a) →∗B ϕ(a′). It is a strict simulation if a →A a′

entails ϕ(a)→+
B ϕ(a′).

34



Proposition B.9 (Anti Simulation of Strong Normalization)
If ϕ is a strict simulation from A to B and B is strongly normalizing, then A is strongly
normalizing as well.

Proof: By Lemma B.4, (B,→+
B) is strongly normalizing, thus ←+ is a well founded relation.

We can conclude with Proposition B.5 since A is then ϕ-decreasing. 2

Proposition B.10 (Anti Simulation of Unique Normal Form)
If ϕ is a simulation from A to B which preserves normal forms ( i.e. if a is a normal form in
A then ϕ(a) is a normal form in B) and is injective on normal forms ( i.e. no two different
normal forms of A have the same image through ϕ), then the unique normal form property for
B entails the unique normal form property for A.

Proof: Assume b and c are normal forms with a →∗A b and a →∗A c, then ϕ(a) →∗B ϕ(b)
and ϕ(a)→∗B ϕ(c) with ϕ(b) and ϕ(c) normal forms. This entails ϕ(b) = ϕ(c) by unique
normal form for B, and finally b = c since ϕ is injective on normal forms. 2

B.5 Commutation

In this section, we consider two ARSs A = (A,→A) and B = (A,→B) on the same set A.
The ARS A BC B is defined as (A,→ABCB) with →ABCB =→A ∪→B. Note that →∗ABCB =

(→∗A ∪→∗B)∗

We say that A and B sub-commute if for any a, b and c in A such that a→A b and a→B c,
there exists d such that b→=

B d and c→=
A d. Thus diagrammatically:

a
A
��

B
��

b

B
= ��

c

A
=��

d

With this definition, an ARS is sub-confluent if it sub-commutes with itself.
We say that A and B locally commute if for any a, b and c in A such that a →A b and

a→B c, there exists d such that b→∗B d and c→∗A d. Thus diagrammatically:

a
A
��

B
��

b

B
∗ ��

c

A
∗��d

With this definition, an ARS is locally confluent if it locally commutes with itself.
We say that A quasi-commutes over B, if for any a, b and c in A such that a →A b and

b→B c, there exists d such that a→B d and d→∗ABCB c. Thus diagrammatically:

a
A
��

B
��

b

B ��

d

ABCB
∗��c

35



Proposition B.11 (Commutation of Strong Normalization)
If A = (A,→A) and B = (A,→B) are two ARSs, and A quasi-commutes over B then if A and
B are strongly normalizing then A BC B is strongly normalizing.

Proof: Let B0 be a non-empty subset of A, we define B = {a ∈ A | ∃b ∈ B0, a →∗ABCB b}
which is non-empty as well (B0 ⊆ B) and is such that a →∗ABCB b with b ∈ B entails
a ∈ B. By strong normalization of B, the subset B′ of B containing the elements of B
with no 1-step →B-reduct in B is not empty. By strong normalization of A, B′ contains
an element a with no 1-step→A-reduct in B′. If a has no 1-step→A-reduct in B, we have
an element with no 1-step →ABCB-reduct in B. Otherwise a→A b for some b which is in
B and not in B′ thus there exists c ∈ B such that b →B c. By quasi-commutation, we
have d such that a→B d→∗ABCB c. We have d ∈ B since d→∗ABCB c but this contradicts
the fact that a ∈ B′.
This means a cannot have a 1-step →ABCB-reduct in B, so that a belongs to B0 and has
no 1-step →ABCB-reduct in B0. 2

36



Index

1-step reduct, 31
γγ′, 30
γk, 30
γk,l, 30
A BC B, 36
A �a, 31
→-minimal, 32, 33
ps(π), 3
s(γ), 30
sγ(ei), 30
t(γ), 30
tγ(ei), 30
ε, 29
a← b, 31
a→∗ b, 31
a→+ b, 31
a→= b, 31
a→ b, 31
a ' b, 31
e-labelled, 2, 30
n-labelled, 2, 30
s · e, 29

abstract reduction system (ARS), 31
acyclic multigraph, 29
atom, 1

concatenation, 30
conclusion, 2
conclusion edge, 3
confluent, 32, 32, 34
connected component, 29, 29
connected directed multigraph, 30
connected multigraph, 29, 29
connected nodes, 29
convergent, 13, 22, 23, 25, 33
cycle, 29

decreasing, 34, 34
diamond property, 31, 32
directed acyclic multigraph, 30, 30
directed cycle, 30
directed multigraph, 2, 30
directed path, 30

edge, 30
empty path, 29
endpoint, 29

exchange rule, 1

finite reduction sequence, 31
formula, 1

incoming edge, 2, 30
increasing, 34, 35
internal node, 3, 30

label, 30
left premisse, 2
length, 29, 30
line, 29
locally commute, 36, 36
locally confluent, 32, 32, 34–36
loop, 29

multigraph, 29
multiplicative linear logic (MLL), 1

node, 29, 30
normal form, 32

outgoing edge, 2, 30

path, 29
prefix, 30
premisse, 2
proof structure, 2

quasi-commute, 36, 37

reduction sequence, 31
restriction, 31
reverse path, 30
right premisse, 2

sequents, 1
sign, 30, 30
simple undirected path, 30
simulation, 35, 36
source, 29, 30
strict simulation, 35, 36
strongly normalizing, 33, 33–37
sub-commute, 36, 36
sub-confluent, 31, 32, 36
sub-path, 30
suffixe, 30

target, 29, 30

37



terminal node, 3
type, 2

underlying multigraph, 30
undirected cycle, 30
undirected path, 30, 30
unique normal form, 32, 32, 34, 36

weakly decreasing, 34, 34
weakly normalizing, 33, 34, 35
well founded, 33, 33

38



References

[BCST96] Richard Blute, Robin Cockett, Robert Seely, and Todd Trimble. Natural deduc-
tion and coherence for weakly distributive categories. Journal of Pure and Applied
Algebra, 113:229–296, 1996. (cited on Page 26)

[BdW95] Gianluigi Bellin and Jacques Van de Wiele. Subnets of proof-nets in MLL−. In Jean-
Yves Girard, Yves Lafont, and Laurent Regnier, editors, Advances in Linear Logic,
volume 222 of London Mathematical Society Lecture Note Series, pages 249–270.
Cambridge University Press, 1995. (cited on Page 26)

[Dan90] Vincent Danos. La Logique Linéaire appliquée à l’étude de divers processus de nor-
malisation (principalement du λ-calcul). Thèse de doctorat, Université Paris VII,
1990. (cited on Page 26)

[DCKP03] Roberto Di Cosmo, Delia Kesner, and Emmanuel Polonovski. Proof nets and explicit
substitutions. Mathematical Structures in Computer Science, 13(3):409–450, June
2003. (cited on Page 27)

[DR89] Vincent Danos and Laurent Regnier. The structure of multiplicatives. Archive for
Mathematical Logic, 28:181–203, 1989. (cited on Page 26)

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
(cited on Page 26)

[Gir91] Jean-Yves Girard. Quantifiers in linear logic II. In Corsi and Sambin, editors,
Nuovi problemi della logica e della filosofia della scienza, pages 79–90, Bologna,
1991. CLUEB. (cited on Page 26)

[Gir96] Jean-Yves Girard. Proof-nets: the parallel syntax for proof-theory. In Aldo Ursini
and Paolo Agliano, editors, Logic and Algebra, volume 180 of Lecture Notes In Pure
and Applied Mathematics, pages 97–124, New York, 1996. Marcel Dekker. (cited on
Page 26)

[Gue11] Stefano Guerrini. A linear algorithm for MLL proof net correctness and sequential-
ization. Theoretical Computer Science, 412(20):1958–1978, 2011. (cited on Page 27)

[Hug13] Dominic Hughes. Simple multiplicative proof nets with units. Annals of Pure
and Applied Logic, 2013. To appear. Available at http://arxiv.org/abs/math/

0507003. (cited on Page 26)

[HvG05] Dominic Hughes and Rob van Glabbeek. Proof nets for unit-free multiplicative-
additive linear logic. ACM Transactions on Computational Logic, 6(4):784–842,
2005. (cited on Page 26)

[Lau13] Olivier Laurent. Sequentialization of multiplicative proof nets. Unpublished note.
Available at http://perso.ens-lyon.fr/olivier.laurent/seqmll.pdf, April
2013. (cited on Page 26)

[PTdF10] Michele Pagani and Lorenzo Tortora de Falco. Strong normalization property for
second order linear logic. Theoretical Computer Science, 411(2):410–444, 2010. (cited
on Page 26)

[Reg94] Laurent Regnier. Une équivalence sur les lambda-termes. Theoretical Computer
Science, 126:281–292, 1994. (cited on Pages 26 and 27)

39

http://arxiv.org/abs/math/0507003
http://arxiv.org/abs/math/0507003
http://perso.ens-lyon.fr/olivier.laurent/seqmll.pdf


[Ter03] Terese. Term Rewriting Systems, volume 55 of Cambridge tracts in theoretical com-
puter science. Cambridge University Press, 2003. (cited on Pages 26 and 30)

40


	Multiplicative Proof Nets
	Multiplicative Linear Logic
	Forgetting Sequential Structure
	Proof Structures
	Correctness
	Correctness Criteria
	Soundness
	Sequentialization

	Cut Elimination
	Reductions Steps
	Preservation of Correctness
	Properties

	The Mix Rules

	Multiplicative Exponential Proof Nets
	Multiplicative Exponential Linear Logic with Mix
	Proof Structures
	Correctness Criterion
	Cut Elimination
	Reductions Steps
	Properties

	Generalized  Nodes

	Translation of the Lambda-Calculus
	The Lambda-Calculus inside Linear Logic
	Directed Proof Nets
	The Translation
	Definition
	Simulations
	Image
	Kernel

	Untyped Lambda-Calculus

	Further Reading
	Historical Papers
	Sequentialization
	Rewriting Properties
	Extensions of the Syntax
	Relations with the Lambda-Calculus
	Complexity

	Graphs
	Multigraphs
	Directed Multigraphs
	Labelled Multigraphs

	Abstract Reduction Systems
	Definitions and Notations
	Confluence
	Normalization
	Simulation
	Commutation


