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Abstract

We generalize the intuitionistic Hyland-Ong games to a
notion of polarized gamesallowing games with plays start-
ing by proponent moves. The usual constructions on games
are adjusted to fit this setting yielding a game model for
polarized linear logicwith a definability result. As a conse-
quence this gives a complete game model for various clas-
sical systems:LC, ��-calculus, . . . for both call-by-name
and call-by-value evaluations.

1. Introduction

Game semanticshas been used to interpret both logi-
cal systems and programming languages. The logical step
has often been a preliminary step towards the study of
game models for programming languages. Moreover Lin-
ear Logic (LL) has taken a very important place in this first
step. We can classify these models of linear logic along
two main constraints: some of them are restricted to linear
fragments (without exponential connective) ofLL, such as
MLL [1] or MALL [5], the others are restricted to intuition-
istic fragments [20, 2, 24]. In a different spirit, a model
of MELL is given in [6] but introduces non deterministic
strategies to model a deterministic language. On the com-
puter science side, games have been developed to model
different kinds of languages (PCF [2, 18],�PCF [19], Ide-
alized Algol [4], . . . ). These games are based on call-by-
name (CBN) computation which corresponds to the techni-
cal property that plays only start by opponent moves which
is also the constraint appearing in games for Intuitionistic
Linear Logic (ILL). The idea of replacing opponent start-
ing games by proponent starting games leads to a model of
call-by-value (CBV) computation [17] (embedded into op-
ponent starting games in [3]).

One of our goals is to liberalize these starting conditions
in order to recover a real symmetry between the two play-
ers. This is extremely natural in the spirit ofLL, where du-
ality (lost in intuitionistic systems) plays a key role, but it is

known to be a difficult problem: in Blass’s work [7], com-
position is not associative, and non determinism is required
in [6] where full completeness is lost. Our solution is to put
together opponent starting and proponent starting games but
to refuse plays starting by both players in the same game.
The introduction of two families of games: positive (propo-
nent starting) and negative (opponent starting) corresponds
to the notion of polarity developed by Girard for his sys-
tem of classical logicLC [14] and studied by the author in
Polarized Linear Logic (LLP).

As is clearly the case for game semantics, fullLL is a
difficult system to deal with. The problem is to find a more
simple fragment ofLL which is expressive enough. The
main proposition has beenILL, but it refuses the linear nega-
tion connective which may be considered as the main con-
nective ofLL since it gives duality. From an expressive-
ness view point,ILL is a good system for the study of intu-
itionistic logic but the translations of classical logic intoILL
are in fact::-translations. Using Girard’s idea of polariza-
tion for classical logic, the systemLLP [21] gives another
possibility. It is obtained fromLL by restricting to polar-
ized formulas and by generalizing structural rules to any
negative formula (instead of only?-formulas) to get clas-
sical features. The study of this system is easier than for
LL (proof-nets, . . . ), and the current presentation will en-
force this view point by giving a game model. Translations
of various classical systems intoLLP have been developed,
generalizing Girard’s translations of intuitionistic logic into
LL (A ! B  !A ( B andA ! B  !(A( B))
without any::-feature. Call-by-name systems are trans-
lated by the first translation:��-calculus [27],LKT [11],�
-calculus, . . . and call-by-value systems are translated
with a generalization of the second translation for classi-
cal logic (A ! B  !(A( ?B)): ��V -calculus [26],
LKQ [11], . . .

In this way,LLP appears as the part ofLL corresponding
to classical logic. Moreover it allows us to use one system
only for both CBN and CBV (this idea has also been in-
dependently carried out by Levy [23], without linear logic).
LLP is therefore a language in the spirit of a duality between



these two evaluation paradigms [28, 9] appearing here as
positive/negative (or focalization/reversibility).

We are going to describe the notion ofpolarized games
containing both proponent starting and opponent starting
games. They are presented as a model ofLLP. Turning
them into a model of programming languages with con-
trol operators would be a further (and probably easier) step.
The choice ofLLP as a logical setting seems quite natu-
ral since it contains many other classical systems through
translations and takes an explicit account of polarities (op-
ponent/proponent) of games. Moreover the linear level has
shown to give interesting intuitions for game semantics.

We can consider three points of view about these polar-
ized games:

Polarized approach. In order to get a model ofLLP, it
is natural to put together two kinds of games corresponding
to positive and negative formulas. Connectives have then
to be defined between games of the corresponding polar-
ity. For example, we have to use the usual Hyland-Ong [18]
(cartesian) product (denoted by&) between negative games
and the Honda-Yoshida [17] (tensor) product (denoted by
) between positive games. From the use of polarities in
ludics [15], we get the idea of introducing two newlifting
connectives# and" allowing a “linear” change of polar-
ity (they have also been introduced by Lamarche [20], and
used recently in [10]). These two connectives act on games
by adding a new move at the beginning of each play, in
such a way that# (resp.") turns a negative (resp. positive)
game into a positive (resp. negative) one. The introduc-
tion of this large collection of connectives allows to go one
step further than inLL in the decomposition of the classi-
cal connectives and allows to give a precise analysis of the
structure of games.

In particular, the separation between positive and nega-
tive games allows to solve the Blass’s problem [7] of com-
posing strategies. The introduction of the lifting connec-
tives gives a solution to McCusker’s problem with well-
openness for defining the! construction [24] and leads to
a decomposition of the mainLL isomorphism!A 
 !B '!(A&B).

Finally, to obtain a model ofLLP, we have to endow
games with some monoidal structure to interpret the struc-
tural rules. This is done by introducing the notion ofmulti-
ple gameswhich is preserved by the constructions.

The polarized approach makes explicit the unification
we are doing between the interpretation of call-by-name
and call-by-value. We are able to define a single polar-
ized game model without any particular choice between
CBN and CBV. We then get a model of a particular evalua-
tion paradigm by choosing the corresponding interpretation:
negative for call-by-name and positive for call-by-value.

Negative approach. If we hide positive games and con-
sider only the negative ones, we mainly get back a clas-
sical version of the Hyland-Ong model. More precisely,
with respect to Laird’s model of innocent strategies for con-
trol [19], we are able to interpret a richer type language
(with the difficult point of disjunction) and, using the notion
of multiple games, we are not restricting control primitives
to ground types. That is, we get a model of the extended��-
calculus described by Selinger [28] and our multiple nega-
tive games give one of the first concrete examples (as far as
we know) of acontrol category.

Using some other translations, we can get denotational
game models for various call-by-name systems.

Negative games will have a prominent role at some
places of the paper since they correspond to the usual no-
tion of game.

Positive approach. Positive games have been considered
by Honda-Yoshida [17] in a purely functional setting. We
get here an extension of the typing language we are able to
interpret and a way of interpreting control primitives. These
two points were suggested in their paper but not described.

From a�� point of view, we give a model of the call-
by-value��-calculus [26] (and of the extended version of
Selinger). Moreover we build aco-control categoryof mul-
tiple positive games.

Using some other translations, we can get denotational
game models for various call-by-value systems.

Games are not only used because they allow to define
models for a large class of systems but also because they
lead to full completenessresults, see [1, 2, 5, 18, 20] for
example. We end our study of polarized games with a full
completeness (or definability) theorem with respect toLLP
(without atom): a strategy on a polarized game is the inter-
pretation of a proof ofLLP. And, as a consequence, we get
the same result for both CBN and CBV��-calculi.

2. From Hyland-Ong games to polarized games

We introduce our notion ofpolarized gamesby extend-
ing the usual definitions of Hyland-Ong games [18] with
plays possibly starting by proponent moves. We are follow-
ing McCusker’s presentation [24], but we change the nota-
tions for some constructions in order to have a precise corre-
spondence between games constructions andLLP connec-
tives. We use his definition of exponentials and show how
to get rid of the problems with dereliction by a stronger use
of well-openness with lifts.

2.1. Definitions

Definition 1 (Polarized arena)
A polarized arenais a tupleA = (�A;MA; �A;`A)



where:� �A 2 fO;Pg is the polarity of the arena, anO-arena
(resp.P -arena) is also callednegative(resp.positive);� MA is the set ofmoves;� �A is thelabelling functionfromMA to fO;Pg, we
use the notationm�A(m) to make explicit the label of
a movem;� `A is theenabling relation, that is a relation onMA�MA denoted bym `A n and a subset ofMA which are
the initial movesof the arena denoted bỳ A m. This
relation has to satisfy:

– `A m) �A(m) = �A ^ 8n 2MA; n 0A m
– m `A n) �A(m) 6= �A(n)

We denote by�A (resp.�A) the opposite of�A (resp.�A)
and byM iA (resp.MniA ) the initial (resp. non initial) moves
of A.

Notations:� A� is the set of the finite sequences of moves ofA.� " is the empty sequence.� � is the prefix order on sequences.� TheP -prefix order is defined bys �P t if s � t ands ends by aP -move (includings = " in a negative
arena).� clP (:) is theP -prefix closure of a set of sequences.

Definition 2 (Justified sequence)
A justified sequences on A is a sequence of moves ofA
with, for each non initial moven, a pointer to an earlier
movem such thatm `A n, we say thatm justifiesn in s.

If there exists a sequencen0, . . . ,nk of moves ofs such
thatni justifiesni+1, we say thatn0 hereditarily justifiesnk in s.
Definition 3 (View)
Let s be a justified sequence, we define a sub-sequence
called theproponent viewpsq by:� p"q = "� psmP q = psqmP� psmOq = mO if m is initial� psmtnOq = psqmnO if m justifiesn
Theopponent viewxsy is defined exactly as the proponent
view by exchanging the two players.

Definition 4 (Legal position)
A justified sequences is a legal positionif:� tmn � s) �(m) 6= �(n)� tmP � s) m points inptq if m is not initial� tmO � s) m points inxty if m is not initialLA is the set of legal positions ofA.

A legal positions is well openedif the only initial move
in s is the first one.

Definition 5 (Projection)
Let s be a legal position inA andI be a set of initial moves

of s, theprojections �I of s onI is the sub-sequence ofs of
the moves hereditarily justified by a move ofI , it is a legal
position ofA.

Definition 6 (Polarized game)
A polarized gameis a tupleA = (�A;MA; �A;`A;PA)
where(�A;MA; �A;`A) is a polarized arena andPA is a
non empty prefix-closed set of legal positions such that ifs 2 PA andI is a set of initial moves,s �I 2 PA1.

A game iswell openedif all its plays are well opened.

We denote byPPA the plays ending byP -moves.
We define a collection of constructions on polarized are-

nas and games, mainly coming from intuitionistic games.

2.2. Arenas constructions

Sum of arenas. Let A andB be two arenas of the same
polarity, we define the arenaA+B by:� �A+B = �A = �B� MA+B =MA +MB (disjoint sum)� �A+B = [�A; �B ℄� `A+B m () `A m _ `B m� m `A+B n () m `A n _m `B n
If s is a legal position ofA + B, s �A (resp. s �B) is the
sub-sequence ofs containing the moves ofA (resp.B), it’s
a legal position ofA (resp.B).

Product of arenas. If A andB have the same polarity,A�B is defined by:� �A�B = �A = �B� MA�B = M iA �M iB +MniA +MniB� �A�B(m1;m2) = �A(m1) = �B(m2)� �A�B(m) = [�A; �B ℄(m) if m 2MniA +MniB� `A�B (m1;m2)� (m1;m2) `A�B n () m1 `A n _m2 `B n� m `A�B n () m `A n _ m `B n if m is not
initial

If s is a well opened legal position ofA � B, s �A (resp.s �B) is the sub-sequence ofs containing the moves ofA
(resp. B) thus the first (resp. second) component of the
initial move. It’s a legal position ofA (resp.B).

Remark: Defining the notion of projection on a component
for a non well opened position ofA � B would be more
complex, this is why we will restrict ourselves to this par-
ticular case which is sufficient for what we want here.

2.3. Games constructions

We turn now to the description of the various construc-
tions of polarized games we are interested in.

1This condition is used to obtainPA � P℄A and is immediate for well
opened games.



In the sequel, we will useN , M , L, . . . for negative
games (or formulas) andP , Q, R, . . . for positive ones.A,B, C, . . . denote games (or formulas) of any polarity.

Dual. A? = (�A;MA; �A;`A;PA)
Top. > = (O; ;; ;; ;; f"g)
Bottom. ? = (O; f�g; �?(�) = O; `A �; f"; �g)
Negative tensor. If M andN are negative, the arena ofM � N is M + N andPM�N = fs 2 LM+N j s �M 2PM ^ s �N 2 PNg.
Implication. If M and N are negative,M _ N =(O;MM +MN ; [�M ; �N ℄;`M_N ;PM_N ) with:� `M_N m () `N m� m `M_N n () m `M n _m `N n _ ( `N m ^`M n)� PM_N = fs 2 LM_N j s �M 2 PM ^ s �N 2 PNg
With. If M andN are negative, the arena ofM & N isM +N andPM&N = PM [PN (the only common play is").
Par. If M andN are well opened negative games, the
arena ofM P N is M �N andPMPN = fs 2 LM�N js �M 2 PM ^ s �N 2 PNg.
Sharp. If N is negative,℄N has the same arena asN andP℄N = fs 2 LN j 8m initial; s �m 2 PNg.

The constraints on the first move and on projections are
sufficient to automatically get the usualswitching condi-
tions for �, P, ℄, . . . That is, only one player is allowed
to switch between the components of a game during a play,
which is opponent for a “conjunctive” connective (�, &,℄, . . . ) and proponent for a “disjunctive” connective (P,_, . . . ).

Lift. If P is positive,"P is the negative game obtained
from P by adding a newinitial opponent move� with:� � `"P m () `P m� m `"P n () m `P n if m 2MP� P"P = �:PP + f"g
Positive constructions. The positive constructions are
obtained by duality:0 = >?, 1 = ??, P 
 Q = (P? PQ?)?, P � Q = (P? & Q?)?, [P = (℄P?)? and#N = ("N?)?.

Linear implication. (just notation) P ( N = P ? P N
Exponentials. (just notations) !N = #℄N and ?P ="[P = (!P?)?

Remark: Some of these constructions (>, �,_, &, ℄) are
the same as in [24] but used in a slightly different way. TheP-construction is a variant of
 defined in [17]. The lift-
ing constructions# and" already appeared in Lamarche’s
games [20] but their use here is much in the spirit of Gi-
rard’s ludics [15]. The novelty is to put these constructions
together with an important place given to the lifts:�'
&
$
%

+'
&
$
%� -qi

#; !()?"; ?> ?& P ℄ 0 1� 
 [� _
Remark: ?, > and"P are well opened and ifM andN
are well opened thenN?, M _ N , M &N , M P N are
well opened. This will allow to define dereliction properly.
For the interpretation of logic, we will only use such games
however constructions likeM �N and℄M may appear as
intermediary steps.

We introduce a strong notion of isomorphism of games
without any reference to strategies (defined later). The idea
is to represent the main properties of logical connectives
by structural properties of games in a simpler way than the
usual use of categorical isomorphisms.

Definition 7 (Play isomorphism)
A p-isomorphismbetween two gamesA andB of the same
polarity is a bijective functionf betweenPA andPB which
preserves the length and such that:� if s � t thenf(s) � f(t),� if the ith move ofs points to thej th move ofs then

theith move off(s) points to thej th move off(s).
A game has a given p-property if the underlying isomor-

phism is a p-isomorphism.

Proposition 1 (Structure of constructions)
We have the following properties:� all the binary connectives are p-commutative and p-

associative,� ? is p-neutral forP,> is p-neutral for� and&,� P is p-distributive over&,> is p-absorbing forP,� M _ N 'p "M? P N ,� #(M �N) 'p #M 
 #N ,� ℄(M &N) 'p ℄M � ℄N ,� !(M &N) 'p !M 
 !N ,� > = ℄> and1 = #> thus1 = !>.

Remarks:� The introduction of polarities gives the p-
associativity of the� which is stronger than the



result obtained for the corresponding negative con-
nective of [24]. This negative construction can be
decomposed by the positive one� into "(#M � #N).� The decomposition of the! connective into two dis-
tinct operations gives rise to a decomposition of the
mainLL isomorphism!(M &N) 'p !M
!N through#(M �N) 'p #M 
 #N and℄(M &N) 'p ℄M �℄N .� M _ N 'p "M? P N can be interpreted as a lin-
ear version of the usual translation of the intuitionistic
implication inLL: M ! N = ?M? P N .

Remark: A natural direction in game semantics is to move
constraints on plays to constraints on strategies (in order to
use arenas instead of games for example). In our setting,
this would be problematic for two reasons:� The two gamesM &N andM �N are based on the

same arena, as forN and℄N . Without plays, we can’t
describe anymore the equations of proposition 1.� Working with well opened strategies would require to
modify the composition and would avoid comparison
with the usual intuitionistic setting.

2.4. Strategies

We are now going to introduce the notion of strategy.
They will be used to interpret proofs and programs. From a
categorical view point, strategies correspond to morphisms.

Definition 8 (Strategy)
A strategy� on the gameA, denoted by� : A, is a non
emptyP -prefix closed subset of sequences inP PA . More-
over we require some additional properties:� determinism: if saP 2 � andsbP 2 � thena = b;� innocence: if sabP 2 �, t 2 �, ta 2 PA andpsaq =ptaq thentab 2 �.� totality: if s 2 � andsaO 2 PA then9b; sab 2 �

(moreover, ifA is positive9b; b 2 �).
A total deterministic innocent strategy can be represented
as a function from proponent views ending by O-moves to
P-moves. We define the sizej�j of a strategy� to be the
sum of the lengths of the proponent views in its graph.� � is finite if j�j is finite.

A strategy� : M _ N is central, denoted by� : M �_N , if each play of� has its first proponent move inM .

In the sequel, a strategy will always be afinite total de-
terministic innocentstrategy.

Lemma 1
Let� be a strategy on a gameA andf be a p-isomorphism
fromA toB, f(�) is a strategy onB.

Definition 9 (Identity)
Let N be a negative game, theidentity idN onN �_ N is

the central strategy given byidN = fs 2 PPN1_N2 j 8t �Ps; t �N1 = t �N2g (the indexes are only used to distinguish
the two occurrences ofN ).

Definition 10 (Composition)
Let � : L _ M and� : M _ N be two strategies. The
composition�; � is the strategy onL_ N defined by:�; � = fs �L_N 2 PPL_N js 2 int(L;M;N)^s �L_M 2 �^s �M_N 2 �g
where int(L;M;N) is the set of sequencess of(L+M +N)� with a pointer for each move (except those
initial in N ) such thats �L+M 2 PL_M ands �M+N 2PM_N . s �L_N is obtained by replacing the pointer of theL-moves pointing inM by the justifier of theM -move that
must be an initialN -move.

Composition can be generalized to obtain a strategy onN from a strategy� : M and a strategy� : M _ N sinceM 'p ? PM 'p >_M .

Proposition 2 (HO category)
Negative games with strategies onM _ N as morphisms
give a symmetric monoidal closed category with finite prod-
ucts.

Definition 11 (P of strategies)
Let � : M1 �_ N1 and� : M2 _ N2 be two strategies, the
strategy� P � is fs 2 PPM1PM2_N1PN2 j s �M1_N1 2� ^ s �M2_N2 2 �g : M1 PM2 _ N1 P N2.

We denoteidN P � by N P � , which is defined for
any strategy� : L _ M sinceidN is a central strategy onN �_ N .

Lemma 2P is a bifunctor in the category of negative games withcen-
tral strategies onM �_ N as morphisms.

Remark: This result is false for general strategies because
the P is only defined if one of the strategies is central.
TheP is not bifunctorial in the full category which cor-
responds to the premonoidal structure of control categories
of P. Selinger [28]. All this has also to be linked with the
problem of constructions on strategies for Blass games [7],
solved here by adding the centrality constraint.

3. Polarized Linear Logic (linear case)

Polarized Linear Logic has been introduced as a subsys-
tem of Linear Logic with more structure. It is easier to
study but expressive enough to interpret classical logic. The
main deterministic classical systems have translations into
LLP. MoreoverLLP allows to interpret bothcall-by-name
andcall-by-valueclassical logics by pointing out negative
or positive formulas.



Polarized games give a denotational model ofLLP. As
a first step, we will consider only the fragmentMALLP of
LLP without exponential.

3.1. MALLP

This calculus is a linear fragment (without contraction
and weakening) of polarized linear logic, the full system
will be studied in section 5. In this linear setting, expo-
nentials are replaced bylifting operators used to change the
polarity.

Linear polarized formulas.P ::= X? j 1 j 0j P 
 P j P � P j #NN ::= X j ? j >j N P N j N &N j "P
Rules ` N;N?ax

` �; N ` �; N?` �;� cut` N ; N` N ; #N # ` �; P` �; "P "
whereN contains only negative formulas.` �; P ` �; Q` �;�; P 
Q 
 ` �;M;N` �;M P NP` �; P` �; P �Q�1 ` �; Q` �; P �Q�2` �;M ` �; N` �;M &N &` 11 ` �` �;?? ` �;>>
with at most one positive formula in� for the>-rule.

Proposition 3
If ` � is provable inMALLP, � contains at most one posi-
tive formula.

3.2. Interpretation of proofs

A proof � of the sequent̀ N1; : : : ; Nk is interpreted
by a strategy�� on N1 P : : : P Nk, and a proof� of` P;N1; : : : ; Nk by acentral strategy�� onP? �_ N1 P: : : P Nk (with the particular caseN1 P : : : P Nk = ? ifk = 0).

Since games are interpreting formulas and we have used
the same notation for the connectives and the corresponding
game constructions, we will often use the same notation for
a formula and the corresponding game.

Axioms.� Theax-rule introducing̀ N;N? is interpreted by the
central strategyidN : N �_ N .� The1-rule is interpreted by the central strategyid? on1? �_ ?.� The>-rule is interpreted by the central strategyf"g onP? �_ N P > if � = P;N , and by the strategyf"g
onN P > if � doesn’t contain any positive formula.

Cut rule. The interpretation of the two premises gives a
strategy� : N P N (resp.P? �_ N P N ) if � = N (resp.� = P;N ) and a central strategy� : N �_ �. Thecut-rule
is interpreted by composition:�; (N P � ) : N P � (resp.P? �_ N P �).

Lifts.� ": by lemma 1, applying the p-isomorphism"P P� 'p P? _ � of proposition 1 to a strategy� onP? �_ � gives a strategy"� on"P P �.� #: if � is a strategy onN P N , we obtain the strat-
egy #� : "N? �_ N defined by#� = clP (fm�ns j(n;m)s 2 �g).

Multiplicatives.� ?: by lemma 1, applying the p-isomorphism� 'p� P ? of proposition 1 to a strategy on� (resp.P? �_ �) gives a strategy on� P ? (resp. P ? �_� P ?).� P: this rule doesn’t modify the interpretation.� 
: if � : P? �_ � and� : Q? �_ �, we obtain the
strategy� P � : (P 
Q)? �_ � P � (definition 11).

Additives.� &: if � is the strategy on� P M (resp.P ? �_ � PM ) and� is the strategy on� P N (resp.P ? �_ � PN ), we use the strategy� [ � on� P (M &N) (resp.P? �_ � P (M &N)).� �i: if � : P?i �_ �, we obtain the strategy� : (P1 �P2)? �_ �.

Remark: The MIX-rule cannot be interpreted in a natural
way: ` � ` �` �;� MIX

if g1g2 2 � : � andd1d2 2 � : � we want to build plays
in � P � in a symmetric way but after the move(g1; d1)
we have to make a choice betweeng2 andd2 and we cannot
choose the two moves if we want a deterministic strategy.
This corresponds again to the non bifunctoriality ofP.

3.3. Cut elimination

Cut elimination� ! �0 for MALLP is defined in the
natural way coming from theLL cut elimination proce-
dure [13].



Lemma 3 (Maximality of total strategies)
Let � and � be two strategies onA such that� � � , we
have� = � by totality.

Theorem 1 (Correctness)
If � ! �0 then�� = ��0 .
PROOF: Polarized games may be define on proof-nets [22]
(with boxes for#) instead of sequent calculus, this is why
we will only look at the needed cut-elimination steps and
not at all the commutative ones. Since they are easy to re-
construct, we omit the pointers in the plays.� Axiom cut: if the cut-formula is negative in the ax-

iom, it’s just composition with the identity; if this
formula is positive, we useidN P � = idNP� by
lemma 2.� # � ": let � : N P � and � : N �_ � be two
strategies, we have to prove�; (� P �) = "� ; (� P#�) : � P �. Let s be a play in�; (� P �),
it’s the projection on� P � of a sequences1 =(d; g)(n; g)s01 in ((N P �) + (� P �))�. We defines2 = (d; g)(d; �)ns01 in ((� P "N?) + (� P �))�,
we haves2 ��P"N? 2 "� becauses1 �N_� 2 �
by definition of � P � ands2 2 � P "� becauses1 �NP� 2 �, moreovers2 ��P� = s1 ��P� = s thuss 2 "� ; (� P #�). Equality is given by lemma 3.� Commutative#: Let � : N P � P M and� : N �_ � be two strategies, we have to show
that #(�; (� P � PM)) = #�; (� P �). If s is a
play of #(�; (� P � PM)), by definition of#, s =(d; g)�ms0 with s1 = (d; g;m)s0 2 �; (� P � P M).
By definition of composition,s1 is the projection on� P � P M of a sequences0 = (d; g;m)(n; g;m)s00
in ((N P � PM) + (� P � PM))�, let s2 =(d; g)(n; g)�ms00 in ("M? + (N P �) + (� P �))�,
we haves2 �"M?_NP� 2 #� becauses0 �MPNP� 2� and we have s2 �N_� 2 � . Moreovers2 �"M?_�P� = s thuss 2 #�; (� P �). We con-
clude by lemma 3.� 
 �P: By lemma 2, if� : M �_ � and� : N �_ �,
we have� P � P � = � P N P �;� P � P �.� Additive steps are basically proved as in [18].� 1�?: as forax (the1-rule gives an identity).� >: the strategyf"g composed with any strategy gives
the strategyf"g (because strategies aren’t empty).2

In fact this result may be extended to a focalized calculus
for MALL (see [15] for example) by replacing the constraint
of a negative context in the#-rule by a focalizationcon-
straint (stoup [14] or�-constraint [12] for example), even
if provable sequents in these systems may contain several
positive formulas.

4. Exponentials

In order to interpret classical logic, we have to restrict to
some particular games allowing us to define structural rules:
contraction and weakening.

4.1. Games

Definition 12 (Multiple game)
A gameA is amultiple gameif it is well opened and:� if s 2 PA, `A m andm `A n thens �mn 2 PA

wheres �mn is the sub-sequence ofs containingm, n
and the moves hereditarily justified byn.� if s 2 LA is a well opened position with an initial
movem, I + J is a partition of the moves justified bym in s ands �mI ; s �mJ 2 PA thens 2 PA.

Proposition 4 (Multiple constructions)
Multiplicity is preserved by the following constructions:� 1, 0,> and? are multiple games.� !N and?P are multiple games.� If P , Q, M andN are multiple thenP 
Q, P �Q,M P N andM &N are multiple games.

4.2. Strategies

Dereliction. idN is a strategy on℄N �_ N ('p !N ( N )
since any play ofN is a play of℄N by definition 6. We
definedN = "idN : ?N? P N .

Contraction. Let N be a multiple negative game, ift is
a play inN1 P N2 _ N (where the indexes are just used
to distinguish the occurrences), we denote byt i the sub-
sequence oft containing the moves inN i and the moves inN before which the last move inN1 P N2 is in Ni. We
define the strategycN = fs 2 PPN1PN2_N j 8t �P s; ti 2
idN ; i = 1; 2g : N1 P N2 �_ N .

Weakening. wN is the strategy on? �_ N defined by
wN = f"g [ fm� j m 2M iNg.
5. Polarized Linear Logic (exponential case)

To get a really expressive system corresponding to clas-
sical logic, we go fromMALLP to the full systemLLP.

5.1. LLP

Polarized formulas. We replace the lifted formulas of
MALLP by the corresponding exponential version.P ::= X? j 1 j 0j P 
 P j P � P j !NN ::= X j ? j >j N P N j N &N j ?P



Rules. The two lifting rules are replaced bypromotion
anddereliction: ` N ; N` N ; !N ! ` �; P` �; ?P ?d

whereN contains only negative formulas. And we add
structural rules.` �; N;N` �; N ?c

` �` �; N ?w

Instead of the usualLL structural rules on?-formulas,
LLP allows structural rules on any negative formulaN . So
thatLLP is obtained fromLL by first restricting linear for-
mulas to polarized ones and then by using the properties of
the induced system to generalize structural rules.

5.2. Interpretation of proofs

We will now interpret negative formulas by multiple neg-
ative games and proofs by strategies. The interpretation of
axioms, cuts, multiplicatives and additives is the same as for
the linear case (section 3.2).

Exponentials.� !: If � : N P N , we define!� = fs 2 PP?N?_N j8m initial and `N n; s �m�n 2 #�g : ?N? �_ N
wheres �m�n is the sub-sequence ofs containingm,�, n and the moves hereditarily justified byn.� ?d: If � : P? �_ � thendP? ; ?P P � is a strategy on?P P �.� ?c: If � : � P N P N (resp.P? �_ � P N P N ),
we compose it with� P cN to obtain a strategy on� P N (resp.P? �_ � P N ).� ?w: If � : � (resp. P? �_ �), we compose it with� P wN to obtain a strategy on� P N (resp.P ? �_� P N ), using� 'p � P ?.

Theorem 2 (Correctness)
If � ! �0 then�� = ��0 .
PROOF: This is an adaptation of the usual result for Hyland-
Ong games [18, 24, 16] where the lifts are treated like in the
proof of theorem 1. 2
6. Propositional definability

Now, we prove a definability result forLLP without
atom, showing that every strategy is the interpretation of
anLLP proof.

Lemma 4 (Additive type)
Let N be a game corresponding to a negative formula
of LLP without atom, there exist some negative formulasN1; : : : ; Nn such thatN 'p &1�i�n ?N?i . Moreover this

isomorphism is definable.

Lemma 5 (Bang lemma)
If � : ?M? �_ N then� = !(dM ;� PM).
Lemma 6 (Plus lemma)
If � : ( &1�j�m ?M?j ) �_ ?N? then there exists1 � j0 � m
such that� : ?M?j0 �_ ?N?.

The definition of the interpretation of a proof ofLLP as
a strategy depends on its conclusion sequent: if it contains a
positive formula, we obtain a central strategy on a game of
the shapeP? �_ N and if it doesn’t, we obtain a strategy
on a gameN . Since we want to show a completeness re-
sult (that is a converse of this interpretation), and since we
want to be as precise as possible, we get two cases in the
following theorem:

Theorem 3 (Definability)
LetP ,N be formulas without atom,� If � is a central strategy onP? �_ N , � is the inter-

pretation of a proof of̀ P;N in LLP.� If � is a strategy onN , � is the interpretation of a
proof of` N in LLP.

PROOF: By lemma 4, we can restrict ourselves to the case of
types &1�i�n ?N?i and( &1�j�m ?M?j ) _ &1�i�n ?N?i . We

prove the result by induction on the pair(j�j; jP j + jN j)
where the sizejAj of a formulaA is its number of symbols.
We first reduce the casesn 6= 1 orm 6= 1 to the casen = 1
andm = 1:� If n = 0, the game is empty and� also, that corre-

sponds to a>-rule.� If n > 1, then �i = � �?N?i (resp.� �(&1�j�m?M?j )_?N?i ) is a definable strategy by

induction hypothesis with� = S1�i�n �i, which
corresponds to a&-rule.� If n = 1 andm = 0, � cannot be central and total on>_ ?N?1 .� If n = 1 andm > 1, by the plus lemma,� is a strat-
egy on?M?j0 �_ ?N?1 and is definable by induction

hypothesis. The strategy� is obtained onP ? �_ N
by�-rules.

We now prove the cases of formulas?N? or?M? _ ?N?.
For the second one, by the bang lemma, we just have to
prove the definability ofdN ;� P M . This is a smaller
strategy on?N? PM thus definable by induction hypoth-
esis.

If � is a strategy on?N?, either each play has only one
move justified by the initial one and� = dN ; ?N? P �0,
this corresponds to a dereliction rule on a strategy of the
same size on a smaller formula (thus definable). Or there
exists a play with two moves justified by the initial one.
We define the strategy�1 on ?N?1 P ?N?2 (the indexes
are just used to distinguish the occurrences) by: ifs is a



play in �, the play in?N?1 P ?N?2 , obtained by putting
the first proponent move and the moves justified by it in?N?1 and the other ones in?N?2 , is a play in�1. We have� = �1; c?N? . It’s easy to see that�1 = dN ; ?N? P �2
where�2 is a strategy onN �_ ?N?. By applying the p-
isomorphism of lemma 4 toN and the plus lemma, we get
a strategy�3 on a game?M? �_ ?N?. Finally, we apply
the bang lemma and we obtain a strategy�4 on?N? PM
which is smaller than�. This last step is a bit complicated
because ifN = ?N 0? we may havej�j = j�1j = j�2j =j�3j. 2

Using the usual techniques of game semantics and the
notion of uniform families of strategies, dinatural transfor-
mations, . . . the definability result can certainly be extended
to formulas with atoms.

7. From logic to programming languages

We have described a game model for Polarized Linear
Logic claiming that it gives a model for many other systems
by translation inLLP. We give some details about the trans-
lations of the��-calculus intoLLP and the consequences
we get.

7.1. Call by name

The translation of the call-by-name��-calculus into
LLP is obtained by translating types by negative formulas:X  X

T  >
F  ?A ^ B  A� &B�A _ B  A� P B�A! B  !A� ( B�

the judgment� ` � is translated as̀ ?(��)?;��.
The translation of terms is then easy to construct,

see [22] for a detailed study of this translation. One of its
main properties is that reduction in the��-calculus is sim-
ulated by cut-elimination inLLP.

Theorem 2 entails that we obtain a denotational model
of the CBN��-calculus. This can be expressed through
Selinger’s categories [28]:

Proposition 5 (Control category of games)
The category of multiple negative games with morphisms
given by strategies on!M ( N ('p ℄M _ N used in in-
tuitionistic games) is a control category.

We can apply the definability result to the��-calculus:

Proposition 6 (Full completeness)
Let A be a type without variable and� be a strategy onA�, there exists a��-termu of typeA such that� is the
call-by-name interpretation ofu.

7.2. Call by value

The translation of the call-by-value��-calculus into
LLP is obtained by translating types by positive formulas:X  X?

T  1
F  0A ^ B  A+ 
B+A _ B  A+ �B+A! B  !(A+( ?B+)

the judgment� ` � is translated as̀ �+?; ?�+. The
definition of the translation of terms is easy from that.

By applying some properties of this translation (in par-
ticular simulation of reduction) and the results about polar-
ized games andLLP, we obtain:

Proposition 7 (Co-control category of games)
The category of multiple positive games with morphisms
fromP toQ given by strategies onP? P ?Q is a co-control
category.

Proposition 8 (Full completeness)
Let A be a type without variable and� be a strategy onA+, there exists a��-termu of typeA such that� is the
call-by-value interpretation ofu.

This shows that polarized games give a tool for build-
ing models of call-by-name and call-by-value programming
languages with control operators. We can easily interpret
call/cc, catch, . . .

8. Further considerations

Other exponentials. Our interpretation of exponentials
is based on Hyland-Ong games which are adapted for de-
finability but we can also define a model with Abramsky-
Jagadeesan-Malacaria exponentials. It would be interest-
ing to investigate the other possibilities (sequential algo-
rithms [8], . . . ).

Polarized structures. Polarized games give a way to con-
ciliate ILL andLLP through the various constructions we
have described:&, P, �, ℄, ", . . . This is actually the only
kind of model in which we can define all these construc-
tions, it is natural to try to find some other structures with
the same property.�PCF. Using these polarized games and the definability
result, R. Montelatici [25] has shown a completeness the-
orem for non total strategies with respect to an extension
of the ��-calculus with fix points. Adding ground types



shouldn’t be difficult and would lead to a completeness re-
sult for�PCF, extending Laird’s result by a richer type lan-
guage and control at any type. The next step is to study
some other programming languages with control.
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