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Abstract known to be a difficult problem: in Blass’s work [7], com-
position is not associative, and non determinism is required

We generalize the intuitionistic Hyland-Ong games to a in [6] where full completeness is lost. Our solution is to put
notion of polarized gameallowing games with plays start-  together opponent starting and proponent starting games but
ing by proponent moves. The usual constructions on gamedo refuse plays starting by both players in the same game.
are adjusted to fit this setting yielding a game model for The introduction of two families of games: positive (propo-
polarized linear logiavith a definability result. As a conse- nent starting) and negative (opponent starting) corresponds
guence this gives a complete game model for various clas-to the notion of polarity developed by Girard for his sys-
sical systemsLC, Au-calculus, ... for both call-by-name tem of classical logi¢.C [14] and studied by the author in
and call-by-value evaluations. Polarized Linear Logicl{LP).

As is clearly the case for game semantics, fillis a
) difficult system to deal with. The problem is to find a more
1. Introduction simple fragment oLL which is expressive enough. The
main proposition has beebl, but it refuses the linear nega-
Game semantichas been used to interpret both logi- tion connective which may be considered as the main con-
cal systems and programming languages. The logical stepnective ofLL since it gives duality. From an expressive-
has often been a preliminary step towards the study of ness view pointlLL is a good system for the study of intu-
game models for programming languages. Moreover Lin- itionistic logic but the translations of classical logic irkd.
ear Logic (L) has taken a very important place in this first are in fact-—-translations. Using Girard’s idea of polariza-
step. We can classify these models of linear logic along tion for classical logic, the systeirl P [21] gives another
two main constraints: some of them are restricted to linear possibility. It is obtained fronLL by restricting to polar-
fragments (without exponential connective)ldf, such as ized formulas and by generalizing structural rules to any
MLL [1] or MALL [5], the others are restricted to intuition- negative formula (instead of onf+formulas) to get clas-
istic fragments [20, 2, 24]. In a different spirit, a model sical features. The study of this system is easier than for
of MELL is given in [6] but introduces non deterministic LL (proof-nets, ...), and the current presentation will en-
strategies to model a deterministic language. On the com-force this view point by giving a game model. Translations
puter science side, games have been developed to modedf various classical systems intb P have been developed,
different kinds of languages (PCF [2, 18JPCF [19], Ide- generalizing Girard’s translations of intuitionistic logic into
alized Algol [4], ...). These games are based on call-by- LL (A - B ~» !A — B andA — B ~ (A — B))
name (CBN) computation which corresponds to the techni- without any——-feature. Call-by-name systems are trans-
cal property that plays only start by opponent moves which lated by the first translationAu-calculus [27],LKT [11],
is also the constraint appearing in games for Intuitionistic Ac-calculus, ... and call-by-value systems are translated
Linear Logic (LL). The idea of replacing opponent start- with a generalization of the second translation for classi-
ing games by proponent starting games leads to a model ofcal logic (4 — B ~» (A — ?B)): Auy-calculus [26],
call-by-value (CBV) computation [17] (embedded into op- LKQ [11],...
ponent starting games in [3]). In this way,LLP appears as the part bE corresponding
One of our goals is to liberalize these starting conditions to classical logic. Moreover it allows us to use one system
in order to recover a real symmetry between the two play- only for both CBN and CBV (this idea has also been in-
ers. This is extremely natural in the spiritldf, where du- dependently carried out by Levy [23], without linear logic).
ality (lost in intuitionistic systems) plays a key role, butitis LLP is therefore a language in the spirit of a duality between



these two evaluation paradigms [28, 9] appearing here asNegative approach. If we hide positive games and con-
positive/negative (or focalization/reversibility). sider only the negative ones, we mainly get back a clas-
sical version of the Hyland-Ong model. More precisely,
with respect to Laird’s model of innocent strategies for con-
trol [19], we are able to interpret a richer type language
(with the difficult point of disjunction) and, using the notion
of multiple games, we are not restricting control primitives
to ground types. Thatis, we get a model of the exterided
calculus described by Selinger [28] and our multiple nega-
tive games give one of the first concrete examples (as far as
we know) of acontrol category

Using some other translations, we can get denotational
game models for various call-by-name systems.

We can consider three points of view about these polar- Negative games will have a prominent role at some
ized games: places of the paper since they correspond to the usual no-

tion of game.

We are going to describe the notionpdlarized games
containing both proponent starting and opponent starting
games. They are presented as a modelld®. Turning
them into a model of programming languages with con-
trol operators would be a further (and probably easier) step.
The choice ofLLP as a logical setting seems quite natu-
ral since it contains many other classical systems through
translations and takes an explicit account of polarities (op-
ponent/proponent) of games. Moreover the linear level has
shown to give interesting intuitions for game semantics.

Polarized approach. In order to get a model dfLP, it
is natural to put together two kinds of games corresponding
to positive and negative formulas. Connectives have then
to be defined between games of the corresponding polar-
ity. For example, we have to use the usual Hyland-Ong [18]
(cartesian) product (denoted &) between negative games
and the Honda-Yoshida [17] (tensor) product (denoted by
®) between positive games. From the use of polarities in
ludics [15], we get the idea of introducing two néifting
connectives| and{ allowing a “linear” change of polar-
ity (they have also been introduced by Lamarche [20], and
used recently in [10]). These two connectives act on games
by adding a new move at the beginning of each play, in  Games are not only used because they allow to define
such a way that (resp.1) turns a negative (resp. positive) models for a large class of systems but also because they
game into a positive (resp. negative) one. The introduc- lead tofull completenessesults, see [1, 2, 5, 18, 20] for
tion of this large collection of connectives allows to go one example. We end our study of polarized games with a full
step further than ii.L in the decomposition of the classi- completeness (or definability) theorem with respedtlt®
cal connectives and allows to give a precise analysis of the(without atom): a strategy on a polarized game is the inter-
structure of games. pretation of a proof oELP. And, as a consequence, we get

In particular, the separation between positive and nega-the same result for both CBN and CB\-calculi.
tive games allows to solve the Blass’s problem [7] of com-

posing strategies. The introduction of the lifting connec- 2. From Hyland-Ong games to polarized games
tives gives a solution to McCusker’s problem with well-

Positive approach. Positive games have been considered
by Honda-Yoshida [17] in a purely functional setting. We
get here an extension of the typing language we are able to
interpret and a way of interpreting control primitives. These
two points were suggested in their paper but not described.
From aAu point of view, we give a model of the call-
by-value Au-calculus [26] (and of the extended version of
Selinger). Moreover we build @o-control categorypf mul-
tiple positive games.
Using some other translations, we can get denotational
game models for various call-by-value systems.

openness for defining theconstruction [24] and leads to We introduce our notion gfolarized gamedy extend-
a decomposition of the mainL isomorphism!A ® !B ~ ing the usual definitions of Hyland-Ong games [18] with
(A& B). plays possibly starting by proponent moves. We are follow-

Finally, to obtain a model oLLP, we have to endow  ing McCusker's presentation [24], but we change the nota-
games with some monoidal structure to interpret the struc- tions for some constructions in order to have a precise corre-
tural rules. This is done by introducing the notiomafilti- spondence between games constructionsLariconnec-
ple gamesvhich is preserved by the constructions. tives. We use his definition of exponentials and show how

The polarized approach makes explicit the unification to get rid of the problems with dereliction by a stronger use
we are doing between the interpretation of call-by-name of well-openness with lifts.
and call-by-value. We are able to define a single polar-
ized game model without any particular choice between 2.1. Definitions
CBN and CBV. We then get a model of a particular evalua-
tion paradigm by choosing the corresponding interpretation: Definition 1 (Polarized arena)
negative for call-by-name and positive for call-by-value. A polarized arenais a tuple A = (w4, Ma,Aa,F4)



where:
e 14 € {O, P} is the polarity of the arena, an-arena
(resp.P-arena) is also calledegative(resp.positive;
e M4 is the set ofnoves
e )4 is thelabelling functionfrom M 4 to {O, P}, we
use the notatiom:*4 (™) to make explicit the label of
a movem;
e -4 istheenabling relationthatis a relation o/ 4 x
M 4 denoted byn F 4 n and a subset a¥/ 4 which are
theinitial movesof the arena denoted by 4 m. This
relation has to satisfy:
— Fam=Ada(m) =74 AVn € Ma,n¥Fam
—mban= xa(m)#Aa(n)
We denote by (resp.)4) the opposite ofr 4 (resp.\4)
and byM ¢ (resp.M %) the initial (resp. non initial) moves
of A.

Notations:

e A* is the set of the finite sequences of moveslof

e ¢ is the empty sequence.

e < is the prefix order on sequences.

e The P-prefix order is defined by <? tif s < t and
s ends by aP-move (includings = ¢ in a negative
arena).

o cI?(.) is the P-prefix closure of a set of sequences.

Definition 2 (Justified sequence)
A justified sequence on A is a sequence of moves df
with, for each non initial move:, a pointer to an earlier
movem such thatn -4 n, we say thain justifiesn in s.

If there exists a sequenes, ..., n; of moves ofs such
thatn; justifiesn;,;, we say thath, hereditarily justifies
ng N s.

Definition 3 (View)

Let s be a justified sequence, we define a sub-sequence

called theproponent view s by:
e Ngl=¢
° '_Smp—' — I‘S'ImP
o "smP71=m? if misinitial
o "smitn®7 = TsTmn@ if m justifiesn
Theopponent view s_ is defined exactly as the proponent
view by exchanging the two players.

Definition 4 (Legal position)
A justified sequence is alegal positionif:
e tmn < s= A(m) # A(n)
e tm? < s = m pointsin”t7if m is not initial
e tm?® < s = m points in_t_ if m is not initial
L 4 is the set of legal positions of.
A legal positions is well openedf the only initial move
in s is the first one.

Definition 5 (Projection)
Let s be a legal position il andI be a set of initial moves

of s, theprojections [ of s onT is the sub-sequence obf
the moves hereditarily justified by a move Kfit is a legal
position of A.

Definition 6 (Polarized game)
A polarized games a tupleA = (wa, Ma, a,ba,Pa)
where(ma, Ma,Aa,b4) is a polarized arena arfél, is a
non empty prefix-closed set of legal positions such that if
s € P4 andI is a set of initial movess [; € P4l

A game iswell openedf all its plays are well opened.

We denote byP ¥} the plays ending by?-moves.
We define a collection of constructions on polarized are-
nas and games, mainly coming from intuitionistic games.

2.2. Arenas constructions

Sum of arenas. Let A and B be two arenas of the same
polarity, we define the aren& + B by:

® TA+B =TA =TB

e Mg = My + Mg (disjoint sum)

® AayB =[Aa, AB]

° I—A+Bm < FaomV Fpm

e mbapn < mkFkanVmbtpn
If sis alegal position ofA + B, s [4 (resp. s [g) is the
sub-sequence afcontaining the moves oA (resp.B), it's
a legal position ofd (resp.B).

Product of arenas. If A and B have the same polarity,
A x B is defined by:

® TAxB = TA=TB ' '
Maxp = MY x My + M% + MR
>\A><B(m1,m2) = >\A(m1) = >\B(m2)
Aaxp(m) = [AA,AB](m) if m € MX’ + M}g”
Faxp (m1,ms)
(my1,ma) Faxpn < mibanVmsbpn
mbaxpn <= mhkEkanVmkbgnif misnot
initial
If sis a well opened legal position of x B, s [ 4 (resp.
s ['B) is the sub-sequence efcontaining the moves oft
(resp. B) thus the first (resp. second) component of the
initial move. It's a legal position ofi (resp.B).

Remark: Defining the notion of projection on a component
for a non well opened position of x B would be more
complex, this is why we will restrict ourselves to this par-
ticular case which is sufficient for what we want here.

2.3. Games constructions

We turn now to the description of the various construc-
tions of polarized games we are interested in.

1This condition is used to obtaifiy C Py 4 and is immediate for well
opened games.



In the sequel, we will usév, M, L, ... for negative Remark: Some of these constructions (©, —, &, f) are

games (or formulas) anB, @, R, ... for positive onesA, the same as in [24] but used in a slightly different way. The
B, C, ... denote games (or formulas) of any polarity. %¥-construction is a variant ab defined in [17]. The lift-
L ing constructiong. and{ already appeared in Lamarche’s
Dual. At = (Ta, M, a,Fa,Pa) games [20] but their use here is much in the spirit of Gi-
rard’s ludics [15]. The novelty is to put these constructions
Top. T=1(0,0,0,0,{}) together with an important place given to the lifts:
Bottom. L = (Oa {*}7)‘J_(*) = Oa Fa *, {57*}) — Jra' _I_
. . /\
Negative tensor. If M and N are negative, the arena of T 1 0 1
M®NisM+ N andPyon = {s € Lyyn | s Tm € 0t
PuAs|n €Pn} & & ¢ D @ b
Implication. If M and N are negativeM — N = v —
(O, My + My, [Av, AN], F =N, Par—s ) With: 7

* Fyenm &= Fym Remark: L, T andtP are well opened and i#/ and N

= FM)*N no&= mbynVmbEnnV(ENmA - g el opened theW L, M — N, M & N, M ¥ N are
well opened. This will allow to define dereliction properly.
® Pu-n =15 € Ly |5 [ € PuAs |y €Pn} For the interpretation of logic, we will only use such games

With. If M and N are negative, the arena 8f & N is however .constructions like/ ® N andfM may appear as
M + N andPare n = ParU Py (the only common play is ~ Intermediary steps.

e). We introduce a strong notion of isomorphism of games

Par. If M and N are well opened negative games, the without any reference to strategies (defined later). The idea

areﬁa ofM B Nis M x N andPuy = {s € Lar N’| is to represent the main properties of logical connectives
- X

st €PwAs Iy € Pyl by structural propert!es qf gamesina simpler way than the
usual use of categorical isomorphisms.
Sharp. If N is negativefN has the same arena Asand

Pin = {s € Ly | Vm initial, s [, € Py} Definition 7 (Play isomorphism)

A p-isomorphisnbetween two gamed andB of the same
The constraints on the first move and on projections are polarity is a bijective functiolf betweer 4 andPp which

sufficient to automatically get the ususitching condi- preserves the length and such that:

tionsfor ®, %, #, ... That is, only one player is allowed o ifs< ihthenf(s) < f(@), "

to switch between the components of a game during a play, * if t,rt'he i move ofs p(_)mts to thfﬁ move ofs then
which is opponent for a “conjunctive” connective)( &, thes™ move off(s) points to thej™ move of f(s).

4, ...) and proponent for a “disjunctive” connectiv@,(

=)

A game has a given p-property if the underlying isomor-
phism is a p-isomorphism.

Lift. If P is positive,TP is the negative game obtained Proposition 1 (Structure of constructions)

from P by adding a nevinitial opponent move with: We have the following properties:
e xbipm < Fpm ¢ all the binary connectives are p-commutative and p-
e mbipn <= mbEpnifme Mp aSS_OCiativev _
e Pip = *.Pp + {e} e | is p-neutral for%, T is p-neutral for® and&,
e % is p-distributive ove&, T is p-absorbing fof?y,
Positive constructions. The positive constructions are o M - N ~, MLt ¥ N,
obtained by duality0 = T+, 1= 1+, P Q = (P+ % e [(M®N)~,|M®]|N,
QQHLH, P Q = (P& QY bP = (1PH)L and o {(M & N) ~, tM ® tN,
IN = (tNH)L e (M&N)~,'M®!N,

) S ) ) e T=fTandl=|T thusl =!T.
Linear implication. (just notation) P — N = P+ ® N
_ _ _ Remarks:
Exponentials. (just notations) !N = [N and?P = e The introduction of polarites gives the p-

PP = (1PH)*+ associativity of the@ which is stronger than the



result obtained for the corresponding negative con- the central strategy given bigy = {s € Pﬁl_bNQ | vt <P
nective of [24]. This negative construction can be s,¢ [n, =t [n,} (the indexes are only used to distinguish
decomposed by the positive oseinto 1(JM @& | N). the two occurrences dY).
e The decomposition of theconnective into two dis- Definition 10 (Composition)
tinct operations gives rise to a decomposition of the Leto - I — M z M — N be t trateqi Th
mainLL isomorphism(M & N) ~, IM ®!N through €lo: L — AL andr : ~ € two stra egles.. €
WM ®N) ~, LM ® [N andi(M & N) ~, tM & compositions; 7 is the strategy o, — N defined by:

by o;r={s] ePP v
e M — N ~, 1M % N can be interpreted as a lin- ’ LN = PLeN
ear version of the usual translation of the intuitionistic s €int(L, M,N)As [p—m € OAS [N ET}

; ot . _onsl
implication inLL: M — N =M~ % N. where infL,M,N) is the set of sequences of

Remark: A natural direction in game semantics is to move (L + M + N)™ with a pointer for each move (except those
constraints on plays to constraints on strategies (in order toinitial in N) such thats [y € Pr.n ands [aryn €
use arenas instead of games for example). In our setting,Pa -~ s [z is obtained by replacing the pointer of the
this would be problematic for two reasons: L-moves pointing i\ by the justifier of thel/-move that

e The two games/ & N andM @ N are based onthe ~ Must be an initialV-move.

same arena, as fé¥ andgV. Without plays, we can't Composition can be generalized to obtain a strategy on

describe anymore the equations of proposition 1. N from a strategys : M and a strategy : M — N since
e Working with well opened strategies would require to ~p LMoy T = M.

modify the composition and would avoid comparison

with the usual intuitionistic setting. Proposition 2 (HO category)
Negative games with strategies 80 — N as morphisms
2.4. Strategies give a symmetric monoidal closed category with finite prod-
ucts.

We are now going to introduce the notion of strategy. pefinition 11 (¥ of strategies)
They will be used to interpret proofs and programs. Froma | et : A1; %> Ny andr : M, — N, be two strategies, the
categorical view point, strategies correspond to morphisms. strategys %% 7 is {s € Pl osvenizn, | 51
oANs ng—bNg GT}ZMl 7?M2—DN1 ?S’NZ
We denotedy % 7 by N % 1, which is defined for
any strategyr : L — M sinceidy is a central strategy on

M1 —>N1 E
Definition 8 (Strategy)

A strategyo on the gamed, denoted by : A, is a non
empty P-prefix closed subset of sequencesAfy. More-

over we require some additional properties: N=N.
e determinismif sa”” € o andsb? € o thena = b; Lemma 2
e innocenceif sab” € 0,t € 0, ta € P4 and"sa = % is a bifunctor in the category of negative games weiti-
Tta™ thentab € o. tral strategies onV/ > N as morphisms.
e totality: if s € 0 andsa® € P4 then3b, sab € o . . .
(moreover, ifA is positivedb, b € o). Remark: This result is false for general strategies because

A total deterministic innocent strategy can be representedtN® 7 is only defined if one of the strategies is central.
as a function from proponent views ending by O-moves to The % is not bifunctorial in the full category which cor-
P-moves. We define the size| of a strategy to be the responds to the premonoidal structure of control categories
sum of the lengths of the proponent views in its graph. of P. Selinger [28]. All this has also to be linked with the
o o isfiniteif o] is finite. problem of constructions on strategies for Blass games [7],
A strategyo : M — N is central denoted by : M = solved here by adding the centrality constraint.

N, if each play ofs has its first proponent move ity

_ o 3. Polarized Linear Logic (linear case)
In the sequel, a strategy will always bdiaite total de-

terministic Innocenstrategy. Polarized Linear Logic has been introduced as a subsys-

Lemma 1 tem of Linear Logic with more structure. It is easier to
Leto be a strategy on a gamé and f be a p-isomorphism stugiy but expressive eno.ugh tointerpret classical Io_g|c. The
from A to B, f(o) is a strategy orB. main deterministic classical s_ystems have translations into
LLP. MoreoverLLP allows to interpret botltall-by-name
Definition 9 (Identity) andcall-by-valueclassical logics by pointing out negative

Let N be a negative game, thaentity idy on N = N is or positive formulas.



Polarized games give a denotational modelLbP. As
a first step, we will consider only the fragmeviALLP of
LLP without exponential.

3.1. MALLP

This calculus is a linear fragment (without contraction
and weakening) of polarized linear logic, the full system
will be studied in section 5. In this linear setting, expo-
nentials are replaced ifting operators used to change the
polarity.

Linear polarized formulas.

P = X+t | 1 | 0
| PP | PP | [N
N == X | 1 | T
| N®N | N&N | 1P
Rules
o FIO,N I—A,NLCut
FN,NL FT,A
FN,N l—l“,PT
FAN, LN FT,tP
where contains only negative formulas.
FIOLP FAQ I—F,M,Nyg
FILAP®Q FOLM % N
FI,P FT,Q
" r D~ Ul =~ D2
FOLLP®Q FOLLP®Q
FO,M F+FI,N
FT,M &N
FT
— T
F1 FT, L FL, T

with at most one positive formula i for the T-rule.

Proposition 3
If - T is provable inMALLP, T' contains at most one posi-
tive formula.

3.2. Interpretation of proofs

A proof 7 of the sequent Ny,..., N}, is interpreted
by astrategyo, on Ny % ... ¥ Nj, and a proofr of
F P,Ny,..., N, by acentral strategyr, on P+ 2 N; %
... ® Ny, (with the particular cas&’; % ... % N = L if
k= 0).

Axioms.

e Theax-rule introducing- N, N - is interpreted by the
central strategydx : N —» N.

e Thel-rule is interpreted by the central stratédy on
1+ 5 1.

e TheT-ruleis interpreted by the central stratelgy on
Pt % N ® Tif T = P,N, and by the strateg{e}
onA % T if T doesn't contain any positive formula.

Cutrule. The interpretation of the two premises gives a
strategyr : N % N (resp.P+ = N'® N)if I = N (resp.

I' = P,N) and a central strategy: N => A. Thecutrule

is interpreted by compositior; (M % 7) : N/ % A (resp.
Pt S N R A).

Lifts.

e 1. by lemma 1, applying the p-isomorphish® %
I ~, Pt — T of proposition 1 to a strategy on
P+ 5 T gives a strategyo ontP % T.

e |: if o is a strategy oV % A/, we obtain the strat-
egy lo : tN+ 2 A defined bylo = cl” ({mxns |
(n,m)s € o}).

Multiplicatives.

e 1: by lemma 1, applying the p-isomorphisih ~,
' % 1 of proposition 1 to a strategy ofi (resp.
P+ 5% T) gives a strategy off & L (resp. P+ 3
L7 1).

e % this rule doesn’'t modify the interpretation.

e ® ifo: PL 5% Tandr: Qt > A, we obtain the
strategyr % 7: (P ® Q)+ > ' ® A (definition 11).

Additives.

e &: if o is the strategy ot %% M (resp.P+ 5T X
M) andr is the strategy olf % N (resp.P+ T %
N), we use the strategyU onT' % (M & N) (resp.
PL 5T %X (M &N)).

e @; if 0 : P = T, we obtain the strategy : (P, @
P)t 5T,

Remark: The MIX-rule cannot be interpreted in a natural
way:

FI FA

FT,A

if g1go € o : T'anddid2 € 7 : A we want to build plays
inT % A in a symmetric way but after the moye,, d;)
we have to make a choice betwegnandd; and we cannot
choose the two moves if we want a deterministic strategy.
This corresponds again to the non bifunctoriality®hf

MIX

3.3. Cut elimination

Since games are interpreting formulas and we have used
the same notation for the connectives and the corresponding Cut eliminationr — «' for MALLP is defined in the
game constructions, we will often use the same notation for natural way coming from thé&L cut elimination proce-

a formula and the corresponding game.

dure [13].



Lemma 3 (Maximality of total strategies)
Let o and 7 be two strategies o such thatr C 7, we
haves = 7 by totality.

Theorem 1 (Correctness)
If 7 — 7' theno, = 0.

PrROOF. Polarized games may be define on proof-nets [22]
(with boxes for]) instead of sequent calculus, this is why
we will only look at the needed cut-elimination steps and
not at all the commutative ones. Since they are easy to re-
construct, we omit the pointers in the plays.

e Axiom cut: if the cut-formula is negative in the ax-
iom, it's just composition with the identity; if this
formula is positive, we us@y &% T' = idyzr by
lemma 2.

e | —fTletec: N ®Tandr : N > A be two
strategies, we have to prove (r ) = tr; (A &
o) : A % T. Lets be a play inc;(r &% T),
it's the projection onA % T of a sequence; =
(d,g)(n,g)s) in (NI T)+ (AXT))". We define
s2 = (d,g)(d,*)ns} in (AT INL) +(AFT))",
we havesy [aztnt € 17 becauses; [y.a € T
by definition ofr % T ands; € A % 1o because
s1 [NmT € 0, mOreovels [axr = $1 [azxr = s thus
s € t1; (A & |o). Equality is given by lemma 3.

e Commutative|: Let o N % T % M and
r : N 5 A be two strategies, we have to show
that [(o; (t BT B M)) = lo;(r B T). Ifsisa
play of |(c; (r % T % M)), by definition of|, s =
(d, g)xms' with sy = (d,g,m)s’ € o; (1 BT ¥ M).
By definition of compositions; is the projection on
A BT % M of asequencey = (d,g,m)(n, g, m)s;
in (N®TB® M)+ (ART X M))", let sy
(d, g)(n, g)¥ms) in (1M + (N B T) + (AR T))",
we havess [41p1_. nxr € Lo becausey [yznmr €
o and we havess [N.aA € T. Moreover
82 I4mLrza = s thuss € lo; (7 & T'). We con-
clude by lemma 3.

e ® —®:Bylemmaz2,ifc: M > Tandr: N 3 A,
wehaver ¥ 7T B X =c I NXL; T BT X.

¢ Additive steps are basically proved as in [18].

e 1 — 1: asforax(thel-rule gives an identity).

e T:the strategye} composed with any strategy gives
the strategye} (because strategies aren’t emptyld

In fact this result may be extended to a focalized calculus
for MALL (see [15] for example) by replacing the constraint
of a negative context in thé¢-rule by afocalizationcon-
straint (stoup [14] om-constraint [12] for example), even
if provable sequents in these systems may contain severa
positive formulas.

4. Exponentials

In order to interpret classical logic, we have to restrict to
some particular games allowing us to define structural rules:
contraction and weakening.

4.1. Games

Definition 12 (Multiple game)
A gameA is amultiple gaméf it is well opened and:
e if s € Pa, Fa mandm 4 nthens [, € Pa
wheres [, is the sub-sequence efcontainingm, n
and the moves hereditarily justified y
o if s € L4 is a well opened position with an initial
movem, I + J is a partition of the moves justified by
minsands 1,8 [ms € Pathens € Pyu.

Proposition 4 (Multiple constructions)
Multiplicity is preserved by the following constructions:
e 1,0, T and L are multiple games.
e !N and?P are multiple games.
e If P, @, M andN are multiple thenP ® Q, P & Q,
M % N andM & N are multiple games.

4.2. Strategies

Dereliction. idy is a strategy oaN —» N (~, |N — N)
since any play ofV is a play offN by definition 6. We
definedy = fidy : 7N+ % N.

Contraction. Let N be a multiple negative game, fifis
aplay inN; % N, — N (where the indexes are just used
to distinguish the occurrences), we denotetbyhe sub-
sequence of containing the moves ifV; and the moves in
N before which the last move iV, % N» is in N;. We
define the strategyn = {s € P xn,on | VE < 5,15 €
idy,i=1,2}: Ny & Ny 5 N,

Weakening. wy is the strategy onl. > N defined by
wy = {e} U {mx | m € Mi}.

5. Polarized Linear Logic (exponential case)

To get a really expressive system corresponding to clas-
sical logic, we go fromMALLP to the full systeniLP.

51.LLP

Polarized formulas. We replace the lifted formulas of
MALLP by the corresponding exponential version.

P = X+ | 1 | 0

| PP | PeP | IN

I N = X | 1 | T
| N®N | N&N | 7P



Rules. The two lifting rules are replaced byromotion
anddereliction

FN,N | FT,P -
FN,IN' FIT,?7P°
where NV contains only negative formulas. And we add
structural rules.
FT,N,N FT
FT,N FT,N'
Instead of the usudllL structural rules or?-formulas,

LLP allows structural rules on any negative formiNa So
thatLLP is obtained froniL by first restricting linear for-

g

Lemma 5 (Bang lemma)
If o : 2M+ = N theno = !(dp;0 B M).

Lemma 6 (Plus lemma)

fo:( & ?M;) = ?N* then there exists < jo <m
1<j<m

such that : ?th S 2N+

The definition of the interpretation of a proof bEP as
a strategy depends on its conclusion sequent: if it contains a
positive formula, we obtain a central strategy on a game of
the shapeP+ > A and if it doesn't, we obtain a strategy
on a gameV. Since we want to show a completeness re-

mulas to polarized ones and then by using the properties ofsult (that is a converse of this interpretation), and since we

the induced system to generalize structural rules.
5.2. Interpretation of proofs

We will now interpret negative formulas by multiple neg-

ative games and proofs by strategies. The interpretation of
axioms, cuts, multiplicatives and additives is the same as for

the linear case (section 3.2).

Exponentials.

e lifo: N ¥ N, wedefinelo = {s € P/, |
Vminitialand Fx n,s [pen € Lo} 1 7NE 5 N
wheres [,.«n IS the sub-sequence efcontainingm,
x, n and the moves hereditarily justified by

e 2. If 0 : P+ % T'thendp.;?P & o is a strategy on
P T.

e X Ifo:T ¥ NZXN (resp.P- T % N X N),
we compose it witH' % ¢y to obtain a strategy on
' ® N (resp.Pt 5T % N).

e W If ¢ : T (resp. P+ 5 T), we compose it with
[' ¥ wy to obtain a strategy ofi % N (resp.P+
I'® N),usingl' ~, "' % 1.

Theorem 2 (Correctness)
If 7 = 7' theno, = o,.

PROOF This is an adaptation of the usual result for Hyland-
Ong games [18, 24, 16] where the lifts are treated like in the

proof of theorem 1. m|

6. Propositional definability

Now, we prove a definability result foctLP without

want to be as precise as possible, we get two cases in the
following theorem:

Theorem 3 (Definability)
Let P, N be formulas without atom,
e If o is a central strategy o = \/, ¢ is the inter-
pretation of a proof of- P, A/ in LLP.
e If o is a strategy onV/, o is the interpretation of a
proof of - A in LLP.

PrROOF Bylemma 4, we can restrict ourselves to the case of

types & N and( & 7M}) - & N We
1<i<n 1<j<m 1<i<n
prove the result by mductlon on the pdjp|, |P| + |V))

where the siz¢A| of a formulaA is its number of symbols.
We first reduce the cases# 1 orm # 1tothe caser = 1
andm = 1:

e If n = 0, the game is empty and also, that corre-
sponds to a -rule.

elf n > 1, then o, = o, (resp.
o r(&KKm?MjL)_D?NiL) is a definable strategy by
induction hypothesis witv = J, ., oi, which
corresponds to &-rule.

e If n =1andm = 0, o cannot be central and total on
T — ?Ni-.

e If n = 1andm > 1, by the plus lemmay is a strat-
egy on?M;. = ?Nj" and is definable by induction
hypothesis. The strategyis obtained onP+ 2> A/
by &-rules.

We now prove the cases of formula® - or?A/+ — ?N L.

For the second one, by the bang lemma, we just have to
prove the definability oly;o % M. This is a smaller
strategy orf N+ % M thus definable by induction hypoth-

atom, showing that every strategy is the interpretation of €sis.

anLLP proof.
Lemma 4 (Additive type)

Let N be a game corresponding to a negative formula
of LLP without atom, there exist some negative formulas

Ny,...,N, such thatN ~, Moreover this

isomorphism is definable.

& 7N

1<i<n

If o is a strategy 0ff N+, either each play has only one
move justified by the initial one and = dy;?N+ % o,
this corresponds to a dereliction rule on a strategy of the
same size on a smaller formula (thus definable). Or there
exists a play with two moves justified by the initial one.
We define the strategy; on ?Ni- % ?Ns- (the indexes
are just used to distinguish the occurrences) by i§ a



play in o, the play in?Ni- % ?Nj-, obtained by putting  7.2. Call by value
the first proponent move and the moves justified by it in

?Nj" and the other ones iV, is a play ino;. We have The translation of the call-by-valuau-calculus into
o = 01;C 1. It's easy to see that; = dn; 7N+ X oy LLP is obtained by translating types by positive formulas:
whereo, is a strategy oV ~» ?N-+. By applying the p-

isomorphism of lemma 4 t&/ and the plus lemma, we get X ~ Xt

a strategyrs on a game&M+ % ?NL. Finally, we apply T ~ 1

the bang lemma and we obtain a strategyon ?N - %% M F ~ 0

which is smaller thaw. This last step is a bit complicated AANB ~ AT ® BT

because itV = ?N'* we may havdo| = |o1| = |oo| = AVB ~  Ateo Bt

EX O A= B ~ (AT —7B%)

Using the usual techniques of game semantics and the | . L oongt
notion of uniform families of strategies, dinatural transfor- the judgment’” = A is translated as '™, 7A™. The

mations, ... the definability result can certainly be extended definition of the translation of terms is easy from that.
to formulas with atoms. By applying some properties of this translation (in par-

ticular simulation of reduction) and the results about polar-

7. From logic to programming languages ized games andLP, we obtain:

. ) ) Proposition 7 (Co-control category of games)

by translation irLLP. We give some details about the trans- cateqgory.

lations of the\u-calculus intoLLP and the consequences

we get. Proposition 8 (Full completeness)
Let A be a type without variable and be a strategy on
7.1. Call by name AT, there exists a\pu-termu of typeA such thats is the

call-by-value interpretation of.
The translation of the call-by-namgu-calculus into
LLP is obtained by translating types by negative formulas: ~ This shows that polarized games give a tool for build-
ing models of call-by-name and call-by-value programming

)'I{ : )T( languages with control operators. We can easily interpret
call/cc,catch,...
F ~ 1
AANB ~ A & B~
AVB ~ A~ % B™ 8. Further considerations
A—-B ~ A" — B~

Other exponentials. Our interpretation of exponentials

is based on Hyland-Ong games which are adapted for de-
finability but we can also define a model with Abramsky-
Jagadeesan-Malacaria exponentials. It would be interest-
ing to investigate the other possibilities (sequential algo-
rithms [8], ...).

the judgment F A is translated as ?(I'")+, A~.

The translation of terms is then easy to construct,
see [22] for a detailed study of this translation. One of its
main properties is that reduction in th@-calculus is sim-
ulated by cut-elimination ihLP.

Theorem 2 entails that we obtain a denotational model

of the CBN Au-calculus. This can be expressed through
Selinger's categories [28]: Polarized structures. Polarized games give a way to con-

ciliate ILL andLLP through the various constructions we
have described&, %%, @, , 1, ... This is actually the only
kind of model in which we can define all these construc-
tions, it is natural to try to find some other structures with
the same property.

Proposition 5 (Control category of games)

The category of multiple negative games with morphisms
given by strategies ol/ — N (~, M — N used in in-
tuitionistic games) is a control category.

We can apply the definability result to thg-calculus:

Proposition 6 (Full completeness) wPCF. Using these polarized games and the definability
Let A be a type without variable and be a strategy on  result, R. Montelatici [25] has shown a completeness the-
A7, there exists a\u-termu of type A such thato is the  orem for non total strategies with respect to an extension
call-by-name interpretation af. of the Ap-calculus with fix points. Adding ground types



shouldn’t be difficult and would lead to a completeness re- [12] V. Danos, J.-B. Joinet, and H. Schellinx. A new decon-
sult for uPCF, extending Laird’s result by a richer type lan-
guage and control at any type. The next step is to study
some other programming languages with control.
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