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We present a new simple proof of the sequentialization property for proof nets of unit-free
multiplicative linear logic [Gir87] satisfying the Danos—Regnier correctness criterion [DR89].

Multiplicative Proof Nets

We recall some basic definitions, terminology, ... about MLL proof nets and the Danos—Regnier
correctness criterion.

Proof structures. A proof structure S is a non-empty finite directed acyclic multigraph with
loose edges, that is the data (N, C, E,s,t) where N is the set of nodes, C is the set of sinks (these
are the two kinds of vertices), £ is the set of edges, s is the source function from & to N and t
is the target function from &£ to N + C, such that each element of C is the image through t of
exactly one edge, and such that (N +C, £, s, t) is a non-empty finite directed acyclic multigraph.

If s(e) = N we call e a conclusion of N, if t(e) = N we call e a premise of N, if t(e) € C (i.e.
e is a loose edge) we call e a conclusion of S. If all the conclusions of a node N are conclusions
of S, we call N a terminal node.

In a proof structure, each node is labelled with its kind az, ® or % and edges are labelled
with formulas of MLL (this label is also called the type of the edge). It is required that:

e Each node labelled az has no premise and two conclusions with dual types A and AL.

e Each node labelled ® has two premises which are ordered and one conclusion. This way
we can speak about the left (first) and right (second) premise of a ® node. If the type of
the left premise is A and the type of the right premise is B, the type of the conclusion
must be A ® B.

e Each node labelled % has two premises which are ordered and one conclusion. If the type
of the left premise is A and the type of the right premise is B, the type of the conclusion
must be A% B.

We consider the cut-free case only, since as usual cuts can be encoded as ® nodes for
sequentialization in MLL.

Switchings. Given a proof structure S, let P be the set of its % nodes. For each function
@ : P — {left, right} (called a switching), we define the correctness graph S, by turning the
@(P) premise of each % node P into a new loose edge (where ¥ exchanges left and right in the
values of ¢). Formally, S, is the non-empty finite directed acyclic multigraph with loose edges



(N,C+Cp,E,s,t,) where Cp = {Cp | P € P} (Cp is a new sink associated with each P) and:

t(e) if tle) ¢ P
tyo(e) = ¢ P =t(e) if eis the ¢(P) premise of P
Cp if e is the B(P) premise of P

S, is not a proof structure: % nodes have only one premise.

Danos—Regnier correctness. A proof structure S is DR-correct if for each correctness graph
Sy, its undirected underlying graph is acyclic and connected.

Fact 1. Any DR-correct proof structure is a (weakly) connected directed multigraph.

Sequentialization

Sequentialization Process. Let S be a proof structure and N be a terminal node (of kind
® or %). The removal of N in S is the proof structure obtained by removing N, the conclusion
of N (if any) with its target and, by adding two new sinks as targets for the premises of N
which are now loose edges. If S is DR-correct, a terminal node IV is said to be sequentializing
if, depending on its kind:

e gz node: N is the only node of S.

e ® node: the removal of N in S has two (weakly) connected components being DR-correct
proof structures.

e %¥ node: the removal of V in § is a DR~correct proof structure.

Given a DR-correct proof structure S, the sequentialization process builds a sequent calculus
proof as follows. Assume S contains a sequentializing terminal node N, we look at the kind of
N:

e az node: we stop successfully with the proof reduced to an (az) rule.

e ® node: we apply recursively the sequentialization process to the two obtained DR-correct
proof structures (in the removal of N). We apply a (®) rule to the two obtained proofs.

e % node: we apply the sequentialization process to the removal of N, and we apply a (%)
rule to the obtained proof.

A proof structure S is called sequentializable if the sequentialization process succeeds, that is if
it is possible to find a sequentializing terminal node at each step.

To prove that DR-correct proof structures are sequentializable, it is thus enough to show
that any DR-correct proof structure has a sequentializing terminal node. This is what we do
now.

Paths. A (undirected) path v is a finite sequence of pairs (e;, €;)1<i<n (n € N) with e; € €
and €; € {+,—} (its sign) such that ty(e;) = sy(e;i1) (1 < i < n), where the y-source s,(e;) is
s(e;) if €, = + and t(e;) if ¢, = —, and the y-target t(e;) is t(e;) if ¢, = + and s(e;) if ¢ = —.
The source (resp. target) of v is s(y) = sy(e1) (resp. t(y) =ty (en)). A path is simple if it never
goes twice through the same node: ty(e;) =s,(e;) = j =i+ 1for 1 <i < j < n (we allow
the case of a cycle: ty(en) = s,(e;) or ty(e;) = sy(e1) for some 1 < j < n). If N; and Ny are



two occurrences of nodes visited by the path 7, we denote by yn,n, the sub-path of v going
from N to No. The path 7 is the reverse of v (edges in reverse order with opposite signs):
¥ = (en+1—is —€nt1—i)i<i<n. 1f 71 and 72 are two paths such that t(y1) = s(y2) (we call them
compatible) then their concatenation v - 7, is a path.

A locally switching path is a simple path which does not start from a % node through one
of its premises (sy(e1) is a % node implies €; = +) and does not go consecutively through the
two premises of a % node (if t,(e;) is a % node for some 1 < j < n then €; = — or €j41 = +).

Fact 2. If y1 and o are two compatible disjoint non-cyclic locally switching paths, then 1 - o
1$ a locally switching path.

Since edges of a proof structure S and of its correctness graphs S, are the same, it is
meaningful to compare their paths. A path in S, is always a path in S (but the converse is
wrong in general). Such a simple path of S which is a path in some S, is called a globally
switching path. DR-correctness implies the absence of globally switching cycle.

Fact 3. A globally switching path, which does not start with the premise of a % node, is a locally
switching path.

Lemma 1 (Local-global principle)
A locally switching cycle v induces a globally switching cycle as soon as it does not end with the
premise of a & node P such that the other premise e of P satisfies (e,—) € 7.

ProOF: If a cycle does not contain the two premises of any % node, it is a globally switching
cycle. Let 7/ be the minimal sub-path of v which is a cycle. Since v is a locally switching
cycle, if 4 does not start or end with the premise of % node, it is then a globally switching
cycle. If o/ starts and ends with the premises of the same % node, since v does not start
with such a premise, 4/ must be a suffix of 7. We then have a contradiction with the
hypotheses. O

If e is an edge, its descending path 6(e) is the unique directed path (i.e. using only + signs)
starting from e and ending with the premise of a terminal node, if it exists (otherwise §(e) is
empty). If N is a % or ® node, we note §(IV) the descending path of its unique conclusion.
d(N) is empty if and only if N is terminal.

Fact 4. §(N) is always a locally switching path.

Correctness % node. Let T be a ® node, a correctness % for T is a % node P with two
disjoint locally switching paths ko and k1 from T to P (called correctness paths) which both
start with a premise of 7" and end with a premise of P. A triple (kg, k1, P) is called a correctness
triple for T' and a pair (k;, P) (i € {0,1}) a correctness pair.

Lemma 2 (Correctness %)
Non-sequentializing terminal ® nodes of DR-correct proof structures have correctness 7%¥s.

PRrROOF: Let T be a terminal ® node and ¢ be a switching, the removal of T splits S, into two
connected components (thanks to DR-correctness). If all % nodes are such that both their
premises belong to the same connected component, then T is a sequentializing ® node of S
since the removal of 7" in S has two connected components as well (which are DR-correct).
Otherwise there exists a % node P with a premise in each connected component of the
removal of T" in S,. Each of these components contains a premise of 7' and a premise
of P and (by connectivity) a path from the first to the second. The two obtained paths



are locally switching (Fact 3) and disjoint. Finally, in the component containing P, the
obtained path cannot contain the conclusion of P otherwise, one could connect the two
paths and obtain a cycle in the correctness graph S,/ where ¢ is obtained from ¢ by just
changing the value for P. O

Core Part of the Proof. We now fix a DR-correct proof structure S. We are going to build
a path leading to a sequentializing node.

S contains at least one az node A. If A is a terminal node then it is the unique node of S
(Fact 1) and it is sequentializing, we are done. Otherwise let e be a conclusion of A which is
not a conclusion of S, we follow §(e) and we reach a terminal node N. (x) If N is a % node,
it is sequentializing. Otherwise N is a ® node. Either it is a sequentializing ® node, or we
can apply Lemma 2 to obtain a correctness triple (k, x’, N'). Starting from N’ we then follow
d(N') and we reach a terminal node. We can now continue as before from (x).

If we stop, it means we reach a sequentializing node and we are done. Otherwise we build
an infinite sequence of (signed) edges p1 = Ky - 01 - kg - 02 - kg - 03 - -+ where if N; = s(k;) and
N! = t(k;) then (k;, N}) is a correctness pair for N; (which can be extended into a correctness
triple (ki, K}, N!)) and ¢; = 6(N}) (thus N; is a ® node and N/ is a % node). Since S is finite,
1 must visit twice the same node, and we are going to show this is not possible.

Let N be the first node in g (thus N belongs to some x; or ¢;) which also has another
occurrence in some k; or &, or ¢; for some ¢ < j (note the crucial introduction of ] here). If
we are in one of the first two cases (N occurs in k; or ), we note k = k! - k? the element of
{ki, .} in which N occurs (and &’ the other element), with k! ending with N and ? starting
with N. If k! ends with the conclusion of N and x? starts with one of its premises, we says N

occurs badly (otherwise it occurs well). We define the path ' as:

8 NN if N occurs in §; at the beginning of its suffix ¢’

W= K% 1NN if N occurs well in k; or &

K N k! if N occurs badly in x; or &}

where pn/y (vesp. pn,,,n) is the sub-path of u going from N (resp. Niy1) to the second visit
of N by p.

i is a locally switching path (Facts 4 and 2) which is a cycle and satisfies the hypotheses
of Lemma 1. We thus have a globally switching cycle, this contradicts DR~correctness.

Figure 1 represents the key ingredients of the proof above (in the case where k' = k; and N
occurs badly).
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Figure 1: Cycle for ' = k;




