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We present a new simple proof of the sequentialization property for proof nets of unit-free
multiplicative linear logic [Gir87] satisfying the Danos–Regnier correctness criterion [DR89].

Multiplicative Proof Nets

We recall some basic definitions, terminology, . . . about MLL proof nets and the Danos–Regnier
correctness criterion.

Proof structures. A proof structure S is a non-empty finite directed acyclic multigraph with
loose edges, that is the data (N , C, E , s, t) where N is the set of nodes, C is the set of sinks (these
are the two kinds of vertices), E is the set of edges, s is the source function from E to N and t
is the target function from E to N + C, such that each element of C is the image through t of
exactly one edge, and such that (N +C, E , s, t) is a non-empty finite directed acyclic multigraph.

If s(e) = N we call e a conclusion of N , if t(e) = N we call e a premise of N , if t(e) ∈ C (i.e.
e is a loose edge) we call e a conclusion of S. If all the conclusions of a node N are conclusions
of S, we call N a terminal node.

In a proof structure, each node is labelled with its kind ax, ⊗ or ` and edges are labelled
with formulas of MLL (this label is also called the type of the edge). It is required that:

• Each node labelled ax has no premise and two conclusions with dual types A and A⊥.

• Each node labelled ⊗ has two premises which are ordered and one conclusion. This way
we can speak about the left (first) and right (second) premise of a ⊗ node. If the type of
the left premise is A and the type of the right premise is B, the type of the conclusion
must be A⊗B.

• Each node labelled ` has two premises which are ordered and one conclusion. If the type
of the left premise is A and the type of the right premise is B, the type of the conclusion
must be A`B.

We consider the cut-free case only, since as usual cuts can be encoded as ⊗ nodes for
sequentialization in MLL.

Switchings. Given a proof structure S, let P be the set of its ` nodes. For each function
ϕ : P → {left, right} (called a switching), we define the correctness graph Sϕ by turning the
ϕ(P ) premise of each ` node P into a new loose edge (where ϕ exchanges left and right in the
values of ϕ). Formally, Sϕ is the non-empty finite directed acyclic multigraph with loose edges
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(N , C + CP , E , s, tϕ) where CP = {CP | P ∈ P} (CP is a new sink associated with each P ) and:

tϕ(e) =


t(e) if t(e) /∈ P
P = t(e) if e is the ϕ(P ) premise of P

CP if e is the ϕ(P ) premise of P

Sϕ is not a proof structure: ` nodes have only one premise.

Danos–Regnier correctness. A proof structure S is DR-correct if for each correctness graph
Sϕ, its undirected underlying graph is acyclic and connected.

Fact 1. Any DR-correct proof structure is a (weakly) connected directed multigraph.

Sequentialization

Sequentialization Process. Let S be a proof structure and N be a terminal node (of kind
⊗ or `). The removal of N in S is the proof structure obtained by removing N , the conclusion
of N (if any) with its target and, by adding two new sinks as targets for the premises of N
which are now loose edges. If S is DR-correct, a terminal node N is said to be sequentializing
if, depending on its kind:

• ax node: N is the only node of S.

• ⊗ node: the removal of N in S has two (weakly) connected components being DR-correct
proof structures.

• ` node: the removal of N in S is a DR-correct proof structure.

Given a DR-correct proof structure S, the sequentialization process builds a sequent calculus
proof as follows. Assume S contains a sequentializing terminal node N , we look at the kind of
N :

• ax node: we stop successfully with the proof reduced to an (ax) rule.

• ⊗ node: we apply recursively the sequentialization process to the two obtained DR-correct
proof structures (in the removal of N). We apply a (⊗) rule to the two obtained proofs.

• ` node: we apply the sequentialization process to the removal of N , and we apply a (`)
rule to the obtained proof.

A proof structure S is called sequentializable if the sequentialization process succeeds, that is if
it is possible to find a sequentializing terminal node at each step.

To prove that DR-correct proof structures are sequentializable, it is thus enough to show
that any DR-correct proof structure has a sequentializing terminal node. This is what we do
now.

Paths. A (undirected) path γ is a finite sequence of pairs (ei, εi)1≤i≤n (n ∈ N) with ei ∈ E
and εi ∈ {+,−} (its sign) such that tγ(ei) = sγ(ei+1) (1 ≤ i < n), where the γ-source sγ(ei) is
s(ei) if εi = + and t(ei) if εi = −, and the γ-target tγ(ei) is t(ei) if εi = + and s(ei) if εi = −.
The source (resp. target) of γ is s(γ) = sγ(e1) (resp. t(γ) = tγ(en)). A path is simple if it never
goes twice through the same node: tγ(ei) = sγ(ej) ⇒ j = i + 1 for 1 ≤ i < j ≤ n (we allow
the case of a cycle: tγ(en) = sγ(ej) or tγ(ej) = sγ(e1) for some 1 ≤ j ≤ n). If N1 and N2 are
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two occurrences of nodes visited by the path γ, we denote by γN1N2 the sub-path of γ going
from N1 to N2. The path γ is the reverse of γ (edges in reverse order with opposite signs):
γ = (en+1−i,−εn+1−i)1≤i≤n. If γ1 and γ2 are two paths such that t(γ1) = s(γ2) (we call them
compatible) then their concatenation γ1 · γ2 is a path.

A locally switching path is a simple path which does not start from a ` node through one
of its premises (sγ(e1) is a ` node implies ε1 = +) and does not go consecutively through the
two premises of a ` node (if tγ(ej) is a ` node for some 1 ≤ j < n then εj = − or εj+1 = +).

Fact 2. If γ1 and γ2 are two compatible disjoint non-cyclic locally switching paths, then γ1 · γ2
is a locally switching path.

Since edges of a proof structure S and of its correctness graphs Sϕ are the same, it is
meaningful to compare their paths. A path in Sϕ is always a path in S (but the converse is
wrong in general). Such a simple path of S which is a path in some Sϕ is called a globally
switching path. DR-correctness implies the absence of globally switching cycle.

Fact 3. A globally switching path, which does not start with the premise of a ` node, is a locally
switching path.

Lemma 1 (Local–global principle)
A locally switching cycle γ induces a globally switching cycle as soon as it does not end with the
premise of a ` node P such that the other premise e of P satisfies (e,−) ∈ γ.

Proof: If a cycle does not contain the two premises of any ` node, it is a globally switching
cycle. Let γ′ be the minimal sub-path of γ which is a cycle. Since γ is a locally switching
cycle, if γ′ does not start or end with the premise of ` node, it is then a globally switching
cycle. If γ′ starts and ends with the premises of the same ` node, since γ does not start
with such a premise, γ′ must be a suffix of γ. We then have a contradiction with the
hypotheses. 2

If e is an edge, its descending path δ(e) is the unique directed path (i.e. using only + signs)
starting from e and ending with the premise of a terminal node, if it exists (otherwise δ(e) is
empty). If N is a ` or ⊗ node, we note δ(N) the descending path of its unique conclusion.
δ(N) is empty if and only if N is terminal.

Fact 4. δ(N) is always a locally switching path.

Correctness ` node. Let T be a ⊗ node, a correctness ` for T is a ` node P with two
disjoint locally switching paths κ0 and κ1 from T to P (called correctness paths) which both
start with a premise of T and end with a premise of P . A triple (κ0, κ1, P ) is called a correctness
triple for T and a pair (κi, P ) (i ∈ {0, 1}) a correctness pair.

Lemma 2 (Correctness `)
Non-sequentializing terminal ⊗ nodes of DR-correct proof structures have correctness `s.

Proof: Let T be a terminal ⊗ node and ϕ be a switching, the removal of T splits Sϕ into two
connected components (thanks to DR-correctness). If all ` nodes are such that both their
premises belong to the same connected component, then T is a sequentializing ⊗ node of S
since the removal of T in S has two connected components as well (which are DR-correct).
Otherwise there exists a ` node P with a premise in each connected component of the
removal of T in Sϕ. Each of these components contains a premise of T and a premise
of P and (by connectivity) a path from the first to the second. The two obtained paths
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are locally switching (Fact 3) and disjoint. Finally, in the component containing P , the
obtained path cannot contain the conclusion of P otherwise, one could connect the two
paths and obtain a cycle in the correctness graph Sϕ′ where ϕ′ is obtained from ϕ by just
changing the value for P . 2

Core Part of the Proof. We now fix a DR-correct proof structure S. We are going to build
a path leading to a sequentializing node.
S contains at least one ax node A. If A is a terminal node then it is the unique node of S

(Fact 1) and it is sequentializing, we are done. Otherwise let e be a conclusion of A which is
not a conclusion of S, we follow δ(e) and we reach a terminal node N . (?) If N is a ` node,
it is sequentializing. Otherwise N is a ⊗ node. Either it is a sequentializing ⊗ node, or we
can apply Lemma 2 to obtain a correctness triple (κ, κ′, N ′). Starting from N ′, we then follow
δ(N ′) and we reach a terminal node. We can now continue as before from (?).

If we stop, it means we reach a sequentializing node and we are done. Otherwise we build
an infinite sequence of (signed) edges µ = κ1 · δ1 · κ2 · δ2 · κ3 · δ3 · · · where if Ni = s(κi) and
N ′i = t(κi) then (κi, N

′
i) is a correctness pair for Ni (which can be extended into a correctness

triple (κi, κ
′
i, N

′
i)) and δi = δ(N ′i) (thus Ni is a ⊗ node and N ′i is a ` node). Since S is finite,

µ must visit twice the same node, and we are going to show this is not possible.
Let N be the first node in µ (thus N belongs to some κj or δj) which also has another

occurrence in some κi or κ′i or δi for some i ≤ j (note the crucial introduction of κ′i here). If
we are in one of the first two cases (N occurs in κi or κ′i), we note κ = κ1 · κ2 the element of
{κi, κ′i} in which N occurs (and κ′ the other element), with κ1 ending with N and κ2 starting
with N . If κ1 ends with the conclusion of N and κ2 starts with one of its premises, we says N
occurs badly (otherwise it occurs well). We define the path µ′ as:

µ′ =


δ′ · µNi+1N if N occurs in δi at the beginning of its suffix δ′

κ2 · µN ′
iN

if N occurs well in κi or κ′i
κ′ · µN ′

iN
· κ1 if N occurs badly in κi or κ′i

where µN ′
iN

(resp. µNi+1N ) is the sub-path of µ going from N ′i (resp. Ni+1) to the second visit
of N by µ.

µ′ is a locally switching path (Facts 4 and 2) which is a cycle and satisfies the hypotheses
of Lemma 1. We thus have a globally switching cycle, this contradicts DR-correctness.

Figure 1 represents the key ingredients of the proof above (in the case where κ′ = κi and N
occurs badly).
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Figure 1: Cycle for κ′ = κi


