
1Sliing polarized additive normalizationOlivier LaurentIML-CNRS MarseilleOlivier.Laurent�pps.jussieu.frLorenzo Tortora de FaloRoma IIItortora�uniroma3.itAbstratTo attak the problem of \omputing with the additives", we introduea notion of slied proof-net for the polarized fragment of linear logi. Weprove that this notion yields omputational objets, sequentializable inthe absene of uts. We then show how the injetivity property of deno-tational semantis guarantees the \anoniity" of slied proof-nets, andprove injetivity for the fragment of polarized linear logi orrespondingto the simply typed �-alulus with pairing.1.1 IntrodutionThe question of equality of proofs is an important one in the \proofs-as-programs" paradigm. Traditional syntaxes (sequent alulus, naturaldedution, . . . ) distinguish proofs whih are learly the same as ompu-tational proesses. On the other hand, denotational semantis identi�es\too many" proofs (two di�erent stages of the same omputation are al-ways identi�ed). The seek of an objet stiking as muh as possible to theomputational nature of proofs led to the introdution of a new syntaxfor logi: proof-nets, a graph-theoreti presentation whih gives a moregeometri aount of proofs (see [Gir87℄). This disovery was ahievedby a sharp (syntatial and semantial) analysis of the ut-eliminationproedure.Any person with a little knowledge of the multipliative framework oflinear logi (LL), has no doubt that proof-nets are the anonial repre-sentation of proofs. But as soon as one moves from suh a fragment, thenotion of proof-net appears \less pure". A reasonable solution for themultipliative and exponential fragment of LL (with quanti�ers) does1



2exist (ombining [Dan90℄ and [Gir91b℄, like in [TdF00℄). Turning tomultipliative and additive LL (MALL), the situation radially hanges:sine the introdution of proof-nets [Gir87℄, the additives were treated inan unsatisfatory way, by means of \boxes". Better solutions have beenproposed in [Gir96℄ and [TdF03℄, until the paper [HvG03℄ introdued\the good notion" of proof-net for ut-free MALL. But still, trying todeal with the full propositional fragment means entering a true jungle.Of ourse, it is possible to survive (i.e. to ompute) in this jungle, asshown in [Gir87, TdF00℄. So what? The problem is that the objets(the proof-nets) used are de�nitely not anonialy.Reently, a new fragment of LL appeared to have a great interest:in [Gir91a℄ and [DJS97℄ the polarized fragment of LL is shown to beenough to translate faithfully lassial logi. A study of proof-nets forsuh a fragment was undertaken in [Lau99℄, and the notion of [Gir96℄drastially simpli�ed. In [LQTdF00℄ a proof of strong normalizationand onuene of the ut-elimination proedure is given for polarizedLL, using the syntax of [Gir87℄ (notie that for full LL onuene iswrong and strong normalization is still not ompletely proven). Despitethese positive results, the notion of proof-net still appears as (more orless desperately, depending on the ases) non anonial.The �rst ontribution of the present paper is the proposal of a mathe-matial ounterpart for the term \anonial". And here is where denota-tional semantis omes into the piture: in [TdF01℄, the question of in-jetivity of denotational semantis is addressed for proof-nets. Roughlyspeaking, denotational semantis is said to be injetive when the equiv-alene relation it de�nes on proofs oinides with the one de�ned bythe ut-elimination proedure. Our proposal is to let semantis deideon the anoniity of some notion of proof-net: this is anonial whenthere exists a (non ontrived, obviously!) denotational semantis whihis injetive with respet to the would-be anonial notion of proof-net.Notie that this is a rather severe notion of anoniity. Indeed, proof-nets for multipliative LL are anonial (and this is probably true alsofor MALL using [HvG03℄), but the previously mentioned extension tomultipliative and exponential LL is not guaranteed to be anonial:the time being we only know that oherent (set and multiset based)semantis is not injetive for suh proof-nets (see [TdF01℄). Finally, they We will use the term anonial in an intuitive way, following the idea that aanonial representation of a proof is not sensitive to inessential ommutations ofrules.



Sliing polarized additive normalization 3known syntaxes for full LL (with additives) are obviously not anonialfor the usual semantis of linear logi.The notion of slie was �rst introdued in [Gir87℄. The idea is verysimple: instead of dealing with both the omponents of an additive box\at the same time", what about working with these two omponentsseparately? This attitude is tempting beause it ignores the superimpo-sition notion underlying the onnetive & (whih is preisely the diÆultpoint to understand). It is shown in [Gir96℄ that the orretness of theslies of a proof-struture does not imply the orretness of the proof-struture itself (see also [HvG03℄). However, this turns out to be true ina polarized and ut-free framework (theorem 1.32).In setion 1.2, we give some intuitions on the original notion of sliefor MALL oming from [Gir87℄.We then de�ne, in setion 1.3, a notion of slied proof-struture forpolarized LL (de�nition 1.5), and we show how to translate sequentalulus proofs into slied proof-strutures. To obtain anonial objets,we deal with atomi axioms and proof-strutures in the style of the\nouvelle syntaxe" of Danos and Regnier [Reg92℄. For this purpose, weintrodue [-formulas whih do not our in sequent alulus, but are veryuseful in our framework: a formula [A is neessarily the premise of a ?-link. The notation (and the meaning) of [A is learly very muh inspiredfrom Girard's works on ludis [Gir01℄ and on light linear logi [Gir95℄.We introdue in setion 1.4 the relational semantis. We adapt thede�nition of experiment of [Gir87℄ to our framework, and we de�nethe interpretation of a slied proof-struture (de�nition 1.13). Parti-ular experiments oming from [TdF01℄ are also introdued (injetive1-experiments), to be used later in setion 1.8.Setion 1.5 is devoted to de�ne and to study the notion of \orret"slied proof-struture (or slied proof-net). The polarization onstraintsallow to apply to our framework the orretness riterion of [Lau99℄.We de�ne a slied ut-elimination proedure (de�nition 1.21), we provethat orretness is preserved by our slied ut-elimination steps (theo-rem 1.24) and that our semantial interpretation is sound (theorem 1.26).Our slied proof-nets are thus proven to be omputational objets.In setion 1.6, we prove that in the absene of uts, the orretnessriterion (plus some obviously neessary onditions on sets of slies)is enough to \glue" in a unique way di�erent slies: a slied proof-net omes from a sequent alulus proof (theorem 1.32). This result



4follows [Lau99℄ (where the &-jumps of [Gir96℄ are removed) and [Lau03℄(where the remaining jumps for weakenings are also removed).Setion 1.7 explains and justi�es in details our method: the use ofinjetive denotational semantis as a witness of anoniity of our sliedproof-nets.The reader should notie that this is the very �rst time a notionof proof-net ontaining the additives and the exponentials an reallypretend to be anonial.Finally, setion 1.8 shows that our method makes sense: there existinteresting fragments of polarized LL for whih denotational semantis isinjetive (and thus the orresponding proof-nets are anonial), like the�-alulus with pairing. The result that we prove is an extension of theresult of [TdF01℄. Thanks to a remark of L. Regnier on the �-alulus(expressed by proposition 1.48), we ould avoid to reprodue the entireproof. We thus get injetivity only for relational semantis, but in aquik and simple way.Let us onlude by stressing the fat that the last setion is simplyan example to illustrate the method explained in setion 1.7, and it is(very) likely that injetivity for oherent and relational semantis holdsfor the whole polarized fragment. This would give anonial proof-netsfor polarized LL, that is for lassial logi (see [LQTdF00℄).1.2 A little history of sliesSlies were �rst introdued in [Gir87℄, and the following examples omediretly from the ideas of that work.In this setion, we only want to give some hints of what will be de-veloped in the following ones. In partiular, all the notions used heresimply have an intuitive meaning, and will be formally de�ned later.Intuitively, a slie of a proof is obtained by hoosing, for every our-rene of the rule &, one of the two premises. With the sequent alulusproof obtained by adding a ut betweenax` A?; A �1` A? �B?; A ax` B?; B �2` A? �B?; B &` A? �B?; A&B P` (A? �B?) P (A&B)and



Sliing polarized additive normalization 5ax` A&B;A? �B? ax` A?; A �1` A? �B?; A 
` (A&B)
 (A? �B?); A;A? �B?one would like to assoiate a graph, like:
A? �B?

A BA&B
A? A&BA?P 
 �1�1 �2

A A? �B?
B? &

ut
ax ax axax

where the dashed box is an attempt to express some kind of \superim-position" of two subgraphs. Choosing to work separately with eah ofthese two subgraphs means \sliing" the proof-net into the two followingslies (where the binary &-link is replaed by two unary &-links):A? A A&BaxA? �B? A?
A A? �B?

�1 P 
 �1&1 ax
ut

axA&B
BB? A&BA? �B? A?

A A? �B?P 
 �1 ax
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ax�2 &2A&Bax



6 In [Gir96℄, Girard shows that the orretness of slies is not enoughto ensure the orretness of the whole graph: it is easy to see that thereexists a proof-struture with onlusion A
(B&C); (A? P B?)�(A? PC?), with two orret slies, whih is itself not orret. We will omebak to this point with our theorem 1.32.Let's now give an intuition of a possible \slied" ut-elimination pro-edure for the 2-slied graph assoiated with the sequent alulus proofof ` A;A? �B? above.By eliminating the P/
 ut in both the slies (notie that in a sliedperspetive this orresponds to two steps), one gets the 2-slied stru-ture:

B
A? A�1 ax &1

A? �B? A A? �B?�1ut utA&B
A? �B? A A? �B?�1ut utA&B A?A&B axax

A?A&B axax�2 &2axB?

whih after (two) axiom steps redues to:



Sliing polarized additive normalization 7
A

AA? ax�1 &1 ut A? ax�1A? �B? A&B

A
BB? ax�2 &2

A? �B? ut �1A? axA&B
We meet here an important point: in one of the slies we have a &1/�1ut whih an be easily redued, but in the seond one we have a &2/�1ut and no way of reduing it. By performing one step of ut-elimination(the only possible one), we obtain the 2-slied struture:

A
A

A
B

A? ax�1 A? axut
B? ax�2 &2

A? �B? ut �1A? axA? �B?
A&B



8and we now have to erase the slie ontaining the &2/�1 ut, thusobtaining the 1-slied proof-struture:
A

AA? ax�1
A? �B? ut A? ax

whih eventually redues to:
AA? ax�1A? �B?1.3 Slied proof-struturesIn a polarized framework, we de�ne slied proof-strutures and give thetranslation of sequent alulus proofs.De�nition 1.1 A polarized formula is a linear propositional formulaverifying the following onstraints:N ::= X j N P N j N &N j ?PP ::= X? j P 
 P j P � P j !Nor a positive formula P pre�xed by the symbol [ (onsidered as a negativeformula).LLpol [Lau99℄ is the fragment of LL using only polarized formulas.Lemma 1.2 Every sequent ` � provable in LLpol ontains at most onepositive formula.Proof See [Lau99℄.De�nition 1.3 (Proof-struture) A proof-struture is a �nite ori-ented graph whose nodes are alled links, and whose edges are typed by



Sliing polarized additive normalization 9formulas of LLpol. When drawing a proof-struture we represent edgesoriented up-down so that we may speak of moving upwardly or down-wardly in the graph, and of links or edges \above" or \under" a givenlink/edge. Links are de�ned together with an arity and a oarity, i.e.a given number of inident edges alled the premises of the link and agiven number of emergent edges alled the onlusions of the link.� an axiom link or ax-link has no premise and two onlusionstyped by dual atomi formulas,� a ut link has two premises typed by dual formulas (whih arealso alled the ative formulas of the ut link) and no onlusion,� a P- (resp. 
-) link has two premises and one onlusion. Ifthe left premise is typed by the formula A and the right premiseis typed by the formula B, then the onlusion is typed by theformula A P B (resp. A
B),� an !-link has no premise, exatly one onlusion of type !A andsome onlusions of [-types,� a [-link has one premise of type A and one onlusion of type [A,� a ?-link has k � 0 premises of type [A and one onlusion of type?A.Let G be a set of links suh that:(�) every edge of G is the onlusion of a unique link;(�) every edge of G is the premise of at most one link.We say that the edges whih are not premise of a link are the onlusionsof G.We say that G is a proof-struture if with every !-link with onlusions!A; [� is assoiated a proof-struture with onlusions A; [� (alled itsbox).The links of the graph G are alled the links with depth 0 of the proof-struture G. If a link n has depth k in a box assoiated with an !-link ofG, it has depth k + 1 in G. The depth of an edge a is the depth of thelink of whih a is onlusion. The depth of G is the maximal depth ofits links.Convention: In the sequel, proof-strutures will always have a �nitedepth.Remark 1.4 Notie that, by de�nition, the boxes of a proof-struturesatisfy a nesting ondition: two boxes are either disjoint or ontainedone in the other.



10Notie also that the type of every onlusion of a box is a negativeformula.De�nition 1.5 (Slied proof-struture) A slied proof-struture isa �nite set S of slies suh that all the slies have the same onlusions,up to the ones of type [.If S ontains n slies, and if �; [�i are the onlusions of the slie siof S, then �; [�1; : : : ; [�n are the onlusions of S.A slie s is a proof-struture possibly ontaining some unary &1-, &2-(resp. �1-, �2-) links, whose premise has type A, B and whose on-lusion has type A & B (resp. A � B). With every !-link n of s withmain onlusion !C is now assoiated a slied proof-struture Sn (whihis still alled the box assoiated with n). This means, in partiular, thatC appears in every slie of Sn, while every [-onlusion of n appears inexatly one slie of Sn.De�nition 1.6 (Single-threaded slie) A single-threaded slie is aslie s suh that the slied proof-strutures assoiated with the !-links ofs ontain only one slie, whih is itself a single-threaded slie.The notions of depth in a single-threaded slie, in a slie, and in aslied proof-struture are the straightforward generalizations of the samenotions for proof-strutures given in de�nition 1.3.Remark 1.7 With every slied proof-struture S is naturally assoiateda set of single-threaded slies, to whih we will refer as the set of the\single-threaded slies of S (or assoiated with S)" denoted by sgth(S).Remark 1.8 Every formula A of a slied proof-struture is a onlusionof a unique link introduing A. (Notie that this is of ourse not the asein any version of proof-nets for the full propositional fragment of LL).We are now going to assoiate with every linear sequent alulus proofa slied proof-struture.De�nition 1.9 (Translation of the sequent alulus) Let R bethe last rule of the (�-expanded) linear sequent alulus proof �. Wede�ne the slied proof-struture S� (with the same onlusions as �) byindution on �.� If R is an axiom with onlusions X;X?, then the unique slieof S� is an axiom link with onlusions X;X?.



Sliing polarized additive normalization 11� If R is a P- or a �-rule, having as premise the subproof �0, thenS� is obtained by adding to every slie of S�0 the link orrespond-ing to R.� If R is a 
- or a ut rule with premises the subproofs �1 and �2,then S� is obtained by onneting every slie of S�1 and everyslie of S�2 by means of the link orresponding to R. Notie thatif S�1 (resp. S�2) ontains k1 (resp. k2) slies, then S� ontainsk1 � k2 slies.� If R is a &-rule with premises the subproofs �1 and �2, thenS� is obtained by adding a &1- (resp. &2-) link to every slieof S�1 (resp. S�2) and by taking the union of these two sliedproof-strutures.� If R is a derelition rule on A having as premise the subproof �0,then S� is obtained by adding to eah slie of S�0 a [-link withpremise A and onlusion [A and a unary ?-link with premise [Aand onlusion ?A.� If R is a weakening rule on ?A, then S� is obtained by adding a?-link with arity 0 and onlusion ?A.� If R is a ontration rule on ?A having as premise the subproof �0,then by indution hypothesis, every slie of S�0 has two formulas?A among its onlusions. By remark 1.8, these two formulasare both onlusions of a ?-link. We replae the two ?-links by aunique ?-link with the required arity, and thus obtain the slies ofS�.� If R is a promotion rule with onlusions !C; ?A1; : : : ; ?An havingas premise the subproof �0, then let s0i be one of the p � 1 slies ofS�0 . For every slie s0i of S�0 with onlusions C; ?A1; : : : ; ?An,we all si the graph obtained by erasing the ?-links with onlu-sions ?A1, . . . , ?An. si is a slie with onlusions:C; [A11;i; : : : ; [Aq1;i1;i ; : : : ; [A1n;i; : : : ; [Aqn;in;iwith qj;i � 0. The unique slie of S� is an !-link with onlu-sions !C; [A11;1; : : : ; [Aqn;1n;1 ; : : : ; [A11;p; : : : ; [Aqn;pn;p , to whih we addfor every 1 � j � n a ?-link having as premises [Akj;i (1 � i � pand 1 � k � qj;i) and as onlusion ?Aj . The slied proof-struture assoiated with the unique !-link of S� is the set of thesi (1 � i � p).Remark 1.10 Let's try to give a more informal (but, hopefully learer)desription of the last ase of the previous de�nition. For every formula



12?Aj , we replae the ?-link introduing it in eah slie by a unique ?-linkin the (unique) slie of S�.Let us onlude the setion by giving an example of the auray ofour slied strutures. The following sequent alulus proof:ax` A;A? ?d` A; ?A? ?w` A; ?A?; ?B? ax` B;B? ?w` B; ?A?; B? ?d` B; ?A?; ?B? &` A&B; ?A?; ?B? !` !(A&B); ?A?; ?B?is translated as the slied struture:
! ? ?[A? [B?

?A?
A BA&B A&B [[ &2&1 ax axA? B?
!(A&B) ?B?The previous struture is built indutively with respet to the depth:with the sequent alulus proof one assoiates the graph onsisting inthe !-link and in the two ?-links, and with the !-link are assoiated twoslies (the ones inside the two dashed retangles).Notie that following the Danos-Regnier representation of proof-netsalled \nouvelle syntaxe", onsisting in \pulling down" the struturalrules, the two weakenings of the sequent alulus proof simply vanished.1.4 SemantisWe onsider the onrete semantis of experiments introdued in [Gir87℄.We develop here only the ase of relational semantis but the notion ofexperiment suits also very well oherent set-based and multiset-basedsemantis (see [TdF00℄).Our results (like the existene of an injetive 1-experiment used in theproof of lemma 1.49) will be ompletely proven only in the relational



Sliing polarized additive normalization 13ase, but the extension to the oherent semantis is just a matter ofheking some minor details, onsisting in the extension to our frame-work of the results proven in [TdF01℄ without the additives.De�nition 1.11 (Relational interpretation of formulas) The spaeinterpreting a formula A will be denoted in the sequel by A. It is a set,de�ned by indution on the omplexity of A:� X = X? is any set;� A 
 B = A P B is the artesian produt of the sets A and B;� A& B = A�B is the disjoint union of the sets A and B;� !A = ?A = [A is the set of �nite multisets of elements of A.De�nition 1.12 (Experiment) If S is a slied proof-struture, anexperiment of S is an experiment of one of the slies of S.An experiment e of a slie s of S is an appliation whih assoiateswith every edge a of type A with depth 0 of s an element e(a) of A, alledthe label of a. We de�ne suh an appliation by indution on the depthp of s.If p = 0, then:� If a = a1 is the onlusion of an axiom link with onlusions theedges a1 and a2 of type X and X? respetively, then e(a1) =e(a2).� If a is the onlusion of a P- (resp. 
-) link with premises a1and a2, then e(a) = (e(a1); e(a2)).� If a is the onlusion of a link �i (resp. &i), i 2 f1; 2g withpremise a1, then e(a) = (i; e(a1)).� If a is the onlusion of a derelition link with premise a1, thene(a) = fe(a1)g.� If a is the onlusion of a ?-link of arity k � 0, with premisesa1; : : : ; ak, then e(a) = e(a1)[� � �[e(ak), and e(a) 2 ?C (if k = 0we have e(a) = ;).� If a is the premise of a ut link with premises a and b, thene(a) = e(b).If the onlusions of S are the edges a1; : : : ; al of type, respetively,A1; : : : ; Al, and e is an experiment of S suh that 8i 2 f1; : : : ; lg e(ai) =xi, then we shall say that (x1; : : : ; xl) 2 A1 P : : : P Al is the result ofthe experiment e of S. We shall also denote it by x1; : : : ; xl.If p > 0, then e satis�es the same onditions as in ase p = 0, andfor every !-link n with depth 0 in s and with onlusions  of type !C



14and a1; : : : ; al of type, respetively, [A1; : : : ; [Al, there exist k � 0 exper-iments e1; : : : ; ek of the slied proof-struture S0 assoiated with n suhthat � e() = fx1; : : : ; xkg, where xj is the label assoiated with the edgeof type C by ej,� If s0 is the (unique!) slie of S0 ontaining the edge a0j with thesame type as aj , then e(aj) is the union of the labels assoiatedwith a0j by the k experiments of s0. Notie that it might be thease that none of the k experiments is de�ned on a0j : in this aseone has e(aj) = ;.Of ourse, we have that e() 2 !C, and e(aj) 2 [Aj (this would be anextra requirement in the oherent ase).De�nition 1.13 (Interpretation) The interpretation or the seman-tis of a slied proof-struture S with onlusions � is the set:JSK := f 2 P � : there exists an experiment e of S with result g,where P � is the spae interpreting the P of the formulas of �.Remark 1.14 The interpretation of a slied proof-struture S dependson the interpretation hosen for the atoms of the formulas of S. Onethis hoie is made, JSK is (by de�nition) the union of the interpretationsof the slies of S.The reader should notie that the union of the interpretations of thesingle-threaded slies of S is not enough to reover JSK (exept in somepartiular ases, for example when S is a ut-free proof-net, see se-tion 1.8). This is a ruial point (behind whih hide the omplex relationsbetween the additive and multipliative worlds) showing the impossibilityof working only with single-threaded slies.Indeed, were we working with a \single-threaded semantis", by uttingthe single-threaded version of the example at the end of setion 1.3 (onthe formula !(A&B)) with the proof-net orresponding to the followingproof (whih is a single-threaded slie sine there is no &-rule):ax` A;A? �1` A;A? �B? ?d` A; ?(A? �B?) !` !A; ?(A? �B?) ax` B;B? �2` B;A? �B? ?d` B; ?(A? �B?) !` !B; ?(A? �B?) 
` !A
 !B; ?(A? �B?); ?(A? �B?) ?` !A
 !B; ?(A? �B?)



Sliing polarized additive normalization 15we would get a proof-net with an empty semantis. Moreover, applyingthe ut-elimination proedure desribed in the next setion (to the setof single-threaded slies assoiated with that same net) would lead to anempty set of slies.The following notion of 1-experiment is a partiular ase of the moregeneral notion of n-obsessional experiment introdued in [TdF01℄.De�nition 1.15 (1-experiment) An experiment e of a slied proof-struture S is a 1-experiment, when with every !-link of S one has (usingthe notations of de�nition 1.12) k = 1, and e1 is a 1-experiment.Remark 1.16 Let S be a slied proof-struture.(i) Let e be a 1-experiment of S. If a is any edge of S of type A,then with a the experiment e assoiates at most one element ofA, whatever the depth of a is. In ase e is not a 1-experiment,this is (in general) the ase only for the edges with depth 0.(ii) The 1-experiments of S are exatly the 1-experiments of the single-threaded slies of S.(iii) We say that a 1-experiment e of a single-threaded slie s of S isinjetive when for every pair of (di�erent) axiom links n1 and n2of s, if x1 (resp. x2) is the (unique) label assoiated by e with theonlusions of n1 (resp. n2), then x1 6= x2.(iv) If S ontains no ut links, then there always exists an injetive ex-periment of any single-threaded slie of S (just assoiate distintlabels with the axiom links and \propagate" them downwardly).This is not that obvious in the oherent ase (due to the preseneof ?-links): it is atually wrong in a non polarized framework,even for single-threaded slies oming from sequent alulus proofs(see [TdF01℄).1.5 Proof-nets and ut-eliminationWe now de�ne a notion of orret slied proof-struture: a proof-netis a slied proof-struture satisfying some geometrial ondition. Forthese slied proof-nets, a \slied" ut-elimination proedure is given: aut-elimination step is a step in one of the slies.We show that the ut-elimination steps preserve the orretness of thestrutures, and that the interpretation given by de�nition 1.13 is sound(i.e. invariant with respet to these steps).



16 1.5.1 De�nitionsDe�nition 1.17 (Ayli slied proof-struture) The orretiongraph (see [Lau99℄) of a slie s is the direted graph obtained by erasingthe edges onlusions of s, forgetting the slied proof-struture assoi-ated with every !-link with depth 0 in s and by orienting negative (resp.positive) edges downwardly (resp. upwardly).A single-threaded slie satis�es (AC) when its orretion graph, so asthe orretion graph of all its boxes, is ayli.A slied proof-struture S is ayli, when every single-threaded slieassoiated with S satis�es (AC).De�nition 1.18 (Proof-net) Let S be an ayli slied proof-struturewithout any [-onlusion. S is a proof-net if every slie of S has ex-atly one [-link or one positive onlusion (at depth 0). Moreover, werequire that the slied proof-strutures (the boxes) S1; : : : ; Sk, reursivelyassoiated with the !-links of S also satisfy these properties.Remark 1.19 More geometrially, notie that this only [-link (or linkabove the positive onlusion) is the only non-weakening initial node(without inident edge) of the orretion graph.Remark 1.20 It is easy (and standard) to show, by indution on thesequent alulus proof, that the slied proof-struture assoiated by de�-nition 1.9 with a sequent alulus proof is a proof-net.Notie that the ondition given by de�nition 1.18 is nothing but theproof-net version of lemma 1.2.We ome now to the de�nition of the ut-elimination proedure. If theut link  has depth n in the slied proof-struture S, the ut-eliminationstep assoiated with  will be a step for the slied proof-struture asso-iated with the !-link (of depth n� 1) the box of whih ontains .De�nition 1.21 (Cut-elimination) Let S be an ayli slied proof-struture without [-onlusions. We de�ne a one step redut S0 of S. Lets 2 S and  be a ut link of s. We de�ne fs0igi2I , obtained by applyingsome transformations to s. S0 is the set of the slies obtained from S bysubstituting fs0igi2I for s.� If  is a ut link of type ax, then fs0g is obtained, as usual, byerasing the axiom link and the ut link.



Sliing polarized additive normalization 17� If  is a ut link of type P/
, let A and B (resp. A? and B?)be the premises of the P-link (resp. 
-link). fs0g is obtained byerasing the P-link, the 
-link and the ut link and by putting twonew ut links between A and A?, and B and B?.� If  is a ut link of type &i/�i, then fs0g is obtained by erasingthe two links and by moving up the ut link to their premises.� If  is a ut link of type &1/�2 (or &2/�1), then I = ; (wesimply erase s). Moreover, if s is the unique slie of the sliedproof-struture Sn assoiated with the !-link n, we also erase theslie ontaining n (and so on reursively. . . ).� If  is a ut link of type !=? with a 0-ary ?-link, then the !-link (to-gether with its box) and its onlusion edges are erased. We thenerase the 0-ary ?-link (and the ut) thus obtaining fs0g (notiethat some ?-links have lost some premises).� If  is a ut link of type !=? with a 1-ary ?-link under a [-link,let T be the slied proof-struture assoiated with the !-link. Witheah slie ti of T , we assoiate the slie s0i de�ned by erasing the?-link and the [-link, by replaing in s the !-link by ti and byutting the main onlusion of ti with the premise of the [-link.� If  is a ut link of type !=? with a 1-ary ?-link whose premise isa [-onlusion of an !-link l0, let T be the slied proof-strutureassoiated with l0 and l be the ut !-link. Let ?A=!A? be the utformula. fs0g is obtained by erasing l and its onlusions and byreplaing the onlusion [A of l0 by all the [-onlusions of l. Andwith this new !-link (whih we still denote by l0) is assoiated aslied proof-struture T 0 obtained by replaing the (unique) sliet of T having [A among its onlusions by the slie obtained byadding to the onlusion of type [A of t a unary ?-link and uttingits onlusion (of type ?A) with the onlusion of type !A? of l.(The slied proof-struture assoiated with l remains unhanged).� If  is a ut link of type !=? with a n-ary ?-link l with n > 1,then fs0g is obtained by reating a new unary ?-link l0 having aspremise one of the premises of l (and erasing the orrespondingedge above l), by dupliating the !-link and by utting the opywith the onlusion of l0, every [-onlusion of the opy of the!-link is premise of the same links as the edge it is a opy of(namely, they are intuitively premise of the same ?-link). Theslied proof-strutures assoiated with the two opies of the !-linkare the same.



18
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Remark 1.22 The attentive reader ertainly notied that there are ex-atly two ases in whih the previous de�nition requires the ayliityondition:(i) when the two premises of a ut link are both onlusions of thesame axiom link,(ii) when the two premises of a ut link are both onlusions of thesame !-link (in fat, in our framework, this means that the premiseof type ? of the ut link is the onlusion of a ?-link whose premiseis a onlusion of type [ of the !-link).In these two ases the ut-elimination proedure is not de�ned. By thefollowing setion, the ayliity of a slied proof-struture is a suÆientondition to ensure that ut-elimination never yields to these on�gura-tions. 1.5.2 Preservation of orretnessProposition 1.23 (Preservation of ayliity) If S0 is a slied proof-struture obtained from the ayli slied proof-struture S (without [onlusions) by performing some steps of ut-elimination, then S0 isayli.Proof We study every ut-elimination step, using the notations of de�-nition 1.21:� For the &i/�j (i 6= j) and !/0-ary ? steps, we erase a part of thegraphs, suh an operation annot reate yles.� For the ax and &i/�i steps, some paths are replaed by shorterones hanging nothing to yles.



Sliing polarized additive normalization 19� For the P/
 step, if p is a path ontaining a yle in S0, it mustuse one of the two new ut links starting from the premise A of theP-link and going to the premise A? of the 
-link, for example. Ifp exists, then replaing in S the part from A to A? by the pathgoing from A through the P-link, the ut link and the 
-link toA? would give a yle in S.� For the !/1-ary ? step with a [-link just above the ?-link, if s0iontains a yle p, either it is inside ti and thus omes from ayle in S or it goes outside ti, but due to the orientation, it isimpossible for a path to go outside ti and to ome inside ti sineti has only emergent edges (sine it has only negative onlusionsfrom remark 1.4).� For the !/1-ary ? step with an !-link just above the ?-link: at thedepth p of the ut link, some paths are just replaed by shorterones, and this annot reate any yle. At depth p+ 1, adding aut and an !-link to an ayli graph annot reate any yle.� For the !/n-ary ? step (n > 1), if p is a yle in S0, it has to rossone of the two residues of the ut link of S. But identifying thetwo ?-links, the two ut links and the two !-links in p would givea yle in S thus p doesn't exist.Theorem 1.24 (Preservation of orretness) If S0 is a slied proof-struture obtained from the proof-net S by performing some steps ofut-elimination, then S0 is a proof-net.Proof S0 is ayli by proposition 1.23. To onlude, we now prove thatif S0 is a one-step redut of S, then (whatever redution step has beenperformed) S0 has exatly one positive onlusion or one [-link at depth0 and in every slie of every box (assuming that the redued ut hasdepth 0 in S):� The multipliative and additive steps are straightforward and the!/0-ary ? step, too.� For the !/1-ary ? step with a [-link just above the ?-link, the [-link at depth 0 is erased and replaed by the one oming fromevery slie of the box of the !-link (whih neessarily exists byremark 1.4 and de�nition 1.18).� For the !/1-ary ? step with an !-link just above the ?-link, the



20 [-links and the positive onlusions at depth 0 are not modi�edand at depth 1, we just add an !-node to a slie.� For the !/n-ary ? step (n > 1), some links are dupliated but the[-links (and the positive onlusions) are unhanged.1.5.3 Soundness of the interpretationWe are going to prove that the ut-elimination proedure previouslyde�ned preserves the semantial interpretation. We use exatly the sametehnique as in [Gir87℄, and give the details of the proof only in the mostrelevant ases. The proof is given for the relational semantis, and itan be straightforwardly extended to both the set and multiset basedoherent semantis (see remark 1.27).Remark 1.25 By indution on the sequent alulus proof �, one anhek that the semantis of � (as de�ned for example in [Gir87℄) is thesemantis of the slied proof-struture S� of de�nition 1.9.Theorem 1.26 (Semantial soundness) If S0 is a slied proof-strutureobtained from the ayli proof-struture S without [-onlusions by per-forming some steps of ut-elimination. Then JSK = JS0K.Proof Let � be the onlusions of S and S0 and  an element of P �.We show that there exist a slie s of S and an experiment e of s withresult , i� there exist a slie s0 of S0 and an experiment e0 of s0 withresult .One has to hek this is the ase for every ut-elimination step de�nedin de�nition 1.21. We will use for these steps the notations of de�ni-tion 1.21. Let  be a ut link of a slie s of S. Notie that our laimis obvious for the slies whih are not onerned by the ut-eliminationstep that we onsider, and we then restrit to the other ones: we provethat there exists an experiment e of s with result , i� there exist a slies0 of fs0igi2I and an experiment e0 of s0 with result .By indution on the depth of  in s, we an restrit to the ase where has depth 0. The steps assoiated with the ax and P/
 ut links arethe same as in [Gir87℄.� If  is a ut link of type &i/�i, and e is an experiment of s, let(i; x) be the element of A& B = A? � B? assoiated by e with



Sliing polarized additive normalization 21the two edges premises of . Then the experiment e0 of s0 welook for is the \restrition" of e to s0: the label assoiated by ewith the two premises of the unary &i and �i links of s is x, andx is also the label assoiated by e0 with the two premises of the\residue" of  in s0. For the onverse, one learly proeeds in thesame way.� If  is a ut link of type &1/�2 (or &2/�1), then there exists noexperiment of s (remember the ondition of de�nition 1.12 on thelabel of the premises of a ut link), and no experiment of fs0igi2I(remember I = ;).� If  is a ut link of type !=? with a 0-ary ?-link, then we are simplyapplying the weakening step of [Gir87℄.� If  is a ut link of type !=? with a 1-ary ?-link whose premise isthe onlusion of a [-link, let T be the slied proof-struture asso-iated with the !-link. With eah slie ti of T , this step assoiatesa slie s0i.Let e be an experiment of s, let fxg be the element of !A =?A?assoiated by e with the two edges premises of . By de�nitionof experiment, beause the label of the onlusion of the !-link isa singleton, there is a unique slie ti of the slied proof-strutureT (assoiated with the !-link), and a unique experiment ei of tifrom whih e is built. The label assoiated with the onlusion oftype A of ti will be x 2 A. Again by de�nition of experiment, thelabel assoiated by e with the premise of type A? of the [-link isx 2 A?. We an then build (from ei) an experiment e0i of s0i withthe same result as e. For the onverse, one proeeds in the sameway: an experiment e0 of some slie s0i indues an experiment eiof ti, and an experiment e of s.� If  is a ut link of type !=? with a 1-ary ?-link whose premise isa onlusion (of type [) of the box assoiated with the !-link l0(di�erent from l), then there is nothing new with respet to theommutative step of [Gir87℄.� If  is a ut link of type !=? with a n-ary ?-link l with n > 1, thenlet e be an experiment of s, let fx1; : : : ; xkg = a1[� � �[an be theelement of !A =?A? assoiated by e with the two edges premisesof . Suppose that a1 is the label of the one among the premisesof the ?-link of arity n, whih beomes the onlusion of the newunary ?-link. We have fx1; : : : ; xkg = a1 [ fy1; : : : ; yhg. Thissplitting is atually a splitting of the k experiments of the sliedproof-struture assoiated with the !-link. This remark is enough



22 to onlude the existene of an experiment e0 of s0 with the sameresult as e. Conversely, let e0 be an experiment of s0. Beause theslied proof-struture assoiated with the two !-links is the samewe an build an experiment e of s with the same result as e0.Remark 1.27 To prove the soundness of the (set and multiset based)oherent semantis, one �rst needs to generalize the following resultof [Gir87℄ to LLpol: \if S is an ayli slied proof-struture with on-lusions � (where � ontains no [ formula), then JSK is a lique of theoherent spae P �."This result has to be used in the proof of the previous theorem in theases of !=? uts.1.6 Sequentialization for (ut-free) sliesWe show that the onditions on slied proof-strutures given in de�-nitions 1.17 and 1.18 yield a orretness riterion for ut-free proof-strutures (theorem 1.32): they allow to haraterize exatly those proof-strutures oming from sequent alulus proofs.A novelty due to our slied presentation is that we have to be ableto glue together slies. Thanks to the polarization onstraint this willbe possible, provided one restrits to ut-free proof-strutures. In thewhole setion, all our proof-strutures will be ut-free.De�nition 1.28 (Equivalene of links) Let s1; s2 be two slies of aslied proof-struture S. Let n1 and n2 be two links of s1 and s2 at depth0 having the same negative non-[ onlusion A. We de�ne, by indutionon the number of links under A in s1, the meaning of n1 and n2 areequivalent links denoted by n1 � n2.If A is a onlusion of s1 then it is also a onlusion of s2 and n1 � n2if they are the links introduing A in s1 and s2.Let A be the premise of the unary link m1 (resp. m2) of s1 (resp. s2)and the onlusion of n1 (resp. n2): if m1 � m2, then n1 � n2.Let A be the left or right premise of the binary link m1 (resp. m2)of s1 (resp. s2) and the onlusion of n1 (resp. n2): if m1 � m2, thenn1 � n2.It is lear that � is an equivalene relation on the negative links atdepth 0 of S.



Sliing polarized additive normalization 23Remark 1.29 If n1 � n2 then n1 and n2 are links of the same kindexept if n1 = &1 and n2 = &2.De�nition 1.30 (Weights) Let S be a slied proof-struture and let&1; : : : ;&k be the equivalene lasses for � of the &-links at depth 0of S. We assoiate with eah &i an eigen weight pi that is a booleanvariable (in the spirit of [Gir96℄). The weight of a slie s of S is (withan empty produt equal to 1 by onvention):w(s) = Y&i12s pi Y&i22s �piand the weight of the set S is:w(S) =Xs2Sw(s)The slied proof-struture S is full if w(S) = 1 and ompatible if wehave w(s)w(t) = 0 for s 6= t.Remark 1.31 We an now be more preise than in remark 1.20: theslied proof-struture assoiated by de�nition 1.9 with a ut-free sequentalulus proof is a (ut-free) proof-net, whih is full and ompatible.Theorem 1.32 (Sequentialization) If S is a ut-free slied proof-struture, S is the translation of an LLpoly sequent alulus proof if andonly if S is a full and ompatible proof-net.Proof We prove the seond impliation by indution on the size of S(the �rst one is remark 1.31). Sine S has no [-onlusions, the onlu-sions of the slies of S are the same. The size of a slie s is the triple(depth(s),number of ?-links with arity at least 2 and depth 0,number oflinks with depth 0), lexiographially ordered, and the size of S is thesum (omponent by omponent) of the sizes of the slies of S.Let s be a slie of S. We shall say that a link of s is terminal whenits onlusion is a onlusion of s.� If s has a terminal P-link, a orresponding link appears in eahslie sine they have the same onlusions. We an remove theselinks in eah slie and we obtain a slied proof-struture S0 veri-fying the hypothesis of the theorem.y The extension of this result to the multipliative units is straightforward. Thease of > presents no real diÆulty but requires a heavier treatment (see [Lau02℄).



24 � If s has a terminal &-link, a orresponding link appears in eahslie. For some slies this link will be a &1-link (we all S1 the setof slies obtained by erasing the &1-links in these slies) and forsome others a &2-link (we all S2 the orresponding set withoutthe &2-links). We have to show that S1 and S2 are full andompatible. The weight of S1 (resp. S2) is obtained by takingp = 1 (resp. p = 0) in p:w(S) (resp. �p:w(S)) thus this weight is1. Let s and t be two slies of S1 with weights w1(s) and w1(t),their weights in S are p:w1(s) and p:w1(t) thus w1(s)w1(t) = 0(idem for S2). We an now apply the indution hypothesis to S1and S2.Now, s has no terminal P-links and no terminal &-links thus it has nosuh links at depth 0 by polarization. This entails that s is the only slieof S by ompatibility.� If s has a terminal 0-ary ?-link, we an remove it: this orrespondsto a weakening rule.� If s has a terminal n-ary ?-link with n � 2, we break it into nunary links, we apply the indution hypothesis and perform n�1ontration rules in the sequent alulus proof thus obtained.� If s has a unary ?-link under a [-link, we remove both of them,and this orresponds to a derelition rule. (Notie that we anapply the indution hypothesis, beause when removing the twolinks we replae a [-link at depth 0 by a positive onlusion).� If none of the previous onditions is satis�ed then s has no P-,&-, ?-links at depth 0 (exept unary ?-links under !-links). Thismeans that if s has a terminal 
-link, it is the unique one andit is splitting: we an apply the indution hypothesis to the twosub-proof-strutures.� If s has a terminal �-link, we just remove it and apply the indu-tion hypothesis.If s doesn't orrespond to any of the ases above, either it is an ax-iom link (straightforward) or it is redued to an !-link with a unary?-link under eah [-onlusion. Let S0 be the box assoiated with the!-link. By adding to the slies of S0 some 0-ary ?-links (like in examplepage 12) and a 1-ary ?-link under eah [-onlusion, one gets a sliedproof-struture S00. Let �00 be the proof obtained by sequentializing S00,the sequentialization � of S is obtained by adding a promotion rule to�00. (As an exerise, the reader an apply this sequentialization methodto the slied proof-struture of page 12).



Sliing polarized additive normalization 25Remark 1.33 Notie that (aording to remark 1.8) every negative on-lusion M P N (resp. M&N) of a proof-net S is the onlusion of a P(resp. &) link. The previous proof shows that there exists a sequential-ization of S whose last rule introdues this formula. The reader mighthave reognized a proof-net version of the reversibility of the onnetivesP and &.Remark 1.34 In fat, a(n apparently) stronger version of theorem 1.32ould be given: the reader ertainly notied that nowhere in the proofof the theorem we have used the ayliity property of our proof-nets.This is simply due to the fat that every ut-free slied proof-strutureS is ayli. Indeed, a path starting from a positive edge of S upwardlygoes to an axiom link or an !-link and then goes down to a onlusionstopping there; while a path starting from a negative edge goes diretlydown to a onlusion and stops.1.7 Computing with sliesWe now introdue a general method, allowing to use denotational se-mantis in order to guarantee the \anoniity" of our proof-nets. Morepreisely, we introdue the notion of injetive semantis (whih omesfrom [TdF00℄), and show how the existene of suh a semantis is a wit-ness of the anoniity of our slied proof-nets as omputational objets.Remark 1.35 We will use in the sequel the strong normalization prop-erty for proof-nets with respet to the ut-elimination proedure. We donot give the proof of suh a result, whih is proven in [LQTdF00℄ (forLLpol) in the framework of polarized proof-nets with additive boxes.Let F be a subsystem of our slied proof-strutures, and let J:K be aninterpretation of the slied proof-strutures of F (satisfying theorem 1.26and) injetive: if S1 and S2 are two ut-free slied proof-nets suh that(for every interpretation of the atomi formulas) JS1K = JS2K, then S1 =S2.Another way to speak of injetivity is the following: J:K is inje-tive when the semantial equivalene lass of every proof-net ontains aunique ut-free proof-net. In this (strong) sense our objets are anon-ial. In partiular, suh a property entails onuene: if S01 and S02 aretwo normal forms of the proof-net S, then by theorem 1.26 and inje-tivity S01 = S02 .



26Another ruial point is that injetivity allows to ompute with theslied proof-strutures of F oming from sequent alulus proofs. In-deed, let � be any linear propositional sequent alulus proof, let S� bethe slied proof-struture assoiated with � by de�nition 1.9, and let S0be the normal form of S�. Now ompute a normal form �0 of � seman-tially orret (i.e. satisfying J�K = J�0K), whih an be done by per-forming ut-elimination diretly in sequent alulus in several di�erentways. By remark 1.25, J�K = JS�K and J�0K = JS�0K, by theorem 1.26,JS�K = JS0K, and we know that J�K = J�0K. By injetivity, we an thenonlude that S�0 = S0. In fat, our approah to injetivity (in se-tion 1.8, and more generally in [TdF01℄) is \to rebuild" a ut-free prooffrom its semantis: on the one hand the injetivity property guaranteesthat any reasonable way of omputing with slied proof-strutures om-ing from sequent alulus proof is sound (S�0 = S0), and on the otherhand the tehnique used to prove injetivity suggests the possibility ofsemantially omputing the normal form (S0) of a proof (�0). This lastapproah is very lose to the so-alled \normalization by evaluation"(see [BES98, DRR01℄).Summing up, one has: � ����! �0??y ??yS� ����! S�0This diagram expresses a simulation property of the ut-elimination (insequent alulus) by proof-net redutions. The injetivity property ofthe semantis allows to obtain suh a result by semantial means.Notie that the mentioned argument holds for any existing syntax forLLpol instead of sequent alulus (like proof-nets with additive boxessee [Gir87℄ and [LQTdF00℄, multiboxes see [TdF03℄, proof-nets withweights see [Gir96℄ and [Lau99℄): let R be a proof in suh a system, itwill always be possible to translate R as a slied proof-struture SR withthe same semantis as R (in the previously mentioned syntaxes, this isstraightforward). Let S0 be the normal form of SR. Let R0 be a normalform of R and let SR0 be the slied proof-struture assoiated with R0.As before, we have S0 = SR0 .We are laiming that our proof-nets are anonial omputational ob-jets: they are atually the �rst example of suh objets in presene ofthe additive and exponential onnetives. Indeed, (slied) proof-nets are



Sliing polarized additive normalization 27omputational objets by theorem 1.24, and they are anonial by theinjetivity property (as we already explained).Notie that none of the previously mentioned polarized syntaxes anreally laim to yield a anonial representation of proofs: denotationalsemantis is not injetive for proof-nets with boxes nor multiboxes (eventhough this last syntax realizes a muh greater quotient on proofs), andit is well-known that with a sequent alulus proof an be assoiatedseveral proof-nets with weights (and the ut-elimination proedure isnot always de�ned for suh proof-nets).We then have a new anonial syntax, independent from sequent al-ulus, allowing to make orret omputations. Despite the fat that wedon't have a proedure to sequentialize proof-nets with uts, we knowthat if we start from a sequentializable proof-net S, we eventually reaha normal form S0 whih is itself sequentializable. This means on theone hand that nothing is lost, and on the other hand that the newobjets whih naturally appear (and whih are not neessarily sequen-tializable) have a lear and well-strutured omputational behaviour.Atually, this is preisely the point where our approah di�ers from theone of [HvG03℄: we mainly fous on the omputational behaviour of ourobjets (ut-elimination), while [HvG03℄'s main issue is orretness. In-deed, the \proof-nets" (i.e. the orret proof-strutures) introdued byHughes and Van Glabbeek are all sequentializable and this is not thease of ours. However, the translation of sequent alulus into sliedproof-strutures is a funtion (this is not the ase for [HvG03℄'s nets),and our ut-elimination proedure is loal (just perform it, separately,in eah slie) while Hughes and Van Glabbeek have to redue all theslies at the same time. The non-sequentializable slied proof-struturesnaturally appearing during (slied) ut-elimination have a perfetly well-understood omputational behaviour, and we do not see any reason torejet them.The equivalene relation on sequent alulus proofs de�ned by our(slied) proof-nets an be very well ompared to the one de�ned byordinary proof-nets in the multipliative fragment of linear logi.But do there exist some (interesting) subsystems F of slied proof-strutures with an injetive semantis?Suh systems and semantis ertainly exist in the absene of the ad-ditives (see [TdF01℄), it is very likely also the ase for [HvG03℄. Thenext setion gives a positive answer to the previous question in preseneof both additive and exponential onnetives. We want to mention here



28that this is just a �rst (limited) result, and it is very likely that it anbe extended to full LLpol.1.8 An appliation: �-alulus with pairingWe prove that (relational) semantis is injetive for the fragment �LLpolof LLpol, whih orresponds to the simply typed �-alulus with pairing.De�nition 1.36 (�-alulus with pairing)t ::= x j �x:t j (t)t j �1t j �2t j <t; t>De�nition 1.37 (Girard's translation) The types of the �-aluluswith pairing are translated as negative formulas as follows:X  XA! B  ?A? P BA ^ B  A&Band terms are translated by the straightforward extension of Girard'stranslation [Gir87, Dan90℄ for the �-alulus.Let �LLpol be the sub-system of LLpol ontaining only the followingformulas: N ::= X j N &N j ?P P NP ::= X? j P � P j !N 
 P(and their sub-formulas) together with the [P -formulas, and suh thatall the onlusions of proofs are negative formulas.Terms are translated by proof-nets of �LLpol. The onstraint that ax-iom links introdue only atomi formulas entails that the translation on-tains an impliit �-expansion of terms.In the present setion, in order to prove injetivity for �LLpol, werestrit to proof-strutures, slies and slied proof-strutures of �LLpolwithout ut links (orresponding to normal terms).De�nition 1.38 Let s be a single-threaded slie. We denote by L(s) (the\linearization" of s) the graph obtained by replaing every !-link n by theassoiated slie. More preisely, if n is an !-link having a onlusion oftype !A with an assoiated slie sn, we replae n by a modi�ed unary!-link with as premise the onlusion A of sn; the [-onlusions of n arereplaed by the orresponding [-onlusions of sn.



Sliing polarized additive normalization 29Remark 1.39 If e is a 1-experiment of s, then with every edge a of typeA of L(s) is assoiated a unique label e(a) of A.For the 1-experiment e, we will denote by ejL(s) the labeling of theedges of L(s) assoiated with e.Lemma 1.40 Let s and s0 be two single-threaded slies. Let e (resp. e0)be an injetive 1-experiment of s (resp. s0) with result  (resp. 0).If  = 0, then L(s) = L(s0) and ejL(s) = e0jL(s0).Proof Our laim is that the graph L(s) so as the labels of its edges areompletely determined by the types of the onlusions of s and by theresult of an injetive 1-experiment of s. Indeed, let's start from someedge a of L(s), with its type A and its label x 2 A. There are exatlythree ases in whih either the type A of a is not enough to determinethe link of L(s) having a as onlusion or the link is known but thebottom-up propagation of the labels is not obviously deterministi:(i) A = C &D: then a might be onlusion of a &1- or of a &2-link.But the label of a tells us whih of these two ases holds, andwhih is the label of the premise of the &-link.(ii) A = C �D: exatly like in the previous ase.(iii) A = ?C: then, beause e is a 1-experiment, the ardinality of thelabel of a is the arity of the ?-link with onlusion a. This alsoimplies that there is a unique way to determine the labels of thepremises of the ?-link.To onlude, notie that the fat that e is injetive allows to uniquelydetermine the axiom links of L(s).1.8.1 Reovering boxes in �LLpolWe are now going to use in a strong way the partiular shape of the(slied) proof-nets of �LLpol. We show that for a single-threaded slie sof this fragment, the graph L(s) ontains as muh information as s. Inother terms, one L(s) is known, the fat that s is a single-threaded slieof a slied proof-struture whih is the translation of a term, uniquelydetermines the way to \put" the boxes on the graph L(s).Lemma 1.41 If s is a slie of a �LLpol proof-net, there is exatly one[-link with depth 0 in every slie of every box of s.
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Fig. 1.1. CombsProof Just the orretness riterion (theorem 1.32).Lemma 1.42 Let s be a single-threaded slie, and a an edge of type Aof s.If A is a negative (resp. positive) formula, then the graph above a isa omb (see �gure 1.1):� the teeth of the \negative omb" are edges of type ?, while thebakbone is made of unary &-nodes and of P-nodes and movingupwards along it one neessarily ends in the unique (negative)atomi edge of the omb.� dually, the teeth of the \positive omb" are edges of type !, whilethe bakbone is made of �-nodes and 
-nodes and moving up-wards along it one neessarily ends in the unique (positive) atomiedge of the omb.We will speak of the omb assoiated with a. Notie that a is onsideredas an edge of the omb.Proof Immediate onsequene of the de�nition of �LLpol and of thede�nition of single-threaded slie.



Sliing polarized additive normalization 31Remark 1.43 As a onsequene of the previous lemma, with every neg-ative edge � of a single-threaded slie s, is assoiated an oriented path�� of s (see �gure 1.2): it is the path with starting edge � (oriented up-wardly), following the bakbone of the negative omb up to the negativeatomi edge X of the omb, rossing the axiom link and its positive on-lusion X? (oriented now downwardly) and moving downwardly alongthe bakbone of a positive omb (rossing �- and 
-links) until a [-linkis reahed (there are no other possibilities).We will refer to �� (in the sequel of the paragraph) as the orientedpath assoiated with the negative edge �.Until the end of this setion 1.8.1, we will �x the following notationsaording to �gure 1.2:� � is the (negative) edge premise of an !-link l of the single-threadedslie s� Bl is the box assoiated with l� n is the last link of �� whih is a [-link (by remark 1.43)�  is the (positive) premise of n� l1; : : : ; lk are the k � 0 !-links of s whose onlusions are the teeth ofthe positive omb assoiated with � B1; : : : ; Bk are the boxes assoiated with l1; : : : ; lkRemark 1.44 Every edge of s \above �" is ontained in Bl. Moreover,all the links of �� (inluding n) are ontained in Bl.Lemma 1.45 Every edge with depth 0 of Bl is either an edge of ��, orthe onlusion of the [-link n, or a tooth of one of the two ombs of ��,or the [-onlusion of a !-link.Proof See �gure 1.2.Let G be the orretion graph of Bl (see de�nition 1.17). The initialnodes of G are n and the 0-ary ?-links. Every link in G is aessibleby an oriented path from an initial link, but any 0-ary ?-link is thepremise of a P-link (in �LLpol) that must be also aessible through itsother premise. By indution on the number of links above this P-linkwe easily show that it is aessible from a non ?-link. So that every link(exept 0-ary ?-links) at depth 0 in Bl is aessible from n. We said thatevery onlusion of a 0-ary ?-link is the premise of a P-link, and we just
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Fig. 1.2. Lemma 1.45 (dashed lines are given as examples)proved that this P-link is aessible from n: the onlusions of the 0-ary?-links must then be teeth of the negative omb of ��.We are now going to de�ne a (partial) order relation on the !-links ofL(s), for every single-threaded slie s. We then show that this relationoinides with the nesting of boxes and it is enough to reover the boxesof s.De�nition 1.46 Let s be a single-threaded slie, let l and m be two!-links of s and let � be the premise of l in L(s). We de�ne the relation<1 on the !-links of s as follows: m <1 l i� the oriented path �� rossesthe 
-link of s having m as premise. We de�ne the relation � as thereexive and transitive losure of <1.Lemma 1.47 Let s be a single-threaded slie. If l (resp. m) is an !-linkof s and Bl (resp. Bm) is the box assoiated with l (resp. m), then m � li� Bl ontains Bm.



Sliing polarized additive normalization 33In partiular, this implies that the relation � is indeed a partial orderrelation.Proof Suppose that m � l. From the nesting ondition, it is learlyenough to show that if m <1 l, then Bl ontains m, and this is a onse-quene of remark 1.44.Conversely, suppose that Bl ontains Bm. It is again enough toonsider the ase in whih Bl is the smallest box ontaining Bm. Bylemma 1.45, the onlusion of m is one of the teeth of the positive ombof ��. We just proved that m <1 l.Proposition 1.48 Let s and s0 be two single-threaded slies of �LLpol.If L(s) = L(s0), then s = s0.Proof The reason why this holds is that the paths of L(s) are the sameas the paths of s.We still use �gure 1.2 and show, by indution on the number of !-linksof L(s) smaller (with respet to �) than l (noting that it is a �nitenumber by lemma 1.47, sine our graphs are �nite), that one L(s) isknown, we know how to reover Bl. By indution hypothesis, we knowhow to reover B1; : : : ; Bk. By lemma 1.45, every edge with depth 0 ofBl is either an edge of one of the two ombs of ��, or the onlusion ofn. By remark 1.44, all the just mentioned edges are edges of Bl. ThenBl an only be the graph ontaining B1; : : : ; Bk, the two ombs of ��(inluding the ?-links) and the onlusion of n.1.8.2 Injetivity for �LLpolWe prove the following lemma for relational semantis. It ertainly holdsin the oherent ase too, but a detailed proof would require some moreintermediate results.In the sequel, we will write JSK = JS0K, always meaning that theequality holds for every interpretation of the atoms of the formulas of Sand S0.Lemma 1.49 Let S and S0 be two slied proof-strutures with the sameonlusions.If JSK = JS0K, then sgth(S) = sgth(S0), where sgth(S) (resp. sgth(S0))is the set of the single-threaded slies of S (resp. S0).



34Proof By ontradition, suppose that sgth(S) 6= sgth(S0). There exists asingle-threaded slie s of S whih is di�erent from all the single-threadedslies of S0. Let e be an injetive 1-experiment of s with result . Suh anexperiment obviously exists, at least in the ase of relational semantis.From JSK = JS0K, there exists an experiment e0 of S0 with result . It iseasy to onvine oneself that e0 is a 1-experiment of S0 (see [TdF01℄ fora proof without additives). From remark 1.16, e0 is then a 1-experimentof a single-threaded slie s0 of S0.By lemma 1.40, we obtain that L(s) = L(s0), and then by proposi-tion 1.48, s = s0 whih is a ontradition.De�nition 1.50 ([-free subgraph) The [-free subgraph of a slie sis the graph obtained by keeping only the part of s at depth 0 and byreplaing every !-link by an !-link without any [-onlusion. This erasessome [-edges that are premises of ?-links.De�nition 1.51 (Non-ontradition of slies) Let s and s0 be twosingle-threaded slies with the same non-[ onlusions, the fat that sand s0 are non-ontraditory is de�ned by indution on the depth of s.s and s0 are non-ontraditory if either there exists a &i (resp. &j) linkn (resp. n0) of s (resp. s0) at depth 0 suh that n � n0 and i 6= j, ors and s0 have the same [-free subgraph and the boxes of s and s0 arenon-ontraditory.A slied proof-struture S is non-ontraditory if for every pair ofsingle-threaded slies s and s0 of S, s and s0 are non-ontraditory.Theorem 1.52 (Injetivity) Let S and S0 be two non-ontraditoryproof-nets with the same onlusions.If JSK = JS0K, then S = S0.Proof By lemma 1.49, we have sgth(S) = sgth(S0). For a given set of non-ontraditory single-threaded slies, there is only one way to reonstruta slied proof-struture: to glue (reursively with respet to the depth)the single-threaded slies with the same part at depth 0.Remark 1.53 The reader should not think that the hypothesis of \non-ontradition" of proof-nets weakens our injetivity theorem: it is theopposite! Indeed, our requirement for a slied proof-struture to deservethe name of proof-net is just that \it ontains only orret slies" (seede�nition 1.18). This (minimal) requirement is already enough to make



Sliing polarized additive normalization 35orret omputations (theorem 1.24), whih are also semantially sound(theorem 1.26). But it is obvious that a set of orret slies is not se-quentializable (in general), and we ould prove theorem 1.32 only byadding the \ompatibility" and \fullness" onditions. A full and om-patible proof-net is always non-ontraditory, and the non-ontraditionhypothesis (weaker than the ompatibility and fullness one) is alreadyenough to prove theorem 1.52.1.8.3 Computing with the �-alulus sliesTo apply the ontent of setion 1.7 to �LLpol, just notie that if S�0 isthe slied proof-struture assoiated with the ut-free sequent alulusproof �0, then by remark 1.31, S�0 is full and ompatible (thus non-ontraditory). If � is a sequent alulus proof of �LLpol and S0 is anormal form of S�, then JS�0K = JS0K and by theorem 1.52, S0 = S�0 .Aknowledgments: We thank Laurent Regnier who suggested us theproperty of the �-alulus expressed by proposition 1.48, thus allowingus to (drastially) simplify the proof of theorem 1.52.Bibliography[BES98℄ Ulrih Berger, Matthias Eberl, and Helmut Shwihtenberg.Normalization by evaluation. In Prospets for hardware foundations(NADA), volume 1546 of Leture Notes in Computer Siene, pages117{137. Springer, 1998.[Dan90℄ Vinent Danos. La Logique Lin�eaire appliqu�ee �a l'�etude de diversproessus de normalisation (prinipalement du �-alul). Th�ese dedotorat, Universit�e Paris VII, 1990.[DJS97℄ Vinent Danos, Jean-Baptiste Joinet, and Harold Shellinx. A newdeonstrutive logi: linear logi. Journal of Symboli Logi,62(3):755{807, September 1997.[DRR01℄ Olivier Danvy, Morten Rhiger, and Kristo�er H. Rose.Normalization by evaluation with typed abstrat syntax. Journal ofFuntional Programming, 11(6):673{680, November 2001.[Gir87℄ Jean-Yves Girard. Linear logi. Theoretial Computer Siene,50:1{102, 1987.[Gir91a℄ Jean-Yves Girard. A new onstrutive logi: lassial logi.Mathematial Strutures in Computer Siene, 1(3):255{296, 1991.[Gir91b℄ Jean-Yves Girard. Quanti�ers in linear logi II. In Corsi andSambin, editors, Nuovi problemi della logia e della �loso�a dellasienza, pages 79{90, Bologna, 1991. CLUEB.[Gir95℄ Jean-Yves Girard. Light linear logi. Information and Computation,143(2):175{204, 1995.
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