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tTo atta
k the problem of \
omputing with the additives", we introdu
ea notion of sli
ed proof-net for the polarized fragment of linear logi
. Weprove that this notion yields 
omputational obje
ts, sequentializable inthe absen
e of 
uts. We then show how the inje
tivity property of deno-tational semanti
s guarantees the \
anoni
ity" of sli
ed proof-nets, andprove inje
tivity for the fragment of polarized linear logi
 
orrespondingto the simply typed �-
al
ulus with pairing.1.1 Introdu
tionThe question of equality of proofs is an important one in the \proofs-as-programs" paradigm. Traditional syntaxes (sequent 
al
ulus, naturaldedu
tion, . . . ) distinguish proofs whi
h are 
learly the same as 
ompu-tational pro
esses. On the other hand, denotational semanti
s identi�es\too many" proofs (two di�erent stages of the same 
omputation are al-ways identi�ed). The seek of an obje
t sti
king as mu
h as possible to the
omputational nature of proofs led to the introdu
tion of a new syntaxfor logi
: proof-nets, a graph-theoreti
 presentation whi
h gives a moregeometri
 a

ount of proofs (see [Gir87℄). This dis
overy was a
hievedby a sharp (synta
ti
al and semanti
al) analysis of the 
ut-eliminationpro
edure.Any person with a little knowledge of the multipli
ative framework oflinear logi
 (LL), has no doubt that proof-nets are the 
anoni
al repre-sentation of proofs. But as soon as one moves from su
h a fragment, thenotion of proof-net appears \less pure". A reasonable solution for themultipli
ative and exponential fragment of LL (with quanti�ers) does1



2exist (
ombining [Dan90℄ and [Gir91b℄, like in [TdF00℄). Turning tomultipli
ative and additive LL (MALL), the situation radi
ally 
hanges:sin
e the introdu
tion of proof-nets [Gir87℄, the additives were treated inan unsatisfa
tory way, by means of \boxes". Better solutions have beenproposed in [Gir96℄ and [TdF03℄, until the paper [HvG03℄ introdu
ed\the good notion" of proof-net for 
ut-free MALL. But still, trying todeal with the full propositional fragment means entering a true jungle.Of 
ourse, it is possible to survive (i.e. to 
ompute) in this jungle, asshown in [Gir87, TdF00℄. So what? The problem is that the obje
ts(the proof-nets) used are de�nitely not 
anoni
aly.Re
ently, a new fragment of LL appeared to have a great interest:in [Gir91a℄ and [DJS97℄ the polarized fragment of LL is shown to beenough to translate faithfully 
lassi
al logi
. A study of proof-nets forsu
h a fragment was undertaken in [Lau99℄, and the notion of [Gir96℄drasti
ally simpli�ed. In [LQTdF00℄ a proof of strong normalizationand 
on
uen
e of the 
ut-elimination pro
edure is given for polarizedLL, using the syntax of [Gir87℄ (noti
e that for full LL 
on
uen
e iswrong and strong normalization is still not 
ompletely proven). Despitethese positive results, the notion of proof-net still appears as (more orless desperately, depending on the 
ases) non 
anoni
al.The �rst 
ontribution of the present paper is the proposal of a mathe-mati
al 
ounterpart for the term \
anoni
al". And here is where denota-tional semanti
s 
omes into the pi
ture: in [TdF01℄, the question of in-je
tivity of denotational semanti
s is addressed for proof-nets. Roughlyspeaking, denotational semanti
s is said to be inje
tive when the equiv-alen
e relation it de�nes on proofs 
oin
ides with the one de�ned bythe 
ut-elimination pro
edure. Our proposal is to let semanti
s de
ideon the 
anoni
ity of some notion of proof-net: this is 
anoni
al whenthere exists a (non 
ontrived, obviously!) denotational semanti
s whi
his inje
tive with respe
t to the would-be 
anoni
al notion of proof-net.Noti
e that this is a rather severe notion of 
anoni
ity. Indeed, proof-nets for multipli
ative LL are 
anoni
al (and this is probably true alsofor MALL using [HvG03℄), but the previously mentioned extension tomultipli
ative and exponential LL is not guaranteed to be 
anoni
al:the time being we only know that 
oherent (set and multiset based)semanti
s is not inje
tive for su
h proof-nets (see [TdF01℄). Finally, they We will use the term 
anoni
al in an intuitive way, following the idea that a
anoni
al representation of a proof is not sensitive to inessential 
ommutations ofrules.



Sli
ing polarized additive normalization 3known syntaxes for full LL (with additives) are obviously not 
anoni
alfor the usual semanti
s of linear logi
.The notion of sli
e was �rst introdu
ed in [Gir87℄. The idea is verysimple: instead of dealing with both the 
omponents of an additive box\at the same time", what about working with these two 
omponentsseparately? This attitude is tempting be
ause it ignores the superimpo-sition notion underlying the 
onne
tive & (whi
h is pre
isely the diÆ
ultpoint to understand). It is shown in [Gir96℄ that the 
orre
tness of thesli
es of a proof-stru
ture does not imply the 
orre
tness of the proof-stru
ture itself (see also [HvG03℄). However, this turns out to be true ina polarized and 
ut-free framework (theorem 1.32).In se
tion 1.2, we give some intuitions on the original notion of sli
efor MALL 
oming from [Gir87℄.We then de�ne, in se
tion 1.3, a notion of sli
ed proof-stru
ture forpolarized LL (de�nition 1.5), and we show how to translate sequent
al
ulus proofs into sli
ed proof-stru
tures. To obtain 
anoni
al obje
ts,we deal with atomi
 axioms and proof-stru
tures in the style of the\nouvelle syntaxe" of Danos and Regnier [Reg92℄. For this purpose, weintrodu
e [-formulas whi
h do not o

ur in sequent 
al
ulus, but are veryuseful in our framework: a formula [A is ne
essarily the premise of a ?-link. The notation (and the meaning) of [A is 
learly very mu
h inspiredfrom Girard's works on ludi
s [Gir01℄ and on light linear logi
 [Gir95℄.We introdu
e in se
tion 1.4 the relational semanti
s. We adapt thede�nition of experiment of [Gir87℄ to our framework, and we de�nethe interpretation of a sli
ed proof-stru
ture (de�nition 1.13). Parti
-ular experiments 
oming from [TdF01℄ are also introdu
ed (inje
tive1-experiments), to be used later in se
tion 1.8.Se
tion 1.5 is devoted to de�ne and to study the notion of \
orre
t"sli
ed proof-stru
ture (or sli
ed proof-net). The polarization 
onstraintsallow to apply to our framework the 
orre
tness 
riterion of [Lau99℄.We de�ne a sli
ed 
ut-elimination pro
edure (de�nition 1.21), we provethat 
orre
tness is preserved by our sli
ed 
ut-elimination steps (theo-rem 1.24) and that our semanti
al interpretation is sound (theorem 1.26).Our sli
ed proof-nets are thus proven to be 
omputational obje
ts.In se
tion 1.6, we prove that in the absen
e of 
uts, the 
orre
tness
riterion (plus some obviously ne
essary 
onditions on sets of sli
es)is enough to \glue" in a unique way di�erent sli
es: a sli
ed proof-net 
omes from a sequent 
al
ulus proof (theorem 1.32). This result



4follows [Lau99℄ (where the &-jumps of [Gir96℄ are removed) and [Lau03℄(where the remaining jumps for weakenings are also removed).Se
tion 1.7 explains and justi�es in details our method: the use ofinje
tive denotational semanti
s as a witness of 
anoni
ity of our sli
edproof-nets.The reader should noti
e that this is the very �rst time a notionof proof-net 
ontaining the additives and the exponentials 
an reallypretend to be 
anoni
al.Finally, se
tion 1.8 shows that our method makes sense: there existinteresting fragments of polarized LL for whi
h denotational semanti
s isinje
tive (and thus the 
orresponding proof-nets are 
anoni
al), like the�-
al
ulus with pairing. The result that we prove is an extension of theresult of [TdF01℄. Thanks to a remark of L. Regnier on the �-
al
ulus(expressed by proposition 1.48), we 
ould avoid to reprodu
e the entireproof. We thus get inje
tivity only for relational semanti
s, but in aqui
k and simple way.Let us 
on
lude by stressing the fa
t that the last se
tion is simplyan example to illustrate the method explained in se
tion 1.7, and it is(very) likely that inje
tivity for 
oherent and relational semanti
s holdsfor the whole polarized fragment. This would give 
anoni
al proof-netsfor polarized LL, that is for 
lassi
al logi
 (see [LQTdF00℄).1.2 A little history of sli
esSli
es were �rst introdu
ed in [Gir87℄, and the following examples 
omedire
tly from the ideas of that work.In this se
tion, we only want to give some hints of what will be de-veloped in the following ones. In parti
ular, all the notions used heresimply have an intuitive meaning, and will be formally de�ned later.Intuitively, a sli
e of a proof is obtained by 
hoosing, for every o

ur-ren
e of the rule &, one of the two premises. With the sequent 
al
ulusproof obtained by adding a 
ut betweenax` A?; A �1` A? �B?; A ax` B?; B �2` A? �B?; B &` A? �B?; A&B P` (A? �B?) P (A&B)and



Sli
ing polarized additive normalization 5ax` A&B;A? �B? ax` A?; A �1` A? �B?; A 
` (A&B)
 (A? �B?); A;A? �B?one would like to asso
iate a graph, like:
A? �B?

A BA&B
A? A&BA?P 
 �1�1 �2

A A? �B?
B? &


ut
ax ax axax

where the dashed box is an attempt to express some kind of \superim-position" of two subgraphs. Choosing to work separately with ea
h ofthese two subgraphs means \sli
ing" the proof-net into the two followingsli
es (where the binary &-link is repla
ed by two unary &-links):A? A A&BaxA? �B? A?
A A? �B?

�1 P 
 �1&1 ax

ut

axA&B
BB? A&BA? �B? A?

A A? �B?P 
 �1 ax

ut

ax�2 &2A&Bax



6 In [Gir96℄, Girard shows that the 
orre
tness of sli
es is not enoughto ensure the 
orre
tness of the whole graph: it is easy to see that thereexists a proof-stru
ture with 
on
lusion A
(B&C); (A? P B?)�(A? PC?), with two 
orre
t sli
es, whi
h is itself not 
orre
t. We will 
omeba
k to this point with our theorem 1.32.Let's now give an intuition of a possible \sli
ed" 
ut-elimination pro-
edure for the 2-sli
ed graph asso
iated with the sequent 
al
ulus proofof ` A;A? �B? above.By eliminating the P/
 
ut in both the sli
es (noti
e that in a sli
edperspe
tive this 
orresponds to two steps), one gets the 2-sli
ed stru
-ture:

B
A? A�1 ax &1

A? �B? A A? �B?�1
ut 
utA&B
A? �B? A A? �B?�1
ut 
utA&B A?A&B axax

A?A&B axax�2 &2axB?

whi
h after (two) axiom steps redu
es to:



Sli
ing polarized additive normalization 7
A

AA? ax�1 &1 
ut A? ax�1A? �B? A&B

A
BB? ax�2 &2

A? �B? 
ut �1A? axA&B
We meet here an important point: in one of the sli
es we have a &1/�1
ut whi
h 
an be easily redu
ed, but in the se
ond one we have a &2/�1
ut and no way of redu
ing it. By performing one step of 
ut-elimination(the only possible one), we obtain the 2-sli
ed stru
ture:

A
A

A
B

A? ax�1 A? ax
ut
B? ax�2 &2

A? �B? 
ut �1A? axA? �B?
A&B



8and we now have to erase the sli
e 
ontaining the &2/�1 
ut, thusobtaining the 1-sli
ed proof-stru
ture:
A

AA? ax�1
A? �B? 
ut A? ax

whi
h eventually redu
es to:
AA? ax�1A? �B?1.3 Sli
ed proof-stru
turesIn a polarized framework, we de�ne sli
ed proof-stru
tures and give thetranslation of sequent 
al
ulus proofs.De�nition 1.1 A polarized formula is a linear propositional formulaverifying the following 
onstraints:N ::= X j N P N j N &N j ?PP ::= X? j P 
 P j P � P j !Nor a positive formula P pre�xed by the symbol [ (
onsidered as a negativeformula).LLpol [Lau99℄ is the fragment of LL using only polarized formulas.Lemma 1.2 Every sequent ` � provable in LLpol 
ontains at most onepositive formula.Proof See [Lau99℄.De�nition 1.3 (Proof-stru
ture) A proof-stru
ture is a �nite ori-ented graph whose nodes are 
alled links, and whose edges are typed by



Sli
ing polarized additive normalization 9formulas of LLpol. When drawing a proof-stru
ture we represent edgesoriented up-down so that we may speak of moving upwardly or down-wardly in the graph, and of links or edges \above" or \under" a givenlink/edge. Links are de�ned together with an arity and a 
oarity, i.e.a given number of in
ident edges 
alled the premises of the link and agiven number of emergent edges 
alled the 
on
lusions of the link.� an axiom link or ax-link has no premise and two 
on
lusionstyped by dual atomi
 formulas,� a 
ut link has two premises typed by dual formulas (whi
h arealso 
alled the a
tive formulas of the 
ut link) and no 
on
lusion,� a P- (resp. 
-) link has two premises and one 
on
lusion. Ifthe left premise is typed by the formula A and the right premiseis typed by the formula B, then the 
on
lusion is typed by theformula A P B (resp. A
B),� an !-link has no premise, exa
tly one 
on
lusion of type !A andsome 
on
lusions of [-types,� a [-link has one premise of type A and one 
on
lusion of type [A,� a ?-link has k � 0 premises of type [A and one 
on
lusion of type?A.Let G be a set of links su
h that:(�) every edge of G is the 
on
lusion of a unique link;(�) every edge of G is the premise of at most one link.We say that the edges whi
h are not premise of a link are the 
on
lusionsof G.We say that G is a proof-stru
ture if with every !-link with 
on
lusions!A; [� is asso
iated a proof-stru
ture with 
on
lusions A; [� (
alled itsbox).The links of the graph G are 
alled the links with depth 0 of the proof-stru
ture G. If a link n has depth k in a box asso
iated with an !-link ofG, it has depth k + 1 in G. The depth of an edge a is the depth of thelink of whi
h a is 
on
lusion. The depth of G is the maximal depth ofits links.Convention: In the sequel, proof-stru
tures will always have a �nitedepth.Remark 1.4 Noti
e that, by de�nition, the boxes of a proof-stru
turesatisfy a nesting 
ondition: two boxes are either disjoint or 
ontainedone in the other.



10Noti
e also that the type of every 
on
lusion of a box is a negativeformula.De�nition 1.5 (Sli
ed proof-stru
ture) A sli
ed proof-stru
ture isa �nite set S of sli
es su
h that all the sli
es have the same 
on
lusions,up to the ones of type [.If S 
ontains n sli
es, and if �; [�i are the 
on
lusions of the sli
e siof S, then �; [�1; : : : ; [�n are the 
on
lusions of S.A sli
e s is a proof-stru
ture possibly 
ontaining some unary &1-, &2-(resp. �1-, �2-) links, whose premise has type A, B and whose 
on-
lusion has type A & B (resp. A � B). With every !-link n of s withmain 
on
lusion !C is now asso
iated a sli
ed proof-stru
ture Sn (whi
his still 
alled the box asso
iated with n). This means, in parti
ular, thatC appears in every sli
e of Sn, while every [-
on
lusion of n appears inexa
tly one sli
e of Sn.De�nition 1.6 (Single-threaded sli
e) A single-threaded sli
e is asli
e s su
h that the sli
ed proof-stru
tures asso
iated with the !-links ofs 
ontain only one sli
e, whi
h is itself a single-threaded sli
e.The notions of depth in a single-threaded sli
e, in a sli
e, and in asli
ed proof-stru
ture are the straightforward generalizations of the samenotions for proof-stru
tures given in de�nition 1.3.Remark 1.7 With every sli
ed proof-stru
ture S is naturally asso
iateda set of single-threaded sli
es, to whi
h we will refer as the set of the\single-threaded sli
es of S (or asso
iated with S)" denoted by sgth(S).Remark 1.8 Every formula A of a sli
ed proof-stru
ture is a 
on
lusionof a unique link introdu
ing A. (Noti
e that this is of 
ourse not the 
asein any version of proof-nets for the full propositional fragment of LL).We are now going to asso
iate with every linear sequent 
al
ulus proofa sli
ed proof-stru
ture.De�nition 1.9 (Translation of the sequent 
al
ulus) Let R bethe last rule of the (�-expanded) linear sequent 
al
ulus proof �. Wede�ne the sli
ed proof-stru
ture S� (with the same 
on
lusions as �) byindu
tion on �.� If R is an axiom with 
on
lusions X;X?, then the unique sli
eof S� is an axiom link with 
on
lusions X;X?.



Sli
ing polarized additive normalization 11� If R is a P- or a �-rule, having as premise the subproof �0, thenS� is obtained by adding to every sli
e of S�0 the link 
orrespond-ing to R.� If R is a 
- or a 
ut rule with premises the subproofs �1 and �2,then S� is obtained by 
onne
ting every sli
e of S�1 and everysli
e of S�2 by means of the link 
orresponding to R. Noti
e thatif S�1 (resp. S�2) 
ontains k1 (resp. k2) sli
es, then S� 
ontainsk1 � k2 sli
es.� If R is a &-rule with premises the subproofs �1 and �2, thenS� is obtained by adding a &1- (resp. &2-) link to every sli
eof S�1 (resp. S�2) and by taking the union of these two sli
edproof-stru
tures.� If R is a dereli
tion rule on A having as premise the subproof �0,then S� is obtained by adding to ea
h sli
e of S�0 a [-link withpremise A and 
on
lusion [A and a unary ?-link with premise [Aand 
on
lusion ?A.� If R is a weakening rule on ?A, then S� is obtained by adding a?-link with arity 0 and 
on
lusion ?A.� If R is a 
ontra
tion rule on ?A having as premise the subproof �0,then by indu
tion hypothesis, every sli
e of S�0 has two formulas?A among its 
on
lusions. By remark 1.8, these two formulasare both 
on
lusions of a ?-link. We repla
e the two ?-links by aunique ?-link with the required arity, and thus obtain the sli
es ofS�.� If R is a promotion rule with 
on
lusions !C; ?A1; : : : ; ?An havingas premise the subproof �0, then let s0i be one of the p � 1 sli
es ofS�0 . For every sli
e s0i of S�0 with 
on
lusions C; ?A1; : : : ; ?An,we 
all si the graph obtained by erasing the ?-links with 
on
lu-sions ?A1, . . . , ?An. si is a sli
e with 
on
lusions:C; [A11;i; : : : ; [Aq1;i1;i ; : : : ; [A1n;i; : : : ; [Aqn;in;iwith qj;i � 0. The unique sli
e of S� is an !-link with 
on
lu-sions !C; [A11;1; : : : ; [Aqn;1n;1 ; : : : ; [A11;p; : : : ; [Aqn;pn;p , to whi
h we addfor every 1 � j � n a ?-link having as premises [Akj;i (1 � i � pand 1 � k � qj;i) and as 
on
lusion ?Aj . The sli
ed proof-stru
ture asso
iated with the unique !-link of S� is the set of thesi (1 � i � p).Remark 1.10 Let's try to give a more informal (but, hopefully 
learer)des
ription of the last 
ase of the previous de�nition. For every formula



12?Aj , we repla
e the ?-link introdu
ing it in ea
h sli
e by a unique ?-linkin the (unique) sli
e of S�.Let us 
on
lude the se
tion by giving an example of the a

ura
y ofour sli
ed stru
tures. The following sequent 
al
ulus proof:ax` A;A? ?d` A; ?A? ?w` A; ?A?; ?B? ax` B;B? ?w` B; ?A?; B? ?d` B; ?A?; ?B? &` A&B; ?A?; ?B? !` !(A&B); ?A?; ?B?is translated as the sli
ed stru
ture:
! ? ?[A? [B?

?A?
A BA&B A&B [[ &2&1 ax axA? B?
!(A&B) ?B?The previous stru
ture is built indu
tively with respe
t to the depth:with the sequent 
al
ulus proof one asso
iates the graph 
onsisting inthe !-link and in the two ?-links, and with the !-link are asso
iated twosli
es (the ones inside the two dashed re
tangles).Noti
e that following the Danos-Regnier representation of proof-nets
alled \nouvelle syntaxe", 
onsisting in \pulling down" the stru
turalrules, the two weakenings of the sequent 
al
ulus proof simply vanished.1.4 Semanti
sWe 
onsider the 
on
rete semanti
s of experiments introdu
ed in [Gir87℄.We develop here only the 
ase of relational semanti
s but the notion ofexperiment suits also very well 
oherent set-based and multiset-basedsemanti
s (see [TdF00℄).Our results (like the existen
e of an inje
tive 1-experiment used in theproof of lemma 1.49) will be 
ompletely proven only in the relational
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ase, but the extension to the 
oherent semanti
s is just a matter of
he
king some minor details, 
onsisting in the extension to our frame-work of the results proven in [TdF01℄ without the additives.De�nition 1.11 (Relational interpretation of formulas) The spa
einterpreting a formula A will be denoted in the sequel by A. It is a set,de�ned by indu
tion on the 
omplexity of A:� X = X? is any set;� A 
 B = A P B is the 
artesian produ
t of the sets A and B;� A& B = A�B is the disjoint union of the sets A and B;� !A = ?A = [A is the set of �nite multisets of elements of A.De�nition 1.12 (Experiment) If S is a sli
ed proof-stru
ture, anexperiment of S is an experiment of one of the sli
es of S.An experiment e of a sli
e s of S is an appli
ation whi
h asso
iateswith every edge a of type A with depth 0 of s an element e(a) of A, 
alledthe label of a. We de�ne su
h an appli
ation by indu
tion on the depthp of s.If p = 0, then:� If a = a1 is the 
on
lusion of an axiom link with 
on
lusions theedges a1 and a2 of type X and X? respe
tively, then e(a1) =e(a2).� If a is the 
on
lusion of a P- (resp. 
-) link with premises a1and a2, then e(a) = (e(a1); e(a2)).� If a is the 
on
lusion of a link �i (resp. &i), i 2 f1; 2g withpremise a1, then e(a) = (i; e(a1)).� If a is the 
on
lusion of a dereli
tion link with premise a1, thene(a) = fe(a1)g.� If a is the 
on
lusion of a ?-link of arity k � 0, with premisesa1; : : : ; ak, then e(a) = e(a1)[� � �[e(ak), and e(a) 2 ?C (if k = 0we have e(a) = ;).� If a is the premise of a 
ut link with premises a and b, thene(a) = e(b).If the 
on
lusions of S are the edges a1; : : : ; al of type, respe
tively,A1; : : : ; Al, and e is an experiment of S su
h that 8i 2 f1; : : : ; lg e(ai) =xi, then we shall say that (x1; : : : ; xl) 2 A1 P : : : P Al is the result ofthe experiment e of S. We shall also denote it by x1; : : : ; xl.If p > 0, then e satis�es the same 
onditions as in 
ase p = 0, andfor every !-link n with depth 0 in s and with 
on
lusions 
 of type !C



14and a1; : : : ; al of type, respe
tively, [A1; : : : ; [Al, there exist k � 0 exper-iments e1; : : : ; ek of the sli
ed proof-stru
ture S0 asso
iated with n su
hthat � e(
) = fx1; : : : ; xkg, where xj is the label asso
iated with the edgeof type C by ej,� If s0 is the (unique!) sli
e of S0 
ontaining the edge a0j with thesame type as aj , then e(aj) is the union of the labels asso
iatedwith a0j by the k experiments of s0. Noti
e that it might be the
ase that none of the k experiments is de�ned on a0j : in this 
aseone has e(aj) = ;.Of 
ourse, we have that e(
) 2 !C, and e(aj) 2 [Aj (this would be anextra requirement in the 
oherent 
ase).De�nition 1.13 (Interpretation) The interpretation or the seman-ti
s of a sli
ed proof-stru
ture S with 
on
lusions � is the set:JSK := f
 2 P � : there exists an experiment e of S with result 
g,where P � is the spa
e interpreting the P of the formulas of �.Remark 1.14 The interpretation of a sli
ed proof-stru
ture S dependson the interpretation 
hosen for the atoms of the formulas of S. On
ethis 
hoi
e is made, JSK is (by de�nition) the union of the interpretationsof the sli
es of S.The reader should noti
e that the union of the interpretations of thesingle-threaded sli
es of S is not enough to re
over JSK (ex
ept in someparti
ular 
ases, for example when S is a 
ut-free proof-net, see se
-tion 1.8). This is a 
ru
ial point (behind whi
h hide the 
omplex relationsbetween the additive and multipli
ative worlds) showing the impossibilityof working only with single-threaded sli
es.Indeed, were we working with a \single-threaded semanti
s", by 
uttingthe single-threaded version of the example at the end of se
tion 1.3 (onthe formula !(A&B)) with the proof-net 
orresponding to the followingproof (whi
h is a single-threaded sli
e sin
e there is no &-rule):ax` A;A? �1` A;A? �B? ?d` A; ?(A? �B?) !` !A; ?(A? �B?) ax` B;B? �2` B;A? �B? ?d` B; ?(A? �B?) !` !B; ?(A? �B?) 
` !A
 !B; ?(A? �B?); ?(A? �B?) ?
` !A
 !B; ?(A? �B?)



Sli
ing polarized additive normalization 15we would get a proof-net with an empty semanti
s. Moreover, applyingthe 
ut-elimination pro
edure des
ribed in the next se
tion (to the setof single-threaded sli
es asso
iated with that same net) would lead to anempty set of sli
es.The following notion of 1-experiment is a parti
ular 
ase of the moregeneral notion of n-obsessional experiment introdu
ed in [TdF01℄.De�nition 1.15 (1-experiment) An experiment e of a sli
ed proof-stru
ture S is a 1-experiment, when with every !-link of S one has (usingthe notations of de�nition 1.12) k = 1, and e1 is a 1-experiment.Remark 1.16 Let S be a sli
ed proof-stru
ture.(i) Let e be a 1-experiment of S. If a is any edge of S of type A,then with a the experiment e asso
iates at most one element ofA, whatever the depth of a is. In 
ase e is not a 1-experiment,this is (in general) the 
ase only for the edges with depth 0.(ii) The 1-experiments of S are exa
tly the 1-experiments of the single-threaded sli
es of S.(iii) We say that a 1-experiment e of a single-threaded sli
e s of S isinje
tive when for every pair of (di�erent) axiom links n1 and n2of s, if x1 (resp. x2) is the (unique) label asso
iated by e with the
on
lusions of n1 (resp. n2), then x1 6= x2.(iv) If S 
ontains no 
ut links, then there always exists an inje
tive ex-periment of any single-threaded sli
e of S (just asso
iate distin
tlabels with the axiom links and \propagate" them downwardly).This is not that obvious in the 
oherent 
ase (due to the presen
eof ?-links): it is a
tually wrong in a non polarized framework,even for single-threaded sli
es 
oming from sequent 
al
ulus proofs(see [TdF01℄).1.5 Proof-nets and 
ut-eliminationWe now de�ne a notion of 
orre
t sli
ed proof-stru
ture: a proof-netis a sli
ed proof-stru
ture satisfying some geometri
al 
ondition. Forthese sli
ed proof-nets, a \sli
ed" 
ut-elimination pro
edure is given: a
ut-elimination step is a step in one of the sli
es.We show that the 
ut-elimination steps preserve the 
orre
tness of thestru
tures, and that the interpretation given by de�nition 1.13 is sound(i.e. invariant with respe
t to these steps).



16 1.5.1 De�nitionsDe�nition 1.17 (A
y
li
 sli
ed proof-stru
ture) The 
orre
tiongraph (see [Lau99℄) of a sli
e s is the dire
ted graph obtained by erasingthe edges 
on
lusions of s, forgetting the sli
ed proof-stru
ture asso
i-ated with every !-link with depth 0 in s and by orienting negative (resp.positive) edges downwardly (resp. upwardly).A single-threaded sli
e satis�es (AC) when its 
orre
tion graph, so asthe 
orre
tion graph of all its boxes, is a
y
li
.A sli
ed proof-stru
ture S is a
y
li
, when every single-threaded sli
easso
iated with S satis�es (AC).De�nition 1.18 (Proof-net) Let S be an a
y
li
 sli
ed proof-stru
turewithout any [-
on
lusion. S is a proof-net if every sli
e of S has ex-a
tly one [-link or one positive 
on
lusion (at depth 0). Moreover, werequire that the sli
ed proof-stru
tures (the boxes) S1; : : : ; Sk, re
ursivelyasso
iated with the !-links of S also satisfy these properties.Remark 1.19 More geometri
ally, noti
e that this only [-link (or linkabove the positive 
on
lusion) is the only non-weakening initial node(without in
ident edge) of the 
orre
tion graph.Remark 1.20 It is easy (and standard) to show, by indu
tion on thesequent 
al
ulus proof, that the sli
ed proof-stru
ture asso
iated by de�-nition 1.9 with a sequent 
al
ulus proof is a proof-net.Noti
e that the 
ondition given by de�nition 1.18 is nothing but theproof-net version of lemma 1.2.We 
ome now to the de�nition of the 
ut-elimination pro
edure. If the
ut link 
 has depth n in the sli
ed proof-stru
ture S, the 
ut-eliminationstep asso
iated with 
 will be a step for the sli
ed proof-stru
ture asso-
iated with the !-link (of depth n� 1) the box of whi
h 
ontains 
.De�nition 1.21 (Cut-elimination) Let S be an a
y
li
 sli
ed proof-stru
ture without [-
on
lusions. We de�ne a one step redu
t S0 of S. Lets 2 S and 
 be a 
ut link of s. We de�ne fs0igi2I , obtained by applyingsome transformations to s. S0 is the set of the sli
es obtained from S bysubstituting fs0igi2I for s.� If 
 is a 
ut link of type ax, then fs0g is obtained, as usual, byerasing the axiom link and the 
ut link.
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ing polarized additive normalization 17� If 
 is a 
ut link of type P/
, let A and B (resp. A? and B?)be the premises of the P-link (resp. 
-link). fs0g is obtained byerasing the P-link, the 
-link and the 
ut link and by putting twonew 
ut links between A and A?, and B and B?.� If 
 is a 
ut link of type &i/�i, then fs0g is obtained by erasingthe two links and by moving up the 
ut link to their premises.� If 
 is a 
ut link of type &1/�2 (or &2/�1), then I = ; (wesimply erase s). Moreover, if s is the unique sli
e of the sli
edproof-stru
ture Sn asso
iated with the !-link n, we also erase thesli
e 
ontaining n (and so on re
ursively. . . ).� If 
 is a 
ut link of type !=? with a 0-ary ?-link, then the !-link (to-gether with its box) and its 
on
lusion edges are erased. We thenerase the 0-ary ?-link (and the 
ut) thus obtaining fs0g (noti
ethat some ?-links have lost some premises).� If 
 is a 
ut link of type !=? with a 1-ary ?-link under a [-link,let T be the sli
ed proof-stru
ture asso
iated with the !-link. Withea
h sli
e ti of T , we asso
iate the sli
e s0i de�ned by erasing the?-link and the [-link, by repla
ing in s the !-link by ti and by
utting the main 
on
lusion of ti with the premise of the [-link.� If 
 is a 
ut link of type !=? with a 1-ary ?-link whose premise isa [-
on
lusion of an !-link l0, let T be the sli
ed proof-stru
tureasso
iated with l0 and l be the 
ut !-link. Let ?A=!A? be the 
utformula. fs0g is obtained by erasing l and its 
on
lusions and byrepla
ing the 
on
lusion [A of l0 by all the [-
on
lusions of l. Andwith this new !-link (whi
h we still denote by l0) is asso
iated asli
ed proof-stru
ture T 0 obtained by repla
ing the (unique) sli
et of T having [A among its 
on
lusions by the sli
e obtained byadding to the 
on
lusion of type [A of t a unary ?-link and 
uttingits 
on
lusion (of type ?A) with the 
on
lusion of type !A? of l.(The sli
ed proof-stru
ture asso
iated with l remains un
hanged).� If 
 is a 
ut link of type !=? with a n-ary ?-link l with n > 1,then fs0g is obtained by 
reating a new unary ?-link l0 having aspremise one of the premises of l (and erasing the 
orrespondingedge above l), by dupli
ating the !-link and by 
utting the 
opywith the 
on
lusion of l0, every [-
on
lusion of the 
opy of the!-link is premise of the same links as the edge it is a 
opy of(namely, they are intuitively premise of the same ?-link). Thesli
ed proof-stru
tures asso
iated with the two 
opies of the !-linkare the same.
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Remark 1.22 The attentive reader 
ertainly noti
ed that there are ex-a
tly two 
ases in whi
h the previous de�nition requires the a
y
li
ity
ondition:(i) when the two premises of a 
ut link are both 
on
lusions of thesame axiom link,(ii) when the two premises of a 
ut link are both 
on
lusions of thesame !-link (in fa
t, in our framework, this means that the premiseof type ? of the 
ut link is the 
on
lusion of a ?-link whose premiseis a 
on
lusion of type [ of the !-link).In these two 
ases the 
ut-elimination pro
edure is not de�ned. By thefollowing se
tion, the a
y
li
ity of a sli
ed proof-stru
ture is a suÆ
ient
ondition to ensure that 
ut-elimination never yields to these 
on�gura-tions. 1.5.2 Preservation of 
orre
tnessProposition 1.23 (Preservation of a
y
li
ity) If S0 is a sli
ed proof-stru
ture obtained from the a
y
li
 sli
ed proof-stru
ture S (without [
on
lusions) by performing some steps of 
ut-elimination, then S0 isa
y
li
.Proof We study every 
ut-elimination step, using the notations of de�-nition 1.21:� For the &i/�j (i 6= j) and !/0-ary ? steps, we erase a part of thegraphs, su
h an operation 
annot 
reate 
y
les.� For the ax and &i/�i steps, some paths are repla
ed by shorterones 
hanging nothing to 
y
les.
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ing polarized additive normalization 19� For the P/
 step, if p is a path 
ontaining a 
y
le in S0, it mustuse one of the two new 
ut links starting from the premise A of theP-link and going to the premise A? of the 
-link, for example. Ifp exists, then repla
ing in S the part from A to A? by the pathgoing from A through the P-link, the 
ut link and the 
-link toA? would give a 
y
le in S.� For the !/1-ary ? step with a [-link just above the ?-link, if s0i
ontains a 
y
le p, either it is inside ti and thus 
omes from a
y
le in S or it goes outside ti, but due to the orientation, it isimpossible for a path to go outside ti and to 
ome inside ti sin
eti has only emergent edges (sin
e it has only negative 
on
lusionsfrom remark 1.4).� For the !/1-ary ? step with an !-link just above the ?-link: at thedepth p of the 
ut link, some paths are just repla
ed by shorterones, and this 
annot 
reate any 
y
le. At depth p+ 1, adding a
ut and an !-link to an a
y
li
 graph 
annot 
reate any 
y
le.� For the !/n-ary ? step (n > 1), if p is a 
y
le in S0, it has to 
rossone of the two residues of the 
ut link of S. But identifying thetwo ?-links, the two 
ut links and the two !-links in p would givea 
y
le in S thus p doesn't exist.Theorem 1.24 (Preservation of 
orre
tness) If S0 is a sli
ed proof-stru
ture obtained from the proof-net S by performing some steps of
ut-elimination, then S0 is a proof-net.Proof S0 is a
y
li
 by proposition 1.23. To 
on
lude, we now prove thatif S0 is a one-step redu
t of S, then (whatever redu
tion step has beenperformed) S0 has exa
tly one positive 
on
lusion or one [-link at depth0 and in every sli
e of every box (assuming that the redu
ed 
ut hasdepth 0 in S):� The multipli
ative and additive steps are straightforward and the!/0-ary ? step, too.� For the !/1-ary ? step with a [-link just above the ?-link, the [-link at depth 0 is erased and repla
ed by the one 
oming fromevery sli
e of the box of the !-link (whi
h ne
essarily exists byremark 1.4 and de�nition 1.18).� For the !/1-ary ? step with an !-link just above the ?-link, the



20 [-links and the positive 
on
lusions at depth 0 are not modi�edand at depth 1, we just add an !-node to a sli
e.� For the !/n-ary ? step (n > 1), some links are dupli
ated but the[-links (and the positive 
on
lusions) are un
hanged.1.5.3 Soundness of the interpretationWe are going to prove that the 
ut-elimination pro
edure previouslyde�ned preserves the semanti
al interpretation. We use exa
tly the samete
hnique as in [Gir87℄, and give the details of the proof only in the mostrelevant 
ases. The proof is given for the relational semanti
s, and it
an be straightforwardly extended to both the set and multiset based
oherent semanti
s (see remark 1.27).Remark 1.25 By indu
tion on the sequent 
al
ulus proof �, one 
an
he
k that the semanti
s of � (as de�ned for example in [Gir87℄) is thesemanti
s of the sli
ed proof-stru
ture S� of de�nition 1.9.Theorem 1.26 (Semanti
al soundness) If S0 is a sli
ed proof-stru
tureobtained from the a
y
li
 proof-stru
ture S without [-
on
lusions by per-forming some steps of 
ut-elimination. Then JSK = JS0K.Proof Let � be the 
on
lusions of S and S0 and 
 an element of P �.We show that there exist a sli
e s of S and an experiment e of s withresult 
, i� there exist a sli
e s0 of S0 and an experiment e0 of s0 withresult 
.One has to 
he
k this is the 
ase for every 
ut-elimination step de�nedin de�nition 1.21. We will use for these steps the notations of de�ni-tion 1.21. Let 
 be a 
ut link of a sli
e s of S. Noti
e that our 
laimis obvious for the sli
es whi
h are not 
on
erned by the 
ut-eliminationstep that we 
onsider, and we then restri
t to the other ones: we provethat there exists an experiment e of s with result 
, i� there exist a sli
es0 of fs0igi2I and an experiment e0 of s0 with result 
.By indu
tion on the depth of 
 in s, we 
an restri
t to the 
ase where
 has depth 0. The steps asso
iated with the ax and P/
 
ut links arethe same as in [Gir87℄.� If 
 is a 
ut link of type &i/�i, and e is an experiment of s, let(i; x) be the element of A& B = A? � B? asso
iated by e with
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ing polarized additive normalization 21the two edges premises of 
. Then the experiment e0 of s0 welook for is the \restri
tion" of e to s0: the label asso
iated by ewith the two premises of the unary &i and �i links of s is x, andx is also the label asso
iated by e0 with the two premises of the\residue" of 
 in s0. For the 
onverse, one 
learly pro
eeds in thesame way.� If 
 is a 
ut link of type &1/�2 (or &2/�1), then there exists noexperiment of s (remember the 
ondition of de�nition 1.12 on thelabel of the premises of a 
ut link), and no experiment of fs0igi2I(remember I = ;).� If 
 is a 
ut link of type !=? with a 0-ary ?-link, then we are simplyapplying the weakening step of [Gir87℄.� If 
 is a 
ut link of type !=? with a 1-ary ?-link whose premise isthe 
on
lusion of a [-link, let T be the sli
ed proof-stru
ture asso-
iated with the !-link. With ea
h sli
e ti of T , this step asso
iatesa sli
e s0i.Let e be an experiment of s, let fxg be the element of !A =?A?asso
iated by e with the two edges premises of 
. By de�nitionof experiment, be
ause the label of the 
on
lusion of the !-link isa singleton, there is a unique sli
e ti of the sli
ed proof-stru
tureT (asso
iated with the !-link), and a unique experiment ei of tifrom whi
h e is built. The label asso
iated with the 
on
lusion oftype A of ti will be x 2 A. Again by de�nition of experiment, thelabel asso
iated by e with the premise of type A? of the [-link isx 2 A?. We 
an then build (from ei) an experiment e0i of s0i withthe same result as e. For the 
onverse, one pro
eeds in the sameway: an experiment e0 of some sli
e s0i indu
es an experiment eiof ti, and an experiment e of s.� If 
 is a 
ut link of type !=? with a 1-ary ?-link whose premise isa 
on
lusion (of type [) of the box asso
iated with the !-link l0(di�erent from l), then there is nothing new with respe
t to the
ommutative step of [Gir87℄.� If 
 is a 
ut link of type !=? with a n-ary ?-link l with n > 1, thenlet e be an experiment of s, let fx1; : : : ; xkg = a1[� � �[an be theelement of !A =?A? asso
iated by e with the two edges premisesof 
. Suppose that a1 is the label of the one among the premisesof the ?-link of arity n, whi
h be
omes the 
on
lusion of the newunary ?-link. We have fx1; : : : ; xkg = a1 [ fy1; : : : ; yhg. Thissplitting is a
tually a splitting of the k experiments of the sli
edproof-stru
ture asso
iated with the !-link. This remark is enough



22 to 
on
lude the existen
e of an experiment e0 of s0 with the sameresult as e. Conversely, let e0 be an experiment of s0. Be
ause thesli
ed proof-stru
ture asso
iated with the two !-links is the samewe 
an build an experiment e of s with the same result as e0.Remark 1.27 To prove the soundness of the (set and multiset based)
oherent semanti
s, one �rst needs to generalize the following resultof [Gir87℄ to LLpol: \if S is an a
y
li
 sli
ed proof-stru
ture with 
on-
lusions � (where � 
ontains no [ formula), then JSK is a 
lique of the
oherent spa
e P �."This result has to be used in the proof of the previous theorem in the
ases of !=? 
uts.1.6 Sequentialization for (
ut-free) sli
esWe show that the 
onditions on sli
ed proof-stru
tures given in de�-nitions 1.17 and 1.18 yield a 
orre
tness 
riterion for 
ut-free proof-stru
tures (theorem 1.32): they allow to 
hara
terize exa
tly those proof-stru
tures 
oming from sequent 
al
ulus proofs.A novelty due to our sli
ed presentation is that we have to be ableto glue together sli
es. Thanks to the polarization 
onstraint this willbe possible, provided one restri
ts to 
ut-free proof-stru
tures. In thewhole se
tion, all our proof-stru
tures will be 
ut-free.De�nition 1.28 (Equivalen
e of links) Let s1; s2 be two sli
es of asli
ed proof-stru
ture S. Let n1 and n2 be two links of s1 and s2 at depth0 having the same negative non-[ 
on
lusion A. We de�ne, by indu
tionon the number of links under A in s1, the meaning of n1 and n2 areequivalent links denoted by n1 � n2.If A is a 
on
lusion of s1 then it is also a 
on
lusion of s2 and n1 � n2if they are the links introdu
ing A in s1 and s2.Let A be the premise of the unary link m1 (resp. m2) of s1 (resp. s2)and the 
on
lusion of n1 (resp. n2): if m1 � m2, then n1 � n2.Let A be the left or right premise of the binary link m1 (resp. m2)of s1 (resp. s2) and the 
on
lusion of n1 (resp. n2): if m1 � m2, thenn1 � n2.It is 
lear that � is an equivalen
e relation on the negative links atdepth 0 of S.
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ing polarized additive normalization 23Remark 1.29 If n1 � n2 then n1 and n2 are links of the same kindex
ept if n1 = &1 and n2 = &2.De�nition 1.30 (Weights) Let S be a sli
ed proof-stru
ture and let&1; : : : ;&k be the equivalen
e 
lasses for � of the &-links at depth 0of S. We asso
iate with ea
h &i an eigen weight pi that is a booleanvariable (in the spirit of [Gir96℄). The weight of a sli
e s of S is (withan empty produ
t equal to 1 by 
onvention):w(s) = Y&i12s pi Y&i22s �piand the weight of the set S is:w(S) =Xs2Sw(s)The sli
ed proof-stru
ture S is full if w(S) = 1 and 
ompatible if wehave w(s)w(t) = 0 for s 6= t.Remark 1.31 We 
an now be more pre
ise than in remark 1.20: thesli
ed proof-stru
ture asso
iated by de�nition 1.9 with a 
ut-free sequent
al
ulus proof is a (
ut-free) proof-net, whi
h is full and 
ompatible.Theorem 1.32 (Sequentialization) If S is a 
ut-free sli
ed proof-stru
ture, S is the translation of an LLpoly sequent 
al
ulus proof if andonly if S is a full and 
ompatible proof-net.Proof We prove the se
ond impli
ation by indu
tion on the size of S(the �rst one is remark 1.31). Sin
e S has no [-
on
lusions, the 
on
lu-sions of the sli
es of S are the same. The size of a sli
e s is the triple(depth(s),number of ?-links with arity at least 2 and depth 0,number oflinks with depth 0), lexi
ographi
ally ordered, and the size of S is thesum (
omponent by 
omponent) of the sizes of the sli
es of S.Let s be a sli
e of S. We shall say that a link of s is terminal whenits 
on
lusion is a 
on
lusion of s.� If s has a terminal P-link, a 
orresponding link appears in ea
hsli
e sin
e they have the same 
on
lusions. We 
an remove theselinks in ea
h sli
e and we obtain a sli
ed proof-stru
ture S0 veri-fying the hypothesis of the theorem.y The extension of this result to the multipli
ative units is straightforward. The
ase of > presents no real diÆ
ulty but requires a heavier treatment (see [Lau02℄).



24 � If s has a terminal &-link, a 
orresponding link appears in ea
hsli
e. For some sli
es this link will be a &1-link (we 
all S1 the setof sli
es obtained by erasing the &1-links in these sli
es) and forsome others a &2-link (we 
all S2 the 
orresponding set withoutthe &2-links). We have to show that S1 and S2 are full and
ompatible. The weight of S1 (resp. S2) is obtained by takingp = 1 (resp. p = 0) in p:w(S) (resp. �p:w(S)) thus this weight is1. Let s and t be two sli
es of S1 with weights w1(s) and w1(t),their weights in S are p:w1(s) and p:w1(t) thus w1(s)w1(t) = 0(idem for S2). We 
an now apply the indu
tion hypothesis to S1and S2.Now, s has no terminal P-links and no terminal &-links thus it has nosu
h links at depth 0 by polarization. This entails that s is the only sli
eof S by 
ompatibility.� If s has a terminal 0-ary ?-link, we 
an remove it: this 
orrespondsto a weakening rule.� If s has a terminal n-ary ?-link with n � 2, we break it into nunary links, we apply the indu
tion hypothesis and perform n�1
ontra
tion rules in the sequent 
al
ulus proof thus obtained.� If s has a unary ?-link under a [-link, we remove both of them,and this 
orresponds to a dereli
tion rule. (Noti
e that we 
anapply the indu
tion hypothesis, be
ause when removing the twolinks we repla
e a [-link at depth 0 by a positive 
on
lusion).� If none of the previous 
onditions is satis�ed then s has no P-,&-, ?-links at depth 0 (ex
ept unary ?-links under !-links). Thismeans that if s has a terminal 
-link, it is the unique one andit is splitting: we 
an apply the indu
tion hypothesis to the twosub-proof-stru
tures.� If s has a terminal �-link, we just remove it and apply the indu
-tion hypothesis.If s doesn't 
orrespond to any of the 
ases above, either it is an ax-iom link (straightforward) or it is redu
ed to an !-link with a unary?-link under ea
h [-
on
lusion. Let S0 be the box asso
iated with the!-link. By adding to the sli
es of S0 some 0-ary ?-links (like in examplepage 12) and a 1-ary ?-link under ea
h [-
on
lusion, one gets a sli
edproof-stru
ture S00. Let �00 be the proof obtained by sequentializing S00,the sequentialization � of S is obtained by adding a promotion rule to�00. (As an exer
ise, the reader 
an apply this sequentialization methodto the sli
ed proof-stru
ture of page 12).



Sli
ing polarized additive normalization 25Remark 1.33 Noti
e that (a

ording to remark 1.8) every negative 
on-
lusion M P N (resp. M&N) of a proof-net S is the 
on
lusion of a P(resp. &) link. The previous proof shows that there exists a sequential-ization of S whose last rule introdu
es this formula. The reader mighthave re
ognized a proof-net version of the reversibility of the 
onne
tivesP and &.Remark 1.34 In fa
t, a(n apparently) stronger version of theorem 1.32
ould be given: the reader 
ertainly noti
ed that nowhere in the proofof the theorem we have used the a
y
li
ity property of our proof-nets.This is simply due to the fa
t that every 
ut-free sli
ed proof-stru
tureS is a
y
li
. Indeed, a path starting from a positive edge of S upwardlygoes to an axiom link or an !-link and then goes down to a 
on
lusionstopping there; while a path starting from a negative edge goes dire
tlydown to a 
on
lusion and stops.1.7 Computing with sli
esWe now introdu
e a general method, allowing to use denotational se-manti
s in order to guarantee the \
anoni
ity" of our proof-nets. Morepre
isely, we introdu
e the notion of inje
tive semanti
s (whi
h 
omesfrom [TdF00℄), and show how the existen
e of su
h a semanti
s is a wit-ness of the 
anoni
ity of our sli
ed proof-nets as 
omputational obje
ts.Remark 1.35 We will use in the sequel the strong normalization prop-erty for proof-nets with respe
t to the 
ut-elimination pro
edure. We donot give the proof of su
h a result, whi
h is proven in [LQTdF00℄ (forLLpol) in the framework of polarized proof-nets with additive boxes.Let F be a subsystem of our sli
ed proof-stru
tures, and let J:K be aninterpretation of the sli
ed proof-stru
tures of F (satisfying theorem 1.26and) inje
tive: if S1 and S2 are two 
ut-free sli
ed proof-nets su
h that(for every interpretation of the atomi
 formulas) JS1K = JS2K, then S1 =S2.Another way to speak of inje
tivity is the following: J:K is inje
-tive when the semanti
al equivalen
e 
lass of every proof-net 
ontains aunique 
ut-free proof-net. In this (strong) sense our obje
ts are 
anon-i
al. In parti
ular, su
h a property entails 
on
uen
e: if S01 and S02 aretwo normal forms of the proof-net S, then by theorem 1.26 and inje
-tivity S01 = S02 .



26Another 
ru
ial point is that inje
tivity allows to 
ompute with thesli
ed proof-stru
tures of F 
oming from sequent 
al
ulus proofs. In-deed, let � be any linear propositional sequent 
al
ulus proof, let S� bethe sli
ed proof-stru
ture asso
iated with � by de�nition 1.9, and let S0be the normal form of S�. Now 
ompute a normal form �0 of � seman-ti
ally 
orre
t (i.e. satisfying J�K = J�0K), whi
h 
an be done by per-forming 
ut-elimination dire
tly in sequent 
al
ulus in several di�erentways. By remark 1.25, J�K = JS�K and J�0K = JS�0K, by theorem 1.26,JS�K = JS0K, and we know that J�K = J�0K. By inje
tivity, we 
an then
on
lude that S�0 = S0. In fa
t, our approa
h to inje
tivity (in se
-tion 1.8, and more generally in [TdF01℄) is \to rebuild" a 
ut-free prooffrom its semanti
s: on the one hand the inje
tivity property guaranteesthat any reasonable way of 
omputing with sli
ed proof-stru
tures 
om-ing from sequent 
al
ulus proof is sound (S�0 = S0), and on the otherhand the te
hnique used to prove inje
tivity suggests the possibility ofsemanti
ally 
omputing the normal form (S0) of a proof (�0). This lastapproa
h is very 
lose to the so-
alled \normalization by evaluation"(see [BES98, DRR01℄).Summing up, one has: � ����! �0??y ??yS� ����! S�0This diagram expresses a simulation property of the 
ut-elimination (insequent 
al
ulus) by proof-net redu
tions. The inje
tivity property ofthe semanti
s allows to obtain su
h a result by semanti
al means.Noti
e that the mentioned argument holds for any existing syntax forLLpol instead of sequent 
al
ulus (like proof-nets with additive boxessee [Gir87℄ and [LQTdF00℄, multiboxes see [TdF03℄, proof-nets withweights see [Gir96℄ and [Lau99℄): let R be a proof in su
h a system, itwill always be possible to translate R as a sli
ed proof-stru
ture SR withthe same semanti
s as R (in the previously mentioned syntaxes, this isstraightforward). Let S0 be the normal form of SR. Let R0 be a normalform of R and let SR0 be the sli
ed proof-stru
ture asso
iated with R0.As before, we have S0 = SR0 .We are 
laiming that our proof-nets are 
anoni
al 
omputational ob-je
ts: they are a
tually the �rst example of su
h obje
ts in presen
e ofthe additive and exponential 
onne
tives. Indeed, (sli
ed) proof-nets are
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omputational obje
ts by theorem 1.24, and they are 
anoni
al by theinje
tivity property (as we already explained).Noti
e that none of the previously mentioned polarized syntaxes 
anreally 
laim to yield a 
anoni
al representation of proofs: denotationalsemanti
s is not inje
tive for proof-nets with boxes nor multiboxes (eventhough this last syntax realizes a mu
h greater quotient on proofs), andit is well-known that with a sequent 
al
ulus proof 
an be asso
iatedseveral proof-nets with weights (and the 
ut-elimination pro
edure isnot always de�ned for su
h proof-nets).We then have a new 
anoni
al syntax, independent from sequent 
al-
ulus, allowing to make 
orre
t 
omputations. Despite the fa
t that wedon't have a pro
edure to sequentialize proof-nets with 
uts, we knowthat if we start from a sequentializable proof-net S, we eventually rea
ha normal form S0 whi
h is itself sequentializable. This means on theone hand that nothing is lost, and on the other hand that the newobje
ts whi
h naturally appear (and whi
h are not ne
essarily sequen-tializable) have a 
lear and well-stru
tured 
omputational behaviour.A
tually, this is pre
isely the point where our approa
h di�ers from theone of [HvG03℄: we mainly fo
us on the 
omputational behaviour of ourobje
ts (
ut-elimination), while [HvG03℄'s main issue is 
orre
tness. In-deed, the \proof-nets" (i.e. the 
orre
t proof-stru
tures) introdu
ed byHughes and Van Glabbeek are all sequentializable and this is not the
ase of ours. However, the translation of sequent 
al
ulus into sli
edproof-stru
tures is a fun
tion (this is not the 
ase for [HvG03℄'s nets),and our 
ut-elimination pro
edure is lo
al (just perform it, separately,in ea
h sli
e) while Hughes and Van Glabbeek have to redu
e all thesli
es at the same time. The non-sequentializable sli
ed proof-stru
turesnaturally appearing during (sli
ed) 
ut-elimination have a perfe
tly well-understood 
omputational behaviour, and we do not see any reason toreje
t them.The equivalen
e relation on sequent 
al
ulus proofs de�ned by our(sli
ed) proof-nets 
an be very well 
ompared to the one de�ned byordinary proof-nets in the multipli
ative fragment of linear logi
.But do there exist some (interesting) subsystems F of sli
ed proof-stru
tures with an inje
tive semanti
s?Su
h systems and semanti
s 
ertainly exist in the absen
e of the ad-ditives (see [TdF01℄), it is very likely also the 
ase for [HvG03℄. Thenext se
tion gives a positive answer to the previous question in presen
eof both additive and exponential 
onne
tives. We want to mention here



28that this is just a �rst (limited) result, and it is very likely that it 
anbe extended to full LLpol.1.8 An appli
ation: �-
al
ulus with pairingWe prove that (relational) semanti
s is inje
tive for the fragment �LLpolof LLpol, whi
h 
orresponds to the simply typed �-
al
ulus with pairing.De�nition 1.36 (�-
al
ulus with pairing)t ::= x j �x:t j (t)t j �1t j �2t j <t; t>De�nition 1.37 (Girard's translation) The types of the �-
al
uluswith pairing are translated as negative formulas as follows:X  XA! B  ?A? P BA ^ B  A&Band terms are translated by the straightforward extension of Girard'stranslation [Gir87, Dan90℄ for the �-
al
ulus.Let �LLpol be the sub-system of LLpol 
ontaining only the followingformulas: N ::= X j N &N j ?P P NP ::= X? j P � P j !N 
 P(and their sub-formulas) together with the [P -formulas, and su
h thatall the 
on
lusions of proofs are negative formulas.Terms are translated by proof-nets of �LLpol. The 
onstraint that ax-iom links introdu
e only atomi
 formulas entails that the translation 
on-tains an impli
it �-expansion of terms.In the present se
tion, in order to prove inje
tivity for �LLpol, werestri
t to proof-stru
tures, sli
es and sli
ed proof-stru
tures of �LLpolwithout 
ut links (
orresponding to normal terms).De�nition 1.38 Let s be a single-threaded sli
e. We denote by L(s) (the\linearization" of s) the graph obtained by repla
ing every !-link n by theasso
iated sli
e. More pre
isely, if n is an !-link having a 
on
lusion oftype !A with an asso
iated sli
e sn, we repla
e n by a modi�ed unary!-link with as premise the 
on
lusion A of sn; the [-
on
lusions of n arerepla
ed by the 
orresponding [-
on
lusions of sn.
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ing polarized additive normalization 29Remark 1.39 If e is a 1-experiment of s, then with every edge a of typeA of L(s) is asso
iated a unique label e(a) of A.For the 1-experiment e, we will denote by ejL(s) the labeling of theedges of L(s) asso
iated with e.Lemma 1.40 Let s and s0 be two single-threaded sli
es. Let e (resp. e0)be an inje
tive 1-experiment of s (resp. s0) with result 
 (resp. 
0).If 
 = 
0, then L(s) = L(s0) and ejL(s) = e0jL(s0).Proof Our 
laim is that the graph L(s) so as the labels of its edges are
ompletely determined by the types of the 
on
lusions of s and by theresult of an inje
tive 1-experiment of s. Indeed, let's start from someedge a of L(s), with its type A and its label x 2 A. There are exa
tlythree 
ases in whi
h either the type A of a is not enough to determinethe link of L(s) having a as 
on
lusion or the link is known but thebottom-up propagation of the labels is not obviously deterministi
:(i) A = C &D: then a might be 
on
lusion of a &1- or of a &2-link.But the label of a tells us whi
h of these two 
ases holds, andwhi
h is the label of the premise of the &-link.(ii) A = C �D: exa
tly like in the previous 
ase.(iii) A = ?C: then, be
ause e is a 1-experiment, the 
ardinality of thelabel of a is the arity of the ?-link with 
on
lusion a. This alsoimplies that there is a unique way to determine the labels of thepremises of the ?-link.To 
on
lude, noti
e that the fa
t that e is inje
tive allows to uniquelydetermine the axiom links of L(s).1.8.1 Re
overing boxes in �LLpolWe are now going to use in a strong way the parti
ular shape of the(sli
ed) proof-nets of �LLpol. We show that for a single-threaded sli
e sof this fragment, the graph L(s) 
ontains as mu
h information as s. Inother terms, on
e L(s) is known, the fa
t that s is a single-threaded sli
eof a sli
ed proof-stru
ture whi
h is the translation of a term, uniquelydetermines the way to \put" the boxes on the graph L(s).Lemma 1.41 If s is a sli
e of a �LLpol proof-net, there is exa
tly one[-link with depth 0 in every sli
e of every box of s.



30 ?
? !

!

[
P

P




 �&
ax ax

Fig. 1.1. CombsProof Just the 
orre
tness 
riterion (theorem 1.32).Lemma 1.42 Let s be a single-threaded sli
e, and a an edge of type Aof s.If A is a negative (resp. positive) formula, then the graph above a isa 
omb (see �gure 1.1):� the teeth of the \negative 
omb" are edges of type ?, while theba
kbone is made of unary &-nodes and of P-nodes and movingupwards along it one ne
essarily ends in the unique (negative)atomi
 edge of the 
omb.� dually, the teeth of the \positive 
omb" are edges of type !, whilethe ba
kbone is made of �-nodes and 
-nodes and moving up-wards along it one ne
essarily ends in the unique (positive) atomi
edge of the 
omb.We will speak of the 
omb asso
iated with a. Noti
e that a is 
onsideredas an edge of the 
omb.Proof Immediate 
onsequen
e of the de�nition of �LLpol and of thede�nition of single-threaded sli
e.
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ing polarized additive normalization 31Remark 1.43 As a 
onsequen
e of the previous lemma, with every neg-ative edge � of a single-threaded sli
e s, is asso
iated an oriented path�� of s (see �gure 1.2): it is the path with starting edge � (oriented up-wardly), following the ba
kbone of the negative 
omb up to the negativeatomi
 edge X of the 
omb, 
rossing the axiom link and its positive 
on-
lusion X? (oriented now downwardly) and moving downwardly alongthe ba
kbone of a positive 
omb (
rossing �- and 
-links) until a [-linkis rea
hed (there are no other possibilities).We will refer to �� (in the sequel of the paragraph) as the orientedpath asso
iated with the negative edge �.Until the end of this se
tion 1.8.1, we will �x the following notationsa

ording to �gure 1.2:� � is the (negative) edge premise of an !-link l of the single-threadedsli
e s� Bl is the box asso
iated with l� n is the last link of �� whi
h is a [-link (by remark 1.43)� 
 is the (positive) premise of n� l1; : : : ; lk are the k � 0 !-links of s whose 
on
lusions are the teeth ofthe positive 
omb asso
iated with 
� B1; : : : ; Bk are the boxes asso
iated with l1; : : : ; lkRemark 1.44 Every edge of s \above �" is 
ontained in Bl. Moreover,all the links of �� (in
luding n) are 
ontained in Bl.Lemma 1.45 Every edge with depth 0 of Bl is either an edge of ��, orthe 
on
lusion of the [-link n, or a tooth of one of the two 
ombs of ��,or the [-
on
lusion of a !-link.Proof See �gure 1.2.Let G be the 
orre
tion graph of Bl (see de�nition 1.17). The initialnodes of G are n and the 0-ary ?-links. Every link in G is a

essibleby an oriented path from an initial link, but any 0-ary ?-link is thepremise of a P-link (in �LLpol) that must be also a

essible through itsother premise. By indu
tion on the number of links above this P-linkwe easily show that it is a

essible from a non ?-link. So that every link(ex
ept 0-ary ?-links) at depth 0 in Bl is a

essible from n. We said thatevery 
on
lusion of a 0-ary ?-link is the premise of a P-link, and we just
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Fig. 1.2. Lemma 1.45 (dashed lines are given as examples)proved that this P-link is a

essible from n: the 
on
lusions of the 0-ary?-links must then be teeth of the negative 
omb of ��.We are now going to de�ne a (partial) order relation on the !-links ofL(s), for every single-threaded sli
e s. We then show that this relation
oin
ides with the nesting of boxes and it is enough to re
over the boxesof s.De�nition 1.46 Let s be a single-threaded sli
e, let l and m be two!-links of s and let � be the premise of l in L(s). We de�ne the relation<1 on the !-links of s as follows: m <1 l i� the oriented path �� 
rossesthe 
-link of s having m as premise. We de�ne the relation � as there
exive and transitive 
losure of <1.Lemma 1.47 Let s be a single-threaded sli
e. If l (resp. m) is an !-linkof s and Bl (resp. Bm) is the box asso
iated with l (resp. m), then m � li� Bl 
ontains Bm.
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ing polarized additive normalization 33In parti
ular, this implies that the relation � is indeed a partial orderrelation.Proof Suppose that m � l. From the nesting 
ondition, it is 
learlyenough to show that if m <1 l, then Bl 
ontains m, and this is a 
onse-quen
e of remark 1.44.Conversely, suppose that Bl 
ontains Bm. It is again enough to
onsider the 
ase in whi
h Bl is the smallest box 
ontaining Bm. Bylemma 1.45, the 
on
lusion of m is one of the teeth of the positive 
ombof ��. We just proved that m <1 l.Proposition 1.48 Let s and s0 be two single-threaded sli
es of �LLpol.If L(s) = L(s0), then s = s0.Proof The reason why this holds is that the paths of L(s) are the sameas the paths of s.We still use �gure 1.2 and show, by indu
tion on the number of !-linksof L(s) smaller (with respe
t to �) than l (noting that it is a �nitenumber by lemma 1.47, sin
e our graphs are �nite), that on
e L(s) isknown, we know how to re
over Bl. By indu
tion hypothesis, we knowhow to re
over B1; : : : ; Bk. By lemma 1.45, every edge with depth 0 ofBl is either an edge of one of the two 
ombs of ��, or the 
on
lusion ofn. By remark 1.44, all the just mentioned edges are edges of Bl. ThenBl 
an only be the graph 
ontaining B1; : : : ; Bk, the two 
ombs of ��(in
luding the ?-links) and the 
on
lusion of n.1.8.2 Inje
tivity for �LLpolWe prove the following lemma for relational semanti
s. It 
ertainly holdsin the 
oherent 
ase too, but a detailed proof would require some moreintermediate results.In the sequel, we will write JSK = JS0K, always meaning that theequality holds for every interpretation of the atoms of the formulas of Sand S0.Lemma 1.49 Let S and S0 be two sli
ed proof-stru
tures with the same
on
lusions.If JSK = JS0K, then sgth(S) = sgth(S0), where sgth(S) (resp. sgth(S0))is the set of the single-threaded sli
es of S (resp. S0).



34Proof By 
ontradi
tion, suppose that sgth(S) 6= sgth(S0). There exists asingle-threaded sli
e s of S whi
h is di�erent from all the single-threadedsli
es of S0. Let e be an inje
tive 1-experiment of s with result 
. Su
h anexperiment obviously exists, at least in the 
ase of relational semanti
s.From JSK = JS0K, there exists an experiment e0 of S0 with result 
. It iseasy to 
onvin
e oneself that e0 is a 1-experiment of S0 (see [TdF01℄ fora proof without additives). From remark 1.16, e0 is then a 1-experimentof a single-threaded sli
e s0 of S0.By lemma 1.40, we obtain that L(s) = L(s0), and then by proposi-tion 1.48, s = s0 whi
h is a 
ontradi
tion.De�nition 1.50 ([-free subgraph) The [-free subgraph of a sli
e sis the graph obtained by keeping only the part of s at depth 0 and byrepla
ing every !-link by an !-link without any [-
on
lusion. This erasessome [-edges that are premises of ?-links.De�nition 1.51 (Non-
ontradi
tion of sli
es) Let s and s0 be twosingle-threaded sli
es with the same non-[ 
on
lusions, the fa
t that sand s0 are non-
ontradi
tory is de�ned by indu
tion on the depth of s.s and s0 are non-
ontradi
tory if either there exists a &i (resp. &j) linkn (resp. n0) of s (resp. s0) at depth 0 su
h that n � n0 and i 6= j, ors and s0 have the same [-free subgraph and the boxes of s and s0 arenon-
ontradi
tory.A sli
ed proof-stru
ture S is non-
ontradi
tory if for every pair ofsingle-threaded sli
es s and s0 of S, s and s0 are non-
ontradi
tory.Theorem 1.52 (Inje
tivity) Let S and S0 be two non-
ontradi
toryproof-nets with the same 
on
lusions.If JSK = JS0K, then S = S0.Proof By lemma 1.49, we have sgth(S) = sgth(S0). For a given set of non-
ontradi
tory single-threaded sli
es, there is only one way to re
onstru
ta sli
ed proof-stru
ture: to glue (re
ursively with respe
t to the depth)the single-threaded sli
es with the same part at depth 0.Remark 1.53 The reader should not think that the hypothesis of \non-
ontradi
tion" of proof-nets weakens our inje
tivity theorem: it is theopposite! Indeed, our requirement for a sli
ed proof-stru
ture to deservethe name of proof-net is just that \it 
ontains only 
orre
t sli
es" (seede�nition 1.18). This (minimal) requirement is already enough to make
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orre
t 
omputations (theorem 1.24), whi
h are also semanti
ally sound(theorem 1.26). But it is obvious that a set of 
orre
t sli
es is not se-quentializable (in general), and we 
ould prove theorem 1.32 only byadding the \
ompatibility" and \fullness" 
onditions. A full and 
om-patible proof-net is always non-
ontradi
tory, and the non-
ontradi
tionhypothesis (weaker than the 
ompatibility and fullness one) is alreadyenough to prove theorem 1.52.1.8.3 Computing with the �-
al
ulus sli
esTo apply the 
ontent of se
tion 1.7 to �LLpol, just noti
e that if S�0 isthe sli
ed proof-stru
ture asso
iated with the 
ut-free sequent 
al
ulusproof �0, then by remark 1.31, S�0 is full and 
ompatible (thus non-
ontradi
tory). If � is a sequent 
al
ulus proof of �LLpol and S0 is anormal form of S�, then JS�0K = JS0K and by theorem 1.52, S0 = S�0 .A
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