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Abstract

To attack the problem of “computing with the additives”, we introduce
a notion of sliced proof-net for the polarized fragment of linear logic. We
prove that this notion yields computational objects, sequentializable in
the absence of cuts. We then show how the injectivity property of deno-
tational semantics guarantees the “canonicity” of sliced proof-nets, and
prove injectivity for the fragment of polarized linear logic corresponding
to the simply typed A-calculus with pairing.

1.1 Introduction

The question of equality of proofs is an important one in the “proofs-
as-programs” paradigm. Traditional syntaxes (sequent calculus, natural
deduction, ...) distinguish proofs which are clearly the same as compu-
tational processes. On the other hand, denotational semantics identifies
“too many” proofs (two different stages of the same computation are al-
ways identified). The seek of an object sticking as much as possible to the
computational nature of proofs led to the introduction of a new syntax
for logic: proof-nets, a graph-theoretic presentation which gives a more
geometric account of proofs (see [Gir87]). This discovery was achieved
by a sharp (syntactical and semantical) analysis of the cut-elimination
procedure.

Any person with a little knowledge of the multiplicative framework of
linear logic (LL), has no doubt that proof-nets are the canonical repre-
sentation of proofs. But as soon as one moves from such a fragment, the
notion of proof-net appears “less pure”. A reasonable solution for the
multiplicative and exponential fragment of LL (with quantifiers) does
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exist (combining [Dan90] and [Gir91b], like in [TdF00]). Turning to
multiplicative and additive LL (MALL), the situation radically changes:
since the introduction of proof-nets [Gir87], the additives were treated in
an unsatisfactory way, by means of “boxes”. Better solutions have been
proposed in [Gir96] and [TdF03], until the paper [HvG03] introduced
“the good notion” of proof-net for cut-free MALL. But still, trying to
deal with the full propositional fragment means entering a true jungle.
Of course, it is possible to survive (i.e. to compute) in this jungle, as
shown in [Gir87, TdF00]. So what? The problem is that the objects
(the proof-nets) used are definitely not canonicalf.

Recently, a new fragment of LL appeared to have a great interest:
in [Gir91a] and [DJS97] the polarized fragment of LL is shown to be
enough to translate faithfully classical logic. A study of proof-nets for
such a fragment was undertaken in [Lau99], and the notion of [Gir96]
drastically simplified. In [LQTdF00] a proof of strong normalization
and confluence of the cut-elimination procedure is given for polarized
LL, using the syntax of [Gir87] (notice that for full LL confluence is
wrong and strong normalization is still not completely proven). Despite
these positive results, the notion of proof-net still appears as (more or
less desperately, depending on the cases) non canonical.

The first contribution of the present paper is the proposal of a mathe-
matical counterpart for the term “canonical”. And here is where denota-
tional semantics comes into the picture: in [TdF01], the question of in-
jectivity of denotational semantics is addressed for proof-nets. Roughly
speaking, denotational semantics is said to be injective when the equiv-
alence relation it defines on proofs coincides with the one defined by
the cut-elimination procedure. Our proposal is to let semantics decide
on the canonicity of some notion of proof-net: this is canonical when
there exists a (non contrived, obviously!) denotational semantics which
is injective with respect to the would-be canonical notion of proof-net.

Notice that this is a rather severe notion of canonicity. Indeed, proof-
nets for multiplicative LL are canonical (and this is probably true also
for MALL using [HvGO03]), but the previously mentioned extension to
multiplicative and exponential LL is not guaranteed to be canonical:
the time being we only know that coherent (set and multiset based)
semantics is not injective for such proof-nets (see [TdF01]). Finally, the

t We will use the term canonical in an intuitive way, following the idea that a
canonical representation of a proof is not sensitive to inessential commutations of
rules.
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known syntaxes for full LL (with additives) are obviously not canonical
for the usual semantics of linear logic.

The notion of slice was first introduced in [Gir87]. The idea is very
simple: instead of dealing with both the components of an additive box
“at the same time”, what about working with these two components
separately? This attitude is tempting because it ignores the superimpo-
sition notion underlying the connective & (which is precisely the difficult
point to understand). It is shown in [Gir96] that the correctness of the
slices of a proof-structure does not imply the correctness of the proof-
structure itself (see also [HvG03]). However, this turns out to be true in
a polarized and cut-free framework (theorem 1.32).

In section 1.2, we give some intuitions on the original notion of slice
for MALL coming from [Gir87].

We then define, in section 1.3, a notion of sliced proof-structure for
polarized LL (definition 1.5), and we show how to translate sequent
calculus proofs into sliced proof-structures. To obtain canonical objects,
we deal with atomic axioms and proof-structures in the style of the
“nouvelle syntaxe” of Danos and Regnier [Reg92]. For this purpose, we
introduce b-formulas which do not occur in sequent calculus, but are very
useful in our framework: a formula bA is necessarily the premise of a ?-
link. The notation (and the meaning) of b A is clearly very much inspired
from Girard’s works on ludics [Gir01] and on light linear logic [Gir95].

We introduce in section 1.4 the relational semantics. We adapt the
definition of experiment of [Gir87] to our framework, and we define
the interpretation of a sliced proof-structure (definition 1.13). Partic-
ular experiments coming from [TdF01] are also introduced (injective
1-experiments), to be used later in section 1.8.

Section 1.5 is devoted to define and to study the notion of “correct”
sliced proof-structure (or sliced proof-net). The polarization constraints
allow to apply to our framework the correctness criterion of [Lau99].
We define a sliced cut-elimination procedure (definition 1.21), we prove
that correctness is preserved by our sliced cut-elimination steps (theo-
rem 1.24) and that our semantical interpretation is sound (theorem 1.26).
Our sliced proof-nets are thus proven to be computational objects.

In section 1.6, we prove that in the absence of cuts, the correctness
criterion (plus some obviously necessary conditions on sets of slices)
is enough to “glue” in a unique way different slices: a sliced proof-
net comes from a sequent calculus proof (theorem 1.32). This result
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follows [Lau99] (where the &-jumps of [Gir96] are removed) and [Lau03]
(where the remaining jumps for weakenings are also removed).

Section 1.7 explains and justifies in details our method: the use of
injective denotational semantics as a witness of canonicity of our sliced
proof-nets.

The reader should notice that this is the very first time a notion
of proof-net containing the additives and the exponentials can really
pretend to be canonical.

Finally, section 1.8 shows that our method makes sense: there exist
interesting fragments of polarized LL for which denotational semantics is
injective (and thus the corresponding proof-nets are canonical), like the
A-calculus with pairing. The result that we prove is an extension of the
result of [TdF01]. Thanks to a remark of L. Regnier on the A-calculus
(expressed by proposition 1.48), we could avoid to reproduce the entire
proof. We thus get injectivity only for relational semantics, but in a
quick and simple way.

Let us conclude by stressing the fact that the last section is simply
an example to illustrate the method explained in section 1.7, and it is
(very) likely that injectivity for coherent and relational semantics holds
for the whole polarized fragment. This would give canonical proof-nets
for polarized LL, that is for classical logic (see [LQTAF00]).

1.2 A little history of slices

Slices were first introduced in [Gir87], and the following examples come
directly from the ideas of that work.

In this section, we only want to give some hints of what will be de-
veloped in the following ones. In particular, all the notions used here
simply have an intuitive meaning, and will be formally defined later.

Intuitively, a slice of a proof is obtained by choosing, for every occur-
rence of the rule &, one of the two premises. With the sequent calculus
proof obtained by adding a cut between

— a4 — a4
FAtA -BL,B

1
FA-® Bt A - At® B+, B
FAL® Bl A& B
(At @ BY) ¥ (A& B)
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one would like to associate a graph, like:

A At o Bt

where the dashed box is an attempt to express some kind of “superim-
position” of two subgraphs. Choosing to work separately with each of
these two subgraphs means “slicing” the proof-net into the two following
slices (where the binary &-link is replaced by two unary &-links):

A& B

A Ate Bt

A& B

AL

®®

A Ate Bt



In [Gir96], Girard shows that the correctness of slices is not enough
to ensure the correctness of the whole graph: it is easy to see that there
exists a proof-structure with conclusion A® (B&C), (A+ ¥ BLH)@ (AL ®
C+), with two correct slices, which is itself not correct. We will come
back to this point with our theorem 1.32.

Let’s now give an intuition of a possible “sliced” cut-elimination pro-
cedure for the 2-sliced graph associated with the sequent calculus proof
of H A, At @ Bt above.

By eliminating the %/® cut in both the slices (notice that in a sliced
perspective this corresponds to two steps), one gets the 2-sliced struc-
ture:

A& B

AJ_

® ®

A Ate Bt

A& B

® ®

S
'_
®
oS
'_
®

A Ate Bt

which after (two) axiom steps reduces to:



Slicing polarized additive normalization 7

At @ A

Ccud

<

cud

Q
IS

<

At @ Bt

We meet here an important point: in one of the slices we have a &1 /®;
cut which can be easily reduced, but in the second one we have a &»/®;
cut and no way of reducing it. By performing one step of cut-elimination
(the only possible one), we obtain the 2-sliced structure:

At @ A

0)
IS
S

<

At @ Bt

At
At @
?
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and we now have to erase the slice containing the &2/®; cut, thus
obtaining the 1-sliced proof-structure:

At @ A
® Y@

®

At o Bt A
which eventually reduces to:
A" —w)

At e Bt A

1.3 Sliced proof-structures

In a polarized framework, we define sliced proof-structures and give the
translation of sequent calculus proofs.

Definition 1.1 A polarized formula is a linear propositional formula
verifying the following constraints:

N == X | N®N | N&N | ?P
P == X+ | PP | P®P | IN

or a positive formula P prefized by the symbol » (considered as a negative
formula).
LL,.. [Lau99] is the fragment of LL using only polarized formulas.

Lemma 1.2 Fvery sequent - T' provable in LL,., contains at most one
positive formula.

Proof See [Lau99]. O

Definition 1.3 (Proof-structure) A proof-structure is a finite ori-
ented graph whose nodes are called links, and whose edges are typed by
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formulas of LL,.,. When drawing a proof-structure we represent edges
oriented up-down so that we may speak of moving upwardly or down-
wardly in the graph, and of links or edges “above” or “under” a given
link/edge. Links are defined together with an arity and a coarity, i.e.
a given number of incident edges called the premises of the link and a
given number of emergent edges called the conclusions of the link.

e an axiom link or az-link has no premise and two conclusions
typed by dual atomic formulas,

e a cut link has two premises typed by dual formulas (which are
also called the active formulas of the cut link) and no conclusion,

e a B- (resp. ®-) link has two premises and one conclusion. If
the left premise is typed by the formula A and the right premise
is typed by the formula B, then the conclusion is typed by the
formula A% B (resp. A® B),

e an !-link has no premise, exactly one conclusion of type 'A and
some conclusions of b-types,

e ab-link has one premise of type A and one conclusion of type »A,

e a ?-link has k > 0 premises of type bA and one conclusion of type
7A.

Let G be a set of links such that:

() every edge of G is the conclusion of a unique link;
(B) every edge of G is the premise of at most one link.

We say that the edges which are not premise of a link are the conclusions
of G.

We say that G is a proof-structure if with every !-link with conclusions
VA,bT is associated a proof-structure with conclusions A,bL (called its
box ).

The links of the graph G are called the links with depth O of the proof-
structure G. If a link n has depth k in a box associated with an !-link of
G, it has depth k + 1 in G. The depth of an edge a is the depth of the
link of which a is conclusion. The depth of G is the mazximal depth of
its links.

Convention: In the sequel, proof-structures will always have a finite
depth.

Remark 1.4 Notice that, by definition, the boxes of a proof-structure
satisfy a nesting condition: two boxes are either disjoint or contained
one in the other.
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Notice also that the type of every conclusion of a box is a negative
formula.

Definition 1.5 (Sliced proof-structure) A sliced proof-structure is
a finite set S of slices such that all the slices have the same conclusions,
up to the ones of type b.

If S contains n slices, and if T',bA; are the conclusions of the slice s;
of S, then T,bAy,... ,bA, are the conclusions of S.

A slice s is a proof-structure possibly containing some unary &1 -, &o-
(resp. ®1-, @2-) links, whose premise has type A, B and whose con-
clusion has type A & B (resp. A ® B). With every !-link n of s with
main conclusion |C is now associated a sliced proof-structure S,, (which
is still called the boxr associated with n). This means, in particular, that
C appears in every slice of Sy, while every v-conclusion of n appears in
exactly one slice of S,,.

Definition 1.6 (Single-threaded slice) A single-threaded slice is a
slice s such that the sliced proof-structures associated with the !-links of
s contain only one slice, which is itself a single-threaded slice.

The notions of depth in a single-threaded slice, in a slice, and in a
sliced proof-structure are the straightforward generalizations of the same
notions for proof-structures given in definition 1.3.

Remark 1.7 With every sliced proof-structure S is naturally associated
a set of single-threaded slices, to which we will refer as the set of the
“single-threaded slices of S (or associated with S)” denoted by sgth(S).

Remark 1.8 Every formula A of a sliced proof-structure is a conclusion
of a unique link introducing A. (Notice that this is of course not the case
in any version of proof-nets for the full propositional fragment of LL).

We are now going to associate with every linear sequent calculus proof
a sliced proof-structure.

Definition 1.9 (Translation of the sequent calculus) Let R be
the last rule of the (n-expanded) linear sequent calculus proof w. We
define the sliced proof-structure S, (with the same conclusions as 7) by
induction on .

e If R is an aziom with conclusions X, X", then the unique slice
of Sy is an axiom link with conclusions X, X .
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e IfRis a®- or a ®-rule, having as premise the subproof ', then
S is obtained by adding to every slice of Sy the link correspond-
ing to R.

e If R is a ®- or a cut rule with premises the subproofs m; and 7o,
then Sr is obtained by connecting every slice of S, and every
slice of Sr, by means of the link corresponding to R. Notice that
if Sx, (resp. Sx,) contains ki (resp. ka) slices, then Sp contains
k1 x ko slices.

e If R is a &-rule with premises the subproofs w1 and m, then
Sy is obtained by adding a &i- (resp. &o-) link to every slice
of Sz, (resp. Sx,) and by taking the union of these two sliced
proof-structures.

e If R is a dereliction rule on A having as premise the subproof 7',
then S, is obtained by adding to each slice of Sy a b-link with
premise A and conclusion bA and a unary ?-link with premise bA
and conclusion 7A.

e If R is a weakening rule on TA, then Sy is obtained by adding a
?-link with arity 0 and conclusion 7 A.

e If R is a contraction rule on 7 A having as premise the subproof 7',
then by induction hypothesis, every slice of Sy has two formulas
?A among its conclusions. By remark 1.8, these two formulas
are both conclusions of a ?-link. We replace the two ?-links by a
unique ?-link with the required arity, and thus obtain the slices of

Sr.

e If R is a promotion rule with conclusions !C,7Aq,...,7A, having
as premise the subproof ©', then let s} be one of the p > 1 slices of
Sy For every slice s; of Sy with conclusions C,7Ay,...,7Ay,
we call s; the graph obtained by erasing the ?-links with conclu-
sions TAq, ..., TAn. s; 1s a slice with conclusions:

Co0AL 4y DAL DAL DA

n,i’

with q;; > 0. The unique slice of Sy is an !-link with conclu-
sions |C,bA] |, ..., bAZ’jil, DAL L bATYY o which we add
for every 1 < j < n a ?-link having as premises bAﬁi (1<i<p
and 1 < k < g¢;;) and as conclusion ?TA;. The sliced proof-
structure associated with the unique !-link of Sy is the set of the

si (1 <i<p)

Remark 1.10 Let’s try to give a more informal (but, hopefully clearer)
description of the last case of the previous definition. For every formula
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?A;, we replace the ?-link introducing it in each slice by a unique ?-link
in the (unique) slice of Sr.

Let us conclude the section by giving an example of the accuracy of
our sliced structures. The following sequent calculus proof:

—_—ax —Q—— ar
A AL +B,Bt
— ——— w
A 7AL F B,7AL, Bt
2w 2d
A ?7AL 7Bt + B,?7A+ 7Bt

- A& B,?7AL, 7Bt
F1(A& B),?A%,7B+

is translated as the sliced structure:

(A& B) 74+ ?B*

The previous structure is built inductively with respect to the depth:
with the sequent calculus proof one associates the graph consisting in
the Hlink and in the two ?-links, and with the !-link are associated two
slices (the ones inside the two dashed rectangles).

Notice that following the Danos-Regnier representation of proof-nets
called “nouvelle syntaxe”, consisting in “pulling down” the structural
rules, the two weakenings of the sequent calculus proof simply vanished.

1.4 Semantics

We consider the concrete semantics of experiments introduced in [Gir87].
We develop here only the case of relational semantics but the notion of
experiment suits also very well coherent set-based and multiset-based
semantics (see [TdF00]).

Our results (like the existence of an injective 1-experiment used in the
proof of lemma 1.49) will be completely proven only in the relational
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case, but the extension to the coherent semantics is just a matter of
checking some minor details, consisting in the extension to our frame-
work of the results proven in [TdFO01] without the additives.

Definition 1.11 (Relational interpretation of formulas) The space
interpreting a formula A will be denoted in the sequel by A. It is a set,
defined by induction on the complexity of A:

o X =X is any set;

A® B =A% B is the cartesian product of the sets A and B;
e A& B =A® B is the disjoint union of the sets A and B;

A ="7A="0A is the set of finite multisets of elements of A.

Definition 1.12 (Experiment) If S is a sliced proof-structure, an
experiment of S is an experiment of one of the slices of S.

An experiment e of a slice s of S is an application which associates
with every edge a of type A with depth 0 of s an element e(a) of A, called
the label of a. We define such an application by induction on the depth
p of s.

If p =0, then:

o Ifa = ay is the conclusion of an axiom link with conclusions the
edges ay and ay of type X and X+ respectively, then e(a;) =
e(as).

e If a is the conclusion of a - (resp. ®-) link with premises ay
and as, then e(a) = (e(ar),e(az)).

e If a is the conclusion of a link ®; (resp. &;), i € {1,2} with
premise a1, then e(a) = (i,e(ar)).

e If a is the conclusion of a dereliction link with premise a1, then
e(a) = {e(ar)}.

e If a is the conclusion of a ?-link of arity k > 0, with premises
ai,...,a, then e(a) =e(ar)U---Ue(ag), and e(a) € 7C (ifk =0
we have e(a) = ().

e If a is the premise of a cut link with premises a and b, then
e(a) = e(b).

If the conclusions of S are the edges aq,...,a; of type, respectively,
Aq,..., A, and e is an experiment of S such that Vi € {1,...,1} e(a;) =
x;, then we shall say that (x1,...,2;) € A1 B ... % A; is the result of
the experiment e of S. We shall also denote it by ©1,...,x;.

If p > 0, then e satisfies the same conditions as in case p = 0, and
for every !-link n with depth 0 in s and with conclusions ¢ of type \C
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and ay, ..., a; of type, respectively, DA1,...,bA;, there exist k > 0 exper-
iments eq,...,ex of the sliced proof-structure S' associated with n such
that

o e(c) = {z1,..., 21}, where x; is the label associated with the edge
of type C' by e;,

o If s' is the (unique!) slice of S' containing the edge a’; with the
same type as aj, then e(a;) is the union of the labels associated
with a’; by the k experiments of s'. Notice that it might be the
case that none of the k experiments is defined on a;-: in this case
one has e(aj) = 0.

Of course, we have that e(c) € IC, and e(a;) € »A; (this would be an
extra requirement in the coherent case).

Definition 1.13 (Interpretation) The interpretation or the seman-
tics of a sliced proof-structure S with conclusions T is the set:

[S] := {y € BT : there exists an experiment e of S with result v},
where ¥ T is the space interpreting the % of the formulas of T.

Remark 1.14 The interpretation of a sliced proof-structure S depends
on the interpretation chosen for the atoms of the formulas of S. Once
this choice is made, [S] is (by definition) the union of the interpretations
of the slices of S.

The reader should motice that the union of the interpretations of the
single-threaded slices of S is not enough to recover [S] (except in some
particular cases, for example when S is a cut-free proof-net, see sec-
tion 1.8). This is a crucial point (behind which hide the complex relations
between the additive and multiplicative worlds) showing the impossibility
of working only with single-threaded slices.

Indeed, were we working with a “single-threaded semantics”, by cutting
the single-threaded version of the example at the end of section 1.3 (on
the formula (A& B)) with the proof-net corresponding to the following
proof (which is a single-threaded slice since there is no &-rule):

-4, AL ax@ - BBt
FA At o Bt ; + B,At ® B+ Zd
FA?2(At @ BY) ' +B,?2(At® Bt)
F1A4,2(At @ BY) F1B,?(A+ @ BY)

F14A®!B,?(At @ B*),?(At @ Bt)
FI1A® !B,?2(At @ BY)
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we would get a proof-net with an empty semantics. Moreover, applying
the cut-elimination procedure described in the next section (to the set
of single-threaded slices associated with that same net) would lead to an
empty set of slices.

The following notion of 1-experiment is a particular case of the more
general notion of n-obsessional experiment introduced in [TdFO01].

Definition 1.15 (l-experiment) An experiment e of a sliced proof-
structure S is a 1-experiment, when with every !-link of S one has (using
the notations of definition 1.12) k =1, and ey is a 1-experiment.

Remark 1.16 Let S be a sliced proof-structure.

(i) Let e be a l-experiment of S. If a is any edge of S of type A,
then with a the experiment e associates at most one element of
A, whatever the depth of a is. In case e is not a 1-experiment,
this is (in general) the case only for the edges with depth 0.

(ii) The 1-experiments of S are exactly the 1-experiments of the single-
threaded slices of S.

(ili) We say that a 1-experiment e of a single-threaded slice s of S is
injective when for every pair of (different) axiom links ny and no
of s, if xy (resp. x2) is the (unique) label associated by e with the
conclusions of ny (resp. na), then x1 # xo.

(iv) If S contains no cut links, then there always exists an injective ex-
periment of any single-threaded slice of S (just associate distinct
labels with the axiom links and “propagate” them downwardly).
This is not that obvious in the coherent case (due to the presence
of ?-links): it is actually wrong in a non polarized framework,

even for single-threaded slices coming from sequent calculus proofs
(see [TAFO01]).

1.5 Proof-nets and cut-elimination

We now define a notion of correct sliced proof-structure: a proof-net
is a sliced proof-structure satisfying some geometrical condition. For
these sliced proof-nets, a “sliced” cut-elimination procedure is given: a
cut-elimination step is a step in one of the slices.

We show that the cut-elimination steps preserve the correctness of the
structures, and that the interpretation given by definition 1.13 is sound
(i.e. invariant with respect to these steps).
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1.5.1 Definitions

Definition 1.17 (Acyclic sliced proof-structure) The correction
graph (see [Lau99]) of a slice s is the directed graph obtained by erasing
the edges conclusions of s, forgetting the sliced proof-structure associ-
ated with every !-link with depth 0 in s and by orienting negative (resp.
positive) edges downwardly (resp. upwardly).

A single-threaded slice satisfies (AC) when its correction graph, so as
the correction graph of all its boxes, is acyclic.

A sliced proof-structure S is acyclic, when every single-threaded slice
associated with S satisfies (AC).

Definition 1.18 (Proof-net) Let S be an acyclic sliced proof-structure
without any b-conclusion. S is a proof-net if every slice of S has ex-
actly one b-link or one positive conclusion (at depth 0). Moreover, we
require that the sliced proof-structures (the boxes) S, ..., Sk, recursively
associated with the !-links of S also satisfy these properties.

Remark 1.19 More geometrically, notice that this only b-link (or link
above the positive conclusion) is the only non-weakening initial node
(without incident edge) of the correction graph.

Remark 1.20 It is easy (and standard) to show, by induction on the
sequent calculus proof, that the sliced proof-structure associated by defi-
nition 1.9 with a sequent calculus proof is a proof-net.

Notice that the condition given by definition 1.18 is nothing but the
proof-net version of lemma 1.2.

We come now to the definition of the cut-elimination procedure. If the
cut link ¢ has depth n in the sliced proof-structure S, the cut-elimination
step associated with ¢ will be a step for the sliced proof-structure asso-
ciated with the Hlink (of depth n — 1) the box of which contains c.

Definition 1.21 (Cut-elimination) Let S be an acyclic sliced proof-
structure without b-conclusions. We define a one step reduct S’ of S. Let
s € S and ¢ be a cut link of s. We define {s}}icr, obtained by applying
some transformations to s. S’ is the set of the slices obtained from S by
substituting {s}}icr for s.

o If ¢ is a cut link of type ax, then {s'} is obtained, as usual, by
erasing the axiom link and the cut link.
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If ¢ is a cut link of type B /2, let A and B (resp. A+ and B*)
be the premises of the B-link (resp. @-link). {s'} is obtained by
erasing the B-link, the @-link and the cut link and by putting two
new cut links between A and A*, and B and B*.

If ¢ is a cut link of type &;/®;, then {s'} is obtained by erasing
the two links and by moving up the cut link to their premises.

If ¢ is a cut link of type &1 /®> (or &>/P1), then I = 0 (we
simply erase s). Moreover, if s is the unique slice of the sliced
proof-structure Sy, associated with the !-link n, we also erase the
slice containing n (and so on recursively. .. ).

If ¢ is a cut link of type !/? with a 0-ary ?-link, then the !-link (to-
gether with its box) and its conclusion edges are erased. We then
erase the 0-ary ?-link (and the cut) thus obtaining {s'} (notice
that some ?-links have lost some premises).

If ¢ is a cut link of type |/? with a 1-ary ?-link under a b-link,
let T be the sliced proof-structure associated with the !-link. With
each slice t; of T, we associate the slice s defined by erasing the
?-link and the b-link, by replacing in s the !-link by t; and by
cutting the main conclusion of t; with the premise of the b-link.
If ¢ is a cut link of type !/? with a 1-ary ?-link whose premise is
a b-conclusion of an -link ', let T be the sliced proof-structure
associated with I' and [ be the cut !-link. Let ?AJ'AL be the cut
formula. {s'} is obtained by erasing | and its conclusions and by
replacing the conclusion bA of ' by all the b-conclusions of I. And
with this new !-link (which we still denote by l') is associated a
sliced proof-structure T' obtained by replacing the (unique) slice
t of T having bA among its conclusions by the slice obtained by
adding to the conclusion of type DA of t a unary ?-link and cutting
its conclusion (of type ?A) with the conclusion of type A+ of I.
(The sliced proof-structure associated with I remains unchanged).
If ¢ is a cut link of type !/? with a n-ary ?7-link | with n > 1,
then {s'} is obtained by creating a new unary ?-link ' having as
premise one of the premises of | (and erasing the corresponding
edge above 1), by duplicating the !-link and by cutting the copy
with the conclusion of ', every b-conclusion of the copy of the
I-link is premise of the same links as the edge it is a copy of
(namely, they are intuitively premise of the same ?-link). The
sliced proof-structures associated with the two copies of the !-link
are the same.
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Remark 1.22 The attentive reader certainly noticed that there are ex-
actly two cases in which the previous definition requires the acyclicity
condition:

(i) when the two premises of a cut link are both conclusions of the
same axiom link,

(ii) when the two premises of a cut link are both conclusions of the
same -link (in fact, in our framework, this means that the premise
of type 7 of the cut link is the conclusion of a ?7-link whose premise
is a conclusion of type b of the !-link).

In these two cases the cut-elimination procedure is not defined. By the
following section, the acyclicity of a sliced proof-structure is a sufficient
condition to ensure that cut-elimination never yields to these configura-
tions.

1.5.2 Preservation of correctness

Proposition 1.23 (Preservation of acyclicity) If S’ is a sliced proof-
structure obtained from the acyclic sliced proof-structure S (without b
conclusions) by performing some steps of cut-elimination, then S' is
acyclic.

Proof We study every cut-elimination step, using the notations of defi-
nition 1.21:

e For the &;/®; (i # j) and !/0-ary 7 steps, we erase a part of the
graphs, such an operation cannot create cycles.

e For the ax and &;/®; steps, some paths are replaced by shorter
ones changing nothing to cycles.
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e For the /® step, if p is a path containing a cycle in S’, it must
use one of the two new cut links starting from the premise A of the
%-link and going to the premise A' of the ®-link, for example. If
p exists, then replacing in S the part from A to A* by the path
going from A through the %-link, the cut link and the ®-link to
A+ would give a cycle in S.

e For the !/1-ary ? step with a b-link just above the 7-link, if s}
contains a cycle p, either it is inside #; and thus comes from a
cycle in S or it goes outside t;, but due to the orientation, it is
impossible for a path to go outside #; and to come inside ¢; since
t; has only emergent edges (since it has only negative conclusions
from remark 1.4).

e For the !/1-ary 7 step with an !-link just above the ?-link: at the
depth p of the cut link, some paths are just replaced by shorter
ones, and this cannot create any cycle. At depth p+ 1, adding a
cut and an !-link to an acyclic graph cannot create any cycle.

e For the !/n-ary ? step (n > 1), if pis a cycle in S’, it has to cross
one of the two residues of the cut link of S. But identifying the
two ?-links, the two cut links and the two !-links in p would give
a cycle in S thus p doesn’t exist.

O

Theorem 1.24 (Preservation of correctness) If S’ is a sliced proof-
structure obtained from the proof-net S by performing some steps of
cut-elimination, then S' is a proof-net.

Proof S’ is acyclic by proposition 1.23. To conclude, we now prove that
if S’ is a one-step reduct of S, then (whatever reduction step has been
performed) S’ has exactly one positive conclusion or one b-link at depth
0 and in every slice of every box (assuming that the reduced cut has
depth 0 in S):

e The multiplicative and additive steps are straightforward and the
!/0-ary 7 step, too.

e For the !/1-ary ? step with a b-link just above the ?-link, the b-
link at depth 0 is erased and replaced by the one coming from
every slice of the box of the !-link (which necessarily exists by
remark 1.4 and definition 1.18).

e For the !/1-ary ? step with an !-link just above the ?-link, the
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b-links and the positive conclusions at depth 0 are not modified
and at depth 1, we just add an !-node to a slice.

e For the !/n-ary ? step (n > 1), some links are duplicated but the
b-links (and the positive conclusions) are unchanged.

O

1.5.3 Soundness of the interpretation

We are going to prove that the cut-elimination procedure previously
defined preserves the semantical interpretation. We use exactly the same
technique as in [Gir87], and give the details of the proof only in the most
relevant cases. The proof is given for the relational semantics, and it
can be straightforwardly extended to both the set and multiset based
coherent semantics (see remark 1.27).

Remark 1.25 By induction on the sequent calculus proof @, one can
check that the semantics of m (as defined for example in [Gir87]) is the
semantics of the sliced proof-structure Sy of definition 1.9.

Theorem 1.26 (Semantical soundness) If S’ is a sliced proof-structure
obtained from the acyclic proof-structure S without b-conclusions by per-
forming some steps of cut-elimination. Then [S] = [S'].

Proof Let T be the conclusions of S and S’ and v an element of % T.
We show that there exist a slice s of S and an experiment e of s with
result v, iff there exist a slice s’ of S’ and an experiment e’ of s’ with
result .

One has to check this is the case for every cut-elimination step defined
in definition 1.21. We will use for these steps the notations of defini-
tion 1.21. Let ¢ be a cut link of a slice s of S. Notice that our claim
is obvious for the slices which are not concerned by the cut-elimination
step that we consider, and we then restrict to the other ones: we prove
that there exists an experiment e of s with result +, iff there exist a slice
s’ of {s}}icr and an experiment e’ of s’ with result .

By induction on the depth of ¢ in s, we can restrict to the case where
¢ has depth 0. The steps associated with the az and %/® cut links are
the same as in [Gir87].

e If ¢ is a cut link of type &;/®;, and e is an experiment of s, let
(i,x) be the element of A& B = AL @ B associated by e with
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the two edges premises of ¢. Then the experiment e’ of s’ we
look for is the “restriction” of e to s’: the label associated by e
with the two premises of the unary &; and @; links of s is z, and
z is also the label associated by e’ with the two premises of the
“residue” of ¢ in s’. For the converse, one clearly proceeds in the
same way.

If ¢ is a cut link of type &1 /@2 (or &2/®1), then there exists no
experiment of s (remember the condition of definition 1.12 on the
label of the premises of a cut link), and no experiment of {s}};cr
(remember I = 0)).

If ¢ is a cut link of type !/? with a 0-ary ?-link, then we are simply
applying the weakening step of [Gir87].

If ¢ is a cut link of type !/? with a 1-ary ?-link whose premise is
the conclusion of a b-link, let T' be the sliced proof-structure asso-
ciated with the !-link. With each slice ¢; of T', this step associates
a slice si.

Let e be an experiment of s, let {z} be the element of 1.4 =?A+
associated by e with the two edges premises of c¢. By definition
of experiment, because the label of the conclusion of the !-link is
a singleton, there is a unique slice ¢; of the sliced proof-structure
T (associated with the !-link), and a unique experiment e; of ¢;
from which e is built. The label associated with the conclusion of
type A of t; will be € A. Again by definition of experiment, the
label associated by e with the premise of type A of the »-link is
z € AL. We can then build (from e;) an experiment €} of s; with
the same result as e. For the converse, one proceeds in the same
way: an experiment e’ of some slice s} induces an experiment e;
of t;, and an experiment e of s.

If ¢ is a cut link of type !/? with a 1-ary ?-link whose premise is
a conclusion (of type b) of the box associated with the !-link [’
(different from [), then there is nothing new with respect to the
commutative step of [Gir87].

If ¢ is a cut link of type !/? with a n-ary ?-link [ with n > 1, then
let e be an experiment of s, let {z1,...,2;} = a1 U---Ua, be the
element of 1.4 =? A" associated by e with the two edges premises
of c. Suppose that a; is the label of the one among the premises
of the 7-link of arity n, which becomes the conclusion of the new
unary ?-link. We have {z1,...,2x} = a1 U {y1,...,yn}. This
splitting is actually a splitting of the k experiments of the sliced
proof-structure associated with the !-link. This remark is enough
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to conclude the existence of an experiment e’ of s’ with the same
result as e. Conversely, let e’ be an experiment of s’. Because the
sliced proof-structure associated with the two !-links is the same
we can build an experiment e of s with the same result as e’.

O

Remark 1.27 To prove the soundness of the (set and multiset based)
coherent semantics, one first needs to generalize the following result
of [Gir87] to LL,.,.: “if S is an acyclic sliced proof-structure with con-
clusions T (where T' contains no b formula), then [S] is a clique of the
coherent space X .7

This result has to be used in the proof of the previous theorem in the
cases of 1/? cuts.

1.6 Sequentialization for (cut-free) slices

We show that the conditions on sliced proof-structures given in defi-
nitions 1.17 and 1.18 yield a correctness criterion for cut-free proof-
structures (theorem 1.32): they allow to characterize exactly those proof-
structures coming from sequent calculus proofs.

A novelty due to our sliced presentation is that we have to be able
to glue together slices. Thanks to the polarization constraint this will
be possible, provided one restricts to cut-free proof-structures. In the
whole section, all our proof-structures will be cut-free.

Definition 1.28 (Equivalence of links) Let s1, s> be two slices of a
sliced proof-structure S. Let ny and ns be two links of s1 and so at depth
0 having the same negative non-b conclusion A. We define, by induction
on the number of links under A in s, the meaning of n, and ns are
equivalent links denoted by ni = na.

If A is a conclusion of sy then it is also a conclusion of so and ny = ns
if they are the links introducing A in s1 and ss.

Let A be the premise of the unary link my (resp. mz2) of s1 (resp. s2)
and the conclusion of ny (resp. na): if mi = ma, then ny = na.

Let A be the left or right premise of the binary link my (resp. ms)
of s1 (resp. s2) and the conclusion of n1 (resp. ns): if mi = ma, then
ny =ny.

It is clear that = is an equivalence relation on the negative links at
depth 0 of S.
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Remark 1.29 If ny = no then ny and no are links of the same kind
except if ny = &1 and ny = &-.

Definition 1.30 (Weights) Let S be a sliced proof-structure and let
&', ..., &" be the equivalence classes for = of the &-links at depth 0
of S. We associate with each &' an eigen weight p; that is a boolean
variable (in the spirit of [Gir96]). The weight of a slice s of S is (with
an empty product equal to 1 by convention):

wis) =[] » [ P

&ics &L€s
and the weight of the set S is:
w(S) =Y w(s)

SES
The sliced proof-structure S is full if w(S) = 1 and compatible if we
have w(s)w(t) =0 for s # t.

Remark 1.31 We can now be more precise than in remark 1.20: the
sliced proof-structure associated by definition 1.9 with a cut-free sequent
caleulus proof is a (cut-free) proof-net, which is full and compatible.

Theorem 1.32 (Sequentialization) If S is a cut-free sliced proof-
structure, S is the translation of an LL,.t1 sequent calculus proof if and
only if S is a full and compatible proof-net.

Proof We prove the second implication by induction on the size of S
(the first one is remark 1.31). Since S has no b-conclusions, the conclu-
sions of the slices of S are the same. The size of a slice s is the triple
(depth(s),number of ?-links with arity at least 2 and depth 0,number of
links with depth 0), lexicographically ordered, and the size of S is the
sum (component by component) of the sizes of the slices of S.

Let s be a slice of S. We shall say that a link of s is terminal when
its conclusion is a conclusion of s.

e If s has a terminal %-link, a corresponding link appears in each
slice since they have the same conclusions. We can remove these
links in each slice and we obtain a sliced proof-structure S’ veri-
fying the hypothesis of the theorem.

t The extension of this result to the multiplicative units is straightforward. The
case of T presents no real difficulty but requires a heavier treatment (see [Lau02]).
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e If s has a terminal &-link, a corresponding link appears in each
slice. For some slices this link will be a &;-link (we call S; the set
of slices obtained by erasing the &;-links in these slices) and for
some others a &»-link (we call S, the corresponding set without
the &5-links). We have to show that S; and Sy are full and
compatible. The weight of S; (resp. S2) is obtained by taking
p =1 (resp. p = 0) in p.w(S) (resp. p.w(S)) thus this weight is
1. Let s and ¢ be two slices of S; with weights wq (s) and w (¢),
their weights in S are p.w;(s) and p.wq (t) thus w (s)wq(t) = 0
(idem for S2). We can now apply the induction hypothesis to S;
and SQ.

Now, s has no terminal %-links and no terminal &-links thus it has no
such links at depth 0 by polarization. This entails that s is the only slice
of S by compatibility.

e If s has a terminal O-ary ?-link, we can remove it: this corresponds
to a weakening rule.

e If s has a terminal n-ary ?-link with n > 2, we break it into n
unary links, we apply the induction hypothesis and perform n —1
contraction rules in the sequent calculus proof thus obtained.

e If s has a unary ?-link under a b-link, we remove both of them,
and this corresponds to a dereliction rule. (Notice that we can
apply the induction hypothesis, because when removing the two
links we replace a »-link at depth 0 by a positive conclusion).

e If none of the previous conditions is satisfied then s has no %-,
&-, ?-links at depth 0 (except unary ?-links under !-links). This
means that if s has a terminal ®-link, it is the unique one and
it is splitting: we can apply the induction hypothesis to the two
sub-proof-structures.

e If s has a terminal ®-link, we just remove it and apply the induc-
tion hypothesis.

If s doesn’t correspond to any of the cases above, either it is an ax-
iom link (straightforward) or it is reduced to an !-link with a unary
?-link under each b-conclusion. Let S’ be the box associated with the
I-link. By adding to the slices of S’ some 0-ary ?-links (like in example
page 12) and a l-ary ?-link under each »-conclusion, one gets a sliced
proof-structure S”. Let 7 be the proof obtained by sequentializing S",
the sequentialization 7w of S is obtained by adding a promotion rule to
7. (As an exercise, the reader can apply this sequentialization method
to the sliced proof-structure of page 12). l
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Remark 1.33 Notice that (according to remark 1.8) every negative con-
clusion M 8 N (resp. M&N ) of a proof-net S is the conclusion of a %
(resp. &) link. The previous proof shows that there erists a sequential-
ization of S whose last rule introduces this formula. The reader might
have recognized a proof-net version of the reversibility of the connectives

% and &.

Remark 1.34 In fact, a(n apparently) stronger version of theorem 1.32
could be given: the reader certainly noticed that nowhere in the proof
of the theorem we have used the acyclicity property of our proof-nets.
This is simply due to the fact that every cut-free sliced proof-structure
S is acyclic. Indeed, a path starting from a positive edge of S upwardly
goes to an axiom link or an !-link and then goes down to a conclusion
stopping there; while a path starting from a negative edge goes directly
down to a conclusion and stops.

1.7 Computing with slices

We now introduce a general method, allowing to use denotational se-
mantics in order to guarantee the “canonicity” of our proof-nets. More
precisely, we introduce the notion of injective semantics (which comes
from [TdF00]), and show how the existence of such a semantics is a wit-
ness of the canonicity of our sliced proof-nets as computational objects.

Remark 1.35 We will use in the sequel the strong normalization prop-
erty for proof-nets with respect to the cut-elimination procedure. We do
not give the proof of such a result, which is proven in [LQTdFO00] (for
LL,..) in the framework of polarized proof-nets with additive bozes.

Let F be a subsystem of our sliced proof-structures, and let [.] be an
interpretation of the sliced proof-structures of F' (satisfying theorem 1.26
and) injective: if S; and S, are two cut-free sliced proof-nets such that
(for every interpretation of the atomic formulas) [S1] = [Sz], then S; =
S2.

Another way to speak of injectivity is the following: [.] is injec-
tive when the semantical equivalence class of every proof-net contains a
unique cut-free proof-net. In this (strong) sense our objects are canon-
ical. In particular, such a property entails confluence: if S and S9 are
two normal forms of the proof-net S, then by theorem 1.26 and injec-
tivity S? = S9.
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Another crucial point is that injectivity allows to compute with the
sliced proof-structures of F' coming from sequent calculus proofs. In-
deed, let 7 be any linear propositional sequent calculus proof, let S, be
the sliced proof-structure associated with 7 by definition 1.9, and let Sy
be the normal form of S;. Now compute a normal form 7y of 7 seman-
tically correct (i.e. satisfying [r] = [mo]), which can be done by per-
forming cut-elimination directly in sequent calculus in several different
ways. By remark 1.25, [7] = [S] and [mo] = [Sx,], by theorem 1.26,
[Sz] = [So], and we know that [7] = [m]. By injectivity, we can then
conclude that S;, = Sp. In fact, our approach to injectivity (in sec-
tion 1.8, and more generally in [TdF01]) is “to rebuild” a cut-free proof
from its semantics: on the one hand the injectivity property guarantees
that any reasonable way of computing with sliced proof-structures com-
ing from sequent calculus proof is sound (S, = Sp), and on the other
hand the technique used to prove injectivity suggests the possibility of
semantically computing the normal form (Sp) of a proof (mg). This last
approach is very close to the so-called “normalization by evaluation”
(see [BES98, DRRO1]).

Summing up, one has:

T — M

! !

Sy —— Sn

This diagram expresses a simulation property of the cut-elimination (in
sequent calculus) by proof-net reductions. The injectivity property of
the semantics allows to obtain such a result by semantical means.

Notice that the mentioned argument holds for any existing syntax for
LL,.; instead of sequent calculus (like proof-nets with additive boxes
see [Gir87] and [LQTAF00], multiboxes see [TdF03], proof-nets with
weights see [Gir96] and [Lau99]): let R be a proof in such a system, it
will always be possible to translate R as a sliced proof-structure Sg with
the same semantics as R (in the previously mentioned syntaxes, this is
straightforward). Let Sy be the normal form of Si. Let Ry be a normal
form of R and let Sg, be the sliced proof-structure associated with Ry.
As before, we have Sy = Sg,.

We are claiming that our proof-nets are canonical computational ob-
jects: they are actually the first example of such objects in presence of
the additive and exponential connectives. Indeed, (sliced) proof-nets are
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computational objects by theorem 1.24, and they are canonical by the
injectivity property (as we already explained).

Notice that none of the previously mentioned polarized syntaxes can
really claim to yield a canonical representation of proofs: denotational
semantics is not injective for proof-nets with boxes nor multiboxes (even
though this last syntax realizes a much greater quotient on proofs), and
it is well-known that with a sequent calculus proof can be associated
several proof-nets with weights (and the cut-elimination procedure is
not always defined for such proof-nets).

We then have a new canonical syntax, independent from sequent, cal-
culus, allowing to make correct computations. Despite the fact that we
don’t have a procedure to sequentialize proof-nets with cuts, we know
that if we start from a sequentializable proof-net S, we eventually reach
a normal form Sy which is itself sequentializable. This means on the
one hand that nothing is lost, and on the other hand that the new
objects which naturally appear (and which are not necessarily sequen-
tializable) have a clear and well-structured computational behaviour.
Actually, this is precisely the point where our approach differs from the
one of [HvGO03]: we mainly focus on the computational behaviour of our
objects (cut-elimination), while [HvG03]’s main issue is correctness. In-
deed, the “proof-nets” (i.e. the correct proof-structures) introduced by
Hughes and Van Glabbeek are all sequentializable and this is not the
case of ours. However, the translation of sequent calculus into sliced
proof-structures is a function (this is not the case for [HvGO03]’s nets),
and our cut-elimination procedure is local (just perform it, separately,
in each slice) while Hughes and Van Glabbeek have to reduce all the
slices at the same time. The non-sequentializable sliced proof-structures
naturally appearing during (sliced) cut-elimination have a perfectly well-
understood computational behaviour, and we do not see any reason to
reject them.

The equivalence relation on sequent calculus proofs defined by our
(sliced) proof-nets can be very well compared to the one defined by
ordinary proof-nets in the multiplicative fragment of linear logic.

But do there exist some (interesting) subsystems F' of sliced proof-
structures with an injective semantics?

Such systems and semantics certainly exist in the absence of the ad-
ditives (see [TdFO01]), it is very likely also the case for [HvG03]. The
next section gives a positive answer to the previous question in presence
of both additive and exponential connectives. We want to mention here
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that this is just a first (limited) result, and it is very likely that it can
be extended to full LL,,,.

1.8 An application: A-calculus with pairing

We prove that (relational) semantics is injective for the fragment ALL,,
of LL,.,, which corresponds to the simply typed A-calculus with pairing.

Definition 1.36 (A-calculus with pairing)

t ou= x | Azt | (Ot | mt | met | <t t>

Definition 1.37 (Girard’s translation) The types of the \-calculus
with pairing are translated as negative formulas as follows:

X ~ X
A— B ~ ?A+® B
AANB > A& B

and terms are translated by the straightforward extension of Girard’s
translation [Gir87, Dan90] for the A-calculus.
Let ALL,,, be the sub-system of LL,. containing only the following
formulas:
N == X | N&KN | ?P®N
P = Xt | PaP | IN®P

(and their sub-formulas) together with the bP-formulas, and such that
all the conclusions of proofs are negative formulas.

Terms are translated by proof-nets of ALL,.,. The constraint that ax-
iom links introduce only atomic formulas entails that the translation con-
tains an implicit n-expansion of terms.

In the present section, in order to prove injectivity for ALL,., we
restrict to proof-structures, slices and sliced proof-structures of ALL,,,
without cut links (corresponding to normal terms).

Definition 1.38 Let s be a single-threaded slice. We denote by L(s) (the
“linearization” of s) the graph obtained by replacing every !-link n by the
associated slice. More precisely, if n is an !-link having a conclusion of
type 'A with an associated slice s,, we replace n by a modified unary
I-link with as premise the conclusion A of s,; the b-conclusions of n are
replaced by the corresponding b-conclusions of sy.
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Remark 1.39 Ife is a 1-experiment of s, then with every edge a of type
A of L(s) is associated a unique label e(a) of A.

For the 1-experiment e, we will denote by e|r(s) the labeling of the
edges of L(s) associated with e.

Lemma 1.40 Let s and s’ be two single-threaded slices. Let e (resp. e')
be an injective 1-experiment of s (resp. s') with result v (resp. v').
If vy =79, then L(s) = L(s") and e|r(s) = €'[1(s)-

Proof Our claim is that the graph L(s) so as the labels of its edges are
completely determined by the types of the conclusions of s and by the
result of an injective l-experiment of s. Indeed, let’s start from some
edge a of L(s), with its type A and its label z € A. There are exactly
three cases in which either the type A of a is not enough to determine
the link of L(s) having a as conclusion or the link is known but the
bottom-up propagation of the labels is not obviously deterministic:

(i) A= C & D: then a might be conclusion of a &;- or of a &»-link.
But the label of a tells us which of these two cases holds, and
which is the label of the premise of the &-link.

(i) A= C® D: exactly like in the previous case.

(ili) A = ?C: then, because e is a 1-experiment, the cardinality of the
label of a is the arity of the ?-link with conclusion a. This also
implies that there is a unique way to determine the labels of the
premises of the ?-link.

To conclude, notice that the fact that e is injective allows to uniquely
determine the axiom links of L(s). O

1.8.1 Recovering bozxes in ALL,,

We are now going to use in a strong way the particular shape of the
(sliced) proof-nets of ALL,,. We show that for a single-threaded slice s
of this fragment, the graph L(s) contains as much information as s. In
other terms, once L(s) is known, the fact that s is a single-threaded slice
of a sliced proof-structure which is the translation of a term, uniquely
determines the way to “put” the boxes on the graph L(s).

Lemma 1.41 If s is a slice of a ALL,., proof-net, there is exactly one
b-link with depth 0 in every slice of every box of s.
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Fig. 1.1. Combs

Proof Just the correctness criterion (theorem 1.32). O

Lemma 1.42 Let s be a single-threaded slice, and a an edge of type A
of s.

If A is a negative (resp. positive) formula, then the graph above a is
a comb (see figure 1.1):

o the teeth of the “negative comb” are edges of type 7, while the
backbone is made of unary &-nodes and of ®¥-nodes and moving
upwards along it one necessarily ends in the unique (negative)
atomic edge of the comb.

o dually, the teeth of the “positive comb” are edges of type !, while
the backbone is made of ®-nodes and ®-nodes and moving up-
wards along it one necessarily ends in the unique (positive) atomic
edge of the comb.

We will speak of the comb associated with a. Notice that a is considered
as an edge of the comb.

Proof Immediate consequence of the definition of ALL,, and of the
definition of single-threaded slice. O
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Remark 1.43 As a consequence of the previous lemma, with every neg-
ative edge o of a single-threaded slice s, is associated an oriented path
®, of s (see figure 1.2): it is the path with starting edge o (oriented up-
wardly), following the backbone of the negative comb up to the negative
atomic edge X of the comb, crossing the axiom link and its positive con-
clusion X+ (oriented now downwardly) and moving downwardly along
the backbone of a positive comb (crossing ®- and ®-links) until a b-link
is reached (there are no other possibilities).

We will refer to ®, (in the sequel of the paragraph) as the oriented
path associated with the negative edge a.

Until the end of this section 1.8.1, we will fix the following notations
according to figure 1.2:

e « is the (negative) edge premise of an !-link [ of the single-threaded
slice s

By is the box associated with [
n is the last link of ®, which is a b-link (by remark 1.43)
¢ is the (positive) premise of n

ly,...,l; are the k > 0 !-links of s whose conclusions are the teeth of
the positive comb associated with ¢
e By,...,B; are the boxes associated with I,... [

Remark 1.44 Every edge of s “above a” is contained in B;. Moreover,
all the links of ®, (including n) are contained in By.

Lemma 1.45 FEvery edge with depth 0 of By is either an edge of ®,, or
the conclusion of the b-link n, or a tooth of one of the two combs of @,
or the b-conclusion of a !-link.

Proof See figure 1.2.

Let G be the correction graph of B; (see definition 1.17). The initial
nodes of G are n and the O-ary ?-links. Every link in G is accessible
by an oriented path from an initial link, but any 0-ary ?-link is the
premise of a #-link (in ALL,.,) that must be also accessible through its
other premise. By induction on the number of links above this Z-link
we easily show that it is accessible from a non ?-link. So that every link
(except 0-ary ?-links) at depth 0 in By is accessible from n. We said that
every conclusion of a 0-ary ?-link is the premise of a %-link, and we just
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Fig. 1.2. Lemma 1.45 (dashed lines are given as examples)

proved that this %-link is accessible from n: the conclusions of the 0-ary
?-links must then be teeth of the negative comb of ®,,. O

We are now going to define a (partial) order relation on the !-links of
L(s), for every single-threaded slice s. We then show that this relation
coincides with the nesting of boxes and it is enough to recover the boxes
of s.

Definition 1.46 Let s be a single-threaded slice, let | and m be two
I-links of s and let a be the premise of | in L(s). We define the relation
<1 on the !-links of s as follows: m <y [ iff the oriented path ®, crosses
the ®-link of s having m as premise. We define the relation < as the
reflexive and transitive closure of <j.

Lemma 1.47 Let s be a single-threaded slice. Ifl (resp. m) is an !-link
of s and By (resp. By, ) is the box associated with l (resp. m), then m <
iff B; contains By, .
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In particular, this implies that the relation < is indeed a partial order
relation.

Proof Suppose that m < [. From the nesting condition, it is clearly
enough to show that if m <; [, then B; contains m, and this is a conse-
quence of remark 1.44.

Conversely, suppose that B; contains B,. It is again enough to
consider the case in which B; is the smallest box containing B,,. By
lemma 1.45, the conclusion of m is one of the teeth of the positive comb
of ®,. We just proved that m < [. O

Proposition 1.48 Let s and s’ be two single-threaded slices of ALL,.,.
If L(s) = L(s'), then s = s'.

Proof The reason why this holds is that the paths of L(s) are the same
as the paths of s.

We still use figure 1.2 and show, by induction on the number of !-links
of L(s) smaller (with respect to <) than ! (noting that it is a finite
number by lemma 1.47, since our graphs are finite), that once L(s) is
known, we know how to recover B;. By induction hypothesis, we know
how to recover By, ..., By. By lemma 1.45, every edge with depth 0 of
By is either an edge of one of the two combs of @, or the conclusion of
n. By remark 1.44, all the just mentioned edges are edges of B;. Then
By can only be the graph containing By, ..., By, the two combs of &,
(including the ?-links) and the conclusion of n. O

1.8.2 Injectivity for ALL,,

We prove the following lemma for relational semantics. It certainly holds
in the coherent case too, but a detailed proof would require some more
intermediate results.

In the sequel, we will write [S] = [S’], always meaning that the
equality holds for every interpretation of the atoms of the formulas of S
and S'.

Lemma 1.49 Let S and S’ be two sliced proof-structures with the same
conclusions.

If[ST1 = [S'], then sgth(S) = sgth(S"), where sqgth(S) (resp. sgth(S'))
is the set of the single-threaded slices of S (resp. S').
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Proof By contradiction, suppose that sgth(S) # sgth(S'). There exists a
single-threaded slice s of S which is different from all the single-threaded
slices of S’. Let e be an injective 1-experiment of s with result 7. Such an
experiment obviously exists, at least in the case of relational semantics.
From [S] = [S'], there exists an experiment e’ of S" with result +. It is
easy to convince oneself that e’ is a 1-experiment of S’ (see [TdF01] for
a proof without additives). From remark 1.16, ¢’ is then a 1-experiment
of a single-threaded slice s’ of S'.

By lemma 1.40, we obtain that L(s) = L(s'), and then by proposi-
tion 1.48, s = s’ which is a contradiction. O

Definition 1.50 (b-free subgraph) The b-free subgraph of a slice s
is the graph obtained by keeping only the part of s at depth 0 and by
replacing every !-link by an !-link without any b-conclusion. This erases
some b-edges that are premises of 7-links.

Definition 1.51 (Non-contradiction of slices) Let s and s’ be two
single-threaded slices with the same non-» conclusions, the fact that s
and s’ are non-contradictory is defined by induction on the depth of s.
s and s' are non-contradictory if either there exists a &; (resp. &;) link
n (resp. n') of s (resp. s') at depth 0 such that n = n' and i # j, or
s and s' have the same b-free subgraph and the boxes of s and s' are
non-contradictory.

A sliced proof-structure S is non-contradictory if for every pair of
single-threaded slices s and s' of S, s and s’ are non-contradictory.

Theorem 1.52 (Injectivity) Let S and S’ be two non-contradictory
proof-nets with the same conclusions.

If[S] = [S']. then S = S'.

Proof By lemma 1.49, we have sgth(S) = sgth(S"). For a given set of non-
contradictory single-threaded slices, there is only one way to reconstruct
a sliced proof-structure: to glue (recursively with respect to the depth)
the single-threaded slices with the same part at depth 0. l

Remark 1.53 The reader should not think that the hypothesis of “non-
contradiction” of proof-nets weakens our injectivity theorem: it is the
opposite! Indeed, our requirement for a sliced proof-structure to deserve
the name of proof-net is just that “it contains only correct slices” (see
definition 1.18). This (minimal) requirement is already enough to make
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correct computations (theorem 1.24), which are also semantically sound
(theorem 1.26). But it is obvious that a set of correct slices is not se-
quentializable (in general), and we could prove theorem 1.32 only by
adding the “compatibility” and “fullness” conditions. A full and com-
patible proof-net is always non-contradictory, and the non-contradiction
hypothesis (weaker than the compatibility and fullness one) is already
enough to prove theorem 1.52.

1.8.3 Computing with the \-calculus slices

To apply the content of section 1.7 to ALL,.,, just notice that if Sp, is
the sliced proof-structure associated with the cut-free sequent calculus
proof 7, then by remark 1.31, S, is full and compatible (thus non-
contradictory). If 7 is a sequent calculus proof of ALL,, and Sy is a
normal form of Sy, then [Sy,] = [So] and by theorem 1.52, Sy = Sy, .

Acknowledgments: We thank Laurent Regnier who suggested us the
property of the A-calculus expressed by proposition 1.48, thus allowing
us to (drastically) simplify the proof of theorem 1.52.
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