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Abstract

We present a restriction of the solos calculus which is stable under reduction and expressive
enough to contain an encoding of the pi-calculus. As a consequence, it is shown that equalizing
names that are already equal is not required by the encoding of the pi-calculus. In particular,
the induced solo diagrams bear an acyclicity property that induces a faithful encoding into
differential interaction nets. This gives a (new) proof that differential interaction nets are
expressive enough to contain an encoding of the pi-calculus.

All this is worked out in the case of finitary (replication free) systems without sum, match
nor mismatch.

Keywords: solos calculus, pi-calculus, prefix, typing, differential interaction nets.

ACM classification: F.3.2 Semantics of Programming Languages — Process models; F.4.1
Mathematical Logic — Lambda calculus and related systems; F.1.2 Modes of Computation —
Parallelism and concurrency.

The question of extending the Curry-Howard correspondence (between the λ-calculus and intu-
itionistic logic) to concurrency theory is a long-standing open problem. We developed in a previous
paper [EL10] a translation between the π-calculus [MPW92] and differential interaction nets [ER06].
This has shown that differential linear logic — a logical system whose sequent calculus [EL10] has
been obtained by the first author from a precise analysis of some denotational models of linear logic
based on vector spaces [Ehr02] — is a reasonable candidate for a Curry-Howard correspondence
with concurrent computation, since differential interaction nets appear to be expressive enough to
represent key concurrency primitives as provided by the π-calculus.

There are other works trying to relate variants of linear logic proof-nets with process algebras
(such as [Abr93, BS94, BM06, FM05, Maz05, HL10]) or to work on graphical syntaxes for encoding
the π-calculus (see [Mil94, LPV01, JM04] for example). However, even if some of them try to
build bridges with (linear) logic, they require some ad hoc graphical constructions without logical
foundations. Our goal is to build on differential interaction nets coming with the logical justification
of differential linear logic.

∗This work has been partially funded by the French ANR projet blanc “Curry Howard pour la Concurrence”

CHOCO ANR-07-BLAN-0324.
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Let us tell a bit more about the genesis of our translation. We discovered the notion of com-
munication areas as particular differential interaction nets able to represent some communication
primitives. However, due to the asynchronous flavour of differential interaction nets, it was not
immediate that additional constructions such as prefixing could be easily encoded. This led us to
have a look at the solos calculus.

The solos calculus [LV03] has allowed to prove how action prefixes (thus sequentiality con-
straints) can be encoded in a calculus without prefixes (results of this kind also appear in [HY94]
and are going much further than in the asynchronous π-calculus [HT91, Bou92]). This is done by
encoding the π-calculus into the solos calculus [LV03]. From this point of view, the solos calculus
can be seen as a low level concurrent language: even more basic than the π-calculus.

The main goal of the present paper is to stress the very close relation which appears between
differential interaction nets [ER06] (the graphical syntax for differential linear logic) and solo dia-
grams [LPV01] (the graphical syntax for the solos calculus).

Following the ingredients of [EL10], it is possible to give a simple representation of solo diagrams
as differential interaction nets (based on an implementation of nodes as communication areas).
Such a “static” correspondence is not very interesting if there is no “dynamic” counterpart in the
reduction semantics. And this is where troubles come into the picture... The reduction semantics
almost match... There is a mismatch between the solos calculus and communication areas with
respect to the identification of an occurrence of name with another occurrence of the same name
during reduction (let us call this phenomenon, self-identification). Note that such an identification
never occurs in the π-calculus. Since name passing is handled by the substitution of a bound name
by another name. As in the fusion calculus [PV98], the solos calculus defines communication by
unification of names, so that two occurrences of a name could be identified by reduction. If x has to
be identified with itself, it is just considered as a dummy operation in a unification setting since we
already have x = x. The situation is different with differential interaction nets since communication
areas keep track of such an identification through an explicit link connecting the communication
area associated with x to itself. Reduction is not able to simplify such a link in order to give back
a communication area. One gets some more complicated structure.

In [EL10] we were directly working with the π-calculus (thus with name passing by substitution,
thus without self-identification). This way a direct interpretation of the whole (finitary) π-calculus
into differential interaction nets was possible. The approach we propose here is different: we look for
a restriction of the solos calculus (avoiding self-identification) for which the static correspondence
with differential interaction nets also works at the dynamic level. This is the acyclic solos calculus.
This requires us to restrict the source calculus but allows us to deal with a very natural translation.

The acyclic solos calculus is obtained from a precise analysis of the translation of the π-calculus
into the solos calculus. The main idea is to be able to isolate, inside the unification mechanism
which is a symmetric operation (when one unifies a name x with a name y), a “flow” from one side
to the other (from x to y for example) as it happens in a substitution mechanism (in the reduction
of u〈x〉.P | u(y).Q in the π-calculus, one can consider a flow going from x to y, with the binding
occurrence y “controlling” all the other occurrences of y in Q). The first ingredient in our definition
of the acyclic solos calculus is a simple typing system allowing us to label all the object occurrences
of names of a solos term with two protocols (S (send) and R (receive)) in a kind of uniform way. The
main consequence of the typing system is to break symmetry in reduction/unification: when two
occurrences of names have to be unified one is an S-occurrence and the other one is an R-occurrence.
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However this does not impose important structural or behavioural constraints on protocols. This
is given by the second part of the definition of the calculus: the acyclicity conditions (AC1–AC5).
The justification for these conditions is to mimic the structure of the input prefix u(y).Q of the π-
calculus inside the solos calculus: exactly one binding occurrence y (this will be the R-occurrence of
the name y in the solos term), all the other occurrences (thus S-occurrences for object occurrences in
acyclic solos) are coming “sequentially after” the binding one, ... Informally, all this together leads
to a name passing by unification which is very close to a substitution mechanism if we understand
the unification of an S-occurrence with an R-occurrence as a substitution flow from the S-occurrence
to the R-occurrence (and then all the other occurrences of this name in S-position). Formally, we
prove that self-identification never occurs in the acyclic solos calculus.

We also show that the translation of the (finitary) π-calculus into the solos calculus follow-
ing [LV03] has its range contained in the acyclic solos calculus. This proves that our restriction
of the solos calculus still has a reasonable expressive power. Moreover this gives us an alternative
proof (with respect to the work presented in [EL10]) of the existence of a translation of the finitary
π-calculus into differential interaction nets.

The first part of the paper is devoted to the introduction of the required calculi (π-calculus
and solos calculus in Section 1, solo diagrams in Section 2, and differential interaction nets in
Section 3 which is almost copy-pasted from [EL10]). In Section 4 we elaborate on the material
presented in [EL10] to define the simple static translation of solo diagrams [LPV01] (the graphical
syntax for the solos calculus) into differential interaction nets. We discuss the problems arising
at the dynamic level, and we give a sufficient condition on solo diagrams for the translation into
differential interaction nets to be a bisimulation: an occurrence of a name should never be unified
with another occurrence of the same name (i.e. no self-identification).

The main technical contribution of the paper comes in the last part (Section 5). Since the
property that there is no self-identification in the redexes of a solos term is of course not preserved
under the reduction of solos, we have to find a more clever property. We define the acyclic solos
calculus through a typing system for assigning protocols and the acyclicity conditions (AC1–AC5).
We prove this restriction to be well behaved with respect to the reduction of the solos calculus. We
show that the translation of a π-term is always an acyclic solos term, showing the expressiveness of
the system. Finally we prove that the sufficient condition introduced in Section 4 is fulfilled by solo
diagrams corresponding to acyclic solos terms, showing that we obtain a bisimulation with respect
to differential interaction nets.

1 The π-calculus and the solos calculus

In this section we recall the definition of the π-calculus and of the solos calculus we are going to
use. We also recall the translation from π to solos given in [LV03].

In the π-calculus [MPW92], the two basic components of communication are the output and
input prefixes u〈x〉.P and v(y).Q (with occurrences of y bound in Q). Communication can occur
if u = v and in this case, it is obtained by substituting y by x (in Q). Moreover these prefix
constructions induce a sequential behaviour: the continuation P (resp. Q) cannot interact with
other agents before the output on u (resp. the input on v) has been triggered.

The fusion calculus [PV98] provides a generalization with communication modelized by unifica-
tion. This makes sending and receiving perfectly symmetric and thus the distinction between ux.P
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and ux.P is purely formal. Interaction is just constrained to occur between two dual entities u and
u. The symmetry is broken when one translates π-terms into fusion terms by: u(x).P 7→ (x)ux.P
(and unification restrained to the image of this translation becomes substitution by properties of
the binding restriction (x)P ). Notice that the sequentiality aspect of prefixing remains.

Based on the unification mechanism provided by the fusion calculus, the solos calculus [LV03]
is free from explicit sequentiality constructions: the fusion prefixes are restricted to dummy con-
tinuations ux.0 and ux.0 (where 0 is an inactive process). It is shown in [LV03] that dyadic solos
uxy and uxy are as expressive as the whole fusion calculus.

Comments on chosen calculi. Since our goal is to focus on prefixing and sequentiality, we deal
with calculi without replications nor recursive definitions, without match/mismatch and without
sums (see Conclusion for additional comments).

We do not want to spend time to deal with arbitrary arities in the calculi we consider. This is
why we only consider monadic π-terms. There are three reasons for that: it makes the presentation
simpler, it does not lead to a loss of expressiveness, and finally the polyadic case has already been
considered in [EL10]. As a consequence (see the translation in Section 1.3), we are led to consider
a triadic solos calculus (all the names are of arity exactly 3) and triadic solo diagrams (all the
multiedges are of arity exactly 3). The more general case of arbitrary arities could easily be
obtained by introducing the appropriate sortings on the various calculi.

1.1 The π-calculus

The terms of the (monadic, finitary) π-calculus are given by:

P ::= 0 | u(x).P | u〈x〉.P | (P | P ) | νx.P

where both u(x).P and νx.P bind occurrences of x in P .
The structural congruence on π-terms is the least congruence containing α-equivalence and:

0 | P ≡ P

P | Q ≡ Q | P

(P | Q) | R ≡ P | (Q | R)

νx.νy.P ≡ νy.νx.P

νx.0 ≡ 0

(νx.P ) | Q ≡ νx.(P | Q) if x /∈ fn(Q)

The reduction semantics of the π-calculus is given by:

u〈x〉.P | u(y).Q → P | Q [x/y]

P → Q

P | R → Q | R

P → Q

νx.P → νx.Q
P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q

1.2 The solos calculus

Introduced in [LV03], the goal of the solos calculus is to prove the expressiveness of a calculus
without prefix construction.
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The terms of the (triadic) solos calculus are given by:

P ::= 0 | ux1x2x3 | ux1x2x3 | (P | P ) | (x)P

where (x)P binds occurrences of x in P .
The structural congruence is the least congruence containing α-equivalence and:

0 | P ≡ P

P | Q ≡ Q | P

(P | Q) | R ≡ P | (Q | R)

(x) (y)P ≡ (y) (x)P

(x) 0 ≡ 0

((x)P ) | Q ≡ (x) (P | Q) if x /∈ fn(Q)

This equivalence allows us to present terms in the solos calculus in canonical forms: either the 0
process or a bunch of scope constructions (x1) (x2) . . . followed by solos in parallel.

The reduction semantics of the solos calculus is given by (z̃ stands for z1 . . . zn):

(z̃) (u x1x2x3 | u y1y2y3 | P ) → Pσ

where σ is a most general unifier of x1x2x3 and y1y2y3, such
that exactly the names w in z̃ are modified, i.e. satisfy
σ(w) 6= w (in particular, in each equivalence class of names
induced by unification, at most one name is free).

P → Q

P | R → Q | R

P → Q

(x)P → (x)Q

P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q

An alternative (but equivalent) definition of this reduction semantics is given in [LV03] together
with additional explanations.

For example, in (x) (y) (z) (w) (u uxy | u zww | v zuy), the only possible reduction is between
uuxy and u zww. It induces the identifications u = z, x = w and y = w, thus two equivalence
classes {u, z} and {x, y,w}. In the first one, u is free and thus the only possibility is to map z to
u. In the second one, all the elements are bound, we choose one of them: y for example (the other
choices would lead to structurally congruent results). We consider the unifier containing z 7→ u,
x 7→ y, w 7→ y and which is the identity on the other names. We obtain the reduct (y) v uuy.

1.3 From π-terms to solos

In [LV03], the authors give different translations of the fusion calculus [PV98] into solos. We are
going to focus on one of them (the one which does not introduce matching). By pre-composing
this translation with the canonical embedding of the π-calculus into the fusion calculus: u(x).P 7→
(x)ux.P , we obtain the translation of the π-calculus into solos that we present here.
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A π-term P is translated as [P ]:

Cv := (z) v zzv

[0]v := 0

[u(x).P ]v := (w) (y) (v uwy | Cy | (x) (v′) (w xvv′ | [P ]v′))

[u〈x〉.P ]v := (w) (y) (v uwy | Cy | (v′) (w xv′v | [P ]v′))

[P | Q]v := [P ]v | [Q]v

[νx.P ]v := (x) [P ]v

[P ] := (v) ([P ]v | Cv)

As shown in [LV03], this encoding is adequate with respect to weak barbed congruence ≈: [P ] ≈ [Q]
implies P ≈ Q.

The π-term νx.(u〈x〉.0 | x(y).0) | u(z).z〈t〉.0 is translated as a solos term which is structurally
congruent to (v) ((x) (P | Q) | R | Cv) with:

P = (w) (y) (v uwy | Cy | (v′)w xv′v)

Q = (w) (y′) (v xwy′ | Cy′ | (y) (v′)w yvv′)

R = (w) (y) (v uwy | Cy | (z) (v′) (w zvv′ | (w) (y) (v′ zwy | Cy | (v′′)w tv′′v′)))

By applying reduction, we obtain in particular the following reducts (up to structural congruence):

(v) ((x) ((Cv | (v′)u xv′v) | Q) | R)

(v) ((x) (((v′)uxv′v) | Q) | Cv | (z) (v′) (u zvv′ | (w) (y) (v′ zwy | Cy | (v′′)w tv′′v′)))

(v) (x) (Q | Cv | ((w) (y) (v xwy | Cy | (v′′)w tv′′v)))

(v) (x) (Cv | (y) (v′)x yvv′ | ((w) (y) (v xwy | Cy | (v′′)w tv′′v)))

(v) (x) ((y) (v′)x yvv′ | Cv | (v′′)x tv′′v)

(v)Cv

2 Solo diagrams

To make the relation with differential interaction nets simpler, we go through the graphical syntax
associated with the solos calculus: solo diagrams [LPV01].

A (triadic) solo diagram is given by a finite set of nodes and a finite multiset of (ternary)
multiedges (directed edges with a list of three nodes as source and one node as target). A node is
tagged as either free or bound. A multiedge is tagged as either input or output. Any node must be
a source or a target of a multiedge.

2.1 Reduction

The reduction of solo diagrams is given:

• by choosing two multiedges e1 and e2 of opposite polarities (one input and one output) with
the same target (we call them dual multiedges) and with respective sources [n1, n2, n3] and
[m1,m2,m3],
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reduces to

Figure 1: A reduction in solo diagrams.

• and by identifying the two nodes n1 and m1, the two nodes n2 and m2, and the two nodes
n3 and m3. The reduction is allowed to occur only if it does not identify two free nodes.
Moreover when a free node is identified with a bound node, the obtained node is free and
when two bound nodes are identified, the obtained node is bound.

The chosen multiedges are erased and nodes which are not anymore source or target of a multiedge
are also removed. This can be applied to both free and bound nodes.

During a reduction step, the number of multiedges decreases by two and the number of nodes
decreases or remains the same.

In the graphical representation, we draw free nodes as white dots, bound nodes as black dots,
output edges with an outgoing arrow and input edges with an ingoing arrow. An example is given
in Figure 1.

2.2 Relation with solos

A term of the solos calculus can easily be translated into a solo diagram. Free names are translated
as free nodes, bound names as bound nodes and solos as multiedges:

• The 0 term is translated as the empty graph with no edge.

• The solo ux1x2x3 is translated as the graph with free nodes corresponding to elements of
{u, x1, x2, x3}, and with one input multiedge with source [x1, x2, x3] and target u (where xi is
the node corresponding to the name xi and u is the node corresponding to the name u).

• The solo u x1x2x3 is translated in the same way with an output multiedge.

• The parallel composition P | Q is obtained by “graph union”: union of the sets of nodes (i.e.
nodes corresponding to the same name are identified) and sum of the multisets of multiedges.

• The restriction (x)P corresponds to turning the free node x corresponding to the name x (if
any) into a bound node.

As shown in [LPV01], two solos terms are structurally congruent if and only if the corresponding
solo diagrams are isomorphic. Moreover reduction in solo diagrams reflects faithfully the reduction
of the solos calculus.

The two solo diagrams of Figure 1 respectively correspond to (x) (y) (z) (w) (u uxy | u zww | v zuy)
and (y) v uuy (the examples used in Section 1.2).
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2.3 Labeled transition system

We follow the same methodology as in [EL10] by using labels to distinguish the actions of a process.
In a term syntax as in [EL10], labels are put on prefixes (or solos). In the graphical syntax of solo
diagrams, we put labels on multiedges (since multiedges correspond to solos).

We fix a countable set L of labels to be used for all our labeled transition systems.
A solo diagram is labeled if its multiedges are equipped with different labels belonging to L.

Definition 1 (The transition system SL). The objects of the labeled transition system SL are
labeled solo diagrams and transitions are labeled by pairs of distinct elements of L. Let G and H

be two labeled solo diagrams, G
lm
−→ H if H is obtained from G by applying a reduction step to

the input multiedge labeled l and to the output multiedge labeled m (the labels of the remaining
multiedges of H must be the same as for the corresponding ones in G).

This is quite different from what is usually done for defining transition systems for a process
algebra [MPW92]. The standard approach aims at analyzing the possible interactions of a process
with its environment. Then bisimulation is used to show that two processes have the same “exter-
nal” behaviour. Our goal is to use bisimulation to compare the internal behaviours of solo diagrams
and of differential interaction nets. We want to illustrate that differential interaction nets are suf-
ficiently expressive for simulating concurrency and mobility. This requires the transition systems
we use for bisimulation to carry precise informations about reductions of processes, in particular
about the sub-entities taking part into the interactions.

2.4 Solo diagrams with identifications

In order to compare solo diagrams with differential interaction nets, it will be useful to decompose
the reduction of solo diagrams by introducing the notion of solo diagrams with identifications.

Definition 2 (Solo diagram with identifications). Solo diagrams with identifications are solo di-
agrams equipped with a finite set of undirected edges (usual binary edges, not multiedges, which
connects nodes of the solo diagram). These edges are called identification edges.

We can decompose the reduction of solo diagrams we have presented above by using identifica-
tion edges. A reduction step for a solo diagram G is defined as follows:

R1. choose two dual multiedges e1 and e2 (i.e. of opposite polarities and with the same target)
with respective sources [n1, n2, n3] and [m1,m2,m3];

R2. build the solo diagram with identifications G[e1, e2] obtained from G by erasing e1 and e2

and by introducing three identification edges: between n1 and m1, between n2 and m2, and
between n3 and m3;

R3. contract the graph G[e1, e2] by (repeatedly) choosing an identification edge and by identifying
the two (or one) nodes it connects if at least one of them is bound.

The reduction succeeds (i.e. is a valid reduction of solo diagrams) if we reach a solo diagram
with no remaining identification edge. It means in particular that step (R2) does not introduce
identification edges between two free names.

In the graphical representation, we draw identification edges as dashed edges.
If we refine the reduction of the example of Figure 1 by means of solo diagrams with identifica-

tions, the results of step (R2) and then of one application of step (R3) are in Figure 2.
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l l

Figure 2: An (R3) reduction step in solo diagrams with identifications.

3 Differential Interaction Nets

3.1 The general formalism of interaction nets

We recall the general (graphical) syntax of interaction nets, as introduced in [Laf95]. See also [Maz06,
ER06] for more details.

Statics of interaction nets. We first define a general typed syntax of interaction nets.
Assume we are given a set of symbols and that an arity (a non-negative integer) and a typing rule

is associated with each symbol. This typing rule is a list (A0, A1, . . . , An) of types, where n is the
arity associated with the symbol. Types are formulae of some system of linear logic (in particular
if A is a type, A⊥ is also a type and A⊥⊥ = A). An interaction net is made of cells. With each
cell γ is associated exactly one symbol and therefore an arity n and a typing rule (A0, A1, . . . , An).
Such a cell γ has one principal port p0 and n auxiliary ports p1, . . . , pn. An interaction net has also
a finite set of free ports. All these ports (the free ports and the ports associated with cells) have
to be pairwise distinct and a set of wires is given. This wiring is a set of pairwise disjoint sets of
ports of cardinality 2 (ordinary wires) or 0 (loops1), and the union of these wires must be equal
to the set of all ports of the interaction net. In other words, each port of the interaction net (free
or associated with a cell) is connected to exactly one other port (free or associated with a cell)
through a wire, and each such wire connects exactly two ports: ports cannot be shared. The free
ports of the interaction net are those which are not associated with a cell.

An oriented wire of the interaction net is an ordered pair (p1, p2) where {p1, p2} is a wire.
In an interaction net, a type is associated with each oriented wire, in such a way that if A is
associated with (p1, p2), then A⊥ is associated with (p2, p1). Last, the typing rules of the cells must
be respected in the sense that for each cell γ of arity n, whose ports are p0, p1, . . . , pn and typing
rule is (A0, A1, . . . , An), denoting by p′0, p

′
1, . . . , p

′
n the ports of the interaction net uniquely defined

by the fact that the sets {pi, p
′
i} are wires (for i = 0, 1, . . . , n), then the oriented wires (p0, p

′
0),

(p′1, p1),. . . ,(p
′
n, pn) have types A0, A1,. . . ,An respectively. The free ports of the interaction net

constitute its interface. With each free port p can be associated the type of the unique oriented
wire whose endpoint is p: this is the type of p in the interface of the interaction net.

Here is a typical example of a typed interaction net:

•
•

•
α β

γ

A

B

C

E

F p

q
D

1To be more precise, one has to specify the number of loops in the net, but this will not play any role in the sequel.
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with cells of symbols α, β and γ, of respective types (B,A⊥, C⊥), (B⊥, A,E⊥,D⊥) and (F,D,C).
The interface is (p : E, q : F ). Cells are represented as triangles, with principal port located at
one of the angles and other ports on the opposite edge. We often draw a black dot to locate the
auxiliary port number 1.

Dynamics of interaction nets. In Lafont’s traditional interaction nets, a reduction rule asso-
ciates, to each pair of cells connected through their principal ports, an interaction net with the
same interface as this two-cells net. Moreover at most one rule is given for each pair of cells.
The application of a reduction rule substitutes (inside an interaction net) a pair of cells connected
through their principal ports by the associated reduct.

These ideas are strongly related with key steps of cut elimination in logics, where two rules
interact through their principal formulas.

Extensions of interaction nets. Since interaction nets have strong confluence properties, ex-
tensions are required to take concurrency and non-determinism into account [Ale99].

A possible way of extending interaction nets for more concurrent behaviours is to modify statics
by introducing cells with many principal ports [Ale99, Kha03, Maz05] (this breaks simple logical
interpretations by contradicting the usual property that a logical rule of the sequent calculus in-
troduces one principal formula). In differential interaction nets, we stick to the traditional statics
syntax (but act on the dynamics side).

A possible extension of the dynamics towards non-deterministic behaviours is to allow a choice
between different possible reduction rules for a given pair of cells [Ale99].

We make a choice in-between this proposal and Lafont’s one (i.e. between many possible rules,
and at most one rule). We consider only one reduction rule for each pair of cells but we extend
interaction nets to formal sums of interaction nets [ER06]. This allows us to represent, as one
reduction, a finite set of non-deterministic choices: when the reduct of the interaction of two cells
is a (proper) sum of interaction nets.

3.2 Presentation of the cells

We define differential interaction nets from the interaction nets defined above. We first present our
specific cells.

The untyped lambda-calculus can be seen as a typed lambda-calculus equipped with a recursive
equation D = D ⇒ D. Following this idea, V. Danos and L. Regnier [Reg92] defined a notion of
untyped proof-nets based on a single type symbol o (the type of outputs), subject to the following
recursive equation o = ?o⊥`o. Our nets will be typed using this typing system. We set ι = o⊥, so
that ι = !o⊗ ι and o = ?ι`o. The tensor connective is used only with premises !o and ι and dually
for the par, and therefore, the only types we actually need are o, ι, !o and ?ι for typing our nets.

In the present setting, there are ten symbols: par (arity 2), bottom (arity 0), tensor (arity 2),
one (arity 0), dereliction (arity 1), weakening (arity 0), contraction (arity 2), codereliction (arity
1), coweakening (arity 0) and cocontraction (arity 2). We present now the various cell symbols,
with their typing rules, in a pictorial way.

Multiplicative cells. The par and tensor cells, as well as their “nullary” versions bottom and
one are as follows:
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•

o

o
?ι

`
•

!o

⊗

ι

ι
⊥

o
1

ι

Exponential cells. They are typed according to a strictly polarized discipline. Here are first the
why not cells, which are called dereliction, weakening and contraction:

?
ι ?ι

?
?ι

?
?ι

?ι

?ι

and then the bang cells, called codereliction, coweakening and cocontraction:

!
o !o

!
!o

!
!o

!o

!o

Differential interaction nets. We define differential interaction nets from the cells above.

• A simple differential interaction net is a typed interaction net, which uses the multiplicative
and exponential cells introduced above.

• A differential interaction net is a finite formal sum S = s1 + · · · + sn (n ≥ 0) of simple
differential interaction nets having all the same interface, and this interface is then considered
as the interface of S. A particular case is the differential interaction net S = 0 (the empty
sum), and this differential interaction net has to be given together with its interface: there is
a 0 net for each interface.

Labeled differential interaction nets. We now introduce labeled differential interaction nets,
which are differential interaction nets where particular cells are equipped with labels. The labeled
transition system of differential interaction nets will be defined using these labels in Section 3.3.3.

Let Lτ be the countable set of labels obtained by adding a distinguished element τ (to be
understood as the absence of label) to L (introduced in Section 2.3). A labeled simple differential
interaction net is a simple differential interaction net where all dereliction and codereliction cells
are equipped with labels belonging to Lτ . Moreover, if l and l′ are two labels appearing in a labeled
simple differential interaction net, either l 6= l′ or l = l′ = τ .

In our pictures, the labels of dereliction and codereliction cells will be indicated, when this label
is different from τ . When its label is τ , a (co)dereliction cell will be drawn without any label.

All the differential interaction nets we consider in this paper are labeled. In the sequel, since
no confusion with other kinds of interaction nets will be possible, we shall use “net” for “labeled
differential interaction net” and “simple net” for “labeled simple differential interaction net”.

3.3 Reduction rules

We denote by ∆ the collection of all simple nets, ranged over by the letters s, t, u, with or without
subscripts or superscripts, and by N〈∆〉 the collection of all nets (finite sums of simple nets with
the same interface, including the empty sum), ranged over by the letters S, T , U , with or without
subscripts or superscripts. We consider ∆ as a subset of N〈∆〉 (s ∈ ∆ being identified with the
sum made of exactly one copy of s).
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A reduction rule is a subset R of ∆ × N〈∆〉 consisting of pairs (s, S) where s is a simple net
made of two cells connected by their principal ports and S is a net that has the same interface as
s. There are actually reduction rules which transform simple nets in non simple ones.

This set R can be finite or infinite. Such a set is easily extended to a relation between arbitrary
simple nets and nets and then to arbitrary nets and nets:

• We note s R T if there is (s0, u1 + · · ·+ un) ∈ R where s0 is a subnet of s, each ui is a simple
net and T = t1 + · · · + tn where ti is the simple net resulting from the replacement of s0 by
ui in s (n ≥ 0).

• The relation RΣ is defined by s1 + · · ·+sn RΣ T (where each si is simple) if T = T1 + · · ·+Tn

where, for each i, si R Ti or si = Ti (n ≥ 0).

Last, the relation R∗ between nets and nets is the transitive closure of RΣ (which is reflexive).

3.3.1 Defining the reduction

We give now the reduction rules of differential interaction nets.

Multiplicative reduction. The first two rules concern the interaction of two multiplicative cells
of the same arity.

• •
` ⊗

?ι ?ι

o

o
 m

o o

?ι

⊥
o

 m ǫ1

where ǫ stands for the empty simple net (i.e. the simple net containing no cell, no port and thus
no wire, not to be confused with the net 0 ∈ N〈∆〉, the empty sum, which is not a simple net).
The next two rules concern the interaction between a binary and a nullary multiplicative cell.

` 1
o

 m

?ι

o

?ι

o 1

!

 m

!o

ι

⊗ ⊥

!o

ι

?

⊥

ι

Communication reduction. Let R ⊆ Lτ . We have the following reductions if l,m ∈ R.

? !
ι ι?ι

 c,R
ι

l m

The labels l and m disappear in this reduction step.

Non-deterministic reduction. Let R ⊆ Lτ . We have the following reductions if l ∈ R.

?

?

?

?

?ι

?ι?ι

!? +

l

l

 nd,R

?ι

l

ι
ι

?ι

?ι

ι ?ι

?ι

!

!

!

!

! ?
!o

+

l

l

 nd,R
l

o
o

!o

!o

!o

!o

o !o

!o
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? !
ι ?ι

l
 nd,R 0 ! ?

o !o

l
 nd,R 0

According to the definition of reduction for arbitrary simple nets given above, the application of one
of the last two steps to a simple net erases the whole simple net and gives the 0 net (as everywhere
else in the paper, this means the 0 net with appropriate interface). These two steps make some
labels disappear.

Structural reduction.

?ι
?

!

!

!  s

?ι

?ι

?ι

?ι

!
!o

?

?

?  s

!o

!o !o

!o

?ι
? !  s ǫ ? !

?ι

?ι

?ι
 s

! ?

! ??ι

?ι
?ι

?ι
?ι

?ι

?ι
?ι

?ι

?ι

We use ∼s for the symmetric and transitive closure of  s.

Remark 1. One can check that we have provided reduction rules for all redexes compatible with
our typing system: for any simple net s made of two cells connected through their principal ports,
there is a reduction rule whose left member is s. This rule is unique, up to the choice of a set of
labels, but this choice has no influence on the right member of the rule.

3.3.2 Confluence

Theorem 1. Let R,R′ ⊆ Lτ . Let R ⊆ ∆× N〈∆〉 be the union of some of the reduction relations
 c,R,  nd,R′ ,  m and  s. The relation R∗ is confluent on N〈∆〉.

The proof is essentially trivial since the rewriting relation has no critical pair (see [ER06]). Given
R ⊆ Lτ , we consider in particular the following R-reduction:  R = m∪ c,{τ}∪ s∪ nd,R. We
set  d =  ∅ (“d” for “deterministic”) and denote by ∼d the symmetric and transitive closure of
this relation. Observe that, if s and S are nets with s simple and if s d S, then S is also simple.

Some of the reduction rules we have defined depend on a set of labels. This dependence is
clearly monotone in the sense that the relation becomes larger when the set of labels increases.

The reduction of nets is not normalizing mainly because of the last structural reduction rule.
Additional comments can be found in [ER06].

3.3.3 A transition system of simple nets

Let l and m be distinct elements of L. We call (l,m)-communication redex a communication redex
whose codereliction cell is labeled by l and whose dereliction cell is labeled by m.

Definition 3 (The transition system DL). We define a labeled transition system DL whose objects
are simple nets, and transitions are labeled by pairs of distinct elements of L. Let s and t be simple

nets, we have s
lm
−→ t if the following holds: s ∗

{l,m} s0 +S where s0 is a simple net which contains

an (l,m)-communication redex and becomes t when one reduces this redex.

13



Remark 2. The non-deterministic steps allowed in the reduction from s to s0 +S can only involve
the codereliction and dereliction labeled by l and m respectively. The communication steps only
involve τ -labeled derelictions and coderelictions. In the solos calculus, solos communicate in one
step through a parallel composition. This single step becomes here a sequence of many elementary
steps and our restriction allows us to avoid considering the steps which have nothing to do with the
communication we are interested in.

The net S contains other possible communications, so it corresponds to other branches of non-
deterministic choices.

In this paper, to compare transition systems, we only consider strong bisimulations [Par81] as
given by the following definition.

Definition 4 (Bisimulation). Given two labeled transition systems LTS1 = (S1, T1) (with T1 ⊆
S1 × L × S1) and LTS2 = (S2, T2) (with T2 ⊆ S2 × L × S2) on the same set L of labels, a relation
R between S1 and S2 is a bisimulation between LTS1 and LTS2 if:

• for any (s1, s2) ∈ R and (s1, l, s
′
1) ∈ T1, there exists s′2 ∈ S2 such that (s2, l, s

′
2) ∈ T2;

• and for any (s1, s2) ∈ R and (s2, l, s
′
2) ∈ T2, there exists s′1 ∈ S1 such that (s1, l, s

′
1) ∈ T1.

A useful particular case is LTS1 = LTS2.

Lemma 1. The relation ∼d ⊆ ∆× ∆ is a bisimulation on DL.

3.4 A toolbox for process calculi interpretation

We introduce now a few families of simple nets, which are built using the previously introduced
basic cells. They will be used as basic modules for interpreting processes. All of these nets, but
the communication areas, can be considered as compound cells: in reduction, they behave in the
same way as cells of interaction nets.

One could have directly defined these compound cells as primitive constructions for the repre-
sentation of processes. However we prefer to stress the possibility of implementing these compound
objects with more basic ones coming from the logically founded theory of differential linear logic,
in order to emphasize the possible application of linear logic tools to the image of our encoding.

Communication areas cannot be considered as cells in our setting since they would require more
than one principal port. Interaction nets with many principal ports have been studied (in particular
for representing concurrent behaviours [Maz05]) but their theory is quite different from the “one
principal port” case.

3.4.1 Compound cells

Generalized contraction and cocontraction. A generalized contraction cell is a simple net t.
One of its free ports (which is not connected to an auxiliary port of its cells) is called the principal
port of t. The other free ports (which are finitely many and are not connected to principal ports of
cells of the generalized cell) are called the auxiliary ports of t. These generalized contraction cells
are inductively defined:

• a wire with type ?ι is a generalized contraction cell (we select the port with type ?ι as the
principal port of the generalized cell);
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Figure 3: Dereliction-tensor compound cell.
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!`
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?⊗

••
...

...... =
ll

Figure 4: Input and output compound cells.

• a weakening cell gives a generalized contraction cell by connecting a wire to its principal port
(the only free port of the obtained net is the principal port of the generalized cell);

• given two generalized contraction cells, by connecting the two auxiliary ports of an additional
contraction cell to the principal ports of the generalized cells and by connecting the principal
port of this new contraction cell to a free port, one obtains a generalized contraction cell (the
free port connected to the principal port of the added contraction cell is the principal port of
the generalized cell).

Generalized cocontraction cells are defined dually.
We use the same graphical notations for generalized (co)contraction cells as for ordinary (co)contraction

cells, with a “∗” in superscript to the “!” or “?” symbols to avoid confusions. Observe that there
are infinitely many generalized (co)contraction cells of any given arity. Even if one could define a
choice of one canonical (co)contraction cell for each arity, pluging two canonical (co)contraction
cells together would not always give us a canonical one. This is why we do not define such a choice
here.

The dereliction-tensor and the codereliction-par cells. Let n be a non-negative integer.
We define an n-ary ?⊗ compound cell as in Figure 3. It will be decorated by the label of its
dereliction cell (as mentioned in Section 3.2, we put no decoration if the label is τ). The number
of tensor cells in this compound cell is equal to n (in particular the 0-ary dereliction-tensor cell
contains exactly two cells: a one cell and a dereliction cell). We define dually the !` compound
cell.

The prefix cells. Now we can define the compound cells which will play the main role in the
interpretation of solos. Thanks to the above defined cells, all the oriented wires of the nets we shall
define will have type ?ι or !o. Therefore, we adopt the following graphical convention: the wires
will have an orientation corresponding to the ?ι type.

Let n be a non-negative integer. The n-ary input cell and the n-ary output cell are defined in
Figure 4, they have n pairs of auxiliary ports (δ+

1 , δ−1 , . . . , δ+
n , δ−n ).

The label of a prefix cells is the one carried by its outermost ?⊗ or !` compound cell, the other
?⊗ or !` compound cells are required to be unlabeled (that is, labeled by τ).
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3

Figure 5: Area of order 3.

?∗

!∗

!∗ ?∗

!∗?∗

!∗ ?∗

?∗ !∗

?∗!∗

Figure 6: Communication areas of order −1, 0 and 1.

3.4.2 Communication areas

Let n ≥ −2. We define a family of nets with 2(n + 2) free ports, called communication areas of
order n, that we shall draw using rectangles with beveled angles. Figure 5 shows how we picture a
communication area of order 3.

A communication area of order n is made of n+2 pairs of (n+1)-ary generalized cocontraction
and contraction cells (γ+

1 , γ−
1 ), . . . , (γ+

n+2, γ
−
n+2), with, for each i and j such that 1 ≤ i < j ≤ n + 2,

a wire from an auxiliary port of γ+
i to an auxiliary port of γ−

j and a wire from an auxiliary port of

γ−
i to an auxiliary port of γ+

j . We note p+
i and p−i the principal ports of γ+

i and γ−
i , and we call

(p+
i , p−i ) a pair of associated ports of the communication area.
So the communication area of order −2 is the empty net ǫ, and communication areas of order

−1, 0 and 1 are the structures shown in Figure 6.

3.4.3 Useful reductions.

One of the nice properties of communication areas is that, when one connects two such areas
through a pair of wires, one gets another communication area.

Lemma 2 (Aggregation of communication areas). Let C1 be a communication area of order n1 ≥
−1 and C2 be a communication area of order n2 ≥ −1, let (p+

1 , p−1 ) be a pair of associated ports of
C1 and (p+

2 , p−2 ) be a pair of associated ports of C2, let s be the simple net obtained by connecting
p+
1 to p−2 and p−1 to p+

2 , we have s  ∗
s C where C is a communication area of order n1 + n2 (see

Figure 7).

Proof. We only prove the particular case where n1 = n2 = 1 and the communication areas C1 and
C2 are built with contraction cells (not generalized ones).

... n1 n2
...

... n1 + n2
... 

∗
s

Figure 7: Aggregation, with n1, n2 ≥ −1.
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Figure 8: Aggregation of communication areas of order 1.
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Figure 9: Port forwarding.

By connecting C1 and C2, and by applying two structural reduction steps, we obtain a commu-
nication area of order 2 (see Figure 8).

Let t be a simple net and p be a port of t. We say that p is forwarded in t if there is a free port
q of t such that t is of one of the two shapes given in Figure 9.

This allows us to describe the interaction of derelictions and coderelictions with communica-
tion areas: derelictions and coderelictions can meet each other, when connected to a common
communication area.

Lemma 3 (Communication and forwarding of derelictions and coderelictions in communication
areas). Let p ≥ −2 be an integer, let l,m ∈ Lτ , and let us consider the simple net s obtained by
connecting (the principal ports of) a codereliction labeled l and a weakening to a pair of associated
ports of a communication area of order p+2, and by connecting (the principal ports of) a dereliction
labeled m and a coweakening to another pair of associated ports of the same communication area.
The {l,m}-reduction applied to s leads to a sum of simple nets: one contains the codereliction l
and the dereliction m connected through their principal ports, together with a communication area
of order p; in all the other summands, the principal ports r and r′ of the codereliction l and of the
dereliction m are forwarded (see Figure 10).

Proof. We consider the particular case where p = −1 and the communication area is built with
contraction cells (not generalized ones). The reduction is pictured in Figure 11.

?

!

!

?

?! ! ?
ti

r r′
 

∗
{l,m}

· · ·

p +

N∑

i=1

· · · · · ·

l l lmm

mp + 2

Figure 10: Dereliction and codereliction communicating through a communication area.
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Figure 11: Forwarding of dereliction and codereliction.

• •

...!?
...

...

m

l

 c,{l,m} u ∗
∅

Figure 12: Prefix reduction.

We first apply all the possible structural reduction steps, then we focus on the codereliction
labeled l: the reduction of the associated redex gives a sum of two simple nets (in one of them the
principal port of the codereliction l is forwarded). We now apply in each simple net the reduction
step involving the dereliction labeled m and we finally obtain a sum of two simple nets. In the
first one the principal ports of the dereliction and of the codereliction are forwarded, in the second
one they are connected to each other and the remaining part of the net is a communication area of
order −1.

The generalization to other communication areas of order 1 is easy. We can obtain the case
p 6= −1 by decomposing the communication area into two communication areas (one of order 1 and
one of order p + 1). Lemma 2 and Theorem 1 help to conclude.

We now consider the interaction of two prefix cells.

Lemma 4 (Reduction of prefixes). Let l,m ∈ Lτ . If we connect an n-ary output prefix labeled by
m to a p-ary input prefix labeled by l through their principal ports, we obtain a simple net which
reduces by  c,{l,m} to a net u which reduces by  ∗

{τ} to 0 if n 6= p and to simple wires by  ∗
∅, as

in Figure 12, if n = p.

Proof. The key point is to check that the simple net, obtained by connecting an n-ary dereliction-
tensor compound cell to a p-ary codereliction-par cell through their principal ports, reduces to
min(n, p) wires with n − p weakening cells if n > p or p − n coweakening cells if p > n.

4 From solo diagrams to differential interaction nets

4.1 The translation

Relying on the toolbox described above, we define a translation of labeled solo diagrams with
identifications into labeled simple differential interaction nets:
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• A node which appears n times as a source of a multiedge, which is k times target of a multiedge
and which is p times member of an identification edge is translated as a communication area
of order n + k + p − 2.

For example, for a node which is target of one input multiedge and of one output multiedge
(thus k = 2), which is source of one multiedge (thus n = 1), and which is member of one
identification edge (thus p = 1), we have n + k + p − 2 = 2:

! 2

• An input multiedge with sources [x1, x2, x3] and target u is translated as a 3-ary input cell
with principal port u0 and auxiliary ports [x0

1, x
1
1, x

0
2, x

1
2, x

0
3, x

1
3]. Each pair x0

i , x1
i is connected

to a pair of associated ports of the communication area corresponding to xi. u0 is connected
to the port p− and a weakening cell is connected to p+, where (p+, p−) is a pair of associated
ports of the communication area corresponding to u. The label of the prefix cell is the label
of the multiedge.

l

! !

l

?

• An output multiedge with sources [x1, x2, x3] and target u is translated as a 3-ary output cell
with principal port u0 and auxiliary ports [x0

1, x
1
1, x

0
2, x

1
2, x

0
3, x

1
3]. Each pair x0

i , x1
i is connected

to a pair of associated ports of the communication area corresponding to xi. u0 is connected
to the port p+ and a coweakening cell is connected to p−, where (p+, p−) is a pair of associated
ports of the communication area corresponding to u. The label of the prefix cell is the label
of the multiedge.

l

! ?

l

!

• An identification edge connecting x1 and x2 is translated as a pair of wires connecting a
pair (p+

1 , p−1 ) of associated ports of the communication area corresponding to x1 with a pair
(p−2 , p+

2 ) of associated ports of the communication area corresponding to x2.

!

Since communication areas of order n are not uniquely defined (because generalized contraction
and cocontraction cells of a given arity are not unique either), this translation from solo diagrams
to differential interaction nets is in fact a relation, which we denote G! s (with G a solo diagram
and s a simple differential interaction net).
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Figure 13: The translation of the second solo diagram of Figure 2.

n

n2n1

↓

C1

C

C2

↓

!

!

Figure 14: Proof of Lemma 5.

Remark 3. Let G be a solo diagram (without identification edges) and s be a differential interaction
net, if G! s then s has no d redex, except some  s redexes involving weakening or coweakening
cells. Indeed, all the redexes in s are given by a labeled codereliction cell ( i.e. whose label is not
τ) or a coweakening cell facing a weakening cell, a contraction cell or a labeled dereliction cell (or
dually by a dereliction cell or a weakening cell facing a coweakening or ...).

A differential interaction net associated with the second solo diagram with identifications of
Figure 2 is given in Figure 13.

4.2 A bisimulation

Our goal is to establish a bisimulation between the labeled transition systems SL (Section 2.3) and
DL (Section 3.3.3). Unfortunately the translation ! does not provide such a bisimulation. We
are going to show what the problems are and how to restrict SL to get a bisimulation.

4.2.1 Mismatch

The crucial point comes from step (R3) of the reduction of solo diagrams: the contraction of
identification edges in solo diagrams corresponds through! to the aggregation of communication
areas as given by the following lemma.

Lemma 5. If G1 and G2 are solo diagrams with identifications, if G2 is obtained from G1 by
contracting an identification edge (step (R3)) connecting the nodes n1 and n2 with n1 6= n2 and
if G1 ! s1 then G2 ! s2 where s2 is obtained from s1 by aggregating the communication areas
corresponding to n1 and n2.

Proof. See Figure 14: G2 is obtained from G1 by replacing the two distinct nodes n1 and n2 by a
unique node n. In s1, we have a communication area C1 corresponding to n1 and a communication
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area C2 corresponding to n2. Since n1 and n2 are connected with an identification edge, C1 and
C2 are connected with a pair of wires. By aggregating C1 and C2 (see Lemma 2), we obtain a
communication area C in s2 which exactly corresponds to n through !.

The hypothesis n1 6= n2 is crucial since two communication areas C1 and C2 connected together
with a pair of wires reduce to one communication area (Lemma 2), except if C1 = C2! We are
thus able to encode the reduction of the solos calculus only if we can ensure that we never have to
contract an identification edge connecting a node with itself.

A typical example of this problem is given by:

(u) (x) (y) (z) (y′) (z′) (a) (b) (c) (a′) (b′) (c′) (uxyz | uxy′z′ | x abc | x a′b′c′)

As shown in Figure 15, while in solo diagrams the loop created after the first step eventually dis-
appears, it remains in differential interaction nets. The consequence being that we have transitions
in SL while the last differential interaction net has no transition to a differential interaction net
which is the translation of a solo diagram.

4.2.2 Restriction

Since our goal is to make the bisimulation result true, we are going to constrain the syntax of solo
diagrams in such a way that the hypotheses of Lemma 5 are always valid. We want to restrict
the reduction step (R3) to the case where the edge is not connecting a node with itself. This is
equivalent to asking the sub-graph Gid[e1, e2] of G[e1, e2], containing the identification edges only,
to be acyclic. By definition, we call acyclic reduction step a reduction step associated with two
dual multiedges e1 and e2 such that Gid[e1, e2] is acyclic.

Another problem comes from the constraint on the freeness of names in the contraction of
identification edges in solo diagrams. Our translation into differential interaction nets is forgetting
the fact that some nodes are free and others are bound. As a consequence a reduction might
happen in the differential interaction net’s side without being possible in the solo diagram’s side.
An example is given by the term uxyz | ux′y′z′. To avoid this situation we introduce the notion
of acyclic redex.

Definition 5 (Acyclic redex). In a solo diagram, a pair of dual multiedges is an acyclic redex if
it is a redex (meaning that the induced freeness conditions are satisfied) and the induced reduction
step is an acyclic reduction step.

Definition 6 (Sac
L labeled transition system). S

ac
L is the biggest labeled transition system such that:

• each object of S
ac
L is an object of SL and each transition of S

ac
L is a transition of SL (but some

objects and transitions are lost),

• for any object in S
ac
L , all the transitions starting from it in SL belong to S

ac
L ,

• all pairs of dual multiedges in objects of S
ac
L are acyclic redexes.

This means that an object G in SL belongs to S
ac
L as soon as none of the paths starting from

G in SL allows us to reach an object with a non acyclic redex. This is a decidable property since
there are finitely many such paths.
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Figure 15: Reductions in solo diagrams and in differential interaction nets, corresponding to the
term: (u) (x) (y) (z) (y′) (z′) (a) (b) (c) (a′) (b′) (c′) (uxyz | uxy′z′ | x abc | x a′b′c′).
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Figure 16: Simulation of a solos reduction step.

Definition 7 (Acyclic solo diagram). A solo diagram which is an object of S
ac
L is called an acyclic

solo diagram.

Proposition 1. If G
lm
−→ H in S

ac
L and G ! s, then there are simple nets t and t0 such that

s
lm
−→ t0 in DL, H ! t and t0  d t.

Proof. By hypothesis, there is a communication area C in s with two dual prefixes labeled with l and
m connected to it. We apply the forwarding of derelictions and coderelictions in the communication
area C to them (Lemma 3). This gives us a sum of simple nets containing a simple net s1 with an
(l,m)-communication redex and other summands where l and m have been forwarded.

Following Figure 16, let t0 be the simple net obtained by reducing the (l,m)-communication
redex of s1, and t1 be the simple net obtained by applying to s1 the prefix reduction starting with
the reduction from s1 to t0 (see Lemma 4). It is easy to see that G[e1, e2]! t1 where e1 and e2

are the multiedges of G with labels l and m. By Lemma 5, each step of acyclic contraction of an
identification edge corresponds to the aggregation of the two associated communication areas, thus
H ! t with t1  

∗
d t and we have t0  

∗
d t.

Lemma 6 (Diving). Let G be a solo diagram (without identification), if G! s and s ∗
{l,m} t+T

with t containing an (l,m)-communication redex, then the codereliction labeled l and the dereliction
labeled m are connected to the same communication area C in s and the (l,m)-communication redex
is generated by the dereliction/codereliction forwarding through C (Lemma 3).

Proof. According to Remark 3, the only  {l,m} redexes of s are involving the codereliction l, the
dereliction m, a weakening or a coweakening.

By confluence (Theorem 1), we can assume the reductions involving the codereliction l are
coming before those involving m (and those involving the weakeaning and coweakening cells arrive
after them). We look at the port connected to the principal port of the codereliction l:
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Figure 17: Proof of Lemma 6: sequence (l6)∗-(l4).

(l1) If it is the auxiliary port of a prefix cell, there is no reduction for l, and no {l,m}-reduction
will change the situation (or this prefix cell is labeled m and changing the situation means
erasing m).

(l2) If it is the auxiliary port of a generalized cocontraction cell (which is not a wire), there is no
reduction for l.

(l3) If it is the principal port of a prefix cell labeled k (k 6= m), there is no {l,m}-reduction for l,
and no {l,m}-reduction will change the situation.

(l4) If it is the principal port of the prefix cell labeled m, we immediately have the result, and C
is a communication area of order 0 (with the part connecting l and m which is just a simple
wire).

(l5) If it is the principal port of a generalized contraction cell of arity 0, reductions involving l will
eventually erase it and we will never reach an (l,m)-communication redex, this contradicts
the hypotheses.

(l6) If it is the principal port of a generalized contraction cell of arity n > 0, in order to reach an
(l,m)-communication redex, the reductions involving l must start destroying the generalized
contraction. In order to eventually reach an (l,m)-communication redex, we must have a
simple net corresponding to case (l6) again, or to case (l2) or (l4).

We now consider these last two configurations: (l6) cases followed by (l2) (see Figure 18) or (l4)
(see Figure 17). Note that we cannot have infinitely many consecutive (l6) cases since the induced
reduction makes the size of the net decrease. If after (l6) cases we reach case (l4), l and m where
connected to the same communication area C and we have the result ((l6) cases give a forwarding
of l through C). If after (l6) cases we reach case (l2), we turn our attention to the reduction steps
involving m. We look at the port connected to the principal port of the dereliction m:

(m1) If it is the auxiliary port of a prefix cell, there is no reduction for m, and no {l,m}-reduction
will change the situation (or this prefix cell is labeled l and changing the situation means
erasing l).

(m2) If it is the auxiliary port of a generalized contraction cell (which is not a wire), there is
no reduction for m (there could be reductions involving a coweakening but which would
eventually erase m), and we do not reach an (l,m)-communication redex, this contradicts the
hypotheses.

(m3) If it is the principal port of a prefix cell labeled k (k 6= l), there is no {l,m}-reduction for m,
and we do not reach an (l,m)-communication redex, this contradicts the hypotheses.
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Figure 18: Proof of Lemma 6: sequence (l6)∗-(l2)-(m5)+.

(m4) If it is the principal port of a generalized cocontraction cell of arity 0, reductions involving m
will eventually erase it and we will never reach an (l,m)-communication redex, this contradicts
the hypotheses.

(m5) If it is the principal port of a generalized cocontraction cell of arity n > 0, in order to reach an
(l,m)-communication redex, the reductions involving m must start destroying the generalized
cocontraction. In order to reach an (l,m)-communication redex we must escape the four cases
above. This means that we go to case (m5) again until we reach the simplest (m5) case: m
facing l (note that we cannot have infinitely many consecutive (m5) cases since the size of
the net decreases).

We conclude that, in order to reach an (l,m)-communication redex, we must go through a sequence
of configurations (l6)∗-(l4) (see Figure 17) or (l6)∗-(l2)-(m5)+ (see Figure 18). For l and m to face
each other after such a sequence, they must be connected to the same communication area C in s
and the reduction sequence corresponds to the forwarding of l and m through C.

Proposition 2. If s
lm
−→ t0 in DL and G! s with G ∈ S

ac
L , then there are a solo diagram H and

a simple net t such that G
lm
−→ H in S

ac
L , H ! t and t0  d t.

Proof. Notations coincide with Figure 16. By definition of s
lm
−→ t0, there exist a simple net s1

containing an (l,m)-communication redex and a net S such that s ∗
{l,m} s1 +S and t0 is obtained

from s1 by reducing this (l,m)-communication redex. By Lemma 6, G contains two dual multiedges
e1 and e2 connected to the same node and labeled l and m. Let t1 be the simple net obtained by
applying to s1 the prefix reduction starting with the reduction from s1 to t0 (see Lemma 4), we first
show that G[e1, e2] ! t1. By Lemma 6 again, the only way the (l,m)-communication redex can
have been generated in s1 is by the forwarding of the codereliction l and the dereliction m through
the communication area (of order p + 2) they are both connected to. This gives a prefix redex and
a communication area of order p (Lemma 3). By firing this prefix redex, we generate pairs of wires
connecting communication areas which exactly correspond to the identification edges of G[e1, e2].

Let H be the solo diagram (without identifications) obtained by firing the redex between e1 and
e2 in G (this is possible since it is an acyclic redex). We iteratively apply Lemma 5 starting from
G[e1, e2] and t1 until we reach H. This is possible since G ∈ S

ac
L . Let t be the simple net obtained

this way and corresponding to H, we have t0  d t.

To get our bisimulation result, we define !d as the composition of ! and ∼d: G !d s if
there exists a simple net s0 such that G! s0 and s0 ∼d s.

Theorem 2 (Bisimulation). !d is a bisimulation between S
ac
L and DL.
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Proof. If G
lm
−→ H in S

ac
L , G ! s0 and s0 ∼d s, by Proposition 1 there are simple nets t and t0

such that s0
lm
−→ t0 in DL, H ! t and t0  d t. By Lemma 1, there exists a simple net t1 such

that s
lm
−→ t1 and t0 ∼d t1. As a consequence t ∼d t1 thus H !d t1.

Conversely, if s
lm
−→ t1 in DL, G ! s0 and s0 ∼d s, by Lemma 1 there exists a simple net t0

such that s0
lm
−→ t0 and t1 ∼d t0. By Proposition 2, there are a solo diagram H and a simple net t

such that G
lm
−→ H in S

ac
L , H ! t and t0  d t. As a consequence t ∼d t1 thus H !d t1.

G ! s0 ∼d s

t0 ∼d t1

≀ d

H ! t

lm

lm lm

The rest of the paper will be devoted to the definition of a sub-calculus of the solos calculus
whose translation into solo diagrams lives inside S

ac
L .

5 The acyclic solos calculus

By following the approach of the previous section and by analyzing the translation of the π-calculus
into the solos calculus, we define a sub-system of the solos calculus called the acyclic solos calculus.
The key (informal) properties of this calculus are:

• expressiveness: it contains the image of the π-calculus through the translation into solos
(Sections 5.1.2 and 5.2.2).

• stability : it is well-defined with respect to the reduction of solos since it is stable under
reduction (Propositions 3 and 5).

• acyclicity : the solo diagram associated with a term of the acyclic solos calculus is an acyclic
solo diagram (and thus the bisimulation with differential interaction nets holds!) (Section 5.3).

The definition of the acyclic solos calculus is given in two steps: first by means of a typing
system assigning Send/Receive polarities to occurrences of names, second by structural constraints
on typed terms. Intuitively, we restrict terms to a forest-like structure with reduction occurring
only between roots of the trees of the forest (in fact we will deal with more general structures than
forests). This is an abstraction of the forest structure induced by the sequentiality of a π-term
on its translation into solos. The Send/Receive polarities on their side represent the input/output
asymmetry of the π-calculus in the solos setting.

5.1 Types

We consider a system with only two types V and W . We use U for denoting either V or W .
A typed term is a term with scopes decorated with types: (xU )P .
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A typing judgment is of the shape Γ ⊢ P where Γ contains typing declarations associating types
with names and P is a typed term. The typing rules are:

Γ ⊢ 0
Γ ⊢ P Γ ⊢ Q

Γ ⊢ P | Q

Γ, x : U ⊢ P

Γ ⊢ (xU )P

Γ, x : V, y : V, z : W, z′ : W ⊢ x̂ zz′y

Γ, x : W, z : W,y : V, y′ : V ⊢ x̂ zyy′

where x̂ is either x or x .
An intuitive way of understanding the types V and W is given by these two mutually recursive

definitions:

V ::= WWV

W ::= WV V

(more generally, starting from other mutually recursive definitions of a finite set of types, one
could derive other typing systems of the same kind which would also satisfy the subject reduction
property for example).

The main purpose of this typing system is to be able to associate a communication protocol
with each object occurrence. Communication protocols are S (send) and R (receive). If we add
communication protocols as a decoration on the definitions of V and W :

V ::= W RW SV S

W ::= W RV SV R

then any object occurrence of a typed term in context can be decorated with a communication
protocol: in an input solo whose subject has type U , the decoration is given according to those of
the components of the type, in an output solo it is given in a dual way: S 7→ R and R 7→ S. More
formally, we can directly enrich typing derivations in such a way that they assign communication
protocols to object occurrences of names in a typed term:

Γ ⊢ 0
Γ ⊢ P Γ ⊢ Q

Γ ⊢ P | Q

Γ, x : U ⊢ P

Γ ⊢ (xU )P

Γ, x : V, y : V, z : W, z′ : W ⊢ x zRz′SyS Γ, x : V, y : V, z : W, z′ : W ⊢ x zSz′RyR

Γ, x : W, z : W,y : V, y′ : V ⊢ x zRySy′R Γ, x : W, z : W,y : V, y′ : V ⊢ x zSyRy′S

Examples are given by the image of the translation of the π-calculus in Section 5.1.2.
The intuition behind S and R comes from the difference between the name-passing mechanism

in the π-calculus and in the solos calculus. Name-passing by substitution (as in π) entails that a
flow of information is given by interaction from an output prefix to an input prefix (receiving names
are substituted with sending names). Name-passing by unification (as in fusion or solos) establishes
a perfect symmetry between the agents trying to communicate. Communication protocols S and
R are used to trace the flow of information coming from π after translation into solos. Even if
communication is symmetric (inside the solos calculus), it is reasonable for a term decorated with
communication protocols to understand the unification of xS with yR as y being substituted with
x (this will be a consequence of the constraints given in Definition 8).
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5.1.1 Preservation by reduction

We first check elementary properties of the typing system with respect to reduction.

Lemma 7 (Free names). If Γ ⊢ P then all the free names of P appear in Γ.

Lemma 8 (Weakening). If x /∈ Γ and x /∈ fn(P ), Γ ⊢ P if and only if Γ, x : U ⊢ P .

Lemma 9 (Substitution). If Γ, x : U, y : U ⊢ P then Γ, x : U ⊢ P [x/y].

Proof. These three lemmas are proved by simple inductions on the typing derivations.

Proposition 3 (Subject reduction).

1. If P ≡ Q then Γ ⊢ P ⇔ Γ ⊢ Q.

2. If P reduces to Q and Γ ⊢ P then Γ ⊢ Q.

Proof. 1. We simply have to consider each case of the definition of ≡ (given in Section 1.2). The
only interesting one is ((x)P ) | Q ≡ (x) (P | Q) with x /∈ fn(Q). We assume Γ ⊢ ((xU )P ) | Q,
this entails Γ ⊢ (xU )P and Γ ⊢ Q and thus Γ, x : U ⊢ P . By Lemma 8, we have Γ, x : U ⊢ Q
thus Γ, x : U ⊢ P | Q and finally Γ ⊢ (xU ) (P | Q). Conversely, if Γ ⊢ (xU ) (P | Q) then
Γ, x : U ⊢ P | Q, Γ, x : U ⊢ P , Γ, x : U ⊢ Q thus, by Lemma 8 with x /∈ fn(Q), Γ ⊢ Q and:

Γ, x : U ⊢ P

Γ ⊢ (xU )P Γ ⊢ Q

Γ ⊢ ((xU )P ) | Q

2. The only interesting case is (z̃) (u x1x2x3 | u y1y2y3 | P ) → Pσ where z̃ contains exactly the
names such that σ(w) 6= w. From the hypothesis, we deduce Γ, z̃ : Ũ ⊢ u x1x2x3 and
Γ, z̃ : Ũ ⊢ u y1y2y3 and Γ, z̃ : Ũ ⊢ P . By Lemma 9, we have Γ ⊢ Pσ.

5.1.2 Typability of the translation

We prove the typability of the translation of any π-term (see Section 1.3 for the definition of the
translation).

If P is a π-term with free names in the finite set X = {x1, . . . , xk}, we define ΓX to be the
environment x1 : W, . . . , xk : W and ΓX ,v to be the environment ΓX , v : V .

Proposition 4 (Typability). If P is a π-term with free names in the finite set X , ΓX ⊢ [P ].

Proof. We first show that ΓX ,v ⊢ [P ]v.
The process Cv is typable:

ΓX ,v, z : W ⊢ v zRzSvS

ΓX ,v ⊢ (zW ) v zRzSvS

The translations of prefixes are typable (see Figure 19).
The cases of P | Q and νx.P are immediate.
Finally we get the typability of [P ]:
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ΓX ,v, y : V, w : W ⊢ v uSwRyR ΓX ,v, y : V, w : W ⊢ Cy

ΓX ,v, y : V, w : W ⊢ v uSwRyR | Cy

ΓX ,v, y : V, w : W, v′ : V, x : W ⊢ w xRvSv′R ΓX ,v, y : V, w : W, v′ : V, x : W ⊢ [P ]v′

ΓX ,v, y : V, w : W, v′ : V, x : W ⊢ w xRvSv′R | [P ]v′

ΓX ,v, y : V, w : W, x : W ⊢ (v′V ) (w xRvSv′R | [P ]v′)

ΓX ,v, y : V, w : W ⊢ (xW ) (v′V ) (w xRvSv′R | [P ]v′)

ΓX ,v, y : V, w : W ⊢ v uSwRyR | Cy | (xW ) (v′V ) (w xRvSv′R | [P ]v′)

ΓX ,v, w : W ⊢ (yV ) v uSwRyR | Cy | (xW ) (v′V ) (w xRvSv′R | [P ]v′)

ΓX ,v ⊢ (wW ) (yV ) v uSwRyR | Cy | (xW ) (v′V ) (w xRvSv′R | [P ]v′)

ΓX ,v, y : V, w : W ⊢ v uSwRyR ΓX ,v, y : V, w : W ⊢ Cy

ΓX ,v, y : V, w : W ⊢ v uSwRyR | Cy

ΓX ,v, y : V, w : W, v′ : V ⊢ w xSv′RvS ΓX ,v, y : V, w : W, v′ : V ⊢ [P ]v′

ΓX ,v, y : V, w : W, v′ : V ⊢ w xSv′RvS | [P ]v′

ΓX ,v, y : V, w : W ⊢ (v′V ) (w xSv′RvS | [P ]v′)

ΓX ,v, y : V, w : W ⊢ v uSwRyR | Cy | (v′V ) (w xSv′RvS | [P ]v′)

ΓX ,v, w : W ⊢ (yV ) v uSwRyR | Cy | (v′V ) (w xSv′RvS | [P ]v′)

ΓX ,v ⊢ (wW ) (yV ) v uSwRyR | Cy | (v′V ) (w xSv′RvS | [P ]v′)

Figure 19: Typing derivations for the translations of prefixes.
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ΓX ,v ⊢ [P ]v ΓX ,v ⊢ Cv

ΓX ,v ⊢ [P ]v | Cv

ΓX ⊢ (vV ) ([P ]v | Cv)

We can sum up the induced communication protocols:

Cv = (zW ) v zRzSvS

[u(x).P ]v = (wW ) (yV ) (v uSwRyR | Cy | (xW ) (v′V ) (w xRvSv′R | [P ]v′))

[u〈x〉.P ]v = (wW ) (yV ) (v uSwRyR | Cy | (v′V ) (w xSv′RvS | [P ]v′))

[P | Q]v = [P ]v | [Q]v

[νx.P ]v = (xW ) [P ]v

[P ] = (vV ) ([P ]v | Cv)

5.2 Acyclicity

Relying on the decoration with communication protocols induced by the typing system, we are now
able to define our restriction of the solos calculus.

Given a typed term P , we first define some properties and relations between names and solos
occurring in P . If s is a solo, we write subj(s) for its subject.

x ∈ s := x has an object occurrence in s
xX ∈ s := x has an object occurrence in s with communication protocol X

s ⊳ x := xR ∈ s
s ⊳ t := s ⊳ subj(t)

s ⊥ t := subj(s) = subj(t), one is output and the other is input
s is a root := there is no t such that t ⊳ s

We denote by ⊳+ the transitive closure of ⊳ and by ⊳⋆ the reflexive transitive closure of ⊳.

Definition 8 (Acyclic solos calculus). Acyclic solos terms are typed terms which satisfy the follow-
ing five properties:

AC1. each name has at most one R-occurrence

AC2. s ⊥ t implies that s and t are roots

AC3. s ⊳ x and x ∈ t implies s ⊳⋆ t

AC4. xS ∈ s and s ⊳ x implies s is an input

AC5. there is no free name with an R-occurrence

The acyclic solos calculus is given by restricting terms to acyclic solos terms. The structural
congruence and the reduction relation are those induced by the solos calculus.

We make a few remarks and state immediate consequences of this definition:
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1. Let us consider the following definition of communication protocols for occurrences of names
in a π-term: if the occurrence is an object occurrence in an input prefix, the communication
protocol is R, otherwise it is S. Assuming that the names appearing in a π-term are made
as different as possible by α-conversion, we can remark that each name has at most one
R-occurrence, and no free name has an R-occurrence.

2. (AC2) entails that reduction only occurs between roots.

3. In the case where ⊳ induces a forest ordering, (AC3) means that all the S-occurrences of x
are bigger (with respect to this forest ordering) than its R-occurrence (if any).

4. (AC4) says that a name can have both an S-occurrence and an R-occurrence in a solo s only if s
is an input. This is a place where we are breaking the symmetry of the solos calculus between
output solos and input solos. This allows us to rule out processes like x ySyRuR | x zRzSvS that
would lead to twice the identification of y with z which is almost the same as identifying y
with y (and would break acyclicity of the associated solo diagram).

5. (AC5) ensures (with (AC1)) that identification edges are always contractible (no freeness
problem).

5.2.1 Preservation by reduction

We want to prove that reducts of an acyclic solos term under the reduction of the solos calculus
are all acyclic solos terms (Proposition 5). We consider a reduction from P to Q by an interaction
between the solos s0 and t0 of P . By definition of reduction (see Section 1.2), we have a substitution
σ such that each solo t of Q is of the shape sσ for some solo s of P . We say that t is a residue of s.
The solos s0 and t0 of P have no residue in Q while all the other solos of P have a unique residue
in Q. In this section, in order to simplify the notations, when P reduces to Q we will use the same
name s for a solo in P and for its unique residue in Q if it exists.

To make the difference between the relations ⊳ in different processes, we use the notation ⊳P

for the ⊳ relation of the process P .
The following three lemmas hold assuming only conditions (AC1), (AC2) and (AC3) on P .

Lemma 10. If P is a typed term of the solos calculus satisfying (AC1), (AC2) and (AC3) and
which reduces to Q, then no R-occurrence of Q has been substituted during reduction.

Proof. Let s0 and t0 be the solos destroyed during the reduction from P to Q, if a name x involved
in the reduction (i.e. taking part in the unification, i.e. occurring in s0 or t0) has its R-occurrence
in a solo t of P different from s0 and t0 then t ⊳P x and, by (AC3), either t ⊳+

P s0 or t ⊳+
P t0 thus one

of them is not a root of P contradicting (AC2).

Lemma 11. If P is a typed term of the solos calculus satisfying (AC1), (AC2) and (AC3) and
which reduces to Q, if s is a solo in P whose subject has been modified during this reduction ( i.e.
the subject of s in P is not the same as the subject of its residue in Q), we have both:

• (the residue of) s is a root in Q

• s is a root in P or s0 ⊳P s or t0 ⊳P s
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Proof. Let x be the subject of s in P and y be its subject in Q, each of x and y appears in either
s0 or t0. If s is not a root in Q then there is some t such that t ⊳Q s thus t ⊳P y (by Lemma 10). If
y ∈ s0 (and symmetrically if y ∈ t0) then t ⊳⋆

P s0 (by (AC3)) with t 6= s0 since t belongs to Q thus
s0 is not a root in P contradicting (AC2). So that s is a root in Q.

If s is not a root in P then there is some t such that t ⊳P s. Since the subject of s is modified,
it means that an R-occurrence in t is also substituted thus t /∈ Q by Lemma 10 and t = s0 or
t = t0.

Lemma 12. If P is a typed term of the solos calculus satisfying (AC1), (AC2) and (AC3) and
which reduces to Q, if the reduction introduces an object occurrence of the name x in Q then x has
no R-occurrence in Q.

Proof. For the reduction to put some x in some t, x must occur in s0 or t0. Assume that x occurs
in s0 and that x has an R-occurrence in s in Q (so that s⊳Q x). By Lemma 10, s⊳P x and by (AC3),
we have s ⊳⋆

P s0 but, since s 6= s0 (because s0 /∈ Q), this would entail that s0 is not a root in P
contradicting (AC2).

We now turn to the preservation result.

Proposition 5 (Acyclicity preservation). If P is an acyclic solos term and P reduces to Q then
Q is an acyclic solos term.

Proof. We first prove the preservation of conditions (AC1), (AC2) and (AC3), independently of
conditions (AC4) and (AC5).

Preservation of condition (AC1) is given by Lemma 10.
We move to condition (AC2). If s ⊥Q s′, note that if one of them is not a root then none of

them is since t ⊳ s ⇒ t ⊳ subj(s) ⇒ t ⊳ subj(s′) ⇒ t ⊳ s′. Assume that t ⊳Q s and t ⊳Q s′, if the
subject of neither s nor s′ has been modified during reduction, then t ⊳P s and t ⊳P s′ (since the
R-occurrence in t of the subject of s and s′ has not been modified, by Lemma 10) and P contradicts
condition (AC2). If one of the subjects of s or s′ has been modified then it is a root in Q by
Lemma 11.

Concerning condition (AC3), we assume s ⊳Q x and x ∈Q t. By Lemma 10, s ⊳P x and by
Lemma 12, x ∈P t. So that, by (AC3), s ⊳⋆

P t. If s 6⊳⋆
Qt, then the path from s to t for the relation

⊳P has been broken during reduction, this entails that a solo t′ 6= s in this path has got his subject
modified. By Lemma 11, s0 ⊳P t′ or t0 ⊳P t′ but this is impossible because, since s0 and t0 are roots
in P and are not in Q, s 6= s0 and s 6= t0.

We now assume that (AC1), (AC2) and (AC3) hold. Condition (AC4) is preserved: if, in Q, an
output solo s contains both an R-occurrence and an S-occurrence of a name x then, by Lemmas 10
and 12, it is also the case in P . Condition (AC5) is preserved by Lemma 10.

All this shows that our acyclic solos calculus is well behaved with respect to the reduction of
the solos calculus.

5.2.2 Acyclicity of the translation

In order to prove the expressiveness of the acyclic solos calculus, we check that it contains the
image of the translation of the π-calculus.

32



The ⊳ relation is the following for translated π-terms:

Cv = (zW ) v zRzSvS

[0]v = 0

[u(x).P ]v = (wW ) (yV ) (v uSwRyR | Cy | (xW ) (v′V ) (w xRvSv′R | [P ]v′))

[u〈x〉.P ]v = (wW ) (yV ) (v uSwRyR | Cy | (v′V ) (w xSv′RvS | [P ]v′))

[P | Q]v = [P ]v | [Q]v

[νx.P ]v = (xW ) [P ]v

[P ] = (vV ) ([P ]v | Cv)

where an arrow s t represents the relation s ⊳ t.

Theorem 3 (Acyclicity for the π-calculus). If P is a π-term, [P ] is an acyclic solos term.

Proof. By Proposition 4, [P ] is typable.
Let us mention a few additional facts (which can be easily checked by induction on the definition

of [P ]v):

(i) The free names of [P ]v are v and the free names of P .

(ii) The free names of P have no R-occurrence in [P ]v .

(iii) The only subject with no R-occurrence (thus the only subject of a root) in [P ]v is v.

(iv) ⊳ is a forest on [P ]v (which is one of the reasons for the name “acyclic solos”).

From these points, conditions (AC1), (AC2), (AC3), (AC4) and (AC5) are easily verified:

• We first check the five conditions for [P ]v:

AC1. By induction on [P ]v by using facts (i), (ii) and (iii) which entail that no free name in
[P ]v has an R-occurrence in [P ]v.

AC2. An easy induction with fact (i) shows that s ⊥ t entails subj(s) = subj(t) = v and we
conclude with fact (iii).

AC3. By induction, using facts (iii) and (iv).

AC4. Immediate induction.

AC5. A consequence of facts (ii), (i) and (iii).

• It is then easy to check the case of [P ].

5.3 Back to acyclic solo diagrams

The last property we want to show is that the solo diagram associated with a term of the acyclic
solos calculus (Definition 8) is an acyclic solo diagram (Definition 7).

Let G be such a solo diagram associated with the term P of the acyclic solos calculus, we have
to show that any pair of dual edges in G is an acyclic redex (Lemma 13). This will be enough to
show that G belongs to S

ac
L (Theorem 4).
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Lemma 13. Let G be the solo diagram associated with an acyclic solos term P and let e1 and e2

be two dual multiedges of G, this pair of multiedges defines an acyclic redex (Definition 5).

We want to show that the graph Gid[e1, e2] (sub-graph of G[e1, e2] with identification edges
only, as introduced in Section 4.2.2) is acyclic and does not generate any freeness problem in the
contraction of identification edges.

By construction, edges in Gid[e1, e2] are connecting two nodes which correspond to occurrences
of names in the term P which are going to be unified. By definition of the acyclic solos calculus,
one of these occurrences is an S-occurrence and the other one is an R-occurrence. We consider the
directed graph G′ obtained by orienting the edges of Gid[e1, e2] towards R-occurrences.

We first prove the following lemma about directed and non-directed graphs.

Lemma 14. Let g be a finite directed graph and gs be the underlying non-directed graph. If gs is
connected, if g has a root (that is a node without incoming edge) and if each node of g has at most
one incoming edge then gs is acyclic.

Proof. The function which maps each edge of g to its target is an injective function (by hypotheses)
and its image is the set of nodes of g which are not roots. As a consequence, the number of edges
of g (and thus of gs) is less than or equal to the number of vertices of g (and thus of gs) minus one.
Since gs is connected, we conclude that it is acyclic.

We can now prove Lemma 13:

Proof. We prove that the connected components of Gid[e1, e2] equipped with the orientation of
G′ satisfy the hypotheses of Lemma 14 and thus that Gid[e1, e2] is acyclic. Let us assume e1 is
the input multiedge in the redex between e1 and e2 in G (since solos in a solos term are in one-
to-one correspondence with multiedges in the corresponding solo diagram, we use the notations
introduced in the beginning of Section 5.2 with multiedges as well as with solos), we have the
following properties:

(i) if xR ∈ e1 then all the other occurrences of x in e1 and e2 are S-occurrences in e1: by (AC1),
x cannot have another R-occurrence, moreover, if xS ∈ e2 then, by (AC3), e1 ⊳+ e2 thus e2 is
not a root of P , contradicting (AC2).

(ii) if xR ∈ e2 then x has no other occurrence neither in e1 nor in e2: as for (i), x cannot have
any other R-occurrence nor any S-occurrence in e1 and finally, by (AC4), it cannot have an
S-occurrence in e2.

(iii) if xS ∈ e2 then x has no R-occurrence neither in e1 nor in e2: otherwise we apply (i) or (ii).

We consider a connected component G0 of Gid[e1, e2]. It is the underlying non-directed graph of the
appropriate sub-graph G′

0 of G′. G′
0 is finite, G0 is connected and, according to condition (AC1),

each node has at most one incoming edge in G′
0. We just have to show that G′

0 has a root, i.e.
that there is a name in P which has only S-occurrences in e1 and e2 for each connected component
G0. We first show that any R-occurrence in e2 is connected to an S-occurrence of a name without
R-occurrence: we start from this R-occurrence in e2, the corresponding occurrence in e1 is an S-
occurrence of a name x, if x has no R-occurrence we are done, and if x has an R-occurrence then
it is also in e1 (by (ii)) and the corresponding occurrence in e2 is an S-occurrence (thus without
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R-occurrence by (iii)). Since any connected component contains either an R-occurrence in e2 or an
S-occurrence in e2, we are done (with (iii) again).

Finally by (AC5), G′ has the property that only roots can be free nodes (according to the
free/bound labeling of nodes in G). This property is preserved by contraction of identification edges
thanks to (AC1). Moreover this property entails that at most one extremity of an identification
edge can be free, and thus no freeness problem arises during contraction of identification edges.

Theorem 4 (Acyclic diagrams from acyclic terms). The solo diagram associated with an acyclic
solos term (Definition 8) is an acyclic solo diagram (Definition 7).

Proof. We prove that the range of the translation of the acyclic solos calculus into solo diagrams
satisfies the conditions of Definition 6. By Lemma 13, we know such a translation contains only
acyclic redexes. Now if G is the translation of the acyclic solos term P and reduces to H, there
exists a term Q which translates into H, and such that P reduces to Q thus Q is an acyclic solos
term (Proposition 5).

Conclusion

In the spirit of a Curry-Howard correspondence between a logical device and a concurrent one, we
have shown how to stress a strong connection between differential interaction nets and the solos
calculus. Such links allow one to share methods from the two worlds, with the possibility of giving
concurrent interpretations to the cut-elimination procedure, logical foundations to process calculi,
of applying tools from concurrency theory such as behavioural equivalences to formal proofs, or
conversely denotational semantics from linear logic to concurrent languages, ...

Let us discuss a few constraints or restrictions we have to face here.

Finitary calculi. We have only considered finitary calculi: without replications nor recursive
definitions. Nevertheless, exponential boxes are a natural device from linear logic proof-nets (com-
patible with differential interaction nets) for representing replicable processes. We have shown
in [EL10] how to represent with these boxes a restricted (but expressive) form of replication of
the π-calculus. This restriction is related with difficulties for controling reduction on the auxiliary
ports of exponential boxes. By exploiting this kind of restriction in the language of solos, it should
be possible to represent a restricted form of replication through our translation.

Logical correctness. Proof-nets of linear logic provide us with a graphical syntax for represent-
ing proofs of the sequent calculus [Gir96]. However this requires to impose a correctness criterion
to proof-nets in order to characterize exactly those which could be sequentialized into a sequent
calculus proof. There is such a correctness criterion for differential interaction nets [ER06] (relating
them with the sequent calculus of differential linear logic). However the differential interaction nets
obtained with our translation do not satisfy the correctness criterion in general (this comes in par-
ticular from the unconstrained use of communication areas). Some logical tools do not care about
logical correctness and can be directly applied in our setting (for example, the relational model is
a denotational model of differential interaction nets even if they do not satisfy correctness). On
the contrary, many important results in logic only hold in the logically correct case. This is why
it would be important to understand how our translation interacts with correctness, or how ex-
pressive would be a concurrent calculus whose translation into differential interaction nets satisfies
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the correctness criterion. In particular, what kind of communications could be represented with
communication areas in a logically correct setting?

Acyclicity. In trying to build a strong bridge between differential interaction nets and solo dia-
grams, we have been able to define a suitable restriction of the solos calculus that can be used as
an intermediary step between the π-calculus and differential interaction nets. This led to a new
proof of the bisimulation result presented in [EL10].

The technical choices in the design of our acyclic solos calculus were completely determined
by the just mentioned goal. Nevertheless, it would be interesting to study acyclic solos for them-
selves. Their computational behaviour are in many ways similar to what happens in the π-calculus
(“substitution-like” name passing in an “unification style” setting for example). It would be inter-
esting to see if they contain specific communication primitives or if somehow the behaviour of an
acyclic solos term always mimics the behaviour of a π-term.

Another approach would be to extend our translation relation to take cycles (as in Figure 15)
into account. This requires us to understand the precise impact of these cycles on the behaviour
of differential interaction nets. In this way, it seems possible to extend the bisimulation result to
the whole solos calculus.

Following the link provided by the present work, the above mentioned points should now be
addressed to strengthen the idea of an underlying Curry-Howard correspondence. However some
possibilities are already open such as relational semantics for the π-calculus, geometry of interaction
for processes, ...
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