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Following the idea of Subexponential Linear Logic and Stratified Bounded Linear Logic, we propose

a new parameterized version of Linear Logic which subsumes other systems like ELL, LLL or SLL,

by including variants of the exponential rules. We call this system Superexponential Linear Logic

(superLL). Assuming some appropriate constraints on the parameters of superLL, we give a generic

proof of cut elimination. This implies that each variant of Linear Logic which appears as a valid

instance of superLL also satisfies cut elimination.

Linear logic (LL) has been introduced by Jean-Yves Girard in 1987 [8]. Since then, it has become a

pervasive tool in proof theory, in typing systems and semantics for programming languages, in compu-

tational complexity theory, etc. The key property which provides a computational meaning to this logic

is cut elimination.

During the years, many variants of LL have been introduced which differ in particular on some

specific uses of exponential rules. Each time a dedicated proof of cut elimination is provided by the

authors. We are interested in finding a generic cut-elimination proof for as many systems as possible.

Proving the cut-elimination theorem for many systems at once is already the idea behind the paramet-

ric system of Subexponential Linear Logic (seLL) [7, 14]. However it relies on a parameterized version of

Girard’s promotion rule, and thus rules out systems based on other kinds of promotions such as functorial

promotion. Parameters of seLL allow to control ?-rules. Exponential connectives are indexed by some

exponential signatures (instead of a single pair {!,?}). These signatures are equipped with a pre-order

structure used in extending Girard’s promotion rule. Some closure properties of the parameters (with

respect to the pre-order) are required for cut elimination to hold. The idea of indexing the exponential

modalities is also at the heart of Stratified Bounded Linear Logic (BSLL) [4]. Indexing is there based on

a semi-ring endowed with a compatible partial order.

The new system we consider is called Superexponential Linear Logic (superLL). Its ?-rules are pa-

rameterized by predicates which provide the valid relations between the exponential signatures used in

the premises and in the conclusion of each rule. In order to take into account variants of LL used in

implicit computational complexity (ELL [9], LLL [9], SLL [12]), it is simpler to consider a system based

on a functorial version of promotion together with an explicit digging rule. As a counter part, we have to

understand how this is related with Girard’s promotion rule.

Under appropriate axioms on the parameters, we can describe various proof transformations on su-

perLL including in particular cut elimination. Choosing specific instances of superLL leads to systems

equivalent to a number of variants of LL from the literature (some light systems for complexity, but also

seLL or BSLL).

In Sections 1 and 2, we recall the definitions of LL and of the variants we are going to consider. The

notion of E -formula which deals with indexed exponential connectives is introduced. Section 3 contains
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the formal definition of the rules of superLL. Section 4 is the core part of the paper: it contains the

proof of the cut-elimination property for superLL. After describing the proof sketch (Section 4.1) which

pinpoints the requirements on the parameters, we give the list of axioms we rely on (Section 4.2). These

axioms are the crucial ingredients of the substitution lemma (Section 4.3) which allows us to eliminate

cuts on exponential formulas. Section 5 presents other proof transformations required to move from

one presentation of a system to another. Based on appropriate axioms, it is shown how to introduce the

Girard’s style promotion rule, or an ordered version of this rule similar to seLL’s promotion. Finally

Section 6 describes how to define the systems of Sections 1 and 2 as instances of superLL which satisfy

the axioms of Section 4.2 and how to deduce cut elimination from the generic proof of Section 4.

1 Linear Logic

In order to cover the various systems under consideration in this paper, we define a generalization of LL

formulas with an indexed family of exponential connectives.

Definition 1 (Linear E -Formulas). Given a set E , (linear) E -formulas are generated by:

A ::= X | X⊥ | A⊗A | A`A | 1 | ⊥ | A & A | A⊕A | ⊤ | 0 | !eA | ?eA where e ∈ E .

Notation 1. Elements of E are called exponential signatures. If ~e = e1, . . . ,en, we use the notation ?~eA

for ?e1
. . .?en

A.

Usual LL formulas correspond to the particular case where E is a singleton set (let say E = {•}). In

this case we simply use the notations !A := !•A and ?A := ?•A.

As usual a duality operation A 7→A⊥ is defined on all E -formulas (not just for X⊥). It is the involution

satisfying:

(A⊗B)⊥ = A⊥`B⊥ 1⊥ = ⊥
(A`B)⊥ = A⊥⊗B⊥ ⊥⊥ = 1 (X⊥)⊥ = X

(A & B)⊥ = A⊥⊕B⊥ ⊤⊥ = 0 (!eA)⊥ = ?eA⊥

(A⊕B)⊥ = A⊥ & B⊥ 0⊥ = ⊤ (?eA)⊥ = !eA⊥

As often done in the literature, thanks to this duality, we focus on one-sided sequents for the sequent

calculi under consideration. Such a sequent is written ⊢ Γ where Γ is a list of E -formulas. The length of

a list Γ is denoted |Γ|.
Linear Logic (LL) deals with formulas with only one kind of exponentials (i.e. with formulas built

from a singleton set E = {•}). Among the rules of LL [8] which are recalled in Table 1, we distinguish

between non-exponential rules and exponential rules. Indeed the different systems under consideration

will share the non-exponential ones and differ only on the exponential ones.

In the (ex) rule of Table 1, if Γ has length n, σ is a permutation of n elements and Γ ·σ denotes

its action on Γ. In the whole paper, we will deal with this exchange rule in an implicit manner. This

means that we will omit it in all discussions to make things lighter. There are two ways of justifying

this approach. First, considering sequents as finite multi-sets rather than lists would exactly correspond

to make exchange rules useless. Second, all the mentioned results have been checked with explicit

consideration of the exchange rules.

Concerning terminology, a (cut) rule for which the cut formula A has main connective !e or ?e is

called an exponential cut rule. Other instances are called non-exponential cut rules. We call promotion

rules those introducing the ! connectives. We call ?-rules the rules which introduce the ? connectives
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Non-Exponential Rules

ax
⊢ A,A⊥

⊢ A,Γ ⊢ A⊥,∆
cut

⊢ Γ,∆

⊢ Γ ex
⊢ Γ ·σ

⊢ A,Γ ⊢ B,∆
⊗

⊢ A⊗B,Γ,∆

⊢ A,B,Γ
`

⊢ A`B,Γ
1

⊢ 1
⊢ Γ

⊥
⊢ ⊥,Γ

⊢ A,Γ ⊢ B,Γ
&

⊢ A & B,Γ

⊢ A,Γ
⊕1

⊢ A⊕B,Γ

⊢ B,Γ
⊕2

⊢ A⊕B,Γ
⊤

⊢ ⊤,Γ

Exponential Rules

⊢ A,?Γ
!

⊢ !A,?Γ

⊢ A,Γ
?d

⊢ ?A,Γ
⊢ Γ

?w
⊢ ?A,Γ

⊢ ?A,?A,Γ
?c

⊢ ?A,Γ

Table 1: Linear Logic Rules

(independently of the ! connective), that is non-promotion exponential rules. A rule is not acting on a

formula A if A is in the context of the rule and if the rule is not a promotion.

Definition 2 (Derivability and Admissibility). Let us consider a rule R:

⊢ Γ1 · · · ⊢ Γn
R

⊢ Γ

It is derivable in a system S , if there exists a proof tree which allows us to derive ⊢ Γ from the sequents

⊢ Γ1, . . . , ⊢ Γn by using rules of S .

It is admissible in a system S , if whenever ⊢ Γ1, . . . , ⊢ Γn are provable in S , then ⊢ Γ as well. So

that derivable entails admissible, while the converse is not always true.

Two systems are said to be equivalent if the provable sequents are the same, that is if all rules in one

system are admissible in the other one, and conversely.

2 Other Linear Logic Systems

We present here different linear logic systems from the literature. These systems differ only on their

exponential rules. They all deal with E -formulas (for an appropriate E ) and one-sided sequents.

The first three systems below deal with {•}-formulas (i.e. with only one kind of exponentials).

2.1 Functorial Promotion

LL with functorial promotion is an alternative presentation of LL particularly well suited for categorical

semantics [1]. It decomposes promotion into the so-called functorial promotion and a new ?-rule (??)

called digging. Its exponential rules are then:

⊢ A,Γ
! f

⊢ !A,?Γ

⊢ ??A,Γ
??

⊢ ?A,Γ

⊢ A,Γ
?d

⊢ ?A,Γ
⊢ Γ ?w

⊢ ?A,Γ
⊢ ?A,?A,Γ

?c
⊢ ?A,Γ

This system is equivalent to LL.
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2.2 Elementary Linear Logic

Elementary Linear Logic (ELL) [9, 6] is a variant of LL which has interesting computational complexity

properties, since its cut elimination is shown to correspond to the elementary time complexity class

(functions whose computation time is bounded by a tower of exponentials). ELL is obtained from LL

with functorial promotion by removing the (?d) and (??) rules:

⊢ A,Γ
! f

⊢ !A,?Γ

⊢ Γ ?w
⊢ ?A,Γ

⊢ ?A,?A,Γ
?c

⊢ ?A,Γ

2.3 Soft Linear Logic

Soft Linear Logic (SLL) [12] is obtained from ELL by replacing the ?-rules (?w) and (?c) by a new family

of rules called multiplexing rules (for all k ∈N):

⊢ A,Γ
! f

⊢ !A,?Γ
⊢

k
︷ ︸︸ ︷

A, . . . ,A,Γ
?mk⊢ ?A,Γ

The cases k = 0 and k = 1 give back (?w) and (?d) of LL, but for k ≥ 2, we get different rules (in particular

?m2 is not ?c).

The cut elimination of SLL is related with the PTIME complexity class [12].

2.4 Light Linear Logic

Light Linear Logic (LLL) [9] considers two different exponential signatures {•,⋆}. We use the notations

!A := !•A, ?A := ?•A, §A := !⋆A and §̄A := ?⋆A. The exponential rules are:

⊢ A,B
!u⊢ !A,?B

⊢ A,Γ,∆
§

⊢ §A, §̄Γ,?∆

⊢ Γ
?w

⊢ ?A,Γ
⊢ ?A,?A,Γ

?c
⊢ ?A,Γ

We then have two kinds of promotions: unary functorial promotion (!u) for !, and §-promotion for §.

This system is also related with PTIME complexity [9].

2.5 Shifting Operators

Shifting operators are a linear version of LL’s exponential modalities [10]. The system we consider here

is also based on {•,⋆}-formulas, but the standard notations are: !A := !•A, ?A := ?•A, ´A := !⋆A and

ˆA := ?⋆A. The exponential rules extend those of LL:

⊢ A,?Γ
!

⊢ !A,?Γ

⊢ A,Γ
?d

⊢ ?A,Γ
⊢ Γ ?w

⊢ ?A,Γ
⊢ ?A,?A,Γ

?c
⊢ ?A,Γ

⊢ A,ˆΓ
´

⊢ ´A,ˆΓ

⊢ A,Γ
ˆ

⊢ ˆA,Γ

2.6 Subexponentials

Subexponential Linear Logic (seLL) denotes a family of systems which deal with multiple exponential

signatures. seLL(E ,4,EW ,EC) [7, 14] is a system with parameters:
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• (E ,4) is a pre-ordered set of exponential signatures. So that formulas of seLL(E ,4,EW ,EC) are

E -formulas and 4 plays a key role in the promotion rule.

• EW and EC are two subsets of E used to control ?-rules.

The exponential rules are:

⊢ A,?e1
B1, . . . ,?en

Bn e4 e1 · · · e4 en
!e⊢ !eA,?e1

B1, . . . ,?en
Bn

⊢ A,Γ
?ed

⊢ ?eA,Γ

⊢ Γ e ∈ EW
?ew

⊢ ?eA,Γ

⊢ ?eA,?eA,Γ e ∈ EC
?ec

⊢ ?eA,Γ

For cut elimination to hold, some properties of the parameters must be requested:

Theorem 1 (Cut Elimination [7]). If EW and EC are upward closed (i.e. e ∈ EW ⇒ e 4 e′ ⇒ e′ ∈ EW ,

and the same with EC), then cut elimination holds.

As a variant, the subexponential system presented in [5] is a particular case of the system above in

which EW = EC.

Remark 1. The instance of seLL where E = {•} is a singleton, •4 •, and EW = EC = E is LL.

The instance of seLL where E = {•,⋆}, •4 •, ⋆4 ⋆, and EW = EC = {•} is LL with shifting operators.

2.7 Stratified Bounded Linear Logic

While BSLL is presented in [4] as an intuitionistic system, we consider here its (one-sided) classical

version. Everything we discuss in this paper could be done in an intuitionistic setting in a very similar

way.

As in seLL, BSLL considers multiple exponential connectives. In BSLL, exponential signatures come

with a richer algebraic structure. BSLL is parameterized by an ordered semi-ring (E ,+,0, ·,1,4). For-

mulas are E -formulas, and the exponential rules are:

⊢ A,?e1
B1, . . . ,?en

Bn
! ·⊢ !eA,?e·e1

B1, . . . ,?e·en
Bn

⊢ ?e1
A,Γ e1 4 e2

4
⊢ ?e2

A,Γ

⊢ A,Γ
?1d

⊢ ?1A,Γ
⊢ Γ

?0w
⊢ ?0A,Γ

⊢ ?e1
A,?e2

A,Γ
? + c

⊢ ?e1+e2
A,Γ

3 Super Linear Logic

We follow the ideas of subexponentials and bounded linear logic with parameters which try to subsume

both. Given a set E (the set of exponential signatures), we consider the following family of predicates:

DE : E → B COk : E k+1 → B (∀k ≥ 0) DG : E 3 → B Pn : E → B (∀n ≥ 0)

Notation 2. Given a predicate ϕ : E p → B, we often write ϕ(e1, . . . ,ep) for ϕ(e1, . . . ,ep) = true.
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The system superLL(E ,DE,CO,DG,P) is defined by: formulas are E -formulas, and the exponential

rules are:

⊢ A,Γ DE(e)
DE

⊢ ?eA,Γ

⊢ ?e1
A, . . . ,?ek

A,Γ COk(e1, . . . ,ek,e)
CO

⊢ ?eA,Γ

⊢ ?e1
?e2

A,Γ DG(e1,e2,e)
DG

⊢ ?eA,Γ

⊢ A,A1, . . . ,An Pn(e)
P

⊢ !eA,?eA1, . . . ,?eAn

Example 1. Let us detail the meaning of the (CO) rule for k = 2:

⊢ ?e1
A,?e2

A,Γ CO2(e1,e2,e)
CO

⊢ ?eA,Γ

It tells us that: if ⊢ ?e1
A,?e2

A,Γ is derivable and e1,e2,e ∈ E are exponential signatures such that

CO2(e1,e2,e) = true then the rule applies and one can deduce ⊢ ?eA,Γ. It generalizes the usual con-

traction rule of LL to a given relation CO2 relating the involved exponential signatures.

Note that the weakening rule is incorporated in the (CO) rule for k = 0:

⊢ Γ CO0(e)
CO

⊢ ?eA,Γ

In the case k = 1, the (CO) rule acts as a subsumption rule:

⊢ ?e1
A,Γ CO1(e1,e2)

CO
⊢ ?e2

A,Γ

with respect to the relation ?e1
A≤ ?e2

A := CO1(e1,e2). If CO1 is a subdiagonal relation (i.e. CO1(e1,e2)⇒
e1 = e2), the (CO) rule for k = 1 is trivial and can be omitted (in particular if E is a singleton).

(P) corresponds to a functorial version of the promotion rule. Pn controls the width of the rule.

Remark 2. superLL should be considered as a refinement of LL rather than an extension. Indeed the

forgetful function which maps formulas !eA (resp. ?eA) to !A (resp. ?A), maps any proof in superLL into

a proof of the corresponding sequent in LL, since the induced rules are all derivable in LL.

Functional Instances. In the particular case where all the parameter relations DE, COk (k 6= 1) and DG

have their last element uniquely defined from the previous ones:

R(e1, . . . ,en,e)→ R(e1, . . . ,en,e
′)→ e = e′

the instance is called functional.

In particular there is at most one e such that DE(e) in a functional instance. We note it 1 if it exists. In

the same spirit we use the notations × for the partial function induced by DG (i.e. DG(e1,e2,e1 ×
e2) = true if such an e1 × e2 exists), and +k · · ·+k for the partial function induced by COk (i.e.

COk(e1, . . . ,ek,e1 +k · · ·+k ek) = true if such an e1 +k · · ·+k ek exists) for k > 1. The unique element

e (if it exists) such that CO0(e) is noted 0.

If E is a singleton, the instance is immediately functional.
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4 Cut Elimination

Let us now move to the key result we want to prove about superLL: cut elimination. As defined above,

the system superLL is not really meaningful. Properties relating the parameters must be ensured to get a

significant system, in particular regarding cut elimination.

Example 2. Let us consider the instance E = {e,e′}, P2(e) = true, P1(e
′) = true and CO1(e

′,e) = true,

but P2(e
′) = false.

We have the following derivation:

ax
⊢ X⊥,X P1(e

′)
P

⊢ !e′X
⊥,?e′X CO1(e

′,e)
CO

⊢ ?eX , !e′X
⊥

ax
⊢ X ,X⊥

ax
⊢ X ,X⊥

⊗
⊢ X ⊗X ,X⊥,X⊥

P2(e)
P

⊢ !eX⊥,?e(X ⊗X),?eX⊥

cut
⊢ !e′X

⊥,?e(X ⊗X),?eX⊥

However it is not possible to find a cut-free proof of ⊢ !e′X
⊥,?e(X ⊗X),?eX⊥.

In order to explain the constraints we will put on the parameters defining superLL, let us first give a

sketch of the proof we are going to use for cut elimination.

4.1 Proof Sketch

Theorem (Cut Elimination). The (cut) rule is admissible in the system without the (cut) rule.

The global pattern of the proof we are going to use is folklore and it is the one used in the Yalla

library [13]. We prove that the (cut) rule:

π1

⊢ A,Γ

π2

⊢ A⊥,∆
cut

⊢ Γ,∆

is admissible by induction on the lexicographically ordered pair (size of A, size of π1 + size of π2):

• If π1 or π2 does not end with a rule acting on A, we apply the induction hypothesis with the

premise(s) of this rule.

• If both π1 and π2 end with non-exponential rules introducing the main connective of A and A⊥, we

can apply the induction hypothesis with smaller cut formulas. A typical example is:

π ′
1

⊢ A,Γ

π ′
2

⊢ B,∆
⊗

⊢ A⊗B,Γ,∆

π ′
3

⊢ A⊥,B⊥,Σ
`

⊢ A⊥`B⊥,Σ
cut

⊢ Γ,∆,Σ

 
π ′

2

⊢ B,∆

π ′
1

⊢ A,Γ

π ′
3

⊢ A⊥,B⊥,Σ
IH(A)

⊢ Γ,B⊥,Σ
IH(B)

⊢ Γ,∆,Σ

• If π1 and π2 both end with promotion rules, we have to deal with situations like:

π ′
1

⊢ A,B1,B2 P2(e)
P

⊢ !eA,?eB1,?eB2

π ′
2

⊢C,A⊥,D1,D2 P3(e)
P

⊢ !eC,?eA⊥,?eD1,?eD2
cut

⊢ !eC,?eB1,?eB2,?eD1,?eD2

for which the most natural way to eliminate the cut is to build:
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π ′
1

⊢ A,B1,B2

π ′
2

⊢C,A⊥,D1,D2
IH(A)

⊢C,B1,B2,D1,D2 P4(e)
P

⊢ !eC,?eB1,?eB2,?eD1,?eD2

but it then requires to be able to derive P4(e) (from P2(e) and P3(e)). This is one of the reasons for

the axioms of Section 4.2.

• If π1 ends with a promotion rule and π2 ends with a (CO) rule acting on A, we have to deal with

situations like:

π ′
1

⊢ A,B P1(e)
P

⊢ !eA,?eB

π ′
2

⊢ ?e′A
⊥,Γ CO1(e

′,e)
CO

⊢ ?eA⊥,Γ
cut

⊢ ?eB,Γ

for which the most natural way to eliminate the cut is to build:

π ′
1

⊢ A,B P1(e
′)

P
⊢ !e′A,?e′B

π ′
2

⊢ ?e′A
⊥,Γ

IH(!e′A)⊢ ?e′B,Γ CO1(e
′,e)

CO
⊢ ?eB,Γ

but it then requires to be able to derive P1(e
′) (from P1(e) and CO1(e

′,e)). This is one of the reasons

for the axioms of Section 4.2.

• Other situations are more problematic:

π ′
1

⊢ A,B P1(e)
P

⊢ !eA,?eB

π ′
2

⊢ ?e1
?e2

A⊥,Γ DG(e1,e2,e)
DG

⊢ ?eA⊥,Γ
cut

⊢ ?eB,Γ

for which the most natural way to eliminate the cut is to build:

π ′
1

⊢ A,B P1(e2)
P

⊢ !e2
A,?e2

B P1(e1)
P

⊢ !e1
!e2

A,?e1
?e2

B

π ′
2

⊢ ?e1
?e2

A⊥,Γ
IH(!e1

!e2
A)

⊢ ?e1
?e2

B,Γ DG(e1,e2,e)
DG

⊢ ?eB,Γ

but the size of !e1
!e2

A being bigger than the size of !e1
A there is no valid way of applying the induc-

tion hypothesis. This is why we need to use more global transformations of proofs when reducing

cuts on exponential formulas. This is the purpose of the substitution lemma of Section 4.3.
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∀m,n ∈ N,∀e ∈ E , m > 0 → Pm(e)→ Pn(e)→ Pm+n−1(e) (ce1)

∀k,n ∈N,∀e1, . . . ,ek,e ∈ E , COk(e1, . . . ,ek,e)→ Pn(e)→ Pn(e1)∧ ·· ·∧ Pn(ek) (ce2)

∀n ∈N,∀e1,e2,e ∈ E , DG(e1,e2,e)→ Pn(e)→ Pn(e1)∧ Pn(e2) (ce3)

Table 2: Cut-Elimination Axioms

4.2 Cut-Elimination Axioms

The cut-elimination axioms are the 3 properties of the parameters E , P, CO and DG presented in Table 2.

Here are some important remarks about these axioms:

• For each e ∈ E , axiom (ce1) gives a closure property of the set {n ∈N | Pn(e)} of natural numbers.

If 2 belongs to this set, then it must be upward closed. If 0 belongs to this set, then it must be

downward closed. The full set N satisfies the axiom (ce1), as well as {1}.

• In axiom (ce2), the case k = 0 is always valid.

• For each n ∈ N, axioms (ce2) and (ce3) give closure properties for the set {e ∈ E | Pn(e)}.

• If E is a singleton, axioms (ce2) and (ce3) are satisfied.

• If the relations (Pn)n∈N are full (i.e. always true) then all the axioms of Table 2 hold.

4.3 Substitution Lemma

In this section, we suppose that the parameters of superLL satisfy the cut-elimination axioms of Table 2.

As explained in Section 4.1, using small step transformations does not allow us to apply our induction

hypothesis for exponential cuts in the cut-elimination proof. For this reason, we have to define a bigger

step called substitution lemma. It describes how to hereditary reduce the residuals of an exponential cut

until the size of the cut formula strictly decreases.

Notation 3. If~e = e1, . . . ,en, and R is a predicate, then R(~e) means that R(ei) is true for all 1 ≤ i ≤ n.

Lemma 1 (Substitution Lemma). Let A be a formula, let ∆ be a context, and let ~e1, . . . ,~es be non-empty

lists of signatures such that P|∆|(
~e j) is true for all 1 ≤ j ≤ s, and such that for all Γ, if ⊢ A,Γ is provable

without using any cut then ⊢ ∆,Γ is provable without using any cut. Then we have that for all Γ, if

⊢ ?~e1 A, . . . ,?~es A,Γ is provable without using any cut then ⊢ ?~e1 ∆, . . . ,?~es ∆,Γ as well.

Proof. First we can notice that for any Γ the following rule:

⊢ A, . . . ,A,Γ
S

⊢ ∆, . . . ,∆,Γ

is admissible in the system without cuts (by using an easy induction on the number of A).

We can also notice that, for all i ≤ k, we have:

Pk(e) Pm(e)
Mi

Pk+(m−1)i(e)

by simple induction on i using axiom (ce1).

Now we show the lemma by induction on the proof of ⊢ ?~e1 A, . . . ,?~esA,Γ. We distinguish cases

according to the last applied rule:
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• If it is a rule on a formula of Γ which is not a promotion:

π

⊢ ?~e1 A, . . . ,?~esA,Γ′

r
⊢ ?~e1 A, . . . ,?~es A,Γ

7→

IH(π)

⊢ ?~e1 ∆, . . . ,?~es ∆,Γ′

r
⊢ ?~e1 ∆, . . . ,?~es ∆,Γ

• If it is a promotion introducing e, all ~e j (1 ≤ j ≤ s) start with e. Among them, we distinguish

those of length 1 (which are then restricted to e): we assume ~e j = e, ~n j (1 ≤ j ≤ p) has at least two

elements, and ~ep+1, . . . ,~es are singletons:

π

⊢ B,Γ′,?~
n

1A, . . . ,? ~n pA,

s−p
︷ ︸︸ ︷

A, . . . ,A Ps+|Γ′|(e)
P

⊢ !eB,?eΓ′,?~e1 A, . . . ,?~es A

7→

IH(π)

⊢ B,Γ′,?~
n

1∆, . . . ,? ~n p∆,

s−p
︷ ︸︸ ︷

A, . . . ,A
S

⊢ B,Γ′,?~
n

1∆, . . . ,? ~n p∆,

s−p
︷ ︸︸ ︷

∆, . . . ,∆

Ps+|Γ′|(e) P|∆|(e)
Ms

Ps|∆|+|Γ′|(e)
P

⊢ !eB,?eΓ′,?~e1 ∆, . . . ,?~es ∆

• If it is an (ax) rule on ?~e1 A. Then Γ = !~e1 A⊥ and we have:

ax
⊢ A⊥,A

S
⊢ A⊥,∆ P|∆|(

~e1)
P

⊢ !~e1 A⊥,?~e1 ∆

• If it is a dereliction on ?~e1 A, we have ~e1 = e,~n :

π

⊢ ?~n A,?~e2A, . . . ,?~es A,Γ DE(e)
DE

⊢ ?~e1 A, . . . ,?~es A,Γ

7→

IH(π)

⊢ ?~n ∆,?~e2 ∆, . . . ,?~es∆,Γ DE(e)
DE

⊢ ?~e1 ∆, . . . ,?~es ∆,Γ

• If it is a contraction on ?~e1 A, we have ~e1 = e,~n :

π

⊢ ?e1
?~n A, . . . ,?ek

?~n A,?~e2 A, . . . ,?~es A,Γ COk(e1, . . . ,ek,e)
CO

?~e1 A, . . . ,?~es A,Γ

By axiom (ce2), we have P|∆|(e1), . . . ,P|∆|(ek), thus we can apply the induction hypothesis:

IH(π)

⊢ ?e1
?~n ∆, . . . ,?ek

?~n ∆,?~e2 ∆, . . . ,?~es ∆,Γ COk(e1, . . . ,ek,e)
CO

⊢ ?~e1 ∆, . . . ,?~es ∆,Γ
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• If it is a digging on ?~e1 A, we have ~e1 = e,~n :

π

⊢ ?e′?e′′?~n A,?~e2 A, . . . ,?~es A,Γ DG(e′,e′′,e)
DG

?~e1 A, . . . ,?~esA,Γ

By axiom (ce3), we have P|∆|(e
′) and P|∆|(e

′′), thus we can apply the induction hypothesis:

IH(π)

⊢ ?e′?e′′?~n ∆,?~e2 ∆, . . . ,?~es ∆,Γ DG(e′,e′′,e)
DG

⊢ ?~e1 ∆, . . . ,?~es ∆,Γ

4.4 Cut-Elimination Proof

Theorem 2 (Cut Elimination). Cut elimination holds for superLL(E ,DE,CO,DG,P) as long as the in-

stance satisfies the cut-elimination axioms of Table 2.

Proof. As introduced in Section 4.1, we prove the result by induction on the couple (t,s) with lexico-

graphic order, where t is the size of the cut formula and s is the sum of the sizes of the premises of the

cut. We distinguish cases depending on the last rules of the premises of the cut:

• If one of the premises does not end with a rule acting on the cut formula, we apply the induction

hypothesis with the premise(s) of this rule.

• If both last rules act on the cut formula which does not start with an exponential connective,

we apply the standard reduction steps for non-exponential cuts leading to cuts involving strictly

smaller cut formulas. We conclude by applying the induction hypothesis.

• If we have an exponential cut for which the cut formula !eA⊥ is not the conclusion of a promotion

rule introducing !e, the rule above !eA⊥ cannot be a promotion rule and we apply the induction

hypothesis to its premise(s).

• If we have an exponential cut for which the cut formula !eA⊥ is the conclusion of a promotion rule.

We can apply:

⊢ A⊥,∆ P|∆|(e)
P

⊢ !eA⊥,?e∆ ⊢ ?eA,Γ
cut

⊢ ?e∆,Γ

 
⊢ ?eA,Γ P|∆|(e)

Lem. 1
⊢ ?e∆,Γ

We have that A and ∆ are such that for every Γ such that ⊢ A,Γ is provable without cuts, ⊢ ∆,Γ

too. Indeed, A and ∆ are such that ⊢ A⊥,∆ is provable without cuts and we can apply the induction

hypothesis (smaller cut formula). Therefore we can apply Lemma 1 on ⊢ ?eA,Γ and obtain that

⊢ ?e∆,Γ is provable without cut.
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∀e ∈ E , P1(e) (ea)

Table 3: Expansion Axiom

5 Other Proof Transformations

5.1 Axiom Expansion

We consider now a much simpler property which is axiom expansion, to show how it also provides

natural constraints on the parameters of superLL.

Lemma 2 (One-Step Axiom Expansion). If e is an exponential signature such that P1(e) = true, then the

one-step axiom expansion holds for formulas ?eA and !eA⊥ in superLL. That is we can derive ⊢ !eA⊥,?eA

from ⊢ A⊥,A.

Proof.

⊢ A,A⊥
P1(e)

P
⊢ !eA,?eA⊥

Proposition 1 (Axiom Expansion). If E satisfies the axiom (ea) of Table 3, then axiom expansion holds

for superLL(E ,DE,CO,DG,P), i.e. ⊢ A,A⊥ is derivable for any A from the axiom rule restricted to

⊢ X ,X⊥.

5.2 Girardization

A key ingredient of Girard’s original presentation of linear logic is the following promotion rule:

⊢ A,?Γ
!

⊢ !A,?Γ

It leads to the sub-formula property while the digging rule immediately breaks it. It is thus important to

understand in which situations it is possible to replace the “functorial promotion plus digging” style used

in superLL by a Girard’s style promotion rule.

Our approach is to find commutation axioms allowing to migrate digging rules up towards promo-

tions in order to generate Girard’s style promotion rules. In the setting of superLL, we call Girard’s

promotion the following rule:

⊢ A,?n1
A1, . . . ,?nn

An DG(e,n1,e1) · · · DG(e,nn,en) Pn(e)
Pg

⊢ !eA,?e1
A1, . . . ,?en

An

The commutation axioms we have to consider are the Girardization axioms presented in Table 4.

Remark 3. It is easier to get some intuition on the Girardization axioms if we consider a functional

instance. In this particular case they are closed to properties of (partial) semi-rings.

∀e, CO1(e,1× e) (gir2)

∀e, 0× e = 0 (gir3)

∀k ≥ 2,∀n1, . . . ,nk,e, (n1 +k · · ·+k nk)× e = (n1 × e)+k · · ·+k (nk × e) (gir3)

∀e1,e2,e3, (e1 × e2)× e3 = e1 × (e2 × e3) (gir4)

∀n,e, n > 0 → Pn(e)→ e×1 = e (gir5)

Moreover (gir1) is an immediate consequence of (ea).
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∀e1,e2,e ∈ E , DG(e1,e2,e)→ P1(e1) (gir1)

∀e1,e2,e ∈ E , DE(e1)→ DG(e1,e2,e)→ CO1(e2,e) (gir2)

∀k ∈ N,∀n1, . . . ,nk,e1,e2,e ∈ E , COk(n1, . . . ,nk,e1)→ DG(e1,e2,e)→

∃n ′1, . . . ,n
′
k ∈ E ,DG(n1,e2,n

′
1)∧ ·· ·∧DG(nk,e2,n

′
k)∧ COk(n

′
1, . . . ,n

′
k,e)

(gir3)

∀e1,e2,e3,e,e
′ ∈ E , DG(e1,e2,e

′)→ DG(e′,e3,e)→∃e′′ ∈ E ,DG(e2,e3,e
′′)∧DG(e1,e

′′,e) (gir4)

∀n ∈N,∀e ∈ E , n > 0 → Pn(e)→∃e′ ∈ E ,DE(e′)∧DG(e,e′,e) (gir5)

Table 4: Girardization axioms

Lemma 3 (Admissibility of Digging). If we consider an instance of superLL which satisfies the Gi-

rardization axioms (Table 4), and if moreover we replace the functorial promotion rule (P) by Girard’s

promotion rule (Pg) in the system, then the (DG) rule is admissible in the obtained system.

Proof. We prove that, given a proof π with conclusion ⊢ ?e1
?eA, . . . ,?en

?eA,Γ, if DG(ei,e,e
′
i) = true

(1 ≤ i ≤ n), then we can build a proof of ⊢ ?e′1
A, . . . ,?e′n

A,Γ which uses neither functorial promotion nor

digging. This is done by induction on the size of π .

• If the last rule of π does not act on the ?ei
?eA, we apply the induction hypothesis on the premises

and we conclude.

• If the last rule of π is an (ax) rule, we consider the following transformation:

ax
⊢ !e1

!eA⊥,?e1
?eA 7→

ax
⊢ !eA⊥,?eA DG(e1,e,e

′
1)

DG(e1,e,e
′
1) gir1

P1(e1)
Pg

⊢ !e1
!eA⊥,?e′1

A

• If the last rule of π is a (DE) rule introducing ?e1
(it is similar for another ?ei

):

⊢ ?eA,?e2
?eA, . . . ,?en

?eA,Γ DE(e1)
DE

⊢ ?e1
?eA,?e2

?eA, . . . ,?en
?eA,Γ

we use the induction hypothesis to build:

IH

⊢ ?eA,?e′2
A, . . . ,?e′n

A,Γ

DE(e1) DG(e1,e,e
′
1) gir2

CO1(e,e
′
1)

CO
⊢ ?e′1

A,?e′2
A, . . . ,?e′n

A,Γ

• If the last rule of π is a (CO) rule:

⊢ ?n1
?eA, . . . ,?nk

?eA,?e2
?eA, . . . ,?en

?eA,Γ COk(n1, . . . ,nk,e1)
CO

⊢ ?e1
?eA,?e2

?eA, . . . ,?en
?eA,Γ

by (gir3), we have DG(n j,e,n
′
j) = true (1 ≤ j ≤ k), and we can use the induction hypothesis to

build:



E. Bauer & O. Laurent 63

IH

⊢ ?
n
′
1
A, . . . ,?

n
′
k
A,?e′2

A, . . . ,?e′n
A,Γ

COk(n1, . . . ,nk,e1) DG(e1,e,e
′
1) gir3

COk(n
′
1, . . . ,n

′
k,e

′
1)

CO
⊢ ?e′1

A,?e′2
A, . . . ,?e′n

A,Γ

• If the last rule of π is a Girard’s style promotion:

⊢C,?n1
?eA, . . . ,?nn

?eA,?ε1
B1, . . . ,?εm

Bm

1 ≤ i ≤ n

DG(e′,ni,ei)

1 ≤ j ≤ m

DG(e′,ε j,ε
′
j) Pn+m(e

′)
Pg

⊢ !e′C,?e1
?eA, . . . ,?en

?eA,?ε ′1
B1, . . . ,?ε ′m

Bm

by (gir4), we have DG(ni,e,n
′
i) = true (1 ≤ i ≤ n), and we can use the induction hypothesis to

build:

IH

⊢C,?
n
′

1
A, . . . ,?

n
′

n
A,?ε1

B1, . . . ,?εm
Bm

1 ≤ i ≤ n

DG(e′,ni,ei) DG(ei,e,e
′
i) gir4

DG(e′,n ′i ,e
′
i)

1 ≤ j ≤ m

DG(e′,ε j,ε
′
j) Pn+m(e

′)
Pg

⊢ !e′C,?e′1
A, . . . ,?e′n

A,?ε ′1
B1, . . . ,?ε ′m

Bm

The admissibility of (DG) is then the particular case n = 1.

Proposition 2 (Girardization). If an instance of superLL satisfies the Girardization axioms (Table 4),

then any proof can be replaced by a proof of the same sequent which uses neither the functorial promotion

rule nor the digging rule, but Girard’s promotion instead.

Proof. The first step is to transform any functorial promotion rule into the associated Girard’s promotion:

⊢ A,A1, . . . ,An Pn(e)
P

⊢ !eA,?eA1, . . . ,?eAn

7→

⊢ A,A1, . . . ,An

Pn(e)
gir5

DE(e′)
DE

⊢ A,?e′A1, . . . ,?e′An

Pn(e)
gir5

DG(e,e′,e) Pn(e)
Pg

⊢ !eA,?eA1, . . . ,?eAn

Then, we conclude by induction on the number of digging rules in the proof, by applying Lemma 3.

It is important to notice that if the starting proof is cut-free then the obtained one as well.

5.3 Subsumption Elimination

We have already mentioned that, in the case k = 1, the (CO) rule acts as a subsumption rule with respect to

the binary relation CO1( , ). Such a rule explicitly appears in BSLL. In seLL, an order relation is involved

as well but it is mostly attached to the promotion rule. In our setting, such an ordered promotion rule is:

⊢ A,A1, . . . ,An e ≤ e1 · · · e ≤ en Pn(e)
P≤

⊢ !eA,?e1
A1, . . . ,?en

An

where we use the notation e ≤ e′ for CO1(e,e
′) (and we will do so in all this section).

Under some hypotheses, it is possible to merge the subsumption rule ((CO) with k = 1) into the

promotion rule to get the ordered promotion rule. The required properties are presented in Table 5.

We can make a few comments about the axioms:
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∀e ∈ E , P1(e) (ea)

∀e ∈ E , e ≤ e (sb1)

∀e1,e2,e3 ∈ E , e1 ≤ e2 → e2 ≤ e3 → e1 ≤ e3 (sb2)

∀e1,e2 ∈ E , DE(e1)→ e1 ≤ e2 → DE(e2) (sb3)

∀n1, . . . ,nk,e1,e2 ∈ E , COk(n1, . . . ,nk,e1)→ e1 ≤ e2 →

∃n ′1, . . . ,n
′
k ∈ E ,n1 ≤ n

′
1 ∧ ·· ·∧ nk ≤ n

′
k ∧ COk(n

′
1, . . . ,n

′
k,e2)

(sb4)

∀n1,n2,e1,e2 ∈ E , DG(n1,n2,e1)→ e1 ≤ e2 →∃n ′1 ∈ E ,n1 ≤ n
′
1 ∧DG(n ′1,n2,e2) (sb5)

Table 5: Subsumption Axioms (with e ≤ e′ := CO1(e,e
′))

• Axiom (sb1) is reflexivity of CO1 and axiom (sb2) is transitivity of CO1, so that CO1 has then to be

a pre-order relation.

• Axiom (sb3) is closure of DE under CO1.

• Axioms (sb4) and (sb5) are commutation axioms. Axiom (sb4) is trivial for k = 1.

Lemma 4 (Admissibility of Subsumption). If we consider an instance of superLL which satisfies the

subsumption axioms (Table 5), and if moreover we replace the functorial promotion rule (P) by the

ordered promotion rule (P≤) in the system, then the (CO) rule for k = 1 is admissible in the obtained

system.

Proof. We prove that, given a proof π with conclusion ⊢ ?e1
A1, . . . ,?en

An,Γ, if ei ≤ e′i (1 ≤ i ≤ n), then

we can build a proof of ⊢ ?e′1
A1, . . . ,?e′n

An,Γ which uses neither functorial promotion nor subsumption.

This is done by induction on the size of π .

• If the last rule of π does not act on the ?ei
Ai, we apply the induction hypothesis on the premises

and we conclude.

• If the last rule of π is an (ax) rule, we consider the following transformation:

ax
⊢ !e1

A⊥
1 ,?e1

A1
7→

ax
⊢ A⊥

1 ,A1 e1 ≤ e′1
ea

P1(e1)
P≤

⊢ !e1
A⊥

1 ,?e′1
A1

• If the last rule of π is a (DE) rule introducing ?e1
(it is similar for another ?ei

):

⊢ A1,?e2
A2, . . . ,?en

An,Γ DE(e1)
DE

⊢ ?e1
A1,?e2

A2, . . . ,?en
An,Γ

we use the induction hypothesis to build:

IH

⊢ A1,?e′2
A2, . . . ,?e′n

An,Γ

DE(e1) e1 ≤ e′1
sb3

DE(e′1)
DE

⊢ ?e′1
A1,?e′2

A2, . . . ,?e′n
An,Γ

• If the last rule of π is a (CO) rule:
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⊢ ?n1
A1, . . . ,?nk

A1,?e2
A2, . . . ,?en

An,Γ COk(n1, . . . ,nk,e1)
CO

⊢ ?e1
A1,?e2

A2, . . . ,?en
An,Γ

by (sb4), we have n j ≤ n
′
j (1 ≤ j ≤ k), and we can use the induction hypothesis to build:

IH

⊢ ?
n
′
1
A1, . . . ,?n ′

k
A1,?e′2

A2, . . . ,?e′n
An,Γ

COk(n1, . . . ,nk,e1) e1 ≤ e′1
sb4

COk(n
′
1, . . . ,n

′
k,e

′
1)

⊢ ?e′1
A1,?e′2

A2, . . . ,?e′n
An,Γ

• If the last rule of π is a (DG) rule:

⊢ ?n ?n ′A1,?e2
A2, . . . ,?en

An,Γ DG(n ,n ′,e1)
DG

⊢ ?e1
A1,?e2

A2, . . . ,?en
An,Γ

by (sb5), we have n ≤ n
′′, and we can use the induction hypothesis to build:

IH

⊢ ?n ′′?n ′A1,?e′2
A2, . . . ,?e′n

An,Γ

DG(n ,n ′,e1) e1 ≤ e′1
sb5

DG(n ′′,n ′,e′1)
DG

⊢ ?e′1
A1,?e′2

A2, . . . ,?e′n
An,Γ

• If the last rule of π is an ordered promotion:

⊢C,A1, . . . ,An,B1, . . . ,Bm

1 ≤ i ≤ n

e ≤ ei

1 ≤ j ≤ m

e ≤ n j Pn+m(e)
P≤

⊢ !eC,?e1
A1, . . . ,?en

An,?n1
B1, . . . ,?nm

Bm

we can build:

⊢C,A1, . . . ,An,B1, . . . ,Bm

1 ≤ i ≤ n

e ≤ ei ei ≤ e′i
sb2

e ≤ e′i

1 ≤ j ≤ m

e ≤ n j Pn+m(e)
P≤

⊢ !eC,?e′1
A1, . . . ,?e′n

An,?n1
B1, . . . ,?nm

Bm

Proposition 3 (Subsumption Elimination). If an instance of superLL satisfies the subsumption axioms

(Table 5), then any proof can be replaced by a proof of the same sequent which uses neither the functorial

promotion rule nor the subsumption rule, but the ordered promotion instead.

Proof. The first step is to transform any functorial promotion rule into the associated ordered promotion:

⊢ A,A1, . . . ,An Pn(e)
P

⊢ !eA,?eA1, . . . ,?eAn

7→ ⊢ A,A1, . . . ,An
sb1

e ≤ e Pn(e)
P≤

⊢ !eA,?eA1, . . . ,?eAn

We conclude by induction on the number of subsumption rules in the proof, by applying Lemma 4.

Again if the starting proof is cut-free then the obtained one as well.
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6 Sub-Systems

Since superLL depends on various parameters, it covers many possible systems through the choice of

instances.

In the previous sections, we have seen some (mostly independent) sets of axioms which allow us to

do proof manipulations leading to alternative rules for the system. These proof transformations are the

key tool to show how particular instances of superLL are equivalent to known systems from the literature.

We now focus on specific choices of E , DE, CO, DG and P which give back known systems from

Section 2. In each case we provide the appropriate values of the parameters to get the desired system.

Moreover we check in each case that the cut-elimination axioms (Table 2) and the expansion axiom (ea)

are satisfied.

Remark 4. If e is an exponential signature, requiring CO0(e) and CO2(e,e,e) to be true, or for all k in N,

COk(e, . . . ,e,e) = true, leads to equivalent systems since the k-ary (CO) rule becomes derivable:

k = 0 k = 1 k ≥ 2

⊢ Γ CO0(e)
CO

⊢ ?eA,Γ
⊢ ?eA,Γ

⊢

k
︷ ︸︸ ︷

?eA, . . . ,?eA,Γ CO2(e,e,e)
CO

⊢

k−1
︷ ︸︸ ︷

?eA, . . . ,?eA,Γ

...

⊢ ?eA,?eA,Γ CO2(e,e,e)
CO

⊢ ?eA,Γ

6.1 LL with Functorial Promotion

The definition of superLL is based on a functorial version of the promotion rule. It is thus not very

surprising that the easiest system to find back inside superLL is the “functorial promotion + digging”

presentation of LL. We consider the instance given by (when describing instances, we list the values

which make the predicates true, all other combinations are false):

E DE CO DG P

{•} DE(•) CO0(•) CO2(•,•,•) DG(•,•,•) ∀n ∈ N, Pn(•)

Lemma 5 (LL with functorial promotion and digging). This instance superLL(E ,DE,CO,DG,P) is LL

based on digging and functorial promotion, and it satisfies the cut-elimination axioms and the expansion

axiom.

Proof. Concerning (! f ), (??) and (?d), we have a one-to-one correspondence between the rules of the

two systems. Concerning contraction, the (?w) and (?c) are exactly cases k = 0 and k = 2 of the (CO)

rule. As already remarked in Section 4.2, the cut-elimination axioms are satisfied, and the same for the

expansion axiom, since P is full.

6.2 ELL

We consider the instance of superLL given by:

E DE CO DG P

{•} CO0(•) CO2(•,•,•) ∀n ∈ N, Pn(•)
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DE and DG are the empty (always false) relations. (Pn)n∈N are full.

Lemma 6. This instance of superLL satisfies the cut-elimination axioms and the expansion axiom. Using

notations ! := !• and ? := ?• this instance of superLL is exactly ELL.

Proof. The rules of this instance are exactly the rules of ELL:

⊢ Γ
?w

⊢ ?A,Γ
! ⊢ Γ CO0(•)

CO
⊢ Γ,?•A

⊢ ?A,?A,Γ
?c

⊢ ?A,Γ
! ⊢ ?•A,?•A,Γ CO2(•,•,•)

CO
⊢ ?•A,Γ

⊢ A,A1, . . . ,An ! f
⊢ !A,?A1, . . . ,?An

! ⊢ A,A1, . . . ,An Pn(•)
P

⊢ !•A,?•A1, . . . ,?•An

6.3 SLL

We consider the instance of superLL given by:

E DE CO DG P

{•,⋆} DE(⋆) ∀k ∈ N, COk(⋆, . . . ,⋆,•) ∀n ∈ N, Pn(•) ∀n ∈ N, Pn(⋆)

This is a rather non-standard presentation of SLL. However using notations !A := !•A, ?A := ?•A, ♭A :=
?⋆A and ♯A := !⋆A draws a bridge with presentations inspired by the proof-net syntax, as we can find in

the literature [3].

Lemma 7 (Properties). This instance of superLL satisfies the cut-elimination axioms and the expansion

axiom.

Lemma 8 (SLL to superLL). If we translate ! 7→ !• and ? 7→ ?•, we can translate proofs (resp. cut-free

proofs) of SLL into proofs (resp. cut-free proofs) of superLL(E ,DE,CO,DG,P).

Proof.

⊢

k
︷ ︸︸ ︷

A, . . . ,A,Γ
?mk⊢ ?A,Γ

7→
⊢

k
︷ ︸︸ ︷

A, . . . ,A,Γ DE(⋆)
DE

⊢ ?⋆A, . . . ,?⋆A,Γ COk(⋆, . . . ,⋆,•)
CO

⊢ ?•A,Γ

⊢ A,A1, . . . ,An ! f
⊢ !A,?A1, . . . ,?An

7→ ⊢ A,A1, . . . ,An Pn(•)
P

⊢ !•A,?•A1, . . . ,?•An

Lemma 9 (superLL to SLL). If we translate !• 7→ !, ?• 7→ ?, !⋆ 7→ /0, and ?⋆ 7→ /0 (i.e. we erase all !⋆
and ?⋆), we can translate proofs (resp. cut-free proofs) of superLL(E ,DE,CO,DG,P) into proofs (resp.

cut-free proofs) of SLL.
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Proof.

⊢ A,Γ DE(⋆)
DE

⊢ ?⋆A,Γ
7→ ⊢ A,Γ

⊢

k
︷ ︸︸ ︷

?⋆A, . . . ,?⋆A,Γ COk(⋆, . . . ,⋆,•)
CO

⊢ ?•A,Γ

7→ ⊢

k
︷ ︸︸ ︷

A, . . . ,A,Γ
?mk⊢ ?A,Γ

⊢ A,A1, . . . ,An Pn(•)
P

⊢ !•A,?•A1, . . . ,?•An

7→
⊢ A,A1, . . . ,An ! f

⊢ !A,?A1, . . . ,?An

⊢ A,A1, . . . ,An Pn(⋆)
P

⊢ !⋆A,?⋆A1, . . . ,?⋆An

7→ ⊢ A,A1, . . . ,An

Proposition 4 (Cut Elimination for SLL). Cut elimination holds for SLL.

Proof. We apply Lemma 8, Theorem 2 (using Lemma 7), and Lemma 9.

6.4 LL

We consider the following instance:

E DE CO DG P

{•} DE(•) ∀k ∈ N, COk(•, . . . ,•,•) DG(•,•,•) ∀n ∈ N, Pn(•)

All relations are the full (i.e. always true) relations. This makes axioms easy to check (in particular the

cut-elimination axioms and the expansion axiom). As mentioned in Remark 4, we could also restrict to

COk(•, . . . ,•,•) = true only for k = 0 and k = 2, it would not modify the expressiveness of the system.

However the Girardization axioms of Table 4 would not hold.

Lemma 10 (LL). The instance, with E = {•} and full relations, satisfies the Girardization axioms and

the induced instance of superLL is equivalent to LL.

Proof. From superLL(E ,DE,CO,DG,P) to LL, since relations are full, the axioms are easily satisfied and

we can apply Proposition 2. We conclude as in Remark 4 for the contraction rules.

From LL to superLL(E ,DE,CO,DG,P), we use:

⊢ A,?A1, . . . ,?An
!

⊢ !A,?A1, . . . ,?An

7→
⊢ A,?•A1, . . . ,?•An Pn(•)

P
⊢ !•A,?•?•A1, . . . ,?•?•An DG(•,•,•)

DG
⊢ !•A,?•A1, . . . ,?•An

6.5 LLL

We consider the instance of superLL given by:

E DE CO DG P

{•,⋆} CO0(•) P1(•)
CO1(•,•) CO1(⋆,⋆) CO1(⋆,•) ∀n ∈N, Pn(⋆)

CO2(•,•,•)
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A key point is CO1(•,⋆) = false.

Lemma 11 (Properties). This instance of superLL satisfies the cut-elimination axioms, the expansion

axiom and the subsumption axioms.

Proof. The cut-elimination axioms come easily. Axiom (ea) is immediate. Axioms (sb1) and (sb2) are

satisfied since CO1( , ) is an order relation. Axioms (sb3) and (sb5) are satisfied because DE and DG are

empty. Axiom (sb4) is satisfied since COk(e1, . . . ,ek,e) = true entails e1 = · · · = ek = e = • or k = 1 (in

which case (sb4) is trivial).

Lemma 12 (LLL to superLL). If we translate ! 7→ !•,? 7→ ?•,§ 7→ !⋆ and §̄ 7→ ?⋆, we can translate proofs

(resp. cut-free proofs) of LLL into proofs (resp. cut-free proofs) of superLL(E ,DE,CO,DG,P).

Proof.

⊢ Γ
?w

⊢ ?A,Γ
7→ ⊢ Γ CO0(•)

CO
⊢ ?•A,Γ

⊢ ?A,?A,Γ
?c

⊢ ?A,Γ
7→ ⊢ ?•A,?•A,Γ CO2(•,•,•)

CO
⊢ ?•A,Γ

⊢ A,B
!u⊢ !A,?B

7→ ⊢ A,B P1(•)
P

⊢ !•A,?•B

⊢ A,A1, . . . ,An,B1, . . . ,Bm
§

⊢ §A, §̄A1, . . . , §̄An,?B1, . . . ,?Bm

7→

⊢ A,A1, . . . ,An,B1, . . . ,Bm Pn+m(⋆)

⊢ !⋆A,?⋆A1, . . . ,?⋆An,?⋆B1, . . . ,?⋆Bm CO1(⋆,•)
CO

⊢ !⋆A,?⋆A1, . . . ,?⋆An,?•B1, . . . ,?•Bm

Lemma 13 (superLL to LLL). If we translate !• 7→ !, ?• 7→ ?, !⋆ 7→ §, and ?⋆ 7→ §̄, we can translate proofs

(resp. cut-free proofs) of superLL(E ,DE,CO,DG,P) into proofs (resp. cut-free proofs) of LLL.

Proof. To prove this result we use Proposition 3 with Lemma 11. Then from a proof containing only the

ordered promotion rule (and no subsumption rule), we can deduce our translation:

⊢ A,B • ≤ • P1(•)
P≤

⊢ !•A,?•B
7→

⊢ A,B
!u⊢ !A,?B

⊢ A,A1, . . . ,An,B1, . . . ,Bm ⋆≤ ⋆ ⋆≤ • Pn+m(⋆)
P≤

⊢ !⋆A,?⋆A1, . . . ,?⋆An,?•B1, . . . ,?•Bm

7→

⊢ A,A1, . . . ,An,B1, . . . ,Bm
§

⊢ §A, §̄A1, . . . , §̄An,?B1, . . . ,?Bm

For the other rules we can refer to ELL.
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6.6 Shifting Operators

We consider the instance given by:

E DE CO DG P

{•,⋆} DE(•) CO0(•) CO1(•,•) CO2(•,•,•) DG(•,•,•) ∀n ∈ N, Pn(•)
DE(⋆) CO1(⋆,⋆) DG(⋆,⋆,⋆) ∀n ∈ N, Pn(⋆)

Lemma 14 (LL with shifting operators). This instance is equivalent to LL with shifting operators and

satisfies the cut-elimination axioms, the expansion axiom and the Girardization axioms.

Proof. Girardization axioms are satisfied because signatures • and ⋆ do not interact. We can apply

Proposition 2. Then we consider the following correspondence:

⊢ A,Γ DE(⋆)
DE

⊢ ?⋆A,Γ
!

⊢ A,Γ
ˆ

⊢ ˆA,Γ

⊢ A,?⋆A1, . . . ,?⋆An DG(⋆,⋆,⋆) Pn(⋆)
Pg

⊢ !⋆A,?⋆A1, . . . ,?⋆An

!
⊢ A,ˆA1, . . . ,ˆAn

´
⊢ ´A,ˆA1, . . . ,ˆAn

6.7 seLL

An instance of seLL is determined by: a pre-ordered set (E ,4), and two subsets EW and EC of E which

are upward closed with respect to 4. From these data, we can define an associated instance of superLL

built on the same set of exponential signatures by considering:

E DE CO DG P

E DE(e) CO0(e) if e ∈ EW DG(e,e′,e′) if e4 e′ ∀n ∈ N, Pn(e)
CO1(e,e)

CO2(e,e,e) if e ∈ EC

All exponential signatures are universally quantified: DE(e) above, for example, means ∀e ∈ E , DE(e).

Lemma 15 (Properties). superLL(E ,DE,CO,DG,P) satisfies the cut-elimination axioms, the expansion

axiom and the Girardization axioms.

Proof. Concerning the Girardization axioms, the key property is the definition of DG: DG(e1,e2,e3) ⇐⇒
e1 4 e2 ∧ e2 = e3. Let us focus on (gir3). For k = 1, we choose n

′
1 := e2. For k = 0 and k = 2, we rely on

the upward closure of EW and EC (by taking n
′
1,n

′
2 := e2 for k = 2).

Lemma 16 (seLL to superLL). We can translate proofs (resp. cut-free proofs) of seLL(E ,4,EW ,EC) into

proofs (resp. cut-free proofs) of superLL(E ,DE,CO,DG,P).
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Proof. We can apply the following translations:

⊢ A,Γ
?ed

⊢ ?eA,Γ
7→ ⊢ A,Γ DE(e)

DE
⊢ ?eA,Γ

⊢ Γ e ∈ EW
?ew

⊢ ?eA,Γ
7→ ⊢ Γ

e ∈ EW

CO0(e)
CO

⊢ ?eA,Γ

⊢ ?eA,?eA,Γ e ∈ EC
?ec

⊢ ?eA,Γ
7→ ⊢ ?eA,?eA,Γ

e ∈ EC

CO2(e,e,e)
CO

⊢ ?eA,Γ

⊢ A,?e1
A1, . . . ,?en

An e4 e1 · · · e4 en
!e⊢ !eA,?e1

A1, . . . ,?en
An

7→

⊢ A,?e1
A1, . . . ,?en

An Pn(e)
P

⊢ !eA,?e?e1
A1, . . . ,?e?en

An

1 ≤ i ≤ n

e4 ei

DG(e,ei,ei)
DG

⊢ !eA,?e1
A1, . . . ,?en

An

Lemma 17 (superLL to seLL). We can translate proofs (resp. cut-free proofs) of superLL(E ,DE,CO,DG,P)
into proofs (resp. cut-free proofs) of seLL(E ,4,EW ,EC).

Proof. By Lemma 15 and Proposition 2, we can translate the proofs of the current instance of superLL

into proofs without digging and functorial promotion but with Girard’s promotion instead. Such proofs

correspond to seLL proofs since we have:

⊢ A,?e1
A1, . . . ,?en

An

1 ≤ i ≤ n

e4 ei

DG(e,ei,ei) Pn(e)
Pg

⊢ !eA,?e1
A1, . . . ,?en

An

7→ ⊢ A,?e1
A1, . . . ,?en

An

1 ≤ i ≤ n

e4 ei
!e⊢ !eA,?e1

A1, . . . ,?en
An

6.8 BSLL

We consider an ordered semi-ring (E ,+,0, ·,1,4). From it we can define an instance of superLL:

E DE CO DG P

E DE(1) CO0(0) DG(e1,e2,e1 · e2) ∀n ∈ N, Pn(e)
CO1(e,e

′) if e4 e′

CO2(e1,e2,e1 + e2)

Lemma 18 (Properties). superLL(E ,DE,CO,DG,P) satisfies the cut-elimination axioms, the expansion

axiom and the Girardization axioms.

Proof. Concerning the Girardization axioms, we mostly rely on Remark 3.
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Lemma 19 (BSLL to superLL). We can translate proofs (resp. cut-free proofs) of BSLL(E ,+,0, ·,1,4)
into proofs (resp. cut-free proofs) of superLL(E ,DE,CO,DG,P).

Proof. We only give the translation for the promotion rule:

⊢ A,?e1
A1, . . . ,?en

An
! ·⊢ !eA,?e·e1

A1, . . . ,?e·en
An

7→
⊢ A,?e1

A1, . . . ,?en
An Pn(e)

P
⊢ !eA,?e?e1

A1, . . . ,?e?en
An

1 ≤ i ≤ n

DG(e,ei,e · ei)
DG

⊢ !eA,?e·e1
A1, . . . ,?e·en

An

Lemma 20 (superLL to BSLL). We can translate proofs (resp. cut-free proofs) of superLL(E ,DE,CO,DG,P)
into proofs (resp. cut-free proofs) of BSLL(E ,+,0, ·,1,4).

Proof. By Lemma 18 and Proposition 2, we can translate all the proof of our instance of superLL into

proofs without digging and functorial promotion but with Girard’s promotion instead, which in this case

is exactly the promotion in BSLL.

7 Conclusion

We have presented superLL, a parameterized extension of linear logic. We have shown that, under some

conditions, this system eliminates cuts (Theorem 2). We have described many existing linear logic

systems as instances of superLL (Section 6), so that cut elimination for these systems can be easily

deduced.

Our general goal is not only to prove these theorems on paper, but also to formally prove them on

a proof assistant. In this context, it is particularly interesting to be able to factorize the code of many

proofs into one. This is still work in progress, but the objective is to use superLL as new core system

for the Coq library Yalla [13]. This would also allow users to design their own linear logic variant as an

instance of superLL and to rely on the provided cut-elimination proof.

However, not every linear logic system is an instance of superLL. For instance, Bounded Linear Logic

(BLL) [11] is a system where signatures are polynomials with dependencies inside formulas. Other

systems constrain the exponential rules by global restrictions in the proofs which are not captured by

superLL (see for example L3 and L4 [2, 3]).

The work presented here focuses on the sequent calculus presentation of linear systems. However a

key syntactic contribution of Linear Logic is the introduction of the graphical syntax of proof-nets [8].

Defining a notion of proof-nets for superLL should not be too difficult since the cut-elimination steps we

deal with in the sequent calculus should be local enough. It would be an important step towards the study

of strong normalization for superLL [15].
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António Porto & Francisco Javier López-Fraguas, editors: Proceedings of the 11th International ACM

SIGPLAN Conference on Principles and Practice of Declarative Programming (PPDP), pp. 129–140,

doi:10.1145/1599410.1599427.

[15] Michele Pagani & Lorenzo Tortora de Falco (2010): Strong normalization property for second order linear

logic. Theoretical Computer Science 411(2), pp. 410–444, doi:10.1016/j.tcs.2009.07.053.

http://dx.doi.org/10.4230/LIPIcs.CSL.2015.567
http://dx.doi.org/10.4204/EPTCS.176.1
http://dx.doi.org/10.1016/S0890-5401(03)00010-5
http://dx.doi.org/10.1007/BFb0022564
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1006/inco.1998.2700
http://dx.doi.org/10.1017/S096012950100336X
http://dx.doi.org/10.1016/0304-3975(92)90386-T
http://dx.doi.org/10.1016/j.tcs.2003.10.018
https://perso.ens-lyon.fr/olivier.laurent/yalla/
http://dx.doi.org/10.1145/1599410.1599427
http://dx.doi.org/10.1016/j.tcs.2009.07.053

	1 Linear Logic
	2 Other Linear Logic Systems
	2.1 Functorial Promotion
	2.2 Elementary Linear Logic
	2.3 Soft Linear Logic
	2.4 Light Linear Logic
	2.5 Shifting Operators
	2.6 Subexponentials
	2.7 Stratified Bounded Linear Logic

	3 Super Linear Logic
	4 Cut Elimination
	4.1 Proof Sketch
	4.2 Cut-Elimination Axioms
	4.3 Substitution Lemma
	4.4 Cut-Elimination Proof

	5 Other Proof Transformations
	5.1 Axiom Expansion
	5.2 Girardization
	5.3 Subsumption Elimination

	6 Sub-Systems
	6.1 LL with Functorial Promotion
	6.2 ELL
	6.3 SLL
	6.4 LL
	6.5 LLL
	6.6 Shifting Operators
	6.7 seLL
	6.8 BSLL

	7 Conclusion

