A syntactic introduction to intersection types

Olivier LAURENT
Laboratoire de I'Informatique du Parallélisme
UMR 5668 CNRS ENS-Lyon UCBL INRIA Université de Lyon
46, allée d’Italie — 69364 Lyon cedex 07 — FRANCE
Olivier.Laurent@ens-lyon.fr

April 5, 2012

Abstract

We give an incremental presentation of the invariance of types through reduction in some
intersection type systems with subtyping.

1 The M-calculus

Terms are the usual A-terms with A as binder for A-variables (z, y, ...):
t = x| nt|tt

We use the notation x ¢ t for x not free in t. The syntactic substitution of x by w in t is
denoted t{"/,}. It makes possible the capture of free variables of the substituting term u by As
of the substituted term t. Except when this syntactic substitution is directly involved (which
will occur only in a few places in the paper), we consider A-terms up to a-conversion of bound
variables. We denote the capture-free substitution of x by w in t as t[*/,].

The [-reduction relation ¢ —3 wu is the congruence generated by (Ax.t)u —g, t["/.] (see
Table 1).

The n-reduction relation ¢ —, u is the congruence generated by Ax.(tx) —,, t if x ¢ t (see
Table 2).

2 The simply typed A-calculus

Base types are denoted by X, Y, ... and types are built from base types by means of the binary
operation —:

A = X|A—-A

Typing judgments are of the shape I' - ¢ : A where I' is a finite set of pairs of A-variables
and types (z : A) in which each A-variable occurs at most once, and all the free variables of ¢
are declared in T'.

t—p, U t—pgu t%gu t—gu
t—gu Ax.t —g Ar.u tv—guv vt —gvu

(Az.t)u =5, t["/]

Table 1: S-reduction rules

Tt L=y U t—yu t—qu t—yu

Ax.(tx) =y t

t—yu Azt —y AU tv —y, uv vt —pvu
Table 2: n-reduction rules
var Iz:A+t:B '-t:A— B Frtu:A ,
. . pp
Lr:Abz:A TFit: A B 9 I'ttu:B

Table 3: Typing rules

The typing system obtained from the previously defined terms, types and typing rules is
called ST.

Statement (Monotonicity [MONOT))
IfTHt:Aand ADT then AFt: A (where A DT means that each typing declaration x : B
in I' appears in A).

Lemma 1 (Monotonicity for ST)
MONOT holds for ST.

PRrROOF: By induction on the derivation of I' - ¢ : A. We consider each possible last rule from
Table 3:
(var) If t = x, we have x : A € T thus Atz : A.
(abs) If t = Ax.t/ with A=A" - A" and T,z : A’ t': A”, by induction hypothesis, we
have A,z : A’ : A” thus A F Ax.t' : A.
(app) Ut =t't" withTH¢ : A - Aand T'F¢": A’ | by induction hypothesis, we have
ARt :A - Aand AFt": A" Sothat A-t't": A. O

Statement (Non-free variables [NF'VAR])
Ifxé¢tandT,x: BFt: AthenTHt: A

Lemma 2 (Non-free variables for ST)
NFVAR holds for ST.

PRrROOF: By induction on the derivation of I',x : B+t : A. We consider each possible last rule
from Table 3:

(var) lf t=y#xtheny: AcT and '+ y: A

(abs) Ift = \y.t' and A = A — A" with ',z : B,y : A’ b ¢ : A” then, by induction
hypothesis, I,y : A’ =t : A” and thus I' - \y.t' : A.

(app) Ut =t't" withT,z: B+t : A/ - Aand I,z : B+ ¢" : A’ then, by induction
hypothesis, 'F#': A’ - Aand T ¢’ : A thus T ¢ t": A. O

Statement (General substitution [GSUBST])

Assume that T F t{"/,} : A and for all A and B, T'A F v : B implies T,A + u : B, then
LEt{“/,}: A

Lemma 3 (General substitution for ST)
GSUBST holds for ST.

PROOF: By induction on the derivation of I' - t{"/,} : A. If t = x, we have t{"/,} = v with
I' - v : A and we conclude by hypothesis since t{*/,} = u. Otherwise we consider each
possible last rule of the derivation of I' - ¢{"/,} : A from Table 3:

(var) If t =y # x, we have t{V/,} =y = t{"/.}.

(abs) Ift =X yt' (y=axory#x)with A=A — A" and ',y : A +¢{"/,}: A” then,
by induction hypothesis, T,y : A"+ ¢'{*/,} : A” thus T' - t{"/,} : A.

(app) It =t't" with T F ¢/{"/,} : A - Aand T + t"{"/;} : A’ then, by induction
hypothesis, ' H¢/{*/,} : A/ > Aand T F¢"{"/,} : A" thus T' - ¢{"/,} : A. O

Statement (Variable inversion [INVVAR])
IfTFx:Athenx:Ael.

Lemma 4 (Variable inversion for ST)
INVVAR holds for ST.

PrROOF: The only possible last rule for deriving I' - x : A is (var) and thus z : A € T. O

Statement (Application inversion [INVAPP])
IfT'Ftu: A, there exists a type B such thatU'F-t: B —> A and '+ u : B.

Lemma 5 (Application inversion for ST)
INVAPP holds for ST.

PrROOF: The only possible last rule for deriving I' - tu : A is (app) and thus there exists a
type Bsuch that I'¢t: B—>Aand '+ u: B. O

Statement (Abstraction inversion [INVABS])
IfTF Xx.t: A, there exist B and C such that A=B — C and ',z : BF-t:C.

Lemma 6 (Abstraction inversion for ST)
INVABS holds for ST.

PRrROOF: The only possible last rule for deriving I' - Az.t : A is (abs) and thus there exist B
and C such that A=B —>Cand I',z: B+t:C. O

Statement (Implicative abstraction inversion [INVABSIMP])
IfTHFM.t:A— Bthenl,x: A+t: B.

Lemma 7 (Implicative abstraction inversion)
INVABS = INVABSIMP.

Proor: Immediate. O

Statement (Substitution [SUBST])
IfTo:AFt:B andT'Fu: A then I' - ¢[*/,] : B.

Lemma 8 (Substitution)
GSUBST A INVVAR A MONOT A NFVAR —> SUBST.

PROOF: Note first that = is not declared in I' (otherwise I', x : A is not a valid context) and
thus z is not free in wu.

Up to a-conversion in ¢, we can assume that z is not bound in ¢ and that no free variable
of u is bound in ¢. As a consequence t[*/,] = t{"/,}.

We have Iz : AFt{*/,}: B. If 'z : A/ AF x:C then A= C by (INVVAR), and by
(MonNoOT) we obtain I',z : A, A+ u: A. It is thus possible to apply (GSUBST) to deduce
Mz : AFt{"/,} : B. Finally, since t{*/,} = t[*/,] and z is not free in ¢[*/,], we can
apply (NFVAR) to conclude I' - ¢[*/,] : B. O

Statement (Subject reduction for 5y [FSUBJREDy))
IfT'=t:Aandt —g, u then I' - u : A.

Lemma 9 (Subject reduction for)
SUBST A INVAPP A INVABSIMP = SSUBJREDg.

Proor: If ' F (Az.t)u : A, by (INVAPP), there exists B such that I' - Az.t : B — A and
I'+w:B. By (INVABSIMP), ',z : BFt: A, and by (SuBstT), I' - ¢[*/,] : A. O

Statement (Subject reduction for 5 [3SUBJRED])
IfT'=t:Aandt —gu thenT Fu: A

Lemma 10 (Subject reduction)
GSUBST A SSUBJRED) = SSUBJRED.

PROOF: IfT'Ft:Aandt —gwuthent=c{"/,} and u = ¢{¥/,} with ¢/ =4, u'. Assume that
I'AFt: B then by (BSUBJREDg) we have I', A F «' : B, thus by (GSUBST) we obtain
F'Fu:A. O

Theorem 1 (Subject reduction for ST)
BSUBJRED holds for ST.

PrOOF: By Lemma 3 we have (GSUBST). By Lemma 1 we have (MONOT). By Lemma 2 we
have (NFVAR). By Lemma 4 we have (INVVAR). By Lemma 5 we have (INVAPP). By
Lemma 6 we have (INVABS).

By Lemma 8 we deduce (SUBST). By Lemma 7 we deduce (INVABSIMP). By Lemma 9
we deduce (SSUBJREDg). By Lemma 10 we deduce (SSUBJRED). O

Statement (Subject reduction for 7y [PSUBJREDq))
IfT'Et:Aandt =, uthenFu: A

Lemma 11 (Subject reduction for 1)
NFVAR A INVVAR A INVAPP A INVABS = nSUBJREDy.

Proor: If '+ Az.(tz) : A, by (INVABS), there exist B and C such that A = B — C and
'z : BFtxz: C. By (INVAPP), there exists D such that Iz : B+t : D — C and
I'yz:BF x:D. By (INVVAR), we have B = D. By (NFVAR), we concludeI'+t: B — C
since x ¢ t. O

Statement (Subject reduction for [pSUBJRED])
IfT'=t:Aandt —, u then I' - u: A.

Lemma 12 (Subject reduction for n)
GSuUBST A nSUBJREDg = 7SUBJRED.

PROOF: IfTFt: Aandt —, uthent=c{'/,} and u = ¢{¥/,} with ¢’ —, . Assume that
I'AFt' : B then by (nSUBJREDg) we have I'; A F «’ : B, thus by (GSUBST) we obtain
F'Fwu: A i

Theorem 2 (Subject reduction for n for ST)
nSUBJRED holds for ST.

PrROOF: By Lemma 3 we have (GSUBST). By Lemma 2 we have (NFVAR). By Lemma 4 we
have (INVVAR). By Lemma 5 we have (INVAPP). By Lemma 6 we have (INVABS).

By Lemma 11 we deduce (nSUBJREDy). By Lemma 12 we deduce (nSUBJRED). O

var Nex:AFt: B b T'Ht:A— B 'u:A
La:Aba:A TFoot:A—B TFtu:B

app

I'Ft: A A§B<
I'H¢t: B -

Table 4: Typing rules with subtyping

2.1 Additional results

Statement (Co non-free variables [CONFVAR])
If T+t : A with x not declared in T then x ¢ t and ',z : BF t: A.

Lemma 13 (Co non-free variables)
MONOT <= CONFVAR.

PROOF: First direction: x ¢ t by definition of typing judgments since z is not declared in T'.
(MoNoT) gives Iz : BFt: A.

Second direction: by induction on the context A\I', noting that all its elements correspond
to declarations of variables not free in ¢. O

Statement (Co variable inversion [COINVVAR])
Ifo:AeT thenT Fa: A.

Lemma 14 (Co variable inversion)
(var) <= COINVVAR.

Proor: Immediate. O

Statement (Co application inversion [COINVAPP])
IfTHt:B—-Aand'tu:B then'Ftu: A.

Lemma 15 (Co application inversion)
(app) <= COINVAPP.

Proor: Immediate. O

Statement (Co abstraction inversion [COINVABS])
IfA=B—=>CandTl,z:BFt:C then 'k Ax.t: A.

Lemma 16 (Co abstraction inversion)
(abs) <= COINVABS.

Proor: Immediate. O

3 The simply typed A-calculus with subtyping

3.1 General case

The system ST< is obtained from ST by replacing the typing rules of Table 3 by those from
Table 4 where the relation < between types in any relation satisfying the rules of Table 5 (thus
any reflexive and transitive relation).

A<B B<C
ASATeﬂ _A<C_ trans

Table 5: Minimal subtyping rules

Statement (Monotonicity with < [MONOT<])
IfTHt: A A<T and A < B then A+t : B (where A < T means that for each typing
declaration x : C in I there is a declaration x : D with D < C in A).

Lemma 17 (Monotonicity for ST<)
MoNOT< holds for ST<.

ProoF: We first prove the case A = B by induction on the derivation of ' - ¢t : A. We
consider each possible last rule from Table 4:

(var) If t =z, let A’ be the type of z in A, we have A’ < A and:

- war
Atz A A <A <
AFz: A -
(abs) If t = Azt with A=A"—- A" and T,z : A’ t': A”, by induction hypothesis, we
have A,z : A’ : A” thus A+ \x.t' : A.
(app) Ift=t't" withTH¢: A - Aand '+ t": A’ | by induction hypothesis, we have
ARt :A - Aand AFt": A" Sothat At A.
() f A/ < Awith '+t : A’ then, by induction hypothesis, we have A ¢t : A" thus
AFt: A

‘We conclude with:

ARt A A§B<
A+t:B -

Lemma 18 (Non-free variables for ST<)
NFVAR holds for ST<.

PRrROOF: By induction on the derivation of I'yz : B+ ¢ : A. By using the proof of Lemma 2,
we only need to consider (<) as last rule:

(L) f A < Awith T,z : B+ t: A then, by induction hypothesis, I' + ¢ : A’ thus
I'Ht: A O

Lemma 19 (General substitution for ST<)
GSUBST holds for ST<.

PRrROOF: By following the proof of Lemma 3, it is enough to consider the case of I' - t{"/,} : A
obtained with a (<) rule:

(L) A < Awith ' F ¢{"/,} : A then, by induction hypothesis, T' - ¢t{*/,} : A’ thus
TEt{"/.}: Al O

Statement (Variable inversion with < [INVVAR<])
If 'z : A then there exists B such that B< A andx : B €T.

Lemma 20 (Variable inversion for ST<)
INVVAR< holds for ST<.

PROOF: By induction on the derivation of I' - z : A. The only possible last rules are (var)
and (<):
(var) We have z: A € T with A < A.
() T F x: A" with A’ < A then, by induction hypothesis, we have x : B € T' with
B < A’ thus B < A. O

Statement (Application inversion with < [INVAPP<])
IfTFtu: A, there exist B and C such that B< A, I'Ft:C — B and'Fu:C.

Lemma 21 (Application inversion for ST<)
INVAPP< holds for ST<.

PRrROOF: By induction on the derivation of I' - tw : A. The only possible last rules are (app)
and (<):

(app) There exists a type C such that ' F¢: C — A and I' - u : C and we have A < A.

() T Ftu: A with A" < A then, by induction hypothesis, there exist B and C' such

that B< A" (thus B< A),THt:C— BandT'Fu:C. O

Statement (Abstraction inversion with < [INVABS<])
IfT'F Ax.t: A, there exist B and C such that B—C <A and',x: BFt:C.

Lemma 22 (Abstraction inversion for ST<)
INVABS< holds for ST<.

PROOF: By induction on the derivation of I' = Az.t : A. The only possible last rules are (abs)
and (<):

(abs) There exist B and C such that A= B — C (thus B - C < A)andI',z: BFt:C.

(<) UTF Azx.t: A" with A’ < A then, by induction hypothesis, there exist B and C' such

that B— C < A’ (thus B—-C<A)andT',z:BFt:C. O

Statement (Implication inversion with < [IMP<])
IfA—-B<C—DthenC <A and B<D.

Statement (Implicative abstraction inversion with < [INVABSIMP<])
IfT'F \x.t : A — B, there exist A’ and B' such that A< A', BB <BandT',z: A +t:B.

Lemma 23 (Implicative abstraction inversion with <)
INVABS< A IMP< = INVABSIMP<.

Proor: IfT'F A\x.t: A — B, by (INVABS<), there exist A" and B’ such that A’ - B’ < A —
BandT',x: A'+t: B'. By (IMP<), we have A < A" and B’ < B. O

Lemma 24 (Substitution)
GSUBST A INVVAR< A MONOT< A NFVAR = SUBST.

PROOF: Note first that = is not declared in I' (otherwise I', x : A is not a valid context) and
thus x is not free in u.

Up to a-conversion in ¢, we can assume that z is not bound in ¢ and that no free variable
of u is bound in ¢. As a consequence t[*/,] = t{"/,}.

We have I'yz : A t{*/,}: B. If 'z : AJ/A+ z: C then A < C by (INVVAR<), and
by (MONOT<) we obtain I';z : A, A+ w: C. It is thus possible to apply (GSUBST) to
deduce I',z : A+ t{*/,} : B. Finally, since t{*/,} = t[*/.] and z is not free in t[*/,], we
can apply (NFVAR) to conclude I' - ¢[*/,] : B. O

Lemma 25 (Subject reduction for 5y with <)
SUBST A INVAPP< A INVABsIMP< A (<) = SSUBJREDy.

Proor: IfI'F (Az.t)u: A, by (INVAPP<), there exist B and C such that B < A, ' - A\x.t :
C - Band I' - u: C. By (INVABSIMP<), there exist B’ and C’ such that C < C’,
B'<BandT,z:C'Ft:B. By (<) we have I' - v : C" and by (SuBsT), I' - ¢t[“/,] : B

thus:
C'Et“/.]: B B' < B <
't/ :B - B§A<
Dt/ A -

3.1.1 Additional results

Lemma 26 (Subtyping and typing inclusion)
If INVVAR< A (var) A (<) then:

(MVI, THt: A=TFt:B) < A<DB)

ProOOF: The first implication is obtained by applying (INVVAR<) to z : A+ z : B (obtained
fromz: Atk z: A by (var)).
The second implication is (<). O

Lemma 27 (Co non-free variables with <)
MONOT< = CONFVAR.

PROOF: =z ¢ t by definition of typing judgments since x is not declared in I'. (MONOT<) gives
Iz:BFt: A O

Statement (Co variable inversion with < [COINVVAR<])
IfB<Aandz:BeTl thenT Fx: A.

Lemma 28 (Co variable inversion with <)
(var) A (<) = COINVVAR<.

PROOF: Assume z: B eI

rrz:B 'Y B<A

<
I'kFx: A -

— refl A<B BgCt C<A B<D
A< A ALC rans A—-B<C—=D

Table 6: Subtyping rules for STZ

Statement (Co application inversion with < [COINVAPP<])
IfTHt:C—>B, T+tu:Cand B<AthenTFtu:A.

Lemma 29 (Co application inversion with <)
(app) A () = COINVAPP<.

PROOF:

'+t:C =+ B Fl—u:Capp
I'Htu:B B<A
I'tu: A

IN

Statement (Co abstraction inversion with < [COINVABS<])
IfB—>C<AandT,z:BFt:C thenT'FAx.t: A.

Lemma 30 (Co abstraction inversion with <)
(abs) A (<) = COINVABS<.

PROOF:

I'x:BFt:C
'kAxt:B—C B—>C§A<
'kEXzt: A -

abs

Statement (Co implicative abstraction inversion with < [COINVABSIMP<])
IfA<A,B<BandTl,z:A'+t:B thenT F \x.t: A— B.

Lemma 31 (Co implicative abstraction inversion with <)
MONOT< A (abs) => COINVABSIMP<.

PrOOF: By (MoNOT<) we have I',x : AF ¢: B and then:

I'z:A+t:B
'FXzt:A— B

abs

3.2 Covariant contravariant implication

The system ST is the particular case of ST< where the relation < is defined exactly by the
rules of Table 6.

Statement (Admissibility of the (¢rans) rule [TRANSELIM])
If A < B is derivable then A < B is derivable without the (trans) rule.

Lemma 32 (Transitivity elimination for ST)
TRANSELIM holds for STZ.

PROOF: Let the size |d| of a derivation d be its number of rules. We first prove by induction on
the sum |dy| 4 |dg| that if dy is a (trans)-free derivation of A < B and ds is a (trans)-free
derivation of B < C, then there exists a (trans)-free derivation of A < C. We look at
each possible last rule for ds:

(refl) We have B = C and d; is a (trans)-free derivation of A < C.

(=) I B=B'— B” and C = " — C”, we have (trans)-free derivations d;, of ¢’ < B’
and dj of B” < C"”. We consider each possible last rule for dj:
(refl) We have A = B and dj is a (trans)-free derivation of A < C.
(=) If A=A — A" we have (trans)-free derivations dj of B < A’ and df of
A" < B”. By induction hypothesis applied to the derivations df, and d}, and
d! and df, we obtain (trans)-free derivations of ¢! < A" and A” < C" and we
conclude with (—) that A < C.

We now prove (TRANSELIM) by induction on the derivation of A < B. We consider each
possible last rule from Table 6:

(reft) The derivation is directly without (trans).
(=) fA=A"— B’ and B = C' — D’ then, by induction hypothesis, we have derivations
of C" < A" and B’ < D’ without the (trans) rule. We thus have:
C'<A B'<D
A —-B <C =D

without the (trans) rule.

(trans) If A < C and C < B, by induction hypothesis, we have (trans)-free derivations
of A < C and of C < B. We apply the preliminary result to obtain a (trans)-free
derivation of A < B. O

Lemma 33 (Transitivity-free implication inversion for STZ)
In STZ, TRANSELIM — IMP<.

PrOOF: By induction on the derivation of A - B < C' — D. We consider each possible last
rule from Table 6 except (trans) (thanks to (TRANSELIM)):
(refl) A=C and B=D thus C < Aand B<D.
(—) We immediately have C < A and B < D. O

Theorem 3 (Subject reduction for STZ)
BSUBJRED holds for STZ.

PRrROOF: By Lemma 19 we have (GSUBST). By Lemma 17 we have (MONOT<). By Lemma 18
we have (NFVAR). By Lemma 20 we have (INVVAR<). By Lemma 21 we have (INVAPP<).
By Lemma 22 we have (INVABS<). By Lemma 32 we have (TRANSELIM). By Lemma 33
we deduce (IMP<).

By Lemma 24 we deduce (SUBST). By Lemma 23 we deduce (INVABSIMP<). By Lemma 25
we deduce (SSUBJREDg). By Lemma 10 we deduce (SSUBJRED). O

Lemma 34 (Subject reduction for ny with <)
NEVAR A INVVAR< A INVAPP< A INVABS< A (=) = nSUBJREDy.

10

Proor: IfI' F Az.(tx) : A, by (INVABS<), there exist B and C such that B — C < A and
I'z:BFtx:C. By (INVAPP<), there exist D and E such that E < C, ',z : B+t
D — FEandT',x: B+ z:D. By (INVVAR<), we have B < D. By (NFVAR), we obtain
I'+t: D — FE since z ¢ t. We conclude with:

B<D E<C
I'tt:D— FE D—FE<B-—-C(C
I'tt:B—C

<

Theorem 4 (Subject reduction for n for STZ)
nSUBJRED holds for STZ.

PROOF: By Lemma 19 we have (GSUBST). By Lemma 18 we have (NFVAR). By Lemma 20 we
have (INVVAR<). By Lemma 21 we have (INVAPP<). By Lemma 22 we have (INVABS<).
(=) holds in STZ (Table 6).

By Lemma 34 we deduce (nSUBJREDg). By Lemma 12 we deduce (nSUBJRED). O

3.2.1 Additional results

Statement (Co implication inversion with < [coIMP<])
IfC<Aand B<D then A—B<C—D.

Lemma 35 (Co implication inversion with <)
(—) < colmp<.

Proor: Immediate. O

4 The intersection typed A-calculus with subtyping

Types are now built from base types and the type constant 2 by means of the binary operations
— and N:

A = X|A—-A|Q]ANA

In order to enhance readability, we use the notation (,c; A; for a type obtained in some
way by applying N connectives to the types in (4;);c;. If I =), such an empty intersection is
a notation for Q. If I is a singleton {i} then it is simply a notation for A;

4.1 General case

The system IT< is obtained from the typing rules of Table 7 with any relation < between types
satisfying the rules of Table 8.

Lemma 36 (Monotonicity for IT<)
MoNoT< holds for IT<.

PrOOF: By induction on the derivation of I' - ¢ : A. By using the proof of Lemma 17, it is
enough to consider the case A = B and (N) and (Q2) as last rules:

(MIETA=ANA"withTkF¢t: A and T' + ¢ : A” by induction hypothesis, we have
ArFt:A and AFt: A” thus At: A

11

var Nx:AFt: B I'-t:A— B F'u:A

. . a
Lao:Abz: A TFaxt: Ao B 9 I'ttu:B o
FHt: A A<B _ FHt: A [-t:B — Q0
T'-t:B = IFt:ANB FEt:Q

Table 7: Typing rules with subtyping and intersection

A<B B<C
A<C

trans

A<A refl

A<C Al
ANB<C !

B<C ., C<A C<B

_b=sC ———=
AnB<c i c<AnB '* (C=<9

Table 8: Minimal subtyping rules with intersection

() IfA=Qthen AF¢t:Q. O

Lemma 37 (Non-free variables for 1T<)
NFVAR holds for IT<.

PRrROOF: By induction on the derivation of I';x : B F ¢ : A. By using the proof of Lemma 18,
we only need to consider (N) and (£2) as last rules:

(MIETA=ANA"withT,z: BFt: A and I,z : B+ t: A” then, by induction
hypothesis, 'F¢: A and 't : A” thus '+ +¢: A.
(2) Wehave ' ¢ : Q. O

Lemma 38 (General substitution for IT<)
GSUBST holds for IT<.

PRrROOF: By following the proof of Lemma 19, it is enough to consider the case of I' - t{"/,} : A
obtained with a (N) or a () rule:

(N) fA=ANA"withT F¢{"/,} : A and T+ t{V/,} : A” then, by induction hypothesis,
PHe{"/,}: Aand T H¢{"/,}: A” thus T +¢{"/,} : A.
(2) We have I' - t{"/,} : Q. O

Lemma 39 (Variable inversion for IT<)
INVVAR< holds for IT<.

PROOF: By induction on the derivation of I' - « : A. By using the proof of Lemma 20, we
only need to consider (N) and (£2) as last rules:

(N) A=A NA"withT' k2 : A and T' - 2 : A” then, by induction hypothesis, we have
z:B el with B< A and B < A” and:

B<A B<A
B<A "

(2) If A= then x must be declared with some type B in I and we have:

12

Statement (Application inversion with N [INVAPPA))
IfT'Ftu: A, there exist a set I and two families (B;)icr and (Cy)ier such that (\;c; Bi < A
and forallie I, THt:C; — B; and ' Fu: Cj.

Lemma 40 (Application inversion for I1T<)
INVAPPA holds for 1T<.

PrOOF: By induction on the derivation of ' - twu : A. We look at the possible last rules:

(app) There exists a type Cy such that ' - ¢ : C; — A and I' F w : C; and we have
I={1}and By =A< A.

(<) UTHtu: A with A" < A then, by induction hypothesis, there exist a set I and two
families (B;)icr and (C;)ier such that (),c; B; < A" and foralli e I, T Ht:C; — B;
and I' F u : C;. We then deduce:

mie[Bi<A

(M U Ftu: A and T F tu: A” with A = A’ N A” then, by induction hypothesis,
there exist a set I’ and a set I” (we can assume I’ and I” to be disjoint) and families
(Bi)iel/a (Ci)iel/a (Bi)iel” and (Ci)iel” such that nie]’ Bi < A/, ﬂie]” Bi < A//, for
alli e I'UI" T'Ht:C; — B; and T' - u : C;. We then define I = I’ UI"” and we

trans

have:
Mierr Bi< A Al Nicr Bi < A” A2
niel B <A T ﬂie[Bi < A” ml
ﬂz‘el Bi< A '
() If A=, we choose I = () and we have Q < A. O

Statement (Abstraction inversion with N [INVABSH])
IfT'F Azt 2 A, there exist a set I and two families (B;)ier and (Cy)ier such that (\;c; Bi —
Ci<Aandforalliel, I'x:B;+t:C;.

Lemma 41 (Abstraction inversion for IT<)
INVABSH holds for 1T<.

PrOOF: By induction on the derivation of I' - Ax.t : A. We look at the possible last rules:
(abs) There exist By and C; such that A = B; — € (thus By - C; < A) and ',z :
By Ft:Ci. We choose I = {1}.
(<) UTF Azt : A” with A’ < A then, by induction hypothesis, there exist a set I and
two families (B;)icr and (Cj)ier such that (,c; B; = C; < A’ and for all i € I,
I'x: B;Ft:C;. We then deduce:
miEIBiﬁCiSA/ A/SA

trans

13

(M ITHFAet: A and T F Azt : A” with A = A’ N A” then, by induction hypothesis,
there exist a set I’ and a set I” (we can assume I’ and I” to be disjoint) and
families (Bi)iGIU (Ci)i6]’7 (Bi)z’el” and (Ci)iel” such that mie[’ B, — C; < A,
Nicr» Bi = C; < A" foralli € I'UI", T,z : B -t :C;. We then define I = I'U 1"
and we have:

Nier Bi= Ci < A MNicr» Bi = Ci < A”

N} n?
ﬂieIBi—>C’i§A’ ! ﬂieIBi%CiSA” !
Nier Bi = Ci< A '
() If A=, we choose I = () and we have Q2 < A. 0

Statement (Implication inversion with N [IMPn))
If Nier(Ai = B;) < A — B then there exists J C I such that for alli € J, A < A; and
ﬂiEJ B; < B.

Statement (Implicative abstraction inversion with N [INVABSIMPA])
IfT'F Xt : A — B, there exist a set I and two families (A;)icr and (B;)ier such that
Nic; Bi < B and forallic I, A< A; and ',z : A; Ft: B;.

Lemma 42 (Implicative abstraction inversion with N)
INVABSA A IMPA = INVABSIMPR.

Proor: IfT'F Az.t: A — B, by (INVABSQH), there exist a set I and two families (A;);c; and
(Bi)ier such that (,c.; A = B; < A— Bandforalliec I, I',z: A; Ft:B;. By (IMpPn),
we have J C I such that for all i € J, A < A; and (,c; B; < B. O

Lemma 43 (Subject reduction for 5y with N)

SUBST A INVAPPA A INVABSIMPA A (<) A (N) A (2) = BSUBJREDy.

Proor: IfT'F (Az.t)u : A, by (INVAPPR), there exist a set I and two families (B;);er and
(Ci)ier such that (,c; Bi < Aand forallic I, ' Azt : C; = By and I'Fw: C.

For each i € I, by (INVABSIMPR), there exist a set J; and two families (Dg)jeji and
(E})jes; such that (;c;, D < B; and for all j € J;, C; < Ef and ',z : Ef -¢: D}. By
(<) we have I' - u : E thus, by (SussT), I' - ¢[*/,] : D?.

Then we have:

UFt["/,]: D! .
'k t[u/w] : mjeJi Dzj‘ njeji DZ]" <B <
I'Et[*/s]: Bi = -
Pl_t[u/x]:mieIBi ﬂieIBiSA <
CHE"/.]: A
We use () instead of (M) if I =0 or if J; = () for some i € I. O

Statement (Co-substitution [COSUBST])
IfT F t["/;] : B with x ¢ w and T' contains declarations for the free variables of u then there
erists a type A such that Uz : AFt: B and ' u: A.

Lemma 44 (Co-substitution for IT<)
COSUBST holds for IT<.

14

PrROOF: By induction on the derivation of I F ¢[*/,] : B. If t = x then t[*/,] = u and we
choose A = B. Wehave I'yx : BFx: Band I' - u : B. Otherwise we look at the last
rule of the derivation of I' - ¢[*/,] : B from Table 7:

(var) If we have t = y # z and t["/;] = y. With A = Q, we get T',z : Q F y : B (since

y:Bel)and T'Fu: Q.
= AY-l, z) = Ay (F]" /2 = i Y - z]:

(abs) We have t = \y.t/, t[*/.] = My.(¢'[*/]) and B =B’ — B” with I',y : B' - ¢'[*/,]
B”. By induction hypothesis, there exists A such that I',z : A,y : B+t : B” and
I'wu:A. We then have I'x : A+ Ay.t' : B and we conclude.

(app) If t = t/t" with T' + ¢[“/,] : B' — B and T + ¢"[*/,] : B’ then, by induction
hypothesis, there exist A’ and A” such that I,z : A+t : B — B, T Fu: A,
Mz:AFt":B and T Fu: A”. By Lemma 36 and using:

A/ S A/ reﬂml and A// S A// re'ﬂ;wz
AN A" < A l AN A < A" l

we have Iz : ANA"Ft:B - Band ',z : A/NA"Ft": B and we can derive:

Mx:ANnNA"Ht:B —- B Dx: AnNA"Ht: B
Dx: AnA"-t¢t":B

app

and

F-uwu: A Twu:A”

F'Fu:ANnA" "

so that we choose A = A’ N A”.

() If B" < B with T F ¢[*/,] : B’ then, by induction hypothesis, there exists A such
that D,z : AFt: B and T'F u : A. We can derive:

Lx:A+Rt: B B’§B<
Nz:AFt: B -
(N) If B=B'NB" with T+ ¢[*/,] : B and T - ¢[*/;] : B”, by induction hypothesis,
there exist A’ and A” such that T,z : A’ F¢t: B, T'Fu: A T,xz: A" +t:B"” and
I'wu:A”. By Lemma 36, we can build:

Dx: ANnA"Ft: B F,x:A’ﬂA”l—t:B”ﬂ
Nx:ANA"+t:B

and

F-uwu: A T'wu:A”
FFu:A'NA"

N

so that we choose A = A"N A”.
(Q) If B =9, we choose A = and we have:

Tz ort:o % and Try,.q

Statement (Subject expansion for 5y [FSUBJEXPy))
IfT'=t: A with T containing declarations for the free variables of u and t <—g, v then I' = u : A.

Lemma 45 (Subject expansion for ()
COSUBST A (abs) A (app) = BSUBJEXPy.

15

PrOOF: We use (COSUBST) and we build:

NNx:A+t: B
FEXxt:A— B
' (Az.t)u:B

abs py oA

app

Statement (Subject expansion for 5 [FSUBJEXP])
IfT'=t: A with I' containing declarations for the free variables of w and t <—g u then I' = u : A.

Lemma 46 (Subject expansion)
GSUBST A fSUBJEXPy) = SSUBJEXP.

PROOF: IfT'Ft: Aandt<puthent=c{!/,} and u = c{*/,} with t’ <5, u'. Assume that
A+ ¢ : B then by (BSUBJEXPy) we have I'; A F « : B, thus by (GSUBST) we obtain
F'Fu:A. O

Theorem 5 (Subject expansion for IT<)
BSUBJEXP holds for IT<.

PrROOF: By Lemma 44 we have (COSUBST). By Lemma 38 we have (GSUBST).

By Lemma 45 we deduce (SUBJEXP(). By Lemma 46 we deduce (SSUBJEXP). O

4.1.1 Additional results

Statement (Co application inversion with N [COINVAPPA))
If forallic I, T'Ft:C; — B; andT'-u:C;, and (N;e; Bi < A thenT'-tu: A

Lemma 47 (Co application inversion with N)
(app) A (L) A (N) A (2) = COINVAPPA.

Proor: If I is not empty, we have:

'tu:B; ap " A
Fl_tu:ﬂie[Bi ﬂleIBlgA
<
I'Htu:A -
Otherwise, we use:
'Htu:Q & N<A <
I'Htu:A -

Statement (Co abstraction inversion with N [COINVABSH])
If forallic I, T,z :BiFt:Ci and (e Bi = C; < AthenT' - Azt : A.

Lemma 48 (Co abstraction inversion with N)
(abs) A (<) A (N) A (2) = COINVABSA.

Proor: If I is not empty, we have:

16

A<C B<D
ANB< A ANB<B A<ANA SNB<CAD

C<A B<D
ASB<C—=>D (A-B)NA—-C)<A—(BNO) Q<0 =0

Table 9: BCD subtyping rules

I'z:B;Ft:C; ;
TFet:B —C; %
L'k Xxt: (e Bi = Ci Nier Bi = Ci < A <
FEXxt: A -
Otherwise, we use:
o 9
LAzt Q<A _
F'EAxt: A -
O
Statement (Co implicative abstraction inversion with N [COINVABSIMPR])
If forallic I, A< A; and T x: AjFt: B, and (V;e; Bi < B then T'F Axt: A — B.
Lemma 49 (Co implicative abstraction inversion with N)
MONOT< A (abs) A (N) A (2) = COINVABSIMPA.
ProOOF: For all i € I, by (MONOT<) we have I',z : AFt: B; and then:
I''z:AFt: B; ﬂ
Dx:AFt: (e Bi
If I is empty then:
e:AFt:Q f
By (MoNOT<) we deduce I',z : At : B and we conclude with (abs). O

4.2 BCD case

The original BCD type system is based on the subtyping rules of Table 9. For this presentation,
the transitivity rule cannot be removed: X NY <Y N X is not provable without transitivity if
X #Y (if one tries to find a possible last rule, one would need to prove X < Y'), while we have:

XNnY <Y XNy <X
XNY <(XnY)n(XnY) (XNY)Nn(XnY)<yYnX
XNY<ynX

17

B<A N C<A—D D<B

5

ASC<BoC | C<A>B

D<C—>A D<C-—B .9
D<C = (AN B) o BsA=Q

Table 10: BCD-like subtyping rules

The system IT%CD is the particular case of IT< where the relation < is defined ezactly by
the rules of Tables 8 and 10.

Proposition 1 (Equivalence of presentations of BCD)
The subtyping relation generated by the rules of Tables 8§ and 10 is the same as the relation
generated by the rules of Table 9.

Lemma 50 (Transitivity elimination for ITEP)
TRANSELIM holds for ITEP.

PROOF: Similar to the proof of Lemma 32. O

Lemma 51 (Transitivity-free implication inversion for ITECP)
In ITBP TRANSELIM = IMP.

PROOF: By induction on the derivation of (),c;(4; — B;) < A — B. We consider each
possible last rule from Tables 8 and 10 except (trans) (thanks to (TRANSELIM)):
(reft) I ={1}, Ay = Aand B; = B thus A < A; and B, < B.

(N}) There exists I’ C I such that (., (4; — B;) < A — B and, by induction hypothe-
sis, there exists J C I’ C I such that for alli € J, A < A; and ,.,; B; < B.

(N?) Idem.
(=) We have J =1 ={1}, A< A; and B = By thus B; < B.

(—+) We have (,c;(4;i — B;) < A — D and D < B. By induction hypothesis, there
exists J C I such that for all i € J, A < A; and (), ; B; < D, and we have:

icJ

ieJ
NiesBi<D D<B
nz‘eJ Bi< B
(—nN) We have (,c;(4; = B;) < A — B’ and (;c;(A — B;) < A — B"” with B =
B’ N B”. By induction hypothesis, there exist J' C I and J” C I such that for all
ic€J, A< A;and ey Bi < B and for all i € J”, A < A; and (), ;0 Bi < B”, we

choose J = J' U J"” C I and we get for all i € J, A < A;. If both J" and J” are not
empty, we have:

trans

Niey Bi < B’ ! Nicjn Bi < B”
mieJ B < B ﬂieJ B < B"
Nies Bi <B' 0B

My

T

If J' is empty and J” is not, we have:

18

2 Q< B

(Niegn Bi < Q ;
rans
ﬂieJ” B, < B mieJ” B, <B"
ﬂiej// B’L S B/ ﬂ B//

with J” = J (and similarly if J” is empty but J’ is not). Finally if both J" and J”
are empty, then:

r

Q< B Q< B
Q<B'NB"

(—€Q) We have B =Q and thus J =) and Q < B. O

Theorem 6 (Subject reduction for IT2CD)
BSUBJRED holds for ITEP,

PrROOF: By Lemma 38 we have (GSUBST). By Lemma 36 we have (MONOT<). By Lemma 37
we have (NFVAR). By Lemma 39 we have (INVVAR<). By Lemma 40 we have (INVAPPA).
By Lemma 41 we have (INVABSn). By Lemma 50 we have (TRANSELIM). By Lemma 51
we deduce (IMPR).

By Lemma 24 we deduce (SUBST). By Lemma 42 we deduce (INVABSIMPR). By Lemma 43
we deduce (SSUBJREDg). By Lemma 10 we deduce (SSUBJRED). O

4.2.1 Additional results

Statement (Co implication inversion with N [COIMPA])

If J € I with for alli € J, A< A; and (\;c; Bi < B then (;c;(Ai — B;) < A— B.
Lemma 52 (Co implication inversion with N)
(T'able 10) = colmpn.

PROOF:

A< A
Nier 4i = Bi < A= (N;ey Bi d NicsBi< B

—1
M

T

5 The n-rule

5.1 General case

Lemma 53 (Subject reduction for ny with N)

NFVAR A INVVAR< A INVAPPA A INVABSAH A (<) A (N) A (22)

/\<F|—t:ﬂkeKEk—>Fk - G By - nkeKFk§H>

= nSUBJREDq
't:G—H

19

PROOF: By (INVABS), there exists a set I and two families (B;);cr and (C;)icr with (,c; B; —
Ci<Aand, foralliel, I'z: B;Ftx:C;.

For each i € I, by (INVAPPR) applied to I', 2 : B; -t : Cj, there exists a set .J; and two
families (D;)ier and (E;)ier with ;. F! <Cjandforallje J;,T,2:B+t:D! - E/
and 'z : B; -z : Di

For each j € J;, by (NFVAR), T+t : D! — E! and, by (INVVAR<), B; < D! thus:

JEJi
I'+t: D! — Ej
- - N . .
Fl—t:ﬂjeJiDg%Eg - Bi< D] ... ﬂjeJiEfgCi
I'kt: B, — C;
This proves I' -t : B; — C; for each 7 € I, and we can conclude:
1€l
I't:B;, — C; . A
Fl—t:ﬂiGI(Bi%Ci) ﬂzGI(Bl%CZ)SA .
I'Ht: A -
We use () instead of (N) if I = 0. O
Lemma 54
If INVVAR< A (var) A (<) A (Table 8) then:
<P|—t:ﬂkeKEk_>Fk G E - ﬂkéKFkSH)(E)(Tableﬂ))
'-t:G—H
Proor: We first prove
Fl—t:ﬂkeKEk%Fk - G< Ey --- mkeKFkSH
'-t:G—H
<:>---G§Ek--- mkeKFkSH
ﬂkeKEk%FkSG—)H
For the first implication, we use:
var
xmkeKEk—)Fkl—l'ﬂkeKEk—)Fk GSEk mkeKFkSH

x:ﬂkeKEk—)FkFI':G—)H

and by (INVVAR<) we have (,cx Ex — Fx < G — H. For the second implication, we

use:
- G<E - ﬂkeKFkSH
Fl—t:ﬂkeKEk—)Fk nkEKEk%FkSG_)H<
''t:G—H -

Assume now that we have the rules of Table 10. If K # (), we can build:

20

G < B,
ﬂkeKEk%FkSG—}Fk
Neer Br — Fi < G — Nrer Fr N ek Fe< H

1l
Ny

T

Otherwise, if K = (), we have:

a<coa 9

O<G—H

O<H 5

Conversely, we consider particular cases of the rule:

- G<E --- ﬂkzeKFkSH

With K = {1} and F} = H, we obtain:

c<p H<m '

Fi—>H<G—H

With K = {1} and E; = G, we obtain:

c<a ™ p<nm
C<G— N G—F<G—H
C<G—H

trans

With K = {2}, F1 = F3 = G and Fy N F, = H, we obtain:

D<G—F D<G—oF a<c ™ o™ EFom<mon
Dﬁ(G—)Fl)ﬂ(G—)FQ) " (G—)Fl)ﬁ(G—)FQ)SG—)(FlﬂFQ)

D<G— (Fl N FQ) trans
With K = (), we obtain:
0 Q< 2
B<0 " 0<A-0
B<A—=Q rans
O

Theorem 7 (Subject reduction for 7 for extensions of ITQCD)
NSUBJRED holds for systems |T< containing the subtyping rules of ITECD.

PRrROOF: By Lemma 38 we have (GSUBST). By Lemma 37 we have (NFVAR). By Lemma 39 we
have (INVVAR<). By Lemma 40 we have (INVAPPA). By Lemma 41 we have (INVABSH).
(var), (<), (N), (£2) and Tables 8 and 10 hold for IT<.

By Lemma 54 we have:

21

Fl—t:ﬂkeKEk%Fk o G By - ﬂkEKFk‘SH
'kt:G—H

By Lemma 53 we deduce (nSUBJRED). By Lemma 12 we deduce (nSUBJRED). O

Statement (Implicative types [IMPTYP])
For any type A, there exist a non-empty set I and two families (B;)icr and (C;)icr of types such
that A < ﬂie[B; — C; and nie[B, = C; < A.

Statement (Subject expansion for 1y [pSUBJEXPy])
IfT'Ft:Aandt < uthen'Fu: A

Lemma 55 (Subject expansion for 1)

I'Ft:ANB 'Fi:ANB
MONOTS/\IMPTYP/\(TableﬂA< Tl A)A(TEt:B

ProoOF: By (IMPTYP), we have A < (,.; B; — C; and (,c; B; — C; < A. We prove the
result by induction on the size of the non-empty set I.

) = nSUBJEXPg

e If [is a singleton {1}, we have A < B; — C; and B; — C; < A. By (MoNOT<),
I'xz: By Ft: A thus we can derive:

F,CL‘IBll_tZA ASBl—)Cl

Tz:BFi:B —C) > T.2:Brz:B ZZ;
Tx:BiFtx:Ch
TFe(te): B = O 2% Bi—+Ci<A _
F'FXx.(tz): A -

e If I is not a singleton, we have I = I’ U I” (with both I’ and I"” non-empty and
diSjOint), A § mie[’ BrL — C@ N ﬂiEI” BZ — C’L and ﬂiEI’ Bz — C’L N mie[" B@ — Cz S
A. We can derive:

't A ASﬂieI/Bi_)CimmieI”Bi%Ci
Fkt:niepBi_)Ciﬂmiep/Bi%Ci -
'kt ﬂ B, — C;

iel’
and

T'Ht: A AgmiepBi_)Ciﬂmiep/Bi%Ci <
't mie[’Bi — Cimﬂie[// B, — C; -
Fl_t:mief”Bi —>CZ

thus, by induction hypothesis, I' = Az.(tz) : (\,cp Bi — C; and I' F Az.(tx) :
Nicr Bi — Cj, so that:

LEXx.(tz): (Niep Bi — C; I'EXx.(tz): (Niepr Bi — C;

N
'k)\x(tl') : ﬂiGI/UI” BZ — CZ miEI’UI” BZ — CZ < A

F'FXx.(tx): A
O

Statement (Subject expansion for [SUBJEXP])
IfT'=t:Aandt <y u then I' - u: A.

22

IN

Lemma 56 (Subject expansion for 7)
GSUBST A nSUBJEXP) = nSUBJEXP.

PROOF: IfT'kt: Aandt < uthent = c{'/,} and u = ¢{*'/,} with #’ <, u'. Assume that
A+t : B then by (nSUBJEXP() we have I'; A -« : B, thus by (GSUBST) we obtain
F'wu: A m

5.1.1 Additional results

Lemma 57

nSUBJREDg A MONOT< A (refl) A (N;) A (Table 7)

:><F|—t:ﬂkeKEk—>Fk o G By - ﬂkeKFk§H>
'kt:G—H

PROOF: Assume I' ¢ : (Vo B — Fy, if # ¢ t we have I'w : G =t @ (e Bk — Fy by
(MoNOT<) and then for each k € K:

Ek%FkSEk—)Fk reﬂml
FaxiG}_tiﬂkeKEk%Fk ﬂkeKEk%FkSEk—)Fk< F,:I::GI—CC:GUM G<E;

Ix:GHt: B, — Fy - Fz:Grxz: B
Ix:Grtx: Fy

app

We then build:

Ix:GFta: Fy
N
Fax:Gl_t$:ﬂkeKFk mkeKFkSH

<
Nz:Grtx: H . -
'FXe(tz):G—H s
If K =0, we have:
Q
Iz:Grtx:Q Q§H<
Nz:Grtx: H -
abs
'FXe(tz):G—H
By (nSuBJREDy), we conclude I' -t : G — H. O

5.2 One concrete solution
The system ITECD77 is the particular case of IT< where the relation < is defined ezactly by the
rules of Tables 8, 10 and 11.

BCDn)

Lemma 58 (Transitivity elimination for ITZ

TRANSELIM holds for ITECD".

PROOF: Similar to the proof of Lemma 32 but using the number of rules plus the numver of
(X7) rules as the size of a derivation. O

23

— X A<Q— X

Table 11: Extensionality subtyping rules
Lemma 59 (Transitivity-free implication inversion for ITECD")
In ITEP" TRANSELIM —> IMP.

PROOF: By induction on the derivation of (. ;(4; = B;) < A — B. We consider each possible
last rule from Tables 8, 10 and 11 except (trans) (thanks to (TRANSELIM)). Since rules
from Table 11 are not possible last rules, we can rely on the proof of Lemma 51. O

Theorem 8 (Subject reduction for ITECD")

BCD
BSUBJRED holds for ITZ n

PrROOF: By Lemma 38 we have (GSUBST). By Lemma 36 we have (MONOT<). By Lemma 37
we have (NF'VAR). By Lemma 39 we have (INVVAR<). By Lemma 40 we have (INVAPPQ).
By Lemma 41 we have (INVABSn). By Lemma 58 we have (TRANSELIM). By Lemma 59
we deduce (IMPR).

By Lemma 24 we deduce (SUBST). By Lemma 42 we deduce (INVABSIMPR). By Lemma 43
we deduce (SSUBJREDg). By Lemma 10 we deduce (SSUBJRED). O

Lemma 60 (Implicative types for extensions of ITECD”)

IMPTYP holds for systems containing the subtyping rules of ITECD".

PRrROOF: By induction on the type A:

o If A= X, we choose I = {1}, B; = and C; = X. We have:

aosx<aox

Xy and
X<O—=X 0o X <X X,
o If A=Q, we choose I = {1}, By = Q and C; = Q. We have:
a<ooa ¢ ad gog<ath

o If A=A — B, we choose I = {1}, B = A" and Cy, = B'.

o If A= A'N A", by induction hypothesis, we have I, (B;)icr, (Ci)icr, 1", (Bi)icr
and (C’i)iEI// SuCh that A/ S ﬂiel’ BZ — C“ ﬂie]l Bz — CZ S A/, A// S nie[” Bz — C’L
and (v Bi = C; < A”. We choose I = I' UI" and we have:

ANnA" < ﬂBl—>C@ﬂ m B, — C;
el’ el

and
mBz’_)Ciﬂ m B = Ci<ANnA”
el el

24

Dy < Fy Al Dy < Ey 2
DinNnDy < E; ! DiNDy < Ey ml
DiNDy < E;{NEy "

Theorem 9 (Subject expansion for 7 for ITECD")
nSUBJEXP holds for IT2P".

PRrROOF: By Lemma 38 we have (GSUBST). By Lemma 36 we have (MONOT<). By Lemma 60
we have (IMpTYP). Table 7 holds for ITECDW.

A<A reﬁl B<EB 7’6{_le
PFt:AnB AnB<A ! and THi:ANB ANB<B
'kt A - I'+t:B -

By Lemma 55 we deduce (nSUBJEXP(). By Lemma 56 we deduce (nSUBJEXP). O

5.2.1 Additional results

Lemma 61 (Necessity of IMPTYP for nSUBJEXPy)
nSUBJEXPy A (var) A INVVAR< A INVABSA A INVAPPA A (Table 8) A (Table 10) = IMPTYP.

PROOF: By (var) and (nSUBJEXP(), we have x : A+ Ay.zy : A. By (INVABSn), there exist
I, (B;)icr and (Cj)ier such that (),.; B; — C; < Aand foralli € I, v : Ay : B; -
xy : C;. For each i € I, by (INVAPPR), there exist J;, (D'ij)jeji and (Ez-j)jeji such that
Njes, Bl < Ciandforall je J, v Ay:Birx: Dl - El anda: Ay : B -y: Dl
By (INVVAR<), we obtain A < Dg — Ef and B; < Df
We then have:

B; < D!
.) - - — —71
A<D} — E] D§—>Ef§Bi—>E§t
. rans
- —N .
ASBi_}mjeJiEzq ﬂjeJiEg SC’L

A< Nier Bi = G
If some J; is empty, we use:

i<B oa % a<c

—r

If I is not empty, we are done. Otherwise we have 2 < A. This entails:

— 0,
_ < <
ASQ—>Q—>Q and Q%Q§2Q<AQ_Atmns

25

[MonoT] T H¢t: Aand A DT then AF¢t: A (where A DO T means that each
typing declaration z : B in T" appears in A).
[MoNOT<] IfI'Ft¢: A, A<T and A< Bthen AFt: B (where A <T means that for

each typing declaration x : C' in I" there is a declaration x : D with D < C
in A).

INFVAR] Ifz¢tandT,z:BFt:Athen'Ft: A

[GSuBST] Assume that I' - ¢{"/;} : A and for all A and B, I', A F v : B implies
VAR w: B, then I'=t{"/,} : A.

[SuBsT| IfT'z:AkFt:BandT'Fu:AthenT F¢[*/;]: B.

[coSuBsT| IfT'F¢[*/;]: B withz ¢ wand I' contains declarations for the free variables
of u then there exists a type A such that 'z : AF¢t: Band ' u: A.

[INVVAR| IfT'F2:Athenz:Acl.
[INVVAR<] IfT'F z: A then there exists B such that B< Aand z: B eT.
[INVAPP] IfI'F tu: A, there exists a type Bsuch that '-¢: B — Aand ' -u : B.
[INVAPP<] IfT' F tu: A, there exist B and C such that B< A, I'+¢:C — B and
'Fu:C.
[INVAPPA] If 'k tw: A, there exist a set I and two families (B;);er and (C;)ier such
that (,c; Bi < Aandforallic [,I't:C; — Biand I' - u : ;.
[INVABS] If ' Az.t: A, there exist B and C such that A=B — C and ',z : B+
t:C.
[INVABS<] IfI'F Az.t: A, there exist B and C such that B - C < Aand I',z: B+
t:C.
[INVABSA] IfT'F Ax.t: A, there exist a set [and two families (B;);cr and (C;);er such
that (),e; Bi = Ci< Aandforallic I, T z: B;-t:C;.
[INvABsIMP] IfI'FAzt:A— BthenI',z: Akt B.
[INVABSIMP<] IfT'F Az.t: A — B, there exist A’ and B’ such that A < A’, B’ < B and
Drx:A'+t:B.
[INVABsIMPA| IfT'F Az.t: A — B, there exist a set I and two families (4;);c; and (B;)er
such that (;c; Bi < Band forallic I, A< A;and ',z : A; 1 : B;.

[TRANSELIM] If A < B is derivable then A < B is derivable without the (trans) rule.
[IMp<] IfA— B<C—DthenC<Aand B<D.
[(ImpPn] If (7 (A; = B;) < A — B then there exists J C I such that for all i € J,
A S Az and ﬂiEJBi S B.
[IMmpTyP] For any type A, there exist a non-empty set I and two families (B;);c; and
(Ci)ier of types such that A <(,.; B; — Cj and (,c; B; — C; < A.

[BSUBJIREDy| IfI'Ft:Aandt—g, uthen 'k wu: A.

[BSUBJRED] IfI't:Aandt—pguthen'Fu: A

MSUBJREDg] IfT'H¢: A and t —,, u then I' - w : A.

[MSUBJRED| IfI'Ft:Aandt—, uthen'Fu: A.

[BSuBJEXPy] IfI' +t: A with I' containing declarations for the free variables of u and

t <pg, u then I' - u : A.

[BSuBJExp| IfI'F ¢: A with I containing declarations for the free variables of u and
t<pguthenI'Fu: A

MSUBJEXPg] IfI'Ht:Aandt <, uthen ' u: A

MSUBJEXP] IfI'+t¢:Aandt <, uthen'Fu: A

Table 12: List of the main statements
26

The boxed statements below are those which depend on the subtyping rules in a non mono-
tonic way. A good way to prove them is to rely on TRANSELIM.

A Proofs of fSubjRed

A.1 Simple types

GSUBST — — — N
1
NFVAr AWV
MoONOT — Lemma 8, SuBST \, Lemma 19, 3SUBJRED
INVVAR Ve
Lemma 9

INvVAPP - ——— [BSuBJREDy

INvABs 27 [yyvABsIMp

A.2 Simple types with subtyping

GSUBST — — — N
i}
NFVARrR AV
Lemma 24 Lemma 10
MoNoT< — _— SUBST —— [SUBJRE
INVVAR< e
INVAPP. — 22 39upjREDy
INVABS< — Lomma 23 INvABsIMP<
/ (<) /
A.3 Intersection types
GSUBST — — — N
i}
NFVAR AV
Lemma 24 Lemma 10
MoNoT< — _— SUBST ——FF [pSuBJl
INVVAR< e
INVAPP, — el aquBIRED, N
INVABSA — Lemma 42, INVABSIMPL
% (D AMAQ) 7

B Proof of fSubjExp with intersection

COSUBST \ GSUBST \,
(abs) — —mmadd 3qupiExpy — ——2240 3SupsExP
(app)

27

C Proofs of nSubjRed

C.1 Simple types

NEVAR N\
INVVAR Y\ GSUBST Y\

Lemma 11 Lemma 12

INvVAPP - —— nSUBJREDy — —— = nSUBJRED
INvABs N

C.2 Simple types with subtyping

NEVAR N\,
INVVAR< N\ GSUBST Y\

L 34 L 12
INVAPP. — %% 5SUBJRED) — — % pSUBJRED

INVABS<

(=)
C.3 Intersection types
NFVArR
INVVAR< N\ GSUBST
INVAPP,, — —ommasBanddl o gupyREDy — o212 QUBJRED
InvABS,
(var) A (YA (M)A ()~
(Tables 8 and 10)

D Proof of nSubjExp with intersection

MoNoT< N\ GSUBST \,

IMPTYP — 2%, squpyExpy — @90 aqupsEXP
(Table 7) 7

'Ft:A1NA
< 1 2 > /(

Ff‘t:Ai

28

