
A syntactic introduction to intersection types

Olivier LAURENT
Laboratoire de l’Informatique du Parallélisme

UMR 5668 CNRS ENS-Lyon UCBL INRIA Université de Lyon

46, allée d’Italie – 69364 Lyon cedex 07 – FRANCE

Olivier.Laurent@ens-lyon.fr

April 5, 2012

Abstract

We give an incremental presentation of the invariance of types through reduction in some
intersection type systems with subtyping.

1 The λ-calculus

Terms are the usual λ-terms with λ as binder for λ-variables (x, y, ...):

t ::= x | λx.t | t t

We use the notation x /∈ t for x not free in t. The syntactic substitution of x by u in t is
denoted t{u/x}. It makes possible the capture of free variables of the substituting term u by λs
of the substituted term t. Except when this syntactic substitution is directly involved (which
will occur only in a few places in the paper), we consider λ-terms up to α-conversion of bound
variables. We denote the capture-free substitution of x by u in t as t[u/x].

The β-reduction relation t →β u is the congruence generated by (λx.t)u →β0 t[
u/x] (see

Table 1).
The η-reduction relation t→η u is the congruence generated by λx.(t x)→η0 t if x /∈ t (see

Table 2).

2 The simply typed λ-calculus

Base types are denoted by X, Y , ... and types are built from base types by means of the binary
operation →:

A ::= X | A→ A

Typing judgments are of the shape Γ ` t : A where Γ is a finite set of pairs of λ-variables
and types (x : A) in which each λ-variable occurs at most once, and all the free variables of t
are declared in Γ.

(λx.t)u→β0 t[
u/x]

t→β0 u

t→β u

t→β u

λx.t→β λx.u

t→β u

t v →β u v

t→β u

v t→β v u

Table 1: β-reduction rules

1

x /∈ t
λx.(t x)→η0 t

t→η0 u

t→η u

t→η u

λx.t→η λx.u

t→η u

t v →η u v

t→η u

v t→η v u

Table 2: η-reduction rules

var
Γ, x : A ` x : A

Γ, x : A ` t : B
abs

Γ ` λx.t : A→ B
Γ ` t : A→ B Γ ` u : A app

Γ ` t u : B

Table 3: Typing rules

The typing system obtained from the previously defined terms, types and typing rules is
called ST.

Statement (Monotonicity [Monot])
If Γ ` t : A and ∆ ⊇ Γ then ∆ ` t : A (where ∆ ⊇ Γ means that each typing declaration x : B
in Γ appears in ∆).

Lemma 1 (Monotonicity for ST)
Monot holds for ST.

Proof: By induction on the derivation of Γ ` t : A. We consider each possible last rule from
Table 3:

(var) If t = x, we have x : A ∈ Γ thus ∆ ` x : A.

(abs) If t = λx.t′ with A = A′ → A′′ and Γ, x : A′ ` t′ : A′′, by induction hypothesis, we
have ∆, x : A′ ` t′ : A′′ thus ∆ ` λx.t′ : A.

(app) If t = t′ t′′ with Γ ` t′ : A′ → A and Γ ` t′′ : A′ , by induction hypothesis, we have
∆ ` t′ : A′ → A and ∆ ` t′′ : A′. So that ∆ ` t′ t′′ : A. 2

Statement (Non-free variables [NFVar])
If x /∈ t and Γ, x : B ` t : A then Γ ` t : A.

Lemma 2 (Non-free variables for ST)
NFVar holds for ST.

Proof: By induction on the derivation of Γ, x : B ` t : A. We consider each possible last rule
from Table 3:

(var) If t = y 6= x then y : A ∈ Γ and Γ ` y : A.

(abs) If t = λy.t′ and A = A′ → A′′ with Γ, x : B, y : A′ ` t′ : A′′ then, by induction
hypothesis, Γ, y : A′ ` t′ : A′′ and thus Γ ` λy.t′ : A.

(app) If t = t′ t′′ with Γ, x : B ` t′ : A′ → A and Γ, x : B ` t′′ : A′ then, by induction
hypothesis, Γ ` t′ : A′ → A and Γ ` t′′ : A′ thus Γ ` t′ t′′ : A. 2

Statement (General substitution [GSubst])
Assume that Γ ` t{v/x} : A and for all ∆ and B, Γ,∆ ` v : B implies Γ,∆ ` u : B, then
Γ ` t{u/x} : A.

Lemma 3 (General substitution for ST)
GSubst holds for ST.

2

Proof: By induction on the derivation of Γ ` t{v/x} : A. If t = x, we have t{v/x} = v with
Γ ` v : A and we conclude by hypothesis since t{u/x} = u. Otherwise we consider each
possible last rule of the derivation of Γ ` t{v/x} : A from Table 3:

(var) If t = y 6= x, we have t{v/x} = y = t{u/x}.
(abs) If t = λy.t′ (y = x or y 6= x) with A = A′ → A′′ and Γ, y : A′ ` t′{v/x} : A′′ then,

by induction hypothesis, Γ, y : A′ ` t′{u/x} : A′′ thus Γ ` t{u/x} : A.

(app) If t = t′ t′′ with Γ ` t′{v/x} : A′ → A and Γ ` t′′{v/x} : A′ then, by induction
hypothesis, Γ ` t′{u/x} : A′ → A and Γ ` t′′{u/x} : A′ thus Γ ` t{u/x} : A. 2

Statement (Variable inversion [InvVar])
If Γ ` x : A then x : A ∈ Γ.

Lemma 4 (Variable inversion for ST)
InvVar holds for ST.

Proof: The only possible last rule for deriving Γ ` x : A is (var) and thus x : A ∈ Γ. 2

Statement (Application inversion [InvApp])
If Γ ` t u : A, there exists a type B such that Γ ` t : B → A and Γ ` u : B.

Lemma 5 (Application inversion for ST)
InvApp holds for ST.

Proof: The only possible last rule for deriving Γ ` t u : A is (app) and thus there exists a
type B such that Γ ` t : B → A and Γ ` u : B. 2

Statement (Abstraction inversion [InvAbs])
If Γ ` λx.t : A, there exist B and C such that A = B → C and Γ, x : B ` t : C.

Lemma 6 (Abstraction inversion for ST)
InvAbs holds for ST.

Proof: The only possible last rule for deriving Γ ` λx.t : A is (abs) and thus there exist B
and C such that A = B → C and Γ, x : B ` t : C. 2

Statement (Implicative abstraction inversion [InvAbsImp])
If Γ ` λx.t : A→ B then Γ, x : A ` t : B.

Lemma 7 (Implicative abstraction inversion)
InvAbs =⇒ InvAbsImp.

Proof: Immediate. 2

Statement (Substitution [Subst])
If Γ, x : A ` t : B and Γ ` u : A then Γ ` t[u/x] : B.

Lemma 8 (Substitution)
GSubst ∧ InvVar ∧Monot ∧NFVar =⇒ Subst.

Proof: Note first that x is not declared in Γ (otherwise Γ, x : A is not a valid context) and
thus x is not free in u.

Up to α-conversion in t, we can assume that x is not bound in t and that no free variable
of u is bound in t. As a consequence t[u/x] = t{u/x}.
We have Γ, x : A ` t{x/x} : B. If Γ, x : A,∆ ` x : C then A = C by (InvVar), and by
(Monot) we obtain Γ, x : A,∆ ` u : A. It is thus possible to apply (GSubst) to deduce
Γ, x : A ` t{u/x} : B. Finally, since t{u/x} = t[u/x] and x is not free in t[u/x], we can
apply (NFVar) to conclude Γ ` t[u/x] : B. 2

3

Statement (Subject reduction for β0 [βSubjRed0])
If Γ ` t : A and t→β0 u then Γ ` u : A.

Lemma 9 (Subject reduction for β0)
Subst ∧ InvApp ∧ InvAbsImp =⇒ βSubjRed0.

Proof: If Γ ` (λx.t)u : A, by (InvApp), there exists B such that Γ ` λx.t : B → A and
Γ ` u : B. By (InvAbsImp), Γ, x : B ` t : A, and by (Subst), Γ ` t[u/x] : A. 2

Statement (Subject reduction for β [βSubjRed])
If Γ ` t : A and t→β u then Γ ` u : A.

Lemma 10 (Subject reduction)
GSubst ∧ βSubjRed0 =⇒ βSubjRed.

Proof: If Γ ` t : A and t→β u then t = c{t′/x} and u = c{u′/x} with t′ →β0 u
′. Assume that

Γ,∆ ` t′ : B then by (βSubjRed0) we have Γ,∆ ` u′ : B, thus by (GSubst) we obtain
Γ ` u : A. 2

Theorem 1 (Subject reduction for ST)
βSubjRed holds for ST.

Proof: By Lemma 3 we have (GSubst). By Lemma 1 we have (Monot). By Lemma 2 we
have (NFVar). By Lemma 4 we have (InvVar). By Lemma 5 we have (InvApp). By
Lemma 6 we have (InvAbs).

By Lemma 8 we deduce (Subst). By Lemma 7 we deduce (InvAbsImp). By Lemma 9
we deduce (βSubjRed0). By Lemma 10 we deduce (βSubjRed). 2

Statement (Subject reduction for η0 [ηSubjRed0])
If Γ ` t : A and t→η0 u then Γ ` u : A.

Lemma 11 (Subject reduction for η0)
NFVar ∧ InvVar ∧ InvApp ∧ InvAbs =⇒ ηSubjRed0.

Proof: If Γ ` λx.(t x) : A, by (InvAbs), there exist B and C such that A = B → C and
Γ, x : B ` t x : C. By (InvApp), there exists D such that Γ, x : B ` t : D → C and
Γ, x : B ` x : D. By (InvVar), we have B = D. By (NFVar), we conclude Γ ` t : B → C
since x /∈ t. 2

Statement (Subject reduction for η [ηSubjRed])
If Γ ` t : A and t→η u then Γ ` u : A.

Lemma 12 (Subject reduction for η)
GSubst ∧ ηSubjRed0 =⇒ ηSubjRed.

Proof: If Γ ` t : A and t→η u then t = c{t′/x} and u = c{u′/x} with t′ →η0 u
′. Assume that

Γ,∆ ` t′ : B then by (ηSubjRed0) we have Γ,∆ ` u′ : B, thus by (GSubst) we obtain
Γ ` u : A. 2

Theorem 2 (Subject reduction for η for ST)
ηSubjRed holds for ST.

Proof: By Lemma 3 we have (GSubst). By Lemma 2 we have (NFVar). By Lemma 4 we
have (InvVar). By Lemma 5 we have (InvApp). By Lemma 6 we have (InvAbs).

By Lemma 11 we deduce (ηSubjRed0). By Lemma 12 we deduce (ηSubjRed). 2

4

var
Γ, x : A ` x : A

Γ, x : A ` t : B
abs

Γ ` λx.t : A→ B
Γ ` t : A→ B Γ ` u : A app

Γ ` t u : B

Γ ` t : A A ≤ B ≤
Γ ` t : B

Table 4: Typing rules with subtyping

2.1 Additional results

Statement (Co non-free variables [coNFVar])
If Γ ` t : A with x not declared in Γ then x /∈ t and Γ, x : B ` t : A.

Lemma 13 (Co non-free variables)
Monot⇐⇒ coNFVar.

Proof: First direction: x /∈ t by definition of typing judgments since x is not declared in Γ.
(Monot) gives Γ, x : B ` t : A.

Second direction: by induction on the context ∆\Γ, noting that all its elements correspond
to declarations of variables not free in t. 2

Statement (Co variable inversion [coInvVar])
If x : A ∈ Γ then Γ ` x : A.

Lemma 14 (Co variable inversion)
(var)⇐⇒ coInvVar.

Proof: Immediate. 2

Statement (Co application inversion [coInvApp])
If Γ ` t : B → A and Γ ` u : B then Γ ` t u : A.

Lemma 15 (Co application inversion)
(app)⇐⇒ coInvApp.

Proof: Immediate. 2

Statement (Co abstraction inversion [coInvAbs])
If A = B → C and Γ, x : B ` t : C then Γ ` λx.t : A.

Lemma 16 (Co abstraction inversion)
(abs)⇐⇒ coInvAbs.

Proof: Immediate. 2

3 The simply typed λ-calculus with subtyping

3.1 General case

The system ST≤ is obtained from ST by replacing the typing rules of Table 3 by those from
Table 4 where the relation ≤ between types in any relation satisfying the rules of Table 5 (thus
any reflexive and transitive relation).

5

refl
A ≤ A

A ≤ B B ≤ C
trans

A ≤ C

Table 5: Minimal subtyping rules

Statement (Monotonicity with ≤ [Monot≤])
If Γ ` t : A, ∆ ≤ Γ and A ≤ B then ∆ ` t : B (where ∆ ≤ Γ means that for each typing
declaration x : C in Γ there is a declaration x : D with D ≤ C in ∆).

Lemma 17 (Monotonicity for ST≤)
Monot≤ holds for ST≤.

Proof: We first prove the case A = B by induction on the derivation of Γ ` t : A. We
consider each possible last rule from Table 4:

(var) If t = x, let A′ be the type of x in ∆, we have A′ ≤ A and:

var
∆ ` x : A′ A′ ≤ A ≤

∆ ` x : A

(abs) If t = λx.t′ with A = A′ → A′′ and Γ, x : A′ ` t′ : A′′, by induction hypothesis, we
have ∆, x : A′ ` t′ : A′′ thus ∆ ` λx.t′ : A.

(app) If t = t′ t′′ with Γ ` t′ : A′ → A and Γ ` t′′ : A′ , by induction hypothesis, we have
∆ ` t′ : A′ → A and ∆ ` t′′ : A′. So that ∆ ` t′ t′′ : A.

(≤) If A′ ≤ A with Γ ` t : A′ then, by induction hypothesis, we have ∆ ` t : A′ thus
∆ ` t : A.

We conclude with:

∆ ` t : A A ≤ B ≤
∆ ` t : B

2

Lemma 18 (Non-free variables for ST≤)
NFVar holds for ST≤.

Proof: By induction on the derivation of Γ, x : B ` t : A. By using the proof of Lemma 2,
we only need to consider (≤) as last rule:

(≤) If A′ ≤ A with Γ, x : B ` t : A′ then, by induction hypothesis, Γ ` t : A′ thus
Γ ` t : A. 2

Lemma 19 (General substitution for ST≤)
GSubst holds for ST≤.

Proof: By following the proof of Lemma 3, it is enough to consider the case of Γ ` t{v/x} : A
obtained with a (≤) rule:

(≤) If A′ ≤ A with Γ ` t{v/x} : A′ then, by induction hypothesis, Γ ` t{u/x} : A′ thus
Γ ` t{u/x} : A. 2

6

Statement (Variable inversion with ≤ [InvVar≤])
If Γ ` x : A then there exists B such that B ≤ A and x : B ∈ Γ.

Lemma 20 (Variable inversion for ST≤)
InvVar≤ holds for ST≤.

Proof: By induction on the derivation of Γ ` x : A. The only possible last rules are (var)
and (≤):

(var) We have x : A ∈ Γ with A ≤ A.

(≤) If Γ ` x : A′ with A′ ≤ A then, by induction hypothesis, we have x : B ∈ Γ with
B ≤ A′ thus B ≤ A. 2

Statement (Application inversion with ≤ [InvApp≤])
If Γ ` t u : A, there exist B and C such that B ≤ A, Γ ` t : C → B and Γ ` u : C.

Lemma 21 (Application inversion for ST≤)
InvApp≤ holds for ST≤.

Proof: By induction on the derivation of Γ ` t u : A. The only possible last rules are (app)
and (≤):

(app) There exists a type C such that Γ ` t : C → A and Γ ` u : C and we have A ≤ A.

(≤) If Γ ` t u : A′ with A′ ≤ A then, by induction hypothesis, there exist B and C such
that B ≤ A′ (thus B ≤ A), Γ ` t : C → B and Γ ` u : C. 2

Statement (Abstraction inversion with ≤ [InvAbs≤])
If Γ ` λx.t : A, there exist B and C such that B → C ≤ A and Γ, x : B ` t : C.

Lemma 22 (Abstraction inversion for ST≤)
InvAbs≤ holds for ST≤.

Proof: By induction on the derivation of Γ ` λx.t : A. The only possible last rules are (abs)
and (≤):

(abs) There exist B and C such that A = B → C (thus B → C ≤ A) and Γ, x : B ` t : C.

(≤) If Γ ` λx.t : A′ with A′ ≤ A then, by induction hypothesis, there exist B and C such
that B → C ≤ A′ (thus B → C ≤ A) and Γ, x : B ` t : C. 2

Statement (Implication inversion with ≤ [Imp≤])
If A→ B ≤ C → D then C ≤ A and B ≤ D.

Statement (Implicative abstraction inversion with ≤ [InvAbsImp≤])
If Γ ` λx.t : A→ B, there exist A′ and B′ such that A ≤ A′, B′ ≤ B and Γ, x : A′ ` t : B′.

Lemma 23 (Implicative abstraction inversion with ≤)
InvAbs≤ ∧ Imp≤ =⇒ InvAbsImp≤.

Proof: If Γ ` λx.t : A→ B, by (InvAbs≤), there exist A′ and B′ such that A′ → B′ ≤ A→
B and Γ, x : A′ ` t : B′. By (Imp≤), we have A ≤ A′ and B′ ≤ B. 2

Lemma 24 (Substitution)
GSubst ∧ InvVar≤ ∧Monot≤ ∧NFVar =⇒ Subst.

7

Proof: Note first that x is not declared in Γ (otherwise Γ, x : A is not a valid context) and
thus x is not free in u.

Up to α-conversion in t, we can assume that x is not bound in t and that no free variable
of u is bound in t. As a consequence t[u/x] = t{u/x}.
We have Γ, x : A ` t{x/x} : B. If Γ, x : A,∆ ` x : C then A ≤ C by (InvVar≤), and
by (Monot≤) we obtain Γ, x : A,∆ ` u : C. It is thus possible to apply (GSubst) to
deduce Γ, x : A ` t{u/x} : B. Finally, since t{u/x} = t[u/x] and x is not free in t[u/x], we
can apply (NFVar) to conclude Γ ` t[u/x] : B. 2

Lemma 25 (Subject reduction for β0 with ≤)
Subst ∧ InvApp≤ ∧ InvAbsImp≤ ∧ (≤) =⇒ βSubjRed0.

Proof: If Γ ` (λx.t)u : A, by (InvApp≤), there exist B and C such that B ≤ A, Γ ` λx.t :
C → B and Γ ` u : C. By (InvAbsImp≤), there exist B′ and C ′ such that C ≤ C ′,
B′ ≤ B and Γ, x : C ′ ` t : B′. By (≤) we have Γ ` u : C ′ and by (Subst), Γ ` t[u/x] : B′

thus:

Γ ` t[u/x] : B′ B′ ≤ B
≤

Γ ` t[u/x] : B B ≤ A
≤

Γ ` t[u/x] : A

2

3.1.1 Additional results

Lemma 26 (Subtyping and typing inclusion)
If InvVar≤ ∧ (var) ∧ (≤) then:

((∀t∀Γ, Γ ` t : A⇒ Γ ` t : B) ⇐⇒ A ≤ B)

Proof: The first implication is obtained by applying (InvVar≤) to x : A ` x : B (obtained
from x : A ` x : A by (var)).

The second implication is (≤). 2

Lemma 27 (Co non-free variables with ≤)
Monot≤ =⇒ coNFVar.

Proof: x /∈ t by definition of typing judgments since x is not declared in Γ. (Monot≤) gives
Γ, x : B ` t : A. 2

Statement (Co variable inversion with ≤ [coInvVar≤])
If B ≤ A and x : B ∈ Γ then Γ ` x : A.

Lemma 28 (Co variable inversion with ≤)
(var) ∧ (≤) =⇒ coInvVar≤.

Proof: Assume x : B ∈ Γ:

var
Γ ` x : B B ≤ A ≤

Γ ` x : A

2

8

refl
A ≤ A

A ≤ B B ≤ C
trans

A ≤ C
C ≤ A B ≤ D →
A→ B ≤ C → D

Table 6: Subtyping rules for ST→≤

Statement (Co application inversion with ≤ [coInvApp≤])
If Γ ` t : C → B, Γ ` u : C and B ≤ A then Γ ` t u : A.

Lemma 29 (Co application inversion with ≤)
(app) ∧ (≤) =⇒ coInvApp≤.

Proof:

Γ ` t : C → B Γ ` u : C app
Γ ` t u : B B ≤ A ≤

Γ ` t u : A

2

Statement (Co abstraction inversion with ≤ [coInvAbs≤])
If B → C ≤ A and Γ, x : B ` t : C then Γ ` λx.t : A.

Lemma 30 (Co abstraction inversion with ≤)
(abs) ∧ (≤) =⇒ coInvAbs≤.

Proof:

Γ, x : B ` t : C
abs

Γ ` λx.t : B → C B → C ≤ A ≤
Γ ` λx.t : A

2

Statement (Co implicative abstraction inversion with ≤ [coInvAbsImp≤])
If A ≤ A′, B′ ≤ B and Γ, x : A′ ` t : B′ then Γ ` λx.t : A→ B.

Lemma 31 (Co implicative abstraction inversion with ≤)
Monot≤ ∧ (abs) =⇒ coInvAbsImp≤.

Proof: By (Monot≤) we have Γ, x : A ` t : B and then:

Γ, x : A ` t : B
abs

Γ ` λx.t : A→ B

2

3.2 Covariant contravariant implication

The system ST→≤ is the particular case of ST≤ where the relation ≤ is defined exactly by the
rules of Table 6.

Statement (Admissibility of the (trans) rule [TransElim])
If A ≤ B is derivable then A ≤ B is derivable without the (trans) rule.

9

Lemma 32 (Transitivity elimination for ST→≤)
TransElim holds for ST→≤ .

Proof: Let the size |d| of a derivation d be its number of rules. We first prove by induction on
the sum |d1|+ |d2| that if d1 is a (trans)-free derivation of A ≤ B and d2 is a (trans)-free
derivation of B ≤ C, then there exists a (trans)-free derivation of A ≤ C. We look at
each possible last rule for d2:

(refl) We have B = C and d1 is a (trans)-free derivation of A ≤ C.

(→) If B = B′ → B′′ and C = C ′ → C ′′, we have (trans)-free derivations d′2 of C ′ ≤ B′

and d′′2 of B′′ ≤ C ′′. We consider each possible last rule for d1:

(refl) We have A = B and d2 is a (trans)-free derivation of A ≤ C.

(→) If A = A′ → A′′, we have (trans)-free derivations d′1 of B′ ≤ A′ and d′′1 of
A′′ ≤ B′′. By induction hypothesis applied to the derivations d′2 and d′1, and
d′′1 and d′′2, we obtain (trans)-free derivations of C ′ ≤ A′ and A′′ ≤ C ′′ and we
conclude with (→) that A ≤ C.

We now prove (TransElim) by induction on the derivation of A ≤ B. We consider each
possible last rule from Table 6:

(refl) The derivation is directly without (trans).

(→) If A = A′ → B′ and B = C ′ → D′ then, by induction hypothesis, we have derivations
of C ′ ≤ A′ and B′ ≤ D′ without the (trans) rule. We thus have:

C ′ ≤ A′ B′ ≤ D′ →
A′ → B′ ≤ C ′ → D′

without the (trans) rule.

(trans) If A ≤ C and C ≤ B, by induction hypothesis, we have (trans)-free derivations
of A ≤ C and of C ≤ B. We apply the preliminary result to obtain a (trans)-free
derivation of A ≤ B. 2

Lemma 33 (Transitivity-free implication inversion for ST→≤)
In ST→≤ , TransElim =⇒ Imp≤.

Proof: By induction on the derivation of A → B ≤ C → D. We consider each possible last
rule from Table 6 except (trans) (thanks to (TransElim)):

(refl) A = C and B = D thus C ≤ A and B ≤ D.

(→) We immediately have C ≤ A and B ≤ D. 2

Theorem 3 (Subject reduction for ST→≤)
βSubjRed holds for ST→≤ .

Proof: By Lemma 19 we have (GSubst). By Lemma 17 we have (Monot≤). By Lemma 18
we have (NFVar). By Lemma 20 we have (InvVar≤). By Lemma 21 we have (InvApp≤).
By Lemma 22 we have (InvAbs≤). By Lemma 32 we have (TransElim). By Lemma 33
we deduce (Imp≤).

By Lemma 24 we deduce (Subst). By Lemma 23 we deduce (InvAbsImp≤). By Lemma 25
we deduce (βSubjRed0). By Lemma 10 we deduce (βSubjRed). 2

Lemma 34 (Subject reduction for η0 with ≤)
NFVar ∧ InvVar≤ ∧ InvApp≤ ∧ InvAbs≤ ∧ (→) =⇒ ηSubjRed0.

10

Proof: If Γ ` λx.(t x) : A, by (InvAbs≤), there exist B and C such that B → C ≤ A and
Γ, x : B ` t x : C. By (InvApp≤), there exist D and E such that E ≤ C, Γ, x : B ` t :
D → E and Γ, x : B ` x : D. By (InvVar≤), we have B ≤ D. By (NFVar), we obtain
Γ ` t : D → E since x /∈ t. We conclude with:

Γ ` t : D → E
B ≤ D E ≤ C →
D → E ≤ B → C ≤

Γ ` t : B → C

2

Theorem 4 (Subject reduction for η for ST→≤)
ηSubjRed holds for ST→≤ .

Proof: By Lemma 19 we have (GSubst). By Lemma 18 we have (NFVar). By Lemma 20 we
have (InvVar≤). By Lemma 21 we have (InvApp≤). By Lemma 22 we have (InvAbs≤).
(→) holds in ST→≤ (Table 6).

By Lemma 34 we deduce (ηSubjRed0). By Lemma 12 we deduce (ηSubjRed). 2

3.2.1 Additional results

Statement (Co implication inversion with ≤ [coImp≤])
If C ≤ A and B ≤ D then A→ B ≤ C → D.

Lemma 35 (Co implication inversion with ≤)
(→)⇐⇒ coImp≤.

Proof: Immediate. 2

4 The intersection typed λ-calculus with subtyping

Types are now built from base types and the type constant Ω by means of the binary operations
→ and ∩:

A ::= X | A→ A | Ω | A ∩A

In order to enhance readability, we use the notation
⋂
i∈I Ai for a type obtained in some

way by applying ∩ connectives to the types in (Ai)i∈I . If I = ∅, such an empty intersection is
a notation for Ω. If I is a singleton {i} then it is simply a notation for Ai

4.1 General case

The system IT≤ is obtained from the typing rules of Table 7 with any relation ≤ between types
satisfying the rules of Table 8.

Lemma 36 (Monotonicity for IT≤)
Monot≤ holds for IT≤.

Proof: By induction on the derivation of Γ ` t : A. By using the proof of Lemma 17, it is
enough to consider the case A = B and (∩) and (Ω) as last rules:

(∩) If A = A′ ∩ A′′ with Γ ` t : A′ and Γ ` t : A′′, by induction hypothesis, we have
∆ ` t : A′ and ∆ ` t : A′′ thus ∆ ` t : A.

11

var
Γ, x : A ` x : A

Γ, x : A ` t : B
abs

Γ ` λx.t : A→ B
Γ ` t : A→ B Γ ` u : A app

Γ ` t u : B

Γ ` t : A A ≤ B ≤
Γ ` t : B

Γ ` t : A Γ ` t : B ∩
Γ ` t : A ∩B

Ω
Γ ` t : Ω

Table 7: Typing rules with subtyping and intersection

refl
A ≤ A

A ≤ B B ≤ C
trans

A ≤ C

A ≤ C ∩1lA ∩B ≤ C
B ≤ C ∩2lA ∩B ≤ C

C ≤ A C ≤ B ∩r
C ≤ A ∩B

ΩrC ≤ Ω

Table 8: Minimal subtyping rules with intersection

(Ω) If A = Ω then ∆ ` t : Ω. 2

Lemma 37 (Non-free variables for IT≤)
NFVar holds for IT≤.

Proof: By induction on the derivation of Γ, x : B ` t : A. By using the proof of Lemma 18,
we only need to consider (∩) and (Ω) as last rules:

(∩) If A = A′ ∩ A′′ with Γ, x : B ` t : A′ and Γ, x : B ` t : A′′ then, by induction
hypothesis, Γ ` t : A′ and Γ ` t : A′′ thus Γ ` t : A.

(Ω) We have Γ ` t : Ω. 2

Lemma 38 (General substitution for IT≤)
GSubst holds for IT≤.

Proof: By following the proof of Lemma 19, it is enough to consider the case of Γ ` t{v/x} : A
obtained with a (∩) or a (Ω) rule:

(∩) If A = A′∩A′′ with Γ ` t{v/x} : A′ and Γ ` t{v/x} : A′′ then, by induction hypothesis,
Γ ` t{u/x} : A′ and Γ ` t{u/x} : A′′ thus Γ ` t{u/x} : A.

(Ω) We have Γ ` t{u/x} : Ω. 2

Lemma 39 (Variable inversion for IT≤)
InvVar≤ holds for IT≤.

Proof: By induction on the derivation of Γ ` x : A. By using the proof of Lemma 20, we
only need to consider (∩) and (Ω) as last rules:

(∩) If A = A′ ∩A′′ with Γ ` x : A′ and Γ ` x : A′′ then, by induction hypothesis, we have
x : B ∈ Γ with B ≤ A′ and B ≤ A′′ and:

B ≤ A′ B ≤ A′′ ∩r
B ≤ A

(Ω) If A = Ω then x must be declared with some type B in Γ and we have:

12

ΩrB ≤ Ω

2

Statement (Application inversion with ∩ [InvApp∩])
If Γ ` t u : A, there exist a set I and two families (Bi)i∈I and (Ci)i∈I such that

⋂
i∈I Bi ≤ A

and for all i ∈ I, Γ ` t : Ci → Bi and Γ ` u : Ci.

Lemma 40 (Application inversion for IT≤)
InvApp∩ holds for IT≤.

Proof: By induction on the derivation of Γ ` t u : A. We look at the possible last rules:

(app) There exists a type C1 such that Γ ` t : C1 → A and Γ ` u : C1 and we have
I = {1} and B1 = A ≤ A.

(≤) If Γ ` t u : A′ with A′ ≤ A then, by induction hypothesis, there exist a set I and two
families (Bi)i∈I and (Ci)i∈I such that

⋂
i∈I Bi ≤ A′ and for all i ∈ I, Γ ` t : Ci → Bi

and Γ ` u : Ci. We then deduce:⋂
i∈I Bi ≤ A′ A′ ≤ A

trans⋂
i∈I Bi ≤ A

(∩) If Γ ` t u : A′ and Γ ` t u : A′′ with A = A′ ∩ A′′ then, by induction hypothesis,
there exist a set I ′ and a set I ′′ (we can assume I ′ and I ′′ to be disjoint) and families
(Bi)i∈I′ , (Ci)i∈I′ , (Bi)i∈I′′ and (Ci)i∈I′′ such that

⋂
i∈I′ Bi ≤ A′,

⋂
i∈I′′ Bi ≤ A′′, for

all i ∈ I ′ ∪ I ′′, Γ ` t : Ci → Bi and Γ ` u : Ci. We then define I = I ′ ∪ I ′′ and we
have: ⋂

i∈I′ Bi ≤ A′ ∩1l⋂
i∈I Bi ≤ A′

⋂
i∈I′′ Bi ≤ A′′ ∩2l⋂
i∈I Bi ≤ A′′ ∩r⋂

i∈I Bi ≤ A

(Ω) If A = Ω, we choose I = ∅ and we have Ω ≤ A. 2

Statement (Abstraction inversion with ∩ [InvAbs∩])
If Γ ` λx.t : A, there exist a set I and two families (Bi)i∈I and (Ci)i∈I such that

⋂
i∈I Bi →

Ci ≤ A and for all i ∈ I, Γ, x : Bi ` t : Ci.

Lemma 41 (Abstraction inversion for IT≤)
InvAbs∩ holds for IT≤.

Proof: By induction on the derivation of Γ ` λx.t : A. We look at the possible last rules:

(abs) There exist B1 and C1 such that A = B1 → C1 (thus B1 → C1 ≤ A) and Γ, x :
B1 ` t : C1. We choose I = {1}.

(≤) If Γ ` λx.t : A′ with A′ ≤ A then, by induction hypothesis, there exist a set I and
two families (Bi)i∈I and (Ci)i∈I such that

⋂
i∈I Bi → Ci ≤ A′ and for all i ∈ I,

Γ, x : Bi ` t : Ci. We then deduce:⋂
i∈I Bi → Ci ≤ A′ A′ ≤ A

trans⋂
i∈I Bi → Ci ≤ A

13

(∩) If Γ ` λx.t : A′ and Γ ` λx.t : A′′ with A = A′ ∩ A′′ then, by induction hypothesis,
there exist a set I ′ and a set I ′′ (we can assume I ′ and I ′′ to be disjoint) and
families (Bi)i∈I′ , (Ci)i∈I′ , (Bi)i∈I′′ and (Ci)i∈I′′ such that

⋂
i∈I′ Bi → Ci ≤ A′,⋂

i∈I′′ Bi → Ci ≤ A′′, for all i ∈ I ′ ∪ I ′′, Γ, x : Bi ` t : Ci. We then define I = I ′ ∪ I ′′
and we have: ⋂

i∈I′ Bi → Ci ≤ A′ ∩1l⋂
i∈I Bi → Ci ≤ A′

⋂
i∈I′′ Bi → Ci ≤ A′′ ∩2l⋂
i∈I Bi → Ci ≤ A′′ ∩r⋂

i∈I Bi → Ci ≤ A

(Ω) If A = Ω, we choose I = ∅ and we have Ω ≤ A. 2

Statement (Implication inversion with ∩ [Imp∩])
If
⋂
i∈I(Ai → Bi) ≤ A → B then there exists J ⊆ I such that for all i ∈ J , A ≤ Ai and⋂

i∈J Bi ≤ B.

Statement (Implicative abstraction inversion with ∩ [InvAbsImp∩])
If Γ ` λx.t : A → B, there exist a set I and two families (Ai)i∈I and (Bi)i∈I such that⋂
i∈I Bi ≤ B and for all i ∈ I, A ≤ Ai and Γ, x : Ai ` t : Bi.

Lemma 42 (Implicative abstraction inversion with ∩)
InvAbs∩ ∧ Imp∩ =⇒ InvAbsImp∩.

Proof: If Γ ` λx.t : A→ B, by (InvAbs∩), there exist a set I and two families (Ai)i∈I and
(Bi)i∈I such that

⋂
i∈I Ai → Bi ≤ A→ B and for all i ∈ I, Γ, x : Ai ` t : Bi. By (Imp∩),

we have J ⊆ I such that for all i ∈ J , A ≤ Ai and
⋂
i∈J Bi ≤ B. 2

Lemma 43 (Subject reduction for β0 with ∩)
Subst ∧ InvApp∩ ∧ InvAbsImp∩ ∧ (≤) ∧ (∩) ∧ (Ω) =⇒ βSubjRed0.

Proof: If Γ ` (λx.t)u : A, by (InvApp∩), there exist a set I and two families (Bi)i∈I and
(Ci)i∈I such that

⋂
i∈I Bi ≤ A and for all i ∈ I, Γ ` λx.t : Ci → Bi and Γ ` u : Ci.

For each i ∈ I, by (InvAbsImp∩), there exist a set Ji and two families (Dj
i)j∈Ji and

(Eji)j∈Ji such that
⋂
j∈Ji D

j
i ≤ Bi and for all j ∈ Ji, Ci ≤ Eji and Γ, x : Eji ` t : Dj

i . By

(≤) we have Γ ` u : Eji thus, by (Subst), Γ ` t[u/x] : Dj
i .

Then we have:

· · ·

· · · Γ ` t[u/x] : Dj
i · · ·

∩
Γ ` t[u/x] :

⋂
j∈Ji D

j
i

⋂
j∈Ji D

j
i ≤ Bi ≤

Γ ` t[u/x] : Bi · · ·
∩

Γ ` t[u/x] :
⋂
i∈I Bi

⋂
i∈I Bi ≤ A ≤

Γ ` t[u/x] : A

We use (Ω) instead of (∩) if I = ∅ or if Ji = ∅ for some i ∈ I. 2

Statement (Co-substitution [coSubst])
If Γ ` t[u/x] : B with x /∈ u and Γ contains declarations for the free variables of u then there
exists a type A such that Γ, x : A ` t : B and Γ ` u : A.

Lemma 44 (Co-substitution for IT≤)
coSubst holds for IT≤.

14

Proof: By induction on the derivation of Γ ` t[u/x] : B. If t = x then t[u/x] = u and we
choose A = B. We have Γ, x : B ` x : B and Γ ` u : B. Otherwise we look at the last
rule of the derivation of Γ ` t[u/x] : B from Table 7:

(var) If we have t = y 6= x and t[u/x] = y. With A = Ω, we get Γ, x : Ω ` y : B (since
y : B ∈ Γ) and Γ ` u : Ω.

(abs) We have t = λy.t′, t[u/x] = λy.(t′[u/x]) and B = B′ → B′′ with Γ, y : B′ ` t′[u/x] :
B′′. By induction hypothesis, there exists A such that Γ, x : A, y : B′ ` t′ : B′′ and
Γ ` u : A. We then have Γ, x : A ` λy.t′ : B and we conclude.

(app) If t = t′ t′′ with Γ ` t′[u/x] : B′ → B and Γ ` t′′[u/x] : B′ then, by induction
hypothesis, there exist A′ and A′′ such that Γ, x : A′ ` t′ : B′ → B, Γ ` u : A′,
Γ, x : A′′ ` t′′ : B′ and Γ ` u : A′′. By Lemma 36 and using:

refl
A′ ≤ A′ ∩1lA′ ∩A′′ ≤ A′

and
refl

A′′ ≤ A′′ ∩2lA′ ∩A′′ ≤ A′′

we have Γ, x : A′ ∩A′′ ` t′ : B′ → B and Γ, x : A′ ∩A′′ ` t′′ : B′ and we can derive:

Γ, x : A′ ∩A′′ ` t′ : B′ → B Γ, x : A′ ∩A′′ ` t′′ : B′
app

Γ, x : A′ ∩A′′ ` t′ t′′ : B
and

Γ ` u : A′ Γ ` u : A′′ ∩
Γ ` u : A′ ∩A′′

so that we choose A = A′ ∩A′′.
(≤) If B′ ≤ B with Γ ` t[u/x] : B′ then, by induction hypothesis, there exists A such

that Γ, x : A ` t : B′ and Γ ` u : A. We can derive:

Γ, x : A ` t : B′ B′ ≤ B ≤
Γ, x : A ` t : B

(∩) If B = B′ ∩ B′′ with Γ ` t[u/x] : B′ and Γ ` t[u/x] : B′′, by induction hypothesis,
there exist A′ and A′′ such that Γ, x : A′ ` t : B′, Γ ` u : A′, Γ, x : A′′ ` t : B′′ and
Γ ` u : A′′. By Lemma 36, we can build:

Γ, x : A′ ∩A′′ ` t : B′ Γ, x : A′ ∩A′′ ` t : B′′ ∩
Γ, x : A′ ∩A′′ ` t : B

and

Γ ` u : A′ Γ ` u : A′′ ∩
Γ ` u : A′ ∩A′′

so that we choose A = A′ ∩A′′.
(Ω) If B = Ω, we choose A = Ω and we have:

Ω
Γ, x : Ω ` t : Ω and Ω

Γ ` u : Ω

2

Statement (Subject expansion for β0 [βSubjExp0])
If Γ ` t : A with Γ containing declarations for the free variables of u and t←β0 u then Γ ` u : A.

Lemma 45 (Subject expansion for β0)
coSubst ∧ (abs) ∧ (app) =⇒ βSubjExp0.

15

Proof: We use (coSubst) and we build:

Γ, x : A ` t : B
abs

Γ ` λx.t : A→ B Γ ` u : A app
Γ ` (λx.t)u : B

2

Statement (Subject expansion for β [βSubjExp])
If Γ ` t : A with Γ containing declarations for the free variables of u and t←β u then Γ ` u : A.

Lemma 46 (Subject expansion)
GSubst ∧ βSubjExp0 =⇒ βSubjExp.

Proof: If Γ ` t : A and t←β u then t = c{t′/x} and u = c{u′/x} with t′ ←β0 u
′. Assume that

Γ,∆ ` t′ : B then by (βSubjExp0) we have Γ,∆ ` u′ : B, thus by (GSubst) we obtain
Γ ` u : A. 2

Theorem 5 (Subject expansion for IT≤)
βSubjExp holds for IT≤.

Proof: By Lemma 44 we have (coSubst). By Lemma 38 we have (GSubst).

By Lemma 45 we deduce (βSubjExp0). By Lemma 46 we deduce (βSubjExp). 2

4.1.1 Additional results

Statement (Co application inversion with ∩ [coInvApp∩])
If for all i ∈ I, Γ ` t : Ci → Bi and Γ ` u : Ci, and

⋂
i∈I Bi ≤ A then Γ ` t u : A.

Lemma 47 (Co application inversion with ∩)
(app) ∧ (≤) ∧ (∩) ∧ (Ω) =⇒ coInvApp∩.

Proof: If I is not empty, we have:

· · ·
Γ ` t : Ci → Bi Γ ` u : Ci app

Γ ` t u : Bi · · · ∩
Γ ` t u :

⋂
i∈I Bi

⋂
i∈I Bi ≤ A ≤

Γ ` t u : A

Otherwise, we use:

Ω
Γ ` t u : Ω Ω ≤ A ≤

Γ ` t u : A

2

Statement (Co abstraction inversion with ∩ [coInvAbs∩])
If for all i ∈ I, Γ, x : Bi ` t : Ci and

⋂
i∈I Bi → Ci ≤ A then Γ ` λx.t : A.

Lemma 48 (Co abstraction inversion with ∩)
(abs) ∧ (≤) ∧ (∩) ∧ (Ω) =⇒ coInvAbs∩.

Proof: If I is not empty, we have:

16

A ≤ A
A ≤ B B ≤ C

A ≤ C A ≤ Ω

A ∩B ≤ A A ∩B ≤ B A ≤ A ∩A
A ≤ C B ≤ D
A ∩B ≤ C ∩D

C ≤ A B ≤ D
A→ B ≤ C → D (A→ B) ∩ (A→ C) ≤ A→ (B ∩ C) Ω ≤ Ω→ Ω

Table 9: BCD subtyping rules

· · ·
Γ, x : Bi ` t : Ci

abs
Γ ` λx.t : Bi → Ci · · · ∩

Γ ` λx.t :
⋂
i∈I Bi → Ci

⋂
i∈I Bi → Ci ≤ A ≤

Γ ` λx.t : A

Otherwise, we use:

Ω
Γ ` λx.t : Ω Ω ≤ A ≤

Γ ` λx.t : A

2

Statement (Co implicative abstraction inversion with ∩ [coInvAbsImp∩])
If for all i ∈ I, A ≤ Ai and Γ, x : Ai ` t : Bi, and

⋂
i∈I Bi ≤ B then Γ ` λx.t : A→ B.

Lemma 49 (Co implicative abstraction inversion with ∩)
Monot≤ ∧ (abs) ∧ (∩) ∧ (Ω) =⇒ coInvAbsImp∩.

Proof: For all i ∈ I, by (Monot≤) we have Γ, x : A ` t : Bi and then:

· · · Γ, x : A ` t : Bi · · · ∩
Γ, x : A ` t :

⋂
i∈I Bi

If I is empty then:

Ω
Γ, x : A ` t : Ω

By (Monot≤) we deduce Γ, x : A ` t : B and we conclude with (abs). 2

4.2 BCD case

The original BCD type system is based on the subtyping rules of Table 9. For this presentation,
the transitivity rule cannot be removed: X ∩ Y ≤ Y ∩X is not provable without transitivity if
X 6= Y (if one tries to find a possible last rule, one would need to prove X ≤ Y), while we have:

X ∩ Y ≤ (X ∩ Y) ∩ (X ∩ Y)

X ∩ Y ≤ Y X ∩ Y ≤ X
(X ∩ Y) ∩ (X ∩ Y) ≤ Y ∩X

X ∩ Y ≤ Y ∩X

17

B ≤ A →l
A→ C ≤ B → C

C ≤ A→ D D ≤ B →r
C ≤ A→ B

D ≤ C → A D ≤ C → B →∩
D ≤ C → (A ∩B)

→Ω
B ≤ A→ Ω

Table 10: BCD-like subtyping rules

The system ITBCD
≤ is the particular case of IT≤ where the relation ≤ is defined exactly by

the rules of Tables 8 and 10.

Proposition 1 (Equivalence of presentations of BCD)
The subtyping relation generated by the rules of Tables 8 and 10 is the same as the relation
generated by the rules of Table 9.

Lemma 50 (Transitivity elimination for ITBCD
≤)

TransElim holds for ITBCD
≤ .

Proof: Similar to the proof of Lemma 32. 2

Lemma 51 (Transitivity-free implication inversion for ITBCD
≤)

In ITBCD
≤ , TransElim =⇒ Imp∩.

Proof: By induction on the derivation of
⋂
i∈I(Ai → Bi) ≤ A → B. We consider each

possible last rule from Tables 8 and 10 except (trans) (thanks to (TransElim)):

(refl) I = {1}, A1 = A and B1 = B thus A ≤ A1 and B1 ≤ B.

(∩1l) There exists I ′ ⊆ I such that
⋂
i∈I′(Ai → Bi) ≤ A→ B and, by induction hypothe-

sis, there exists J ⊆ I ′ ⊆ I such that for all i ∈ J , A ≤ Ai and
⋂
i∈J Bi ≤ B.

(∩2l) Idem.

(→l) We have J = I = {1}, A ≤ A1 and B = B1 thus B1 ≤ B.

(→r) We have
⋂
i∈I(Ai → Bi) ≤ A → D and D ≤ B. By induction hypothesis, there

exists J ⊆ I such that for all i ∈ J , A ≤ Ai and
⋂
i∈J Bi ≤ D, and we have:⋂

i∈J Bi ≤ D D ≤ B
trans⋂

i∈J Bi ≤ B

(→∩) We have
⋂
i∈I(Ai → Bi) ≤ A → B′ and

⋂
i∈I(Ai → Bi) ≤ A → B′′ with B =

B′ ∩ B′′. By induction hypothesis, there exist J ′ ⊆ I and J ′′ ⊆ I such that for all
i ∈ J ′, A ≤ Ai and

⋂
i∈J ′ Bi ≤ B′ and for all i ∈ J ′′, A ≤ Ai and

⋂
i∈J ′′ Bi ≤ B′′, we

choose J = J ′ ∪ J ′′ ⊆ I and we get for all i ∈ J , A ≤ Ai. If both J ′ and J ′′ are not
empty, we have: ⋂

i∈J ′ Bi ≤ B′ ∩l⋂
i∈J Bi ≤ B′

⋂
i∈J ′′ Bi ≤ B′′ ∩l⋂
i∈J Bi ≤ B′′ ∩r⋂

i∈J Bi ≤ B′ ∩B′′

If J ′ is empty and J ′′ is not, we have:

18

Ωr⋂
i∈J ′′ Bi ≤ Ω Ω ≤ B′

trans⋂
i∈J ′′ Bi ≤ B′

⋂
i∈J ′′ Bi ≤ B′′ ∩r⋂

i∈J ′′ Bi ≤ B′ ∩B′′

with J ′′ = J (and similarly if J ′′ is empty but J ′ is not). Finally if both J ′ and J ′′

are empty, then:

Ω ≤ B′ Ω ≤ B′′ ∩r
Ω ≤ B′ ∩B′′

(→Ω) We have B = Ω and thus J = ∅ and Ω ≤ B. 2

Theorem 6 (Subject reduction for ITBCD
≤)

βSubjRed holds for ITBCD
≤ .

Proof: By Lemma 38 we have (GSubst). By Lemma 36 we have (Monot≤). By Lemma 37
we have (NFVar). By Lemma 39 we have (InvVar≤). By Lemma 40 we have (InvApp∩).
By Lemma 41 we have (InvAbs∩). By Lemma 50 we have (TransElim). By Lemma 51
we deduce (Imp∩).

By Lemma 24 we deduce (Subst). By Lemma 42 we deduce (InvAbsImp∩). By Lemma 43
we deduce (βSubjRed0). By Lemma 10 we deduce (βSubjRed). 2

4.2.1 Additional results

Statement (Co implication inversion with ∩ [coImp∩])
If J ⊆ I with for all i ∈ J , A ≤ Ai and

⋂
i∈J Bi ≤ B then

⋂
i∈I(Ai → Bi) ≤ A→ B.

Lemma 52 (Co implication inversion with ∩)
(Table 10) =⇒ coImp∩.

Proof:

· · ·

A ≤ Ai →l
Ai → Bi ≤ A→ Bi ∩l⋂
i∈I Ai → Bi ≤ A→ Bi · · ·

→∩⋂
i∈I Ai → Bi ≤ A→

⋂
i∈J Bi

⋂
i∈J Bi ≤ B →r⋂

i∈I(Ai → Bi) ≤ A→ B

2

5 The η-rule

5.1 General case

Lemma 53 (Subject reduction for η0 with ∩)

NFVar ∧ InvVar≤ ∧ InvApp∩ ∧ InvAbs∩ ∧ (≤) ∧ (∩) ∧ (Ω)

∧
(

Γ ` t :
⋂
k∈K Ek → Fk · · · G ≤ Ek · · ·

⋂
k∈K Fk ≤ H

Γ ` t : G→ H

)
=⇒ ηSubjRed0

19

Proof: By (InvAbs∩), there exists a set I and two families (Bi)i∈I and (Ci)i∈I with
⋂
i∈I Bi →

Ci ≤ A and, for all i ∈ I, Γ, x : Bi ` t x : Ci.

For each i ∈ I, by (InvApp∩) applied to Γ, x : Bi ` t x : Ci, there exists a set Ji and two
families (Di)i∈I and (Ei)i∈I with

⋂
j∈Ji E

j
i ≤ Ci and for all j ∈ Ji, Γ, x : Bi ` t : Dj

i → Eji
and Γ, x : Bi ` x : Dj

i .

For each j ∈ Ji, by (NFVar), Γ ` t : Dj
i → Eji and, by (InvVar≤), Bi ≤ Dj

i thus:

· · ·
j ∈ Ji

Γ ` t : Di
j → Eij · · ·

∩
Γ ` t :

⋂
j∈Ji D

j
i → Eji · · · Bi ≤ Dj

i · · ·
⋂
j∈Ji E

j
i ≤ Ci

Γ ` t : Bi → Ci

This proves Γ ` t : Bi → Ci for each i ∈ I, and we can conclude:

· · ·
i ∈ I

Γ ` t : Bi → Ci · · · ∩
Γ ` t :

⋂
i∈I(Bi → Ci)

⋂
i∈I(Bi → Ci) ≤ A ≤

Γ ` t : A

We use (Ω) instead of (∩) if I = ∅. 2

Lemma 54
If InvVar≤ ∧ (var) ∧ (≤) ∧ (Table 8) then:(

Γ ` t :
⋂
k∈K Ek → Fk · · · G ≤ Ek · · ·

⋂
k∈K Fk ≤ H

Γ ` t : G→ H

)
⇐⇒ (Table 10)

Proof: We first prove

Γ ` t :
⋂
k∈K Ek → Fk · · · G ≤ Ek · · ·

⋂
k∈K Fk ≤ H

Γ ` t : G→ H

⇐⇒ · · · G ≤ Ek · · ·
⋂
k∈K Fk ≤ H⋂

k∈K Ek → Fk ≤ G→ H

For the first implication, we use:

var
x :
⋂
k∈K Ek → Fk ` x :

⋂
k∈K Ek → Fk · · · G ≤ Ek · · ·

⋂
k∈K Fk ≤ H

x :
⋂
k∈K Ek → Fk ` x : G→ H

and by (InvVar≤) we have
⋂
k∈K Ek → Fk ≤ G → H. For the second implication, we

use:

Γ ` t :
⋂
k∈K Ek → Fk

· · · G ≤ Ek · · ·
⋂
k∈K Fk ≤ H⋂

k∈K Ek → Fk ≤ G→ H
≤

Γ ` t : G→ H

Assume now that we have the rules of Table 10. If K 6= ∅, we can build:

20

· · ·

G ≤ Ek →l
Ek → Fk ≤ G→ Fk ∩l⋂

k∈K Ek → Fk ≤ G→ Fk · · ·
→∩⋂

k∈K Ek → Fk ≤ G→
⋂
k∈K Fk

⋂
k∈K Fk ≤ H →r⋂

k∈K Ek → Fk ≤ G→ H

Otherwise, if K = ∅, we have:

→Ω
Ω ≤ G→ Ω Ω ≤ H →r

Ω ≤ G→ H

Conversely, we consider particular cases of the rule:

· · · G ≤ Ek · · ·
⋂
k∈K Fk ≤ H⋂

k∈K Ek → Fk ≤ G→ H

With K = {1} and F1 = H, we obtain:

G ≤ E1
refl

H ≤ H
E1 → H ≤ G→ H

With K = {1} and E1 = G, we obtain:

C ≤ G→ F1

refl
G ≤ G F1 ≤ H
G→ F1 ≤ G→ H

trans
C ≤ G→ H

With K = {2}, E1 = E2 = G and F1 ∩ F2 = H, we obtain:

D ≤ G→ F1 D ≤ G→ F2 ∩r
D ≤ (G→ F1) ∩ (G→ F2)

refl
G ≤ G refl

G ≤ G refl
F1 ∩ F2 ≤ F1 ∩ F2

(G→ F1) ∩ (G→ F2) ≤ G→ (F1 ∩ F2)
trans

D ≤ G→ (F1 ∩ F2)

With K = ∅, we obtain:

ΩrB ≤ Ω

ΩrΩ ≤ Ω
Ω ≤ A→ Ω

trans
B ≤ A→ Ω

2

Theorem 7 (Subject reduction for η for extensions of ITBCD
≤)

ηSubjRed holds for systems IT≤ containing the subtyping rules of ITBCD
≤ .

Proof: By Lemma 38 we have (GSubst). By Lemma 37 we have (NFVar). By Lemma 39 we
have (InvVar≤). By Lemma 40 we have (InvApp∩). By Lemma 41 we have (InvAbs∩).
(var), (≤), (∩), (Ω) and Tables 8 and 10 hold for IT≤.

By Lemma 54 we have:

21

Γ ` t :
⋂
k∈K Ek → Fk · · · G ≤ Ek · · ·

⋂
k∈K Fk ≤ H

Γ ` t : G→ H

By Lemma 53 we deduce (ηSubjRed0). By Lemma 12 we deduce (ηSubjRed). 2

Statement (Implicative types [ImpTyp])
For any type A, there exist a non-empty set I and two families (Bi)i∈I and (Ci)i∈I of types such
that A ≤

⋂
i∈I Bi → Ci and

⋂
i∈I Bi → Ci ≤ A.

Statement (Subject expansion for η0 [ηSubjExp0])
If Γ ` t : A and t←η0 u then Γ ` u : A.

Lemma 55 (Subject expansion for η0)

Monot≤ ∧ ImpTyp ∧ (Table 7) ∧
(

Γ ` t : A ∩B
Γ ` t : A

)
∧
(

Γ ` t : A ∩B
Γ ` t : B

)
=⇒ ηSubjExp0

Proof: By (ImpTyp), we have A ≤
⋂
i∈I Bi → Ci and

⋂
i∈I Bi → Ci ≤ A. We prove the

result by induction on the size of the non-empty set I.

• If I is a singleton {1}, we have A ≤ B1 → C1 and B1 → C1 ≤ A. By (Monot≤),
Γ, x : B1 ` t : A thus we can derive:

Γ, x : B1 ` t : A A ≤ B1 → C1 ≤
Γ, x : B1 ` t : B1 → C1

var
Γ, x : B1 ` x : B1 app

Γ, x : B1 ` t x : C1
abs

Γ ` λx.(t x) : B1 → C1 B1 → C1 ≤ A ≤
Γ ` λx.(t x) : A

• If I is not a singleton, we have I = I ′ ∪ I ′′ (with both I ′ and I ′′ non-empty and
disjoint), A ≤

⋂
i∈I′ Bi → Ci ∩

⋂
i∈I′′ Bi → Ci and

⋂
i∈I′ Bi → Ci ∩

⋂
i∈I′′ Bi → Ci ≤

A. We can derive:

Γ ` t : A A ≤
⋂
i∈I′ Bi → Ci ∩

⋂
i∈I′′ Bi → Ci ≤

Γ ` t :
⋂
i∈I′ Bi → Ci ∩

⋂
i∈I′′ Bi → Ci

Γ ` t :
⋂
i∈I′ Bi → Ci

and

Γ ` t : A A ≤
⋂
i∈I′ Bi → Ci ∩

⋂
i∈I′′ Bi → Ci ≤

Γ ` t :
⋂
i∈I′ Bi → Ci ∩

⋂
i∈I′′ Bi → Ci

Γ ` t :
⋂
i∈I′′ Bi → Ci

thus, by induction hypothesis, Γ ` λx.(t x) :
⋂
i∈I′ Bi → Ci and Γ ` λx.(t x) :⋂

i∈I′′ Bi → Ci, so that:

Γ ` λx.(t x) :
⋂
i∈I′ Bi → Ci Γ ` λx.(t x) :

⋂
i∈I′′ Bi → Ci ∩

Γ ` λx.(t x) :
⋂
i∈I′∪I′′ Bi → Ci

⋂
i∈I′∪I′′ Bi → Ci ≤ A ≤

Γ ` λx.(t x) : A

2

Statement (Subject expansion for η [ηSubjExp])
If Γ ` t : A and t←η u then Γ ` u : A.

22

Lemma 56 (Subject expansion for η)
GSubst ∧ ηSubjExp0 =⇒ ηSubjExp.

Proof: If Γ ` t : A and t←η u then t = c{t′/x} and u = c{u′/x} with t′ ←η0 u
′. Assume that

Γ,∆ ` t′ : B then by (ηSubjExp0) we have Γ,∆ ` u′ : B, thus by (GSubst) we obtain
Γ ` u : A. 2

5.1.1 Additional results

Lemma 57

ηSubjRed0 ∧Monot≤ ∧ (refl) ∧ (∩l) ∧ (Table 7)

=⇒
(

Γ ` t :
⋂
k∈K Ek → Fk · · · G ≤ Ek · · ·

⋂
k∈K Fk ≤ H

Γ ` t : G→ H

)
Proof: Assume Γ ` t :

⋂
k∈K Ek → Fk, if x /∈ t we have Γ, x : G ` t :

⋂
k∈K Ek → Fk by

(Monot≤) and then for each k ∈ K:

Γ, x : G ` t :
⋂
k∈K Ek → Fk

refl
Ek → Fk ≤ Ek → Fk ∩l⋂

k∈K Ek → Fk ≤ Ek → Fk ≤
Γ, x : G ` t : Ek → Fk

var
Γ, x : G ` x : G G ≤ Ek ≤

Γ, x : G ` x : Ek app
Γ, x : G ` t x : Fk

We then build:

· · · Γ, x : G ` t x : Fk · · · ∩
Γ, x : G ` t x :

⋂
k∈K Fk

⋂
k∈K Fk ≤ H ≤

Γ, x : G ` t x : H
abs

Γ ` λx.(t x) : G→ H

If K = ∅, we have:

Ω
Γ, x : G ` t x : Ω Ω ≤ H ≤

Γ, x : G ` t x : H
abs

Γ ` λx.(t x) : G→ H

By (ηSubjRed0), we conclude Γ ` t : G→ H. 2

5.2 One concrete solution

The system ITBCDη
≤ is the particular case of IT≤ where the relation ≤ is defined exactly by the

rules of Tables 8, 10 and 11.

Lemma 58 (Transitivity elimination for ITBCDη
≤)

TransElim holds for ITBCDη
≤ .

Proof: Similar to the proof of Lemma 32 but using the number of rules plus the numver of
(Xl) rules as the size of a derivation. 2

23

XlX ≤ A→ X
A ≤ Ω→ X

XrA ≤ X

Table 11: Extensionality subtyping rules

Lemma 59 (Transitivity-free implication inversion for ITBCDη
≤)

In ITBCDη
≤ , TransElim =⇒ Imp∩.

Proof: By induction on the derivation of
⋂
i∈I(Ai → Bi) ≤ A→ B. We consider each possible

last rule from Tables 8, 10 and 11 except (trans) (thanks to (TransElim)). Since rules
from Table 11 are not possible last rules, we can rely on the proof of Lemma 51. 2

Theorem 8 (Subject reduction for ITBCDη
≤)

βSubjRed holds for ITBCDη
≤ .

Proof: By Lemma 38 we have (GSubst). By Lemma 36 we have (Monot≤). By Lemma 37
we have (NFVar). By Lemma 39 we have (InvVar≤). By Lemma 40 we have (InvApp∩).
By Lemma 41 we have (InvAbs∩). By Lemma 58 we have (TransElim). By Lemma 59
we deduce (Imp∩).

By Lemma 24 we deduce (Subst). By Lemma 42 we deduce (InvAbsImp∩). By Lemma 43
we deduce (βSubjRed0). By Lemma 10 we deduce (βSubjRed). 2

Lemma 60 (Implicative types for extensions of ITBCDη
≤)

ImpTyp holds for systems containing the subtyping rules of ITBCDη
≤ .

Proof: By induction on the type A:

• If A = X, we choose I = {1}, B1 = Ω and C1 = X. We have:

XlX ≤ Ω→ X and
refl

Ω→ X ≤ Ω→ X
XrΩ→ X ≤ X

• If A = Ω, we choose I = {1}, B1 = Ω and C1 = Ω. We have:

→Ω
Ω ≤ Ω→ Ω and ΩrΩ→ Ω ≤ Ω

• If A = A′ → B′, we choose I = {1}, B1 = A′ and C1 = B′.

• If A = A′ ∩ A′′, by induction hypothesis, we have I ′, (Bi)i∈I′ , (Ci)i∈I′ , I
′′, (Bi)i∈I′′

and (Ci)i∈I′′ such that A′ ≤
⋂
i∈I′ Bi → Ci,

⋂
i∈I′ Bi → Ci ≤ A′, A′′ ≤

⋂
i∈I′′ Bi → Ci

and
⋂
i∈I′′ Bi → Ci ≤ A′′. We choose I = I ′ ∪ I ′′ and we have:

A′ ∩A′′ ≤
⋂
i∈I′

Bi → Ci ∩
⋂
i∈I′′

Bi → Ci

and ⋂
i∈I′

Bi → Ci ∩
⋂
i∈I′′

Bi → Ci ≤ A′ ∩A′′

by:

24

D1 ≤ E1 ∩1lD1 ∩D2 ≤ E1

D2 ≤ E2 ∩2lD1 ∩D2 ≤ E2 ∩r
D1 ∩D2 ≤ E1 ∩ E2

2

Theorem 9 (Subject expansion for η for ITBCDη
≤)

ηSubjExp holds for ITBCDη
≤ .

Proof: By Lemma 38 we have (GSubst). By Lemma 36 we have (Monot≤). By Lemma 60

we have (ImpTyp). Table 7 holds for ITBCDη
≤ .

Γ ` t : A ∩B

refl
A ≤ A ∩1lA ∩B ≤ A ≤

Γ ` t : A

and Γ ` t : A ∩B

refl
B ≤ B ∩2lA ∩B ≤ B ≤

Γ ` t : B

By Lemma 55 we deduce (ηSubjExp0). By Lemma 56 we deduce (ηSubjExp). 2

5.2.1 Additional results

Lemma 61 (Necessity of ImpTyp for ηSubjExp0)
ηSubjExp0 ∧ (var) ∧ InvVar≤ ∧ InvAbs∩ ∧ InvApp∩ ∧ (Table 8) ∧ (Table 10) =⇒ ImpTyp.

Proof: By (var) and (ηSubjExp0), we have x : A ` λy.x y : A. By (InvAbs∩), there exist
I, (Bi)i∈I and (Ci)i∈I such that

⋂
i∈I Bi → Ci ≤ A and for all i ∈ I, x : A, y : Bi `

x y : Ci. For each i ∈ I, by (InvApp∩), there exist Ji, (Dj
i)j∈Ji and (Eji)j∈Ji such that⋂

j∈Ji E
j
i ≤ Ci and for all j ∈ Ji, x : A, y : Bi ` x : Dj

i → Eji and x : A, y : Bi ` y : Dj
i .

By (InvVar≤), we obtain A ≤ Dj
i → Eji and Bi ≤ Dj

i .

We then have:

· · ·

· · ·
A ≤ Dj

i → Eji

Bi ≤ Dj
i →l

Dj
i → Eji ≤ Bi → Eji

trans
A ≤ Bi → Eji · · ·

→∩
A ≤ Bi →

⋂
j∈Ji E

j
i

⋂
j∈Ji E

j
i ≤ Ci →r

A ≤ Bi → Ci · · · ∩r
A ≤

⋂
i∈I Bi → Ci

If some Ji is empty, we use:

→Ω
A ≤ Bi → Ω Ω ≤ Ci →r

A ≤ Bi → Ci

If I is not empty, we are done. Otherwise we have Ω ≤ A. This entails:

→Ω
A ≤ Ω→ Ω and

ΩrΩ→ Ω ≤ Ω Ω ≤ A
trans

Ω→ Ω ≤ A
2

25

[Monot] If Γ ` t : A and ∆ ⊇ Γ then ∆ ` t : A (where ∆ ⊇ Γ means that each
typing declaration x : B in Γ appears in ∆).

[Monot≤] If Γ ` t : A, ∆ ≤ Γ and A ≤ B then ∆ ` t : B (where ∆ ≤ Γ means that for
each typing declaration x : C in Γ there is a declaration x : D with D ≤ C
in ∆).

[NFVar] If x /∈ t and Γ, x : B ` t : A then Γ ` t : A.

[GSubst] Assume that Γ ` t{v/x} : A and for all ∆ and B, Γ,∆ ` v : B implies
Γ,∆ ` u : B, then Γ ` t{u/x} : A.

[Subst] If Γ, x : A ` t : B and Γ ` u : A then Γ ` t[u/x] : B.

[coSubst] If Γ ` t[u/x] : B with x /∈ u and Γ contains declarations for the free variables
of u then there exists a type A such that Γ, x : A ` t : B and Γ ` u : A.

[InvVar] If Γ ` x : A then x : A ∈ Γ.
[InvVar≤] If Γ ` x : A then there exists B such that B ≤ A and x : B ∈ Γ.
[InvApp] If Γ ` t u : A, there exists a type B such that Γ ` t : B → A and Γ ` u : B.

[InvApp≤] If Γ ` t u : A, there exist B and C such that B ≤ A, Γ ` t : C → B and
Γ ` u : C.

[InvApp∩] If Γ ` t u : A, there exist a set I and two families (Bi)i∈I and (Ci)i∈I such
that

⋂
i∈I Bi ≤ A and for all i ∈ I, Γ ` t : Ci → Bi and Γ ` u : Ci.

[InvAbs] If Γ ` λx.t : A, there exist B and C such that A = B → C and Γ, x : B `
t : C.

[InvAbs≤] If Γ ` λx.t : A, there exist B and C such that B → C ≤ A and Γ, x : B `
t : C.

[InvAbs∩] If Γ ` λx.t : A, there exist a set I and two families (Bi)i∈I and (Ci)i∈I such
that

⋂
i∈I Bi → Ci ≤ A and for all i ∈ I, Γ, x : Bi ` t : Ci.

[InvAbsImp] If Γ ` λx.t : A→ B then Γ, x : A ` t : B.

[InvAbsImp≤] If Γ ` λx.t : A → B, there exist A′ and B′ such that A ≤ A′, B′ ≤ B and
Γ, x : A′ ` t : B′.

[InvAbsImp∩] If Γ ` λx.t : A→ B, there exist a set I and two families (Ai)i∈I and (Bi)i∈I
such that

⋂
i∈I Bi ≤ B and for all i ∈ I, A ≤ Ai and Γ, x : Ai ` t : Bi.

[TransElim] If A ≤ B is derivable then A ≤ B is derivable without the (trans) rule.
[Imp≤] If A→ B ≤ C → D then C ≤ A and B ≤ D.

[Imp∩] If
⋂
i∈I(Ai → Bi) ≤ A→ B then there exists J ⊆ I such that for all i ∈ J ,

A ≤ Ai and
⋂
i∈J Bi ≤ B.

[ImpTyp] For any type A, there exist a non-empty set I and two families (Bi)i∈I and
(Ci)i∈I of types such that A ≤

⋂
i∈I Bi → Ci and

⋂
i∈I Bi → Ci ≤ A.

[βSubjRed0] If Γ ` t : A and t→β0 u then Γ ` u : A.
[βSubjRed] If Γ ` t : A and t→β u then Γ ` u : A.
[ηSubjRed0] If Γ ` t : A and t→η0 u then Γ ` u : A.
[ηSubjRed] If Γ ` t : A and t→η u then Γ ` u : A.

[βSubjExp0] If Γ ` t : A with Γ containing declarations for the free variables of u and
t←β0 u then Γ ` u : A.

[βSubjExp] If Γ ` t : A with Γ containing declarations for the free variables of u and
t←β u then Γ ` u : A.

[ηSubjExp0] If Γ ` t : A and t←η0 u then Γ ` u : A.
[ηSubjExp] If Γ ` t : A and t←η u then Γ ` u : A.

Table 12: List of the main statements

26

The boxed statements below are those which depend on the subtyping rules in a non mono-
tonic way. A good way to prove them is to rely on TransElim.

A Proofs of βSubjRed

A.1 Simple types

GSubst → → → ↘
↓

NFVar ↘
Monot → Lemma 8−−−−−→ Subst ↘ Lemma 10−−−−−−→ βSubjRed
InvVar ↗

InvApp → Lemma 9−−−−−→ βSubjRed0 ↗
InvAbs

Lemma 7−−−−−→ InvAbsImp ↗

A.2 Simple types with subtyping

GSubst → → → ↘
↓

NFVar ↘
Monot≤ → Lemma 24−−−−−−→ Subst ↘ Lemma 10−−−−−−→ βSubjRed
InvVar≤ ↗

InvApp≤ → Lemma 25−−−−−−→ βSubjRed0 ↗
InvAbs≤ → Lemma 23−−−−−−→ InvAbsImp≤ ↗

Imp≤ ↗ (≤) ↗

A.3 Intersection types

GSubst → → → ↘
↓

NFVar ↘
Monot≤ → Lemma 24−−−−−−→ Subst ↘ Lemma 10−−−−−−→ βSubjRed
InvVar≤ ↗

InvApp∩ → Lemma 43−−−−−−→ βSubjRed0 ↗
InvAbs∩ → Lemma 42−−−−−−→ InvAbsImp∩ ↗

Imp∩ ↗ (≤) ∧ (∩) ∧ (Ω) ↗

B Proof of βSubjExp with intersection

coSubst ↘ GSubst ↘
(abs) → Lemma 45−−−−−−→ βSubjExp0 → Lemma 46−−−−−−→ βSubjExp
(app) ↗

27

C Proofs of ηSubjRed

C.1 Simple types

NFVar ↘
InvVar ↘ GSubst ↘
InvApp → Lemma 11−−−−−−→ ηSubjRed0 → Lemma 12−−−−−−→ ηSubjRed
InvAbs ↗

C.2 Simple types with subtyping

NFVar ↘
InvVar≤ ↘ GSubst ↘
InvApp≤ → Lemma 34−−−−−−→ ηSubjRed0 → Lemma 12−−−−−−→ ηSubjRed
InvAbs≤ ↗

(→) ↗

C.3 Intersection types

NFVar ↘
InvVar≤ ↘ GSubst ↘
InvApp∩ → Lemmas 53 and 54−−−−−−−−−−−→ ηSubjRed0 → Lemma 12−−−−−−→ ηSubjRed
InvAbs∩ ↗

(var) ∧ (≤) ∧ (∩) ∧ (Ω) ↗
(Tables 8 and 10) ↗

D Proof of ηSubjExp with intersection

Monot≤ ↘ GSubst ↘
ImpTyp → Lemma 55−−−−−−→ βSubjExp0 → Lemma 56−−−−−−→ βSubjExp

(Table 7) ↗(
Γ ` t : A1 ∩A2

Γ ` t : Ai

)
↗

28

