A syntactic introduction to intersection types

Olivier LAURENT

Laboratoire de l'Informatique du Parallélisme UMR 5668 CNRS ENS-Lyon UCBL INRIA Université de Lyon 46, allée d'Italie – 69364 Lyon cedex 07 – FRANCE Olivier.Laurent@ens-lyon.fr

April 5, 2012

Abstract

We give an incremental presentation of the invariance of types through reduction in some intersection type systems with subtyping.

1 The λ -calculus

Terms are the usual λ -terms with λ as binder for λ -variables (x, y, ...):

 $t ::= x \mid \lambda x.t \mid tt$

We use the notation $x \notin t$ for x not free in t. The syntactic substitution of x by u in t is denoted $t\{u/x\}$. It makes possible the capture of free variables of the substituting term u by λ s of the substituted term t. Except when this syntactic substitution is directly involved (which will occur only in a few places in the paper), we consider λ -terms up to α -conversion of bound variables. We denote the *capture-free substitution* of x by u in t as t[u/x].

The β -reduction relation $t \to_{\beta} u$ is the congruence generated by $(\lambda x.t) u \to_{\beta_0} t[u/x]$ (see Table 1).

The η -reduction relation $t \to_{\eta} u$ is the congruence generated by $\lambda x.(t x) \to_{\eta_0} t$ if $x \notin t$ (see Table 2).

2 The simply typed λ -calculus

Base types are denoted by X, Y, ... and types are built from base types by means of the binary operation \rightarrow :

$$A ::= X \mid A \to A$$

Typing judgments are of the shape $\Gamma \vdash t : A$ where Γ is a finite set of pairs of λ -variables and types (x : A) in which each λ -variable occurs at most once, and all the free variables of tare declared in Γ .

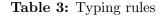
$(\lambda x.t) u \to_{\beta_0} t[^u/_x]$	$t \to_{\beta_0} u$	$\underbrace{t \to_{\beta} u}_{}$	$t \to_{\beta} u$	$\underbrace{t \to_{\beta} u}_{t \to t}$
$(\lambda x.t) u \gamma \beta_0 t [\gamma x]$	$t \to_{\beta} u$	$\lambda x.t \to_\beta \lambda x.u$	$t v \to_{\beta} u v$	$v t \rightarrow_{\beta} v u$

Table 1: β -reduction rules

$$\frac{1}{\lambda x.(t\,x)\to_{\eta_0} t} x \notin t \qquad \frac{t\to_{\eta_0} u}{t\to_{\eta} u} \qquad \frac{t\to_{\eta} u}{\lambda x.t\to_{\eta} \lambda x.u} \qquad \frac{t\to_{\eta} u}{t\,v\to_{\eta} u\,v} \qquad \frac{t\to_{\eta} u}{v\,t\to_{\eta} v\,u}$$

Table 2: η -reduction rules

$$\begin{array}{c} \hline \Gamma, x: A \vdash x: A \\ \hline \Gamma \vdash \lambda x. t: A \rightarrow B \end{array} abs \qquad \begin{array}{c} \hline \Gamma \vdash t: A \rightarrow B \\ \hline \Gamma \vdash tu: A \\ \hline \end{array} app \end{array}$$



The typing system obtained from the previously defined terms, types and typing rules is called ST.

Statement (Monotonicity [MONOT])

If $\Gamma \vdash t : A$ and $\Delta \supseteq \Gamma$ then $\Delta \vdash t : A$ (where $\Delta \supseteq \Gamma$ means that each typing declaration x : B in Γ appears in Δ).

Lemma 1 (Monotonicity for ST) MONOT *holds for* ST.

- PROOF: By induction on the derivation of $\Gamma \vdash t : A$. We consider each possible last rule from Table 3:
 - (var) If t = x, we have $x : A \in \Gamma$ thus $\Delta \vdash x : A$.
 - (abs) If $t = \lambda x.t'$ with $A = A' \to A''$ and $\Gamma, x : A' \vdash t' : A''$, by induction hypothesis, we have $\Delta, x : A' \vdash t' : A''$ thus $\Delta \vdash \lambda x.t' : A$.
 - (app) If t = t't'' with $\Gamma \vdash t' : A' \to A$ and $\Gamma \vdash t'' : A'$, by induction hypothesis, we have $\Delta \vdash t' : A' \to A$ and $\Delta \vdash t'' : A'$. So that $\Delta \vdash t't'' : A$.

Statement (Non-free variables [NFVAR]) If $x \notin t$ and $\Gamma, x : B \vdash t : A$ then $\Gamma \vdash t : A$.

Lemma 2 (Non-free variables for ST) NFVAR *holds for* ST.

- **PROOF:** By induction on the derivation of $\Gamma, x : B \vdash t : A$. We consider each possible last rule from Table 3:
 - (var) If $t = y \neq x$ then $y : A \in \Gamma$ and $\Gamma \vdash y : A$.
 - (abs) If $t = \lambda y.t'$ and $A = A' \to A''$ with $\Gamma, x : B, y : A' \vdash t' : A''$ then, by induction hypothesis, $\Gamma, y : A' \vdash t' : A''$ and thus $\Gamma \vdash \lambda y.t' : A$.
 - (app) If t = t't'' with $\Gamma, x : B \vdash t' : A' \to A$ and $\Gamma, x : B \vdash t'' : A'$ then, by induction hypothesis, $\Gamma \vdash t' : A' \to A$ and $\Gamma \vdash t'' : A'$ thus $\Gamma \vdash t't'' : A$. \Box

Statement (General substitution [GSUBST])

Assume that $\Gamma \vdash t\{v/x\}$: A and for all Δ and B, $\Gamma, \Delta \vdash v$: B implies $\Gamma, \Delta \vdash u$: B, then $\Gamma \vdash t\{u/x\}$: A.

Lemma 3 (General substitution for ST) GSUBST *holds for* ST.

PROOF: By induction on the derivation of $\Gamma \vdash t\{v/x\}$: A. If t = x, we have $t\{v/x\} = v$ with $\Gamma \vdash v : A$ and we conclude by hypothesis since $t\{u/x\} = u$. Otherwise we consider each possible last rule of the derivation of $\Gamma \vdash t\{v/x\}$: A from Table 3:

(var) If $t = y \neq x$, we have $t\{v/x\} = y = t\{u/x\}$.

- (abs) If $t = \lambda y.t'$ $(y = x \text{ or } y \neq x)$ with $A = A' \to A''$ and $\Gamma, y: A' \vdash t' \{v/x\} : A''$ then, by induction hypothesis, $\Gamma, y: A' \vdash t' \{u/x\} : A''$ thus $\Gamma \vdash t \{u/x\} : A$.
- (app) If t = t't'' with $\Gamma \vdash t'\{v/x\} : A' \to A$ and $\Gamma \vdash t''\{v/x\} : A'$ then, by induction hypothesis, $\Gamma \vdash t'\{u/x\} : A' \to A$ and $\Gamma \vdash t''\{u/x\} : A'$ thus $\Gamma \vdash t\{u/x\} : A$. \Box

Statement (Variable inversion [INVVAR])

If $\Gamma \vdash x : A$ then $x : A \in \Gamma$.

Lemma 4 (Variable inversion for ST) INVVAR *holds for* ST.

PROOF: The only possible last rule for deriving $\Gamma \vdash x : A$ is (var) and thus $x : A \in \Gamma$. \Box

Statement (Application inversion [INVAPP]) If $\Gamma \vdash t u : A$, there exists a type B such that $\Gamma \vdash t : B \to A$ and $\Gamma \vdash u : B$.

- **Lemma 5** (Application inversion for ST) INVAPP *holds for* ST.
- PROOF: The only possible last rule for deriving $\Gamma \vdash t u : A$ is (app) and thus there exists a type B such that $\Gamma \vdash t : B \to A$ and $\Gamma \vdash u : B$.

Statement (Abstraction inversion [INVABS])

If $\Gamma \vdash \lambda x.t : A$, there exist B and C such that $A = B \rightarrow C$ and $\Gamma, x : B \vdash t : C$.

- **Lemma 6** (Abstraction inversion for ST) INVABS *holds for* ST.
- PROOF: The only possible last rule for deriving $\Gamma \vdash \lambda x.t : A$ is (abs) and thus there exist B and C such that $A = B \rightarrow C$ and $\Gamma, x : B \vdash t : C$. \Box

Statement (Implicative abstraction inversion [INVABSIMP])

If $\Gamma \vdash \lambda x.t : A \to B$ then $\Gamma, x : A \vdash t : B$.

Lemma 7 (Implicative abstraction inversion) INVABS \implies INVABSIMP.

PROOF: Immediate.

Statement (Substitution [SUBST]) If $\Gamma, x : A \vdash t : B$ and $\Gamma \vdash u : A$ then $\Gamma \vdash t[^u/_x] : B$.

Lemma 8 (Substitution)

 $\operatorname{GSubst} \land \operatorname{InvVar} \land \operatorname{Monot} \land \operatorname{NFVar} \Longrightarrow \operatorname{Subst}.$

PROOF: Note first that x is not declared in Γ (otherwise $\Gamma, x : A$ is not a valid context) and thus x is not free in u.

Up to α -conversion in t, we can assume that x is not bound in t and that no free variable of u is bound in t. As a consequence $t[u/x] = t\{u/x\}$.

We have $\Gamma, x : A \vdash t\{x/x\} : B$. If $\Gamma, x : A, \Delta \vdash x : C$ then A = C by (INVVAR), and by (MONOT) we obtain $\Gamma, x : A, \Delta \vdash u : A$. It is thus possible to apply (GSUBST) to deduce $\Gamma, x : A \vdash t\{u/x\} : B$. Finally, since $t\{u/x\} = t[u/x]$ and x is not free in t[u/x], we can apply (NFVAR) to conclude $\Gamma \vdash t[u/x] : B$. \Box

Statement (Subject reduction for β_0 [β SUBJRED₀]) If $\Gamma \vdash t : A$ and $t \rightarrow_{\beta_0} u$ then $\Gamma \vdash u : A$.

Lemma 9 (Subject reduction for β_0) SUBST \wedge INVAPP \wedge INVABSIMP $\Longrightarrow \beta$ SUBJRED₀.

PROOF: If $\Gamma \vdash (\lambda x.t) u : A$, by (INVAPP), there exists B such that $\Gamma \vdash \lambda x.t : B \to A$ and $\Gamma \vdash u : B$. By (INVABSIMP), $\Gamma, x : B \vdash t : A$, and by (SUBST), $\Gamma \vdash t[^u/_x] : A$. \Box

Statement (Subject reduction for β [β SUBJRED]) If $\Gamma \vdash t : A$ and $t \rightarrow_{\beta} u$ then $\Gamma \vdash u : A$.

Lemma 10 (Subject reduction) GSUBST $\land \beta$ SUBJRED₀ $\Longrightarrow \beta$ SUBJRED.

PROOF: If $\Gamma \vdash t : A$ and $t \to_{\beta} u$ then $t = c\{t'/x\}$ and $u = c\{u'/x\}$ with $t' \to_{\beta_0} u'$. Assume that $\Gamma, \Delta \vdash t' : B$ then by $(\beta \text{SUBJRED}_0)$ we have $\Gamma, \Delta \vdash u' : B$, thus by (GSUBST) we obtain $\Gamma \vdash u : A$.

Theorem 1 (Subject reduction for ST) β SUBJRED *holds for* ST.

PROOF: By Lemma 3 we have (GSUBST). By Lemma 1 we have (MONOT). By Lemma 2 we have (NFVAR). By Lemma 4 we have (INVVAR). By Lemma 5 we have (INVAPP). By Lemma 6 we have (INVABS).

By Lemma 8 we deduce (SUBST). By Lemma 7 we deduce (INVABSIMP). By Lemma 9 we deduce (β SUBJRED₀). By Lemma 10 we deduce (β SUBJRED).

Statement (Subject reduction for η_0 [η SUBJRED₀]) If $\Gamma \vdash t : A$ and $t \rightarrow_{\eta_0} u$ then $\Gamma \vdash u : A$.

Lemma 11 (Subject reduction for η_0) NFVAR \wedge INVVAR \wedge INVAPP \wedge INVABS $\Longrightarrow \eta$ SUBJRED₀.

PROOF: If $\Gamma \vdash \lambda x.(tx) : A$, by (INVABS), there exist B and C such that $A = B \to C$ and $\Gamma, x : B \vdash tx : C$. By (INVAPP), there exists D such that $\Gamma, x : B \vdash t : D \to C$ and $\Gamma, x : B \vdash x : D$. By (INVVAR), we have B = D. By (NFVAR), we conclude $\Gamma \vdash t : B \to C$ since $x \notin t$.

Statement (Subject reduction for η [η SUBJRED]) If $\Gamma \vdash t : A$ and $t \rightarrow_{\eta} u$ then $\Gamma \vdash u : A$.

Lemma 12 (Subject reduction for η) GSUBST $\land \eta$ SUBJRED₀ $\Longrightarrow \eta$ SUBJRED.

PROOF: If $\Gamma \vdash t : A$ and $t \to_{\eta} u$ then $t = c\{t'/x\}$ and $u = c\{u'/x\}$ with $t' \to_{\eta_0} u'$. Assume that $\Gamma, \Delta \vdash t' : B$ then by $(\eta \text{SUBJRED}_0)$ we have $\Gamma, \Delta \vdash u' : B$, thus by (GSUBST) we obtain $\Gamma \vdash u : A$.

Theorem 2 (Subject reduction for η for ST) η SUBJRED *holds for* ST.

PROOF: By Lemma 3 we have (GSUBST). By Lemma 2 we have (NFVAR). By Lemma 4 we have (INVVAR). By Lemma 5 we have (INVAPP). By Lemma 6 we have (INVABS).

By Lemma 11 we deduce (η SUBJRED₀). By Lemma 12 we deduce (η SUBJRED).

Table 4: Typing rules with subtyping

2.1 Additional results

Statement (Co non-free variables [CONFVAR]) If $\Gamma \vdash t : A$ with x not declared in Γ then $x \notin t$ and $\Gamma, x : B \vdash t : A$.

Lemma 13 (Co non-free variables) MONOT \iff CONFVAR.

PROOF: First direction: $x \notin t$ by definition of typing judgments since x is not declared in Γ . (MONOT) gives $\Gamma, x : B \vdash t : A$.

Second direction: by induction on the context $\Delta \setminus \Gamma$, noting that all its elements correspond to declarations of variables not free in t.

Statement (Co variable inversion [COINVVAR]) If $x : A \in \Gamma$ then $\Gamma \vdash x : A$.

Lemma 14 (Co variable inversion) $(var) \iff COINVVAR.$

PROOF: Immediate.

Statement (Co application inversion [COINVAPP]) If $\Gamma \vdash t : B \to A$ and $\Gamma \vdash u : B$ then $\Gamma \vdash t u : A$.

Lemma 15 (Co application inversion) $(app) \iff \text{COINVAPP}.$

PROOF: Immediate.

Statement (Co abstraction inversion [COINVABS]) If $A = B \rightarrow C$ and $\Gamma, x : B \vdash t : C$ then $\Gamma \vdash \lambda x.t : A$.

Lemma 16 (Co abstraction inversion) $(abs) \iff COINVABS.$

PROOF: Immediate.

3 The simply typed λ -calculus with subtyping

3.1 General case

The system ST_{\leq} is obtained from ST by replacing the typing rules of Table 3 by those from Table 4 where the relation \leq between types in any relation satisfying the rules of Table 5 (thus any reflexive and transitive relation).

$$A \leq A$$
 refl $A \leq B$ $B \leq C$ trans

 Table 5: Minimal subtyping rules

Statement (Monotonicity with \leq [MONOT $_<$])

If $\Gamma \vdash t : A$, $\Delta \leq \Gamma$ and $A \leq B$ then $\Delta \vdash t : B$ (where $\Delta \leq \Gamma$ means that for each typing declaration x : C in Γ there is a declaration x : D with $D \leq C$ in Δ).

Lemma 17 (Monotonicity for ST_{\leq}) Monot_{\leq} holds for ST_{\leq} .

PROOF: We first prove the case A = B by induction on the derivation of $\Gamma \vdash t : A$. We consider each possible last rule from Table 4:

(var) If t = x, let A' be the type of x in Δ , we have $A' \leq A$ and:

$$\frac{\overline{\Delta \vdash x:A'} \quad var}{\Delta \vdash x:A} \xrightarrow{A' \leq A} \leq$$

- (abs) If $t = \lambda x.t'$ with $A = A' \to A''$ and $\Gamma, x : A' \vdash t' : A''$, by induction hypothesis, we have $\Delta, x : A' \vdash t' : A''$ thus $\Delta \vdash \lambda x.t' : A$.
- (app) If t = t't'' with $\Gamma \vdash t' : A' \to A$ and $\Gamma \vdash t'' : A'$, by induction hypothesis, we have $\Delta \vdash t' : A' \to A$ and $\Delta \vdash t'' : A'$. So that $\Delta \vdash t't'' : A$.
- (≤) If $A' \leq A$ with $\Gamma \vdash t : A'$ then, by induction hypothesis, we have $\Delta \vdash t : A'$ thus $\Delta \vdash t : A$.

We conclude with:

$$\frac{\Delta \vdash t : A \qquad A \leq B}{\Delta \vdash t : B} \leq$$

Lemma 18 (Non-free variables for ST_{\leq}) NFVAR *holds for* ST_{\leq} .

- PROOF: By induction on the derivation of $\Gamma, x : B \vdash t : A$. By using the proof of Lemma 2, we only need to consider (\leq) as last rule:
 - (\leq) If $A' \leq A$ with $\Gamma, x : B \vdash t : A'$ then, by induction hypothesis, $\Gamma \vdash t : A'$ thus $\Gamma \vdash t : A$.

Lemma 19 (General substitution for ST_{\leq}) GSUBST holds for $ST_{<}$.

- PROOF: By following the proof of Lemma 3, it is enough to consider the case of $\Gamma \vdash t\{v/x\} : A$ obtained with a (\leq) rule:
 - (≤) If $A' \leq A$ with $\Gamma \vdash t\{v/x\} : A'$ then, by induction hypothesis, $\Gamma \vdash t\{u/x\} : A'$ thus $\Gamma \vdash t\{u/x\} : A$.

Statement (Variable inversion with $\leq [INVVAR_{\leq}]$) If $\Gamma \vdash x : A$ then there exists B such that $B \leq A$ and $x : B \in \Gamma$.

Lemma 20 (Variable inversion for ST_{\leq}) INVVAR \leq holds for ST_{\leq} .

- PROOF: By induction on the derivation of $\Gamma \vdash x : A$. The only possible last rules are (var) and (\leq) :
 - (var) We have $x : A \in \Gamma$ with $A \leq A$.
 - (≤) If $\Gamma \vdash x : A'$ with $A' \leq A$ then, by induction hypothesis, we have $x : B \in \Gamma$ with $B \leq A'$ thus $B \leq A$.

Statement (Application inversion with $\leq [INVAPP_{\leq}]$) If $\Gamma \vdash t u : A$, there exist B and C such that $B \leq A$, $\Gamma \vdash t : C \rightarrow B$ and $\Gamma \vdash u : C$.

Lemma 21 (Application inversion for ST_{\leq}) INVAPP< holds for $ST_{<}$.

PROOF: By induction on the derivation of $\Gamma \vdash t u : A$. The only possible last rules are (app) and (\leq) :

(app) There exists a type C such that Γ ⊢ t : C → A and Γ ⊢ u : C and we have A ≤ A.
(≤) If Γ ⊢ t u : A' with A' ≤ A then, by induction hypothesis, there exist B and C such that B ≤ A' (thus B ≤ A), Γ ⊢ t : C → B and Γ ⊢ u : C.

Statement (Abstraction inversion with $\leq [INVABS \leq]$) If $\Gamma \vdash \lambda x.t : A$, there exist B and C such that $B \rightarrow C \leq A$ and $\Gamma, x : B \vdash t : C$.

Lemma 22 (Abstraction inversion for ST_{\leq}) INVABS \leq holds for ST_{\leq} .

PROOF: By induction on the derivation of $\Gamma \vdash \lambda x.t : A$. The only possible last rules are (abs) and (\leq) :

(abs) There exist B and C such that $A = B \to C$ (thus $B \to C \leq A$) and $\Gamma, x : B \vdash t : C$.

(\leq) If $\Gamma \vdash \lambda x.t : A'$ with $A' \leq A$ then, by induction hypothesis, there exist B and C such that $B \to C \leq A'$ (thus $B \to C \leq A$) and $\Gamma, x : B \vdash t : C$. \Box

Statement (Implication inversion with $\leq [IMP_{\leq}]$) If $A \rightarrow B \leq C \rightarrow D$ then $C \leq A$ and $B \leq D$.

Statement (Implicative abstraction inversion with $\leq [INVABSIMP_{\leq}]$) If $\Gamma \vdash \lambda x.t : A \rightarrow B$, there exist A' and B' such that $A \leq A'$, $B' \leq B$ and $\Gamma, x : A' \vdash t : B'$.

Lemma 23 (Implicative abstraction inversion with \leq) INVABS $\leq \wedge$ IMP $\leq \implies$ INVABSIMP \leq .

PROOF: If $\Gamma \vdash \lambda x.t : A \to B$, by (INVABS \leq), there exist A' and B' such that $A' \to B' \leq A \to B$ and $\Gamma, x : A' \vdash t : B'$. By (IMP \leq), we have $A \leq A'$ and $B' \leq B$.

Lemma 24 (Substitution)

 $\operatorname{GSubst} \wedge \operatorname{InvVar}_{\leq} \wedge \operatorname{Monot}_{\leq} \wedge \operatorname{NFVar} \Longrightarrow \operatorname{Subst}.$

PROOF: Note first that x is not declared in Γ (otherwise $\Gamma, x : A$ is not a valid context) and thus x is not free in u.

Up to α -conversion in t, we can assume that x is not bound in t and that no free variable of u is bound in t. As a consequence $t[u/x] = t\{u/x\}$.

We have $\Gamma, x : A \vdash t\{x/x\} : B$. If $\Gamma, x : A, \Delta \vdash x : C$ then $A \leq C$ by (INVVAR \leq), and by (MONOT \leq) we obtain $\Gamma, x : A, \Delta \vdash u : C$. It is thus possible to apply (GSUBST) to deduce $\Gamma, x : A \vdash t\{u/x\} : B$. Finally, since $t\{u/x\} = t[u/x]$ and x is not free in t[u/x], we can apply (NFVAR) to conclude $\Gamma \vdash t[u/x] : B$. \Box

Lemma 25 (Subject reduction for β_0 with \leq) SUBST \land INVAPP \leq \land INVABSIMP \leq \land (\leq) $\Longrightarrow \beta$ SUBJRED₀.

PROOF: If $\Gamma \vdash (\lambda x.t) u : A$, by (INVAPP \leq), there exist B and C such that $B \leq A$, $\Gamma \vdash \lambda x.t : C \rightarrow B$ and $\Gamma \vdash u : C$. By (INVABSIMP \leq), there exist B' and C' such that $C \leq C'$, $B' \leq B$ and $\Gamma, x : C' \vdash t : B'$. By (\leq) we have $\Gamma \vdash u : C'$ and by (SUBST), $\Gamma \vdash t[^u/_x] : B'$ thus:

$$\frac{\Gamma \vdash t[^{u}/_{x}] : B' \quad B' \leq B}{\frac{\Gamma \vdash t[^{u}/_{x}] : B}{\Gamma \vdash t[^{u}/_{x}] : A}} \leq B \leq A$$

3.1.1 Additional results

Lemma 26 (Subtyping and typing inclusion) If INVVAR $< \land (var) \land (\leq)$ then:

$$((\forall t \forall \Gamma, \ \Gamma \vdash t : A \Rightarrow \Gamma \vdash t : B) \iff A \le B)$$

PROOF: The first implication is obtained by applying (INVVAR \leq) to $x : A \vdash x : B$ (obtained from $x : A \vdash x : A$ by (var)).

The second implication is (\leq) .

Lemma 27 (Co non-free variables with \leq) MONOT_< \Longrightarrow CONFVAR.

PROOF: $x \notin t$ by definition of typing judgments since x is not declared in Γ . (MONOT_{\leq}) gives $\Gamma, x : B \vdash t : A$.

Statement (Co variable inversion with $\leq [\text{COINVVAR}_{\leq}]$) If $B \leq A$ and $x : B \in \Gamma$ then $\Gamma \vdash x : A$.

Lemma 28 (Co variable inversion with \leq) $(var) \land (\leq) \Longrightarrow \text{COINVVAR}_{\leq}$.

PROOF: Assume $x : B \in \Gamma$:

$$\frac{\overline{\Gamma \vdash x:B} \quad var}{\Gamma \vdash x:A} \stackrel{B \leq A}{=} \leq$$

$$\hline A \leq A \quad refl \qquad \hline A \leq B \quad B \leq C \\ \hline A \leq C \quad trans \qquad \hline C \leq A \quad B \leq D \\ \hline A \rightarrow B \leq C \rightarrow D \\ \hline \end{pmatrix}$$

Table 6: Subtyping rules for $ST^{\rightarrow}_{<}$

Statement (Co application inversion with $\leq [\text{COINVAPP}_{\leq}]$) If $\Gamma \vdash t : C \rightarrow B$, $\Gamma \vdash u : C$ and $B \leq A$ then $\Gamma \vdash t u : A$.

Lemma 29 (Co application inversion with \leq) $(app) \land (\leq) \Longrightarrow \text{COINVAPP}_{\leq}.$

Proof:

$$\frac{\Gamma \vdash t: C \rightarrow B \quad \Gamma \vdash u: C}{\Gamma \vdash t\, u: B} \quad \frac{B \leq A}{\Gamma \vdash t\, u: A} \leq$$

Statement (Co abstraction inversion with $\leq [\text{COINVABS}_{\leq}]$) If $B \to C \leq A$ and $\Gamma, x : B \vdash t : C$ then $\Gamma \vdash \lambda x.t : A$.

Lemma 30 (Co abstraction inversion with \leq) $(abs) \land (\leq) \Longrightarrow$ coINVABS<.

Proof:

$$\frac{ \begin{array}{c} \Gamma, x: B \vdash t: C \\ \hline \Gamma \vdash \lambda x.t: B \rightarrow C \end{array} abs }{ \Gamma \vdash \lambda x.t: A } B \rightarrow C \leq A \\ \end{array} \leq$$

Statement (Co implicative abstraction inversion with $\leq [\text{COINVABSIMP}_{\leq}]$) If $A \leq A'$, $B' \leq B$ and $\Gamma, x : A' \vdash t : B'$ then $\Gamma \vdash \lambda x.t : A \rightarrow B$.

Lemma 31 (Co implicative abstraction inversion with \leq) MONOT $\leq \land (abs) \Longrightarrow$ COINVABSIMP \leq .

PROOF: By (MONOT \leq) we have $\Gamma, x : A \vdash t : B$ and then:

$$\frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x. t: A \to B} abs$$

3.2 Covariant contravariant implication

The system ST_{\leq}^{\rightarrow} is the particular case of ST_{\leq} where the relation \leq is defined *exactly* by the rules of Table 6.

Statement (Admissibility of the (*trans*) rule [TRANSELIM]) If $A \leq B$ is derivable then $A \leq B$ is derivable without the (*trans*) rule. **Lemma 32** (Transitivity elimination for ST_{\leq}^{\rightarrow}) TRANSELIM *holds for* ST_{\leq}^{\rightarrow} .

PROOF: Let the size |d| of a derivation d be its number of rules. We first prove by induction on the sum $|d_1| + |d_2|$ that if d_1 is a (trans)-free derivation of $A \leq B$ and d_2 is a (trans)-free derivation of $B \leq C$, then there exists a (trans)-free derivation of $A \leq C$. We look at each possible last rule for d_2 :

(refl) We have B = C and d_1 is a (trans)-free derivation of $A \leq C$.

(\rightarrow) If $B = B' \rightarrow B''$ and $C = C' \rightarrow C''$, we have (trans)-free derivations d'_2 of $C' \leq B'$ and d''_2 of $B'' \leq C''$. We consider each possible last rule for d_1 :

(*refl*) We have A = B and d_2 is a (*trans*)-free derivation of $A \leq C$.

 (\rightarrow) If $A = A' \rightarrow A''$, we have (trans)-free derivations d'_1 of $B' \leq A'$ and d''_1 of $A'' \leq B''$. By induction hypothesis applied to the derivations d'_2 and d'_1 , and d''_1 and d''_2 , we obtain (trans)-free derivations of $C' \leq A'$ and $A'' \leq C''$ and we conclude with (\rightarrow) that $A \leq C$.

We now prove (TRANSELIM) by induction on the derivation of $A \leq B$. We consider each possible last rule from Table 6:

(*refl*) The derivation is directly without (*trans*).

(\rightarrow) If $A = A' \rightarrow B'$ and $B = C' \rightarrow D'$ then, by induction hypothesis, we have derivations of $C' \leq A'$ and $B' \leq D'$ without the (*trans*) rule. We thus have:

$$\frac{C' \leq A' \quad B' \leq D'}{A' \rightarrow B' \leq C' \rightarrow D'} \rightarrow$$

without the (trans) rule.

(trans) If $A \leq C$ and $C \leq B$, by induction hypothesis, we have (trans)-free derivations of $A \leq C$ and of $C \leq B$. We apply the preliminary result to obtain a (trans)-free derivation of $A \leq B$.

Lemma 33 (Transitivity-free implication inversion for $\mathsf{ST}_{\leq}^{\rightarrow}$) In $\mathsf{ST}_{\leq}^{\rightarrow}$, TRANSELIM \Longrightarrow IMP \leq .

PROOF: By induction on the derivation of $A \to B \leq C \to D$. We consider each possible last rule from Table 6 except (*trans*) (thanks to (TRANSELIM)):

(refl) A = C and B = D thus $C \leq A$ and $B \leq D$.

 (\rightarrow) We immediately have $C \leq A$ and $B \leq D$.

Theorem 3 (Subject reduction for ST_{\leq}^{\rightarrow}) β SUBJRED *holds for* ST_{\leq}^{\rightarrow} .

PROOF: By Lemma 19 we have (GSUBST). By Lemma 17 we have (MONOT_{\leq}). By Lemma 18 we have (NFVAR). By Lemma 20 we have (INVVAR_{\leq}). By Lemma 21 we have (INVAPP_{\leq}). By Lemma 22 we have (INVABS_{\leq}). By Lemma 32 we have (TRANSELIM). By Lemma 33 we deduce (IMP_{\leq}).

By Lemma 24 we deduce (SUBST). By Lemma 23 we deduce (INVABSIMP \leq). By Lemma 25 we deduce (β SUBJRED₀). By Lemma 10 we deduce (β SUBJRED).

Lemma 34 (Subject reduction for η_0 with \leq) NFVAR \wedge INVVAR $\leq \wedge$ INVAPP $\leq \wedge$ INVABS $\leq \wedge (\rightarrow) \Longrightarrow \eta$ SUBJRED₀.

PROOF: If $\Gamma \vdash \lambda x.(t x) : A$, by (INVABS_{\leq}), there exist B and C such that $B \rightarrow C \leq A$ and $\Gamma, x : B \vdash t x : C$. By (INVAPP_{\leq}), there exist D and E such that $E \leq C$, $\Gamma, x : B \vdash t : D \rightarrow E$ and $\Gamma, x : B \vdash x : D$. By (INVVAR_{\leq}), we have $B \leq D$. By (NFVAR), we obtain $\Gamma \vdash t : D \rightarrow E$ since $x \notin t$. We conclude with:

$$\frac{ \begin{array}{c} \frac{B \leq D \quad E \leq C}{D \rightarrow E \leq B \rightarrow C} \\ \hline \Gamma \vdash t : B \rightarrow C \end{array} }{ \end{array} }$$

Theorem 4 (Subject reduction for η for $\mathsf{ST}_{\leq}^{\rightarrow}$) η SUBJRED holds for $\mathsf{ST}_{\leq}^{\rightarrow}$.

PROOF: By Lemma 19 we have (GSUBST). By Lemma 18 we have (NFVAR). By Lemma 20 we have (INVVAR \leq). By Lemma 21 we have (INVAPP \leq). By Lemma 22 we have (INVABS \leq). (\rightarrow) holds in ST_{\leq}^{\rightarrow} (Table 6).

By Lemma 34 we deduce (η SUBJRED₀). By Lemma 12 we deduce (η SUBJRED).

3.2.1 Additional results

Statement (Co implication inversion with $\leq [\text{COIMP}_{\leq}]$) If $C \leq A$ and $B \leq D$ then $A \rightarrow B \leq C \rightarrow D$.

Lemma 35 (Co implication inversion with \leq) $(\rightarrow) \iff \text{CoIMP}_{<}$.

PROOF: Immediate.

4 The intersection typed λ -calculus with subtyping

Types are now built from base types and the type constant Ω by means of the binary operations \rightarrow and \cap :

$$A ::= X \mid A \to A \mid \Omega \mid A \cap A$$

In order to enhance readability, we use the notation $\bigcap_{i \in I} A_i$ for a type obtained *in some* way by applying \cap connectives to the types in $(A_i)_{i \in I}$. If $I = \emptyset$, such an empty intersection is a notation for Ω . If I is a singleton $\{i\}$ then it is simply a notation for A_i

4.1 General case

The system IT_{\leq} is obtained from the typing rules of Table 7 with any relation \leq between types satisfying the rules of Table 8.

Lemma 36 (Monotonicity for $|T_{\leq}$) MONOT< holds for $|T_{<}$.

- PROOF: By induction on the derivation of $\Gamma \vdash t : A$. By using the proof of Lemma 17, it is enough to consider the case A = B and (\cap) and (Ω) as last rules:
 - (\cap) If $A = A' \cap A''$ with $\Gamma \vdash t : A'$ and $\Gamma \vdash t : A''$, by induction hypothesis, we have $\Delta \vdash t : A'$ and $\Delta \vdash t : A''$ thus $\Delta \vdash t : A$.

$$\begin{array}{c|c} \hline \Gamma, x: A \vdash x: A & var & \hline \Gamma, x: A \vdash t: B \\ \hline \Gamma \vdash \lambda x.t: A \to B & abs & \hline \Gamma \vdash t: A \to B & \Gamma \vdash u: A \\ \hline \Gamma \vdash t: A & A \leq B \\ \hline \Gamma \vdash t: B & \leq & \hline \Gamma \vdash t: A \cap B & \cap & \hline \Gamma \vdash t: \Omega & \Omega \end{array}$$

Table 7: Typing rules with subtyping and intersection

$$\begin{array}{c} \hline A \leq A & refl \\ \hline A \leq C \\ \hline A \cap B \leq C \\ \hline A \cap B \leq C \end{array} \cap_{l}^{1} \\ \hline \begin{array}{c} B \leq C \\ \hline A \cap B \leq C \\ \hline A \cap B \leq C \\ \hline \end{array} \cap_{l}^{2} \\ \hline \begin{array}{c} C \leq A \\ \hline C \leq A \cap B \\ \hline \end{array} \cap_{r} \\ \hline \end{array} \cap_{r} \\ \hline \begin{array}{c} C \leq \Omega \\ \hline \end{array} \cap_{r} \\ \hline \begin{array}{c} C \leq \Omega \\ \hline \end{array} \cap_{r} \\ \hline \\ \hline$$

(Ω) If $A = \Omega$ then $\Delta \vdash t : \Omega$.

Lemma 37 (Non-free variables for $|T_{\leq}$) NFVAR holds for $|T_{\leq}$.

- PROOF: By induction on the derivation of $\Gamma, x : B \vdash t : A$. By using the proof of Lemma 18, we only need to consider (\cap) and (Ω) as last rules:
 - (\cap) If $A = A' \cap A''$ with $\Gamma, x : B \vdash t : A'$ and $\Gamma, x : B \vdash t : A''$ then, by induction hypothesis, $\Gamma \vdash t : A'$ and $\Gamma \vdash t : A''$ thus $\Gamma \vdash t : A$.
 - (Ω) We have $\Gamma \vdash t : \Omega$.

Lemma 38 (General substitution for $|T_{\leq}$) GSUBST holds for $|T_{\leq}$.

- PROOF: By following the proof of Lemma 19, it is enough to consider the case of $\Gamma \vdash t\{v/x\} : A$ obtained with a (\cap) or a (Ω) rule:
 - (∩) If $A = A' \cap A''$ with $\Gamma \vdash t\{v/x\} : A'$ and $\Gamma \vdash t\{v/x\} : A''$ then, by induction hypothesis, $\Gamma \vdash t\{u/x\} : A'$ and $\Gamma \vdash t\{u/x\} : A''$ thus $\Gamma \vdash t\{u/x\} : A$.
 - (Ω) We have $\Gamma \vdash t\{u/x\} : \Omega$.

Lemma 39 (Variable inversion for $|T_{\leq}$) INVVAR \leq holds for $|T_{\leq}$.

- PROOF: By induction on the derivation of $\Gamma \vdash x : A$. By using the proof of Lemma 20, we only need to consider (\cap) and (Ω) as last rules:
 - (\cap) If $A = A' \cap A''$ with $\Gamma \vdash x : A'$ and $\Gamma \vdash x : A''$ then, by induction hypothesis, we have $x : B \in \Gamma$ with $B \leq A'$ and $B \leq A''$ and:

$$\frac{B \le A' \quad B \le A''}{B \le A} \cap_r$$

(Ω) If $A = \Omega$ then x must be declared with some type B in Γ and we have:

$$\overline{B \le \Omega} \ \Omega_r$$

Statement (Application inversion with \cap [INVAPP \cap])

If $\Gamma \vdash t u : A$, there exist a set I and two families $(B_i)_{i \in I}$ and $(C_i)_{i \in I}$ such that $\bigcap_{i \in I} B_i \leq A$ and for all $i \in I$, $\Gamma \vdash t : C_i \to B_i$ and $\Gamma \vdash u : C_i$.

Lemma 40 (Application inversion for $|T_{\leq}$) INVAPP $_{\cap}$ holds for $|T_{<}$.

PROOF: By induction on the derivation of $\Gamma \vdash t u : A$. We look at the possible last rules:

- (app) There exists a type C_1 such that $\Gamma \vdash t : C_1 \to A$ and $\Gamma \vdash u : C_1$ and we have $I = \{1\}$ and $B_1 = A \leq A$.
- (\leq) If $\Gamma \vdash t u : A'$ with $A' \leq A$ then, by induction hypothesis, there exist a set I and two families $(B_i)_{i \in I}$ and $(C_i)_{i \in I}$ such that $\bigcap_{i \in I} B_i \leq A'$ and for all $i \in I$, $\Gamma \vdash t : C_i \to B_i$ and $\Gamma \vdash u : C_i$. We then deduce:

$$\frac{\bigcap_{i\in I} B_i \le A' \quad A' \le A}{\bigcap_{i\in I} B_i \le A} trans$$

(\cap) If $\Gamma \vdash t u : A'$ and $\Gamma \vdash t u : A''$ with $A = A' \cap A''$ then, by induction hypothesis, there exist a set I' and a set I'' (we can assume I' and I'' to be disjoint) and families $(B_i)_{i \in I'}, (C_i)_{i \in I'}, (B_i)_{i \in I''}$ and $(C_i)_{i \in I''}$ such that $\bigcap_{i \in I'} B_i \leq A', \bigcap_{i \in I''} B_i \leq A''$, for all $i \in I' \cup I'', \Gamma \vdash t : C_i \to B_i$ and $\Gamma \vdash u : C_i$. We then define $I = I' \cup I''$ and we have:

$$\frac{\bigcap_{i\in I'} B_i \leq A'}{\bigcap_{i\in I} B_i \leq A'} \cap_l^1 \quad \frac{\bigcap_{i\in I''} B_i \leq A''}{\bigcap_{i\in I} B_i \leq A''} \cap_l^2}{\bigcap_{i\in I} B_i \leq A} \cap_r$$

(Ω) If $A = \Omega$, we choose $I = \emptyset$ and we have $\Omega \leq A$.

Statement (Abstraction inversion with \cap [INVABS \cap]) If $\Gamma \vdash \lambda x.t : A$, there exist a set I and two families $(B_i)_{i \in I}$ and $(C_i)_{i \in I}$ such that $\bigcap_{i \in I} B_i \rightarrow C_i \leq A$ and for all $i \in I$, $\Gamma, x : B_i \vdash t : C_i$.

Lemma 41 (Abstraction inversion for $|T_{\leq}$) INVABS_{\(\)} holds for $|T_{<}$.

PROOF: By induction on the derivation of $\Gamma \vdash \lambda x.t : A$. We look at the possible last rules:

- (abs) There exist B_1 and C_1 such that $A = B_1 \to C_1$ (thus $B_1 \to C_1 \leq A$) and $\Gamma, x : B_1 \vdash t : C_1$. We choose $I = \{1\}$.
- (\leq) If $\Gamma \vdash \lambda x.t : A'$ with $A' \leq A$ then, by induction hypothesis, there exist a set I and two families $(B_i)_{i \in I}$ and $(C_i)_{i \in I}$ such that $\bigcap_{i \in I} B_i \to C_i \leq A'$ and for all $i \in I$, $\Gamma, x : B_i \vdash t : C_i$. We then deduce:

$$\frac{\bigcap_{i \in I} B_i \to C_i \le A' \quad A' \le A}{\bigcap_{i \in I} B_i \to C_i \le A} trans$$

(∩) If $\Gamma \vdash \lambda x.t : A'$ and $\Gamma \vdash \lambda x.t : A''$ with $A = A' \cap A''$ then, by induction hypothesis, there exist a set I' and a set I'' (we can assume I' and I'' to be disjoint) and families $(B_i)_{i \in I'}$, $(C_i)_{i \in I'}$, $(B_i)_{i \in I''}$ and $(C_i)_{i \in I''}$ such that $\bigcap_{i \in I'} B_i \to C_i \leq A'$, $\bigcap_{i \in I''} B_i \to C_i \leq A''$, for all $i \in I' \cup I''$, $\Gamma, x : B_i \vdash t : C_i$. We then define $I = I' \cup I''$ and we have:

$$\frac{\bigcap_{i\in I'} B_i \to C_i \leq A'}{\bigcap_{i\in I} B_i \to C_i \leq A'} \cap_l^1 \quad \frac{\bigcap_{i\in I''} B_i \to C_i \leq A''}{\bigcap_{i\in I} B_i \to C_i \leq A''} \cap_l^2}{\bigcap_{i\in I} B_i \to C_i \leq A}$$

(Ω) If $A = \Omega$, we choose $I = \emptyset$ and we have $\Omega \leq A$.

Statement (Implication inversion with \cap [IMP $_{\cap}$]) If $\bigcap_{i \in I} (A_i \to B_i) \leq A \to B$ then there exists $J \subseteq I$ such that for all $i \in J$, $A \leq A_i$ and $\bigcap_{i \in J} B_i \leq B$.

Statement (Implicative abstraction inversion with \cap [INVABSIMP \cap]) If $\Gamma \vdash \lambda x.t : A \rightarrow B$, there exist a set I and two families $(A_i)_{i \in I}$ and $(B_i)_{i \in I}$ such that $\bigcap_{i \in I} B_i \leq B$ and for all $i \in I$, $A \leq A_i$ and $\Gamma, x : A_i \vdash t : B_i$.

Lemma 42 (Implicative abstraction inversion with \cap) INVABS $_{\cap} \wedge IMP_{\cap} \Longrightarrow$ INVABSIMP $_{\cap}$.

PROOF: If $\Gamma \vdash \lambda x.t : A \to B$, by (INVABS_{\(\)}), there exist a set I and two families $(A_i)_{i\in I}$ and $(B_i)_{i\in I}$ such that $\bigcap_{i\in I} A_i \to B_i \leq A \to B$ and for all $i \in I$, $\Gamma, x : A_i \vdash t : B_i$. By (IMP_{\(\)}), we have $J \subseteq I$ such that for all $i \in J$, $A \leq A_i$ and $\bigcap_{i\in J} B_i \leq B$. \Box

Lemma 43 (Subject reduction for β_0 with \cap)

 $\operatorname{SUBST} \wedge \operatorname{INvApp}_{\cap} \wedge \operatorname{InvAbsImp}_{\cap} \wedge (\leq) \wedge (\cap) \wedge (\Omega) \Longrightarrow \beta \operatorname{SubjRed}_{0}.$

PROOF: If $\Gamma \vdash (\lambda x.t) u : A$, by (INVAPP_{\cap}), there exist a set I and two families $(B_i)_{i \in I}$ and $(C_i)_{i \in I}$ such that $\bigcap_{i \in I} B_i \leq A$ and for all $i \in I$, $\Gamma \vdash \lambda x.t : C_i \to B_i$ and $\Gamma \vdash u : C_i$.

For each $i \in I$, by (INVABSIMP₍), there exist a set J_i and two families $(D_i^j)_{j\in J_i}$ and $(E_i^j)_{j\in J_i}$ such that $\bigcap_{j\in J_i} D_i^j \leq B_i$ and for all $j\in J_i$, $C_i\leq E_i^j$ and $\Gamma, x: E_i^j\vdash t: D_i^j$. By (\leq) we have $\Gamma\vdash u: E_i^j$ thus, by (SUBST), $\Gamma\vdash t[u/x]: D_i^j$.

Then we have:

$$\frac{ \cdots \qquad \Gamma \vdash t[^{u}/_{x}] : D_{i}^{j} \qquad \cdots }{ \frac{ \Gamma \vdash t[^{u}/_{x}] : \bigcap_{j \in J_{i}} D_{i}^{j} \qquad \bigcap_{j \in J_{i}} D_{i}^{j} \le B_{i} }{ \Gamma \vdash t[^{u}/_{x}] : B_{i}} \le \qquad \cdots } \frac{ \frac{ \Gamma \vdash t[^{u}/_{x}] : B_{i} \qquad \bigcap_{i \in I} B_{i} \le A }{ \Gamma \vdash t[^{u}/_{x}] : \Lambda} \le$$

We use (Ω) instead of (\cap) if $I = \emptyset$ or if $J_i = \emptyset$ for some $i \in I$.

Statement (Co-substitution [COSUBST])

If $\Gamma \vdash t[u/x] : B$ with $x \notin u$ and Γ contains declarations for the free variables of u then there exists a type A such that $\Gamma, x : A \vdash t : B$ and $\Gamma \vdash u : A$.

Lemma 44 (Co-substitution for $|T_{\leq}$) COSUBST holds for $|T_{\leq}$.

- PROOF: By induction on the derivation of $\Gamma \vdash t[u/x] : B$. If t = x then t[u/x] = u and we choose A = B. We have $\Gamma, x : B \vdash x : B$ and $\Gamma \vdash u : B$. Otherwise we look at the last rule of the derivation of $\Gamma \vdash t[u/x] : B$ from Table 7:
 - (var) If we have $t = y \neq x$ and t[u/x] = y. With $A = \Omega$, we get $\Gamma, x : \Omega \vdash y : B$ (since $y : B \in \Gamma$) and $\Gamma \vdash u : \Omega$.
 - (abs) We have $t = \lambda y.t', t[u/x] = \lambda y.(t'[u/x])$ and $B = B' \to B''$ with $\Gamma, y : B' \vdash t'[u/x] : B''$. By induction hypothesis, there exists A such that $\Gamma, x : A, y : B' \vdash t' : B''$ and $\Gamma \vdash u : A$. We then have $\Gamma, x : A \vdash \lambda y.t' : B$ and we conclude.
 - (app) If t = t't'' with $\Gamma \vdash t'[u/x] : B' \to B$ and $\Gamma \vdash t''[u/x] : B'$ then, by induction hypothesis, there exist A' and A'' such that $\Gamma, x : A' \vdash t' : B' \to B$, $\Gamma \vdash u : A'$, $\Gamma, x : A'' \vdash t'' : B'$ and $\Gamma \vdash u : A''$. By Lemma 36 and using:

$$\frac{\overline{A' \leq A'} \ refl}{A' \cap A'' \leq A'} \cap_l^1 \quad \text{and} \quad \frac{\overline{A'' \leq A''} \ refl}{A' \cap A'' \leq A''} \cap_l^2$$

we have $\Gamma, x : A' \cap A'' \vdash t' : B' \to B$ and $\Gamma, x : A' \cap A'' \vdash t'' : B'$ and we can derive:

$$\frac{\Gamma, x: A' \cap A'' \vdash t': B' \to B}{\Gamma, x: A' \cap A'' \vdash t' : B} \xrightarrow{\Gamma, x: A' \cap A'' \vdash t'': B} app$$

and

$$\frac{\Gamma \vdash u : A' \quad \Gamma \vdash u : A''}{\Gamma \vdash u : A' \cap A''} \cap$$

so that we choose $A = A' \cap A''$.

(\leq) If $B' \leq B$ with $\Gamma \vdash t[^u/_x] : B'$ then, by induction hypothesis, there exists A such that $\Gamma, x : A \vdash t : B'$ and $\Gamma \vdash u : A$. We can derive:

$$\frac{\Gamma, x: A \vdash t: B' \quad B' \leq B}{\Gamma, x: A \vdash t: B} \leq$$

(\cap) If $B = B' \cap B''$ with $\Gamma \vdash t[u/x] : B'$ and $\Gamma \vdash t[u/x] : B''$, by induction hypothesis, there exist A' and A'' such that $\Gamma, x : A' \vdash t : B', \Gamma \vdash u : A', \Gamma, x : A'' \vdash t : B''$ and $\Gamma \vdash u : A''$. By Lemma 36, we can build:

$$\frac{\Gamma, x: A' \cap A'' \vdash t: B' \quad \Gamma, x: A' \cap A'' \vdash t: B''}{\Gamma, x: A' \cap A'' \vdash t: B} \cap$$

and

$$\frac{\Gamma \vdash u: A' \quad \Gamma \vdash u: A''}{\Gamma \vdash u: A' \cap A''} \cap$$

so that we choose $A = A' \cap A''$.

(Ω) If $B = \Omega$, we choose $A = \Omega$ and we have:

$$\overline{\Gamma, x: \Omega \vdash t: \Omega} \Omega$$
 and $\overline{\Gamma \vdash u: \Omega} \Omega$

Statement (Subject expansion for β_0 [β SUBJEXP₀]) If $\Gamma \vdash t : A$ with Γ containing declarations for the free variables of u and $t \leftarrow_{\beta_0} u$ then $\Gamma \vdash u : A$.

Lemma 45 (Subject expansion for β_0) COSUBST \wedge (*abs*) \wedge (*app*) $\Longrightarrow \beta$ SUBJEXP₀.

PROOF: We use (COSUBST) and we build:

$$\frac{\begin{array}{c} \Gamma, x: A \vdash t: B \\ \hline \Gamma \vdash \lambda x.t: A \to B \end{array} abs}{\Gamma \vdash (\lambda x.t) \, u: B} \quad \Gamma \vdash u: A \\ app$$

Statement (Subject expansion for β [β SUBJEXP]) If $\Gamma \vdash t : A$ with Γ containing declarations for the free variables of u and $t \leftarrow_{\beta} u$ then $\Gamma \vdash u : A$.

Lemma 46 (Subject expansion) GSUBST $\land \beta$ SUBJEXP₀ $\Longrightarrow \beta$ SUBJEXP.

PROOF: If $\Gamma \vdash t : A$ and $t \leftarrow_{\beta} u$ then $t = c\{t'/x\}$ and $u = c\{u'/x\}$ with $t' \leftarrow_{\beta_0} u'$. Assume that $\Gamma, \Delta \vdash t' : B$ then by $(\beta \text{SUBJEXP}_0)$ we have $\Gamma, \Delta \vdash u' : B$, thus by (GSUBST) we obtain $\Gamma \vdash u : A$.

Theorem 5 (Subject expansion for $|\mathsf{T}_{\leq}$) β SUBJEXP holds for $|\mathsf{T}_{\leq}$.

PROOF: By Lemma 44 we have (COSUBST). By Lemma 38 we have (GSUBST).

By Lemma 45 we deduce (β SUBJEXP₀). By Lemma 46 we deduce (β SUBJEXP).

4.1.1 Additional results

Statement (Co application inversion with \cap [COINVAPP \cap]) If for all $i \in I$, $\Gamma \vdash t : C_i \to B_i$ and $\Gamma \vdash u : C_i$, and $\bigcap_{i \in I} B_i \leq A$ then $\Gamma \vdash t u : A$.

Lemma 47 (Co application inversion with \cap) $(app) \land (\leq) \land (\cap) \land (\Omega) \Longrightarrow COINVAPP_{\cap}.$

PROOF: If I is not empty, we have:

$$\underbrace{ \begin{array}{c} \cdots & \frac{\Gamma \vdash t: C_i \to B_i \quad \Gamma \vdash u: C_i}{\Gamma \vdash t \, u: B_i} \, app \\ & \frac{\Gamma \vdash t \, u: \bigcap_{i \in I} B_i}{\Gamma \vdash t \, u: \bigcap_{i \in I} B_i} \cap \\ & \\ \end{array}}_{\Gamma \vdash t \, u: A }$$

Otherwise, we use:

$$\frac{\overline{\Gamma \vdash t\, u: \Omega} \ \Omega}{\Gamma \vdash t\, u: A} \frac{\Omega \leq A}{\leq} \leq$$

Statement (Co abstraction inversion with \cap [COINVABS \cap]) If for all $i \in I$, $\Gamma, x : B_i \vdash t : C_i$ and $\bigcap_{i \in I} B_i \to C_i \leq A$ then $\Gamma \vdash \lambda x.t : A$.

Lemma 48 (Co abstraction inversion with \cap) $(abs) \land (\leq) \land (\cap) \land (\Omega) \Longrightarrow \text{coInvAbs}_{\cap}.$

PROOF: If I is not empty, we have:

$$\begin{array}{ccc} \hline A \leq A & \underline{A} \leq B & \underline{B} \leq C \\ \hline A \leq C & \overline{A} \leq \Omega \end{array}$$

$$\begin{array}{ccc} \hline A \leq B & \underline{B} \leq C \\ \hline A \leq \Omega \end{array}$$

$$\begin{array}{cccc} \hline A \leq B & \overline{A} \leq C & \underline{B} \leq D \\ \hline A \cap B \leq A & \underline{A} \cap B \leq B \end{array}$$

$$\begin{array}{cccc} \hline A \leq A \cap A & \underline{A} \leq C & \underline{B} \leq D \\ \hline A \cap B \leq C \cap D \end{array}$$

$$\begin{array}{cccc} \hline C \leq A & \underline{B} \leq D \\ \hline A \to B \leq C \to D \end{array}$$

$$\begin{array}{cccc} \hline (A \to B) \cap (A \to C) \leq A \to (B \cap C) \end{array}$$

$$\begin{array}{cccc} \hline \Omega \leq \Omega \to \Omega \end{array}$$

Table 9: BCD subtyping rules

$$\begin{array}{ccc} & \displaystyle \frac{\Gamma, x: B_i \vdash t: C_i}{\Gamma \vdash \lambda x.t: B_i \rightarrow C_i} \ abs & \\ & \displaystyle \frac{\Gamma \vdash \lambda x.t: B_i \rightarrow C_i}{\Gamma \vdash \lambda x.t: \bigcap_{i \in I} B_i \rightarrow C_i} \cap & \\ & \displaystyle \frac{\Gamma \vdash \lambda x.t: \bigcap_{i \in I} B_i \rightarrow C_i}{\Gamma \vdash \lambda x.t: A} \end{array}$$

Otherwise, we use:

$$\frac{\overline{\ \Gamma \vdash \lambda x.t:\Omega \ } \Omega }{\Gamma \vdash \lambda x.t:A} \subseteq$$

_		
IT.	1	

Statement (Co implicative abstraction inversion with \cap [COINVABSIMP $_{\cap}$]) If for all $i \in I$, $A \leq A_i$ and $\Gamma, x : A_i \vdash t : B_i$, and $\bigcap_{i \in I} B_i \leq B$ then $\Gamma \vdash \lambda x.t : A \to B$.

Lemma 49 (Co implicative abstraction inversion with \cap) MONOT $\leq \wedge (abs) \wedge (\cap) \wedge (\Omega) \Longrightarrow$ COINVABSIMP $_{\cap}$.

PROOF: For all $i \in I$, by (MONOT_{\leq}) we have $\Gamma, x : A \vdash t : B_i$ and then:

$$\frac{\cdots}{\Gamma, x: A \vdash t: B_i} \frac{\cdots}{\Gamma, x: A \vdash t: \bigcap_{i \in I} B_i} \cap$$

If I is empty then:

$$\overline{\Gamma, x: A \vdash t: \Omega} \ \Omega$$

By (MONOT<) we deduce $\Gamma, x : A \vdash t : B$ and we conclude with (*abs*).

4.2 BCD case

The original BCD type system is based on the subtyping rules of Table 9. For this presentation, the transitivity rule cannot be removed: $X \cap Y \leq Y \cap X$ is not provable without transitivity if $X \neq Y$ (if one tries to find a possible last rule, one would need to prove $X \leq Y$), while we have:

$$\frac{X \cap Y \le Y \qquad X \cap Y \le X}{X \cap Y \le (X \cap Y) \cap (X \cap Y)} \qquad \frac{X \cap Y \le Y \qquad X \cap Y \le X}{(X \cap Y) \cap (X \cap Y) \le Y \cap X}$$
$$\frac{X \cap Y \le Y \cap X}{X \cap Y \le Y \cap X}$$

$$\frac{B \leq A}{A \to C \leq B \to C} \to_{l} \qquad \frac{C \leq A \to D \qquad D \leq B}{C \leq A \to B} \to_{r}$$
$$\frac{D \leq C \to A \qquad D \leq C \to B}{D \leq C \to (A \cap B)} \to_{l} \qquad \overline{B \leq A \to \Omega} \to_{l} \Omega$$

Table 10: BCD-like subtyping rules

The system $\mathsf{IT}_{\leq}^{\mathsf{BCD}}$ is the particular case of IT_{\leq} where the relation \leq is defined *exactly* by the rules of Tables 8 and 10.

Proposition 1 (Equivalence of presentations of BCD)

The subtyping relation generated by the rules of Tables 8 and 10 is the same as the relation generated by the rules of Table 9.

Lemma 50 (Transitivity elimination for $|T_{\leq}^{BCD}$) TRANSELIM holds for $|T_{\leq}^{BCD}$.

PROOF: Similar to the proof of Lemma 32.

Lemma 51 (Transitivity-free implication inversion for $\mathsf{IT}^{\mathsf{BCD}}_{\leq}$) In $\mathsf{IT}^{\mathsf{BCD}}_{<}$, TRANSELIM \Longrightarrow IMP $_{\cap}$.

PROOF: By induction on the derivation of $\bigcap_{i \in I} (A_i \to B_i) \leq A \to B$. We consider each possible last rule from Tables 8 and 10 except (*trans*) (thanks to (TRANSELIM)):

(*refl*) $I = \{1\}, A_1 = A \text{ and } B_1 = B \text{ thus } A \leq A_1 \text{ and } B_1 \leq B.$

 (\cap_l^1) There exists $I' \subseteq I$ such that $\bigcap_{i \in I'} (A_i \to B_i) \leq A \to B$ and, by induction hypothesis, there exists $J \subseteq I' \subseteq I$ such that for all $i \in J$, $A \leq A_i$ and $\bigcap_{i \in J} B_i \leq B$.

 (\cap_l^2) Idem.

- (\rightarrow_l) We have $J = I = \{1\}, A \leq A_1$ and $B = B_1$ thus $B_1 \leq B$.
- (\rightarrow_r) We have $\bigcap_{i \in I} (A_i \rightarrow B_i) \leq A \rightarrow D$ and $D \leq B$. By induction hypothesis, there exists $J \subseteq I$ such that for all $i \in J$, $A \leq A_i$ and $\bigcap_{i \in J} B_i \leq D$, and we have:

$$\frac{\bigcap_{i\in J} B_i \le D \quad D \le B}{\bigcap_{i\in J} B_i \le B} tran.$$

 $(\to \cap)$ We have $\bigcap_{i \in I} (A_i \to B_i) \leq A \to B'$ and $\bigcap_{i \in I} (A_i \to B_i) \leq A \to B''$ with $B = B' \cap B''$. By induction hypothesis, there exist $J' \subseteq I$ and $J'' \subseteq I$ such that for all $i \in J'$, $A \leq A_i$ and $\bigcap_{i \in J'} B_i \leq B'$ and for all $i \in J''$, $A \leq A_i$ and $\bigcap_{i \in J''} B_i \leq B''$, we choose $J = J' \cup J'' \subseteq I$ and we get for all $i \in J$, $A \leq A_i$. If both J' and J'' are not empty, we have:

$$\frac{\bigcap_{i\in J'} B_i \leq B'}{\bigcap_{i\in J} B_i \leq B'} \cap_l \quad \frac{\bigcap_{i\in J''} B_i \leq B''}{\bigcap_{i\in J} B_i \leq B'} \cap_l \\\frac{\bigcap_{i\in J} B_i \leq B'}{\bigcap_{i\in J} B_i \leq B' \cap B''} \cap_r$$

If J' is empty and J'' is not, we have:

$$\frac{\bigcap_{i \in J''} B_i \leq \Omega}{\bigcap_{i \in J''} B_i \leq B'} \Omega_r \qquad \Omega \leq B' \quad \text{trans} \\
\frac{\bigcap_{i \in J''} B_i \leq B'}{\bigcap_{i \in J''} B_i \leq B' \cap B''} \cap_r$$

with J'' = J (and similarly if J'' is empty but J' is not). Finally if both J' and J'' are empty, then:

$$\frac{\Omega \leq B'}{\Omega \leq B' \cap B''} \cap_{i}$$

 $(\rightarrow \Omega)$ We have $B = \Omega$ and thus $J = \emptyset$ and $\Omega \leq B$.

Theorem 6 (Subject reduction for $\mathsf{IT}^{\mathsf{BCD}}_{\leq}$) $\beta \mathsf{SUBJRED}$ holds for $\mathsf{IT}^{\mathsf{BCD}}_{\leq}$.

PROOF: By Lemma 38 we have (GSUBST). By Lemma 36 we have (MONOT \leq). By Lemma 37 we have (NFVAR). By Lemma 39 we have (INVVAR \leq). By Lemma 40 we have (INVAPP $_{\cap}$). By Lemma 41 we have (INVABS $_{\cap}$). By Lemma 50 we have (TRANSELIM). By Lemma 51 we deduce (IMP $_{\cap}$).

By Lemma 24 we deduce (SUBST). By Lemma 42 we deduce (INVABSIMP_{\cap}). By Lemma 43 we deduce (β SUBJRED₀). By Lemma 10 we deduce (β SUBJRED).

4.2.1 Additional results

Statement (Co implication inversion with \cap [COIMP $_{\cap}$]) If $J \subseteq I$ with for all $i \in J$, $A \leq A_i$ and $\bigcap_{i \in J} B_i \leq B$ then $\bigcap_{i \in I} (A_i \to B_i) \leq A \to B$.

Lemma 52 (Co implication inversion with \cap) (*Table* 10) \Longrightarrow COIMP $_{\cap}$.

Proof:

$$\frac{A \leq A_i}{A_i \to B_i \leq A \to B_i} \to_l}{\bigcap_{i \in I} A_i \to B_i \leq A \to B_i} \cap_l} \dots$$

$$\frac{\bigcap_{i \in I} A_i \to B_i \leq A \to \bigcap_{i \in J} B_i} \longrightarrow}{\bigcap_{i \in I} A_i \to B_i \leq A \to O_{i \in J} B_i} \to \cap$$

$$\frac{\bigcap_{i \in I} A_i \to B_i \leq A \to O_{i \in J} B_i}{\bigcap_{i \in I} (A_i \to B_i) \leq A \to B} \to_r$$

5 The η -rule

5.1 General case

Lemma 53 (Subject reduction for η_0 with \cap)

$$\begin{split} \operatorname{NFVar} \wedge \operatorname{InvVar}_{\leq} \wedge \operatorname{InvApp}_{\cap} \wedge \operatorname{InvAbs}_{\cap} \wedge (\leq) \wedge (\cap) \wedge (\Omega) \\ \wedge \left(\underbrace{\Gamma \vdash t : \bigcap_{k \in K} E_k \to F_k \quad \cdots \quad G \leq E_k \cdots \quad \bigcap_{k \in K} F_k \leq H}_{\Gamma \vdash t : G \to H} \right) \Longrightarrow \eta \\ \operatorname{SubJReD}_0 \end{split}$$

PROOF: By (INVABS₀), there exists a set I and two families $(B_i)_{i \in I}$ and $(C_i)_{i \in I}$ with $\bigcap_{i \in I} B_i \to C_i \leq A$ and, for all $i \in I$, $\Gamma, x : B_i \vdash t x : C_i$.

For each $i \in I$, by (INVAPP_∩) applied to $\Gamma, x : B_i \vdash tx : C_i$, there exists a set J_i and two families $(D_i)_{i \in I}$ and $(E_i)_{i \in I}$ with $\bigcap_{j \in J_i} E_i^j \leq C_i$ and for all $j \in J_i, \Gamma, x : B_i \vdash t : D_i^j \to E_i^j$ and $\Gamma, x : B_i \vdash x : D_i^j$.

For each $j \in J_i$, by (NFVAR), $\Gamma \vdash t : D_i^j \to E_i^j$ and, by (INVVAR \leq), $B_i \leq D_i^j$ thus:

This proves $\Gamma \vdash t : B_i \to C_i$ for each $i \in I$, and we can conclude:

$$\frac{i \in I}{\underbrace{\Gamma \vdash t : B_i \to C_i \quad \cdots}_{\Gamma \vdash t : \bigcap_{i \in I} (B_i \to C_i)} \cap \underbrace{\bigcap_{i \in I} (B_i \to C_i) \leq A}_{\Gamma \vdash t : A} \leq$$

We use (Ω) instead of (\cap) if $I = \emptyset$.

Lemma 54

If INVVAR $< \land (var) \land (\leq) \land (Table 8)$ then:

$$\left(\frac{\Gamma \vdash t: \bigcap_{k \in K} E_k \to F_k \quad \cdots \quad G \leq E_k \cdots \quad \bigcap_{k \in K} F_k \leq H}{\Gamma \vdash t: G \to H}\right) \iff (Table \ 10)$$

PROOF: We first prove

$$\frac{\Gamma \vdash t: \bigcap_{k \in K} E_k \to F_k \qquad \cdots \qquad G \leq E_k \cdots \qquad \bigcap_{k \in K} F_k \leq H}{\Gamma \vdash t: G \to H} \longleftrightarrow \frac{\cdots \qquad G \leq E_k \cdots \qquad \bigcap_{k \in K} F_k \leq H}{\bigcap_{k \in K} E_k \to F_k \leq G \to H}$$

For the first implication, we use:

$$\frac{x:\bigcap_{k\in K}E_k\to F_k\vdash x:\bigcap_{k\in K}E_k\to F_k}{x:\bigcap_{k\in K}E_k\to F_k\vdash x:G\to H} \cdots G\leq E_k\cdots \bigcap_{k\in K}F_k\leq H$$

and by (INVVAR \leq) we have $\bigcap_{k \in K} E_k \to F_k \leq G \to H$. For the second implication, we use:

$$\frac{\Gamma \vdash t: \bigcap_{k \in K} E_k \to F_k}{\Gamma \vdash t: G \to H} \frac{\cdots G \leq E_k \cdots \bigcap_{k \in K} F_k \leq H}{\bigcap_{k \in K} E_k \to F_k \leq G \to H} \leq$$

Assume now that we have the rules of Table 10. If $K \neq \emptyset$, we can build:

$$\frac{\frac{G \leq E_k}{E_k \to F_k \leq G \to F_k} \to l}{\bigcap_{k \in K} E_k \to F_k \leq G \to F_k} \cap l} \cdots \\ \frac{\frac{\bigcap_{k \in K} E_k \to F_k \leq G \to F_k}{\sum G \to G_{k \in K} F_k}}{\bigcap_{k \in K} E_k \to F_k \leq G \to H} \to 0$$

Otherwise, if $K = \emptyset$, we have:

$$\frac{\overline{\Omega \leq G \rightarrow \Omega} \rightarrow \Omega}{\Omega \leq G \rightarrow H} \xrightarrow{\Omega \leq H} \rightarrow_r$$

Conversely, we consider particular cases of the rule:

$$\frac{\cdots G \le E_k \cdots}{\bigcap_{k \in K} E_k \to F_k \le G \to H}$$

With $K = \{1\}$ and $F_1 = H$, we obtain:

$$\frac{G \le E_1 \qquad H \le H}{E_1 \to H \le G \to H} reft$$

With $K = \{1\}$ and $E_1 = G$, we obtain:

$$\begin{array}{c} \hline G \leq G & F_1 \\ \hline G \leq G \rightarrow F_1 \\ \hline G \rightarrow F_1 \leq G \rightarrow H \\ \hline C \leq G \rightarrow H \\ \end{array} trans$$

With $K = \{2\}, E_1 = E_2 = G$ and $F_1 \cap F_2 = H$, we obtain:

$$\frac{D \leq G \rightarrow F_1 \qquad D \leq G \rightarrow F_2}{D \leq (G \rightarrow F_1) \cap (G \rightarrow F_2)} \cap_r \qquad \frac{\overline{G \leq G} \quad \operatorname{refl}}{(G \rightarrow F_1) \cap (G \rightarrow F_2) \leq G \rightarrow (F_1 \cap F_2)} \operatorname{refl}}{D \leq G \rightarrow (F_1 \cap F_2)} \quad \operatorname{trans} refl$$

With $K = \emptyset$, we obtain:

$$\frac{\overline{\Omega \leq \Omega} \ \Omega_r}{B \leq A \to \Omega} \frac{\overline{\Omega \leq \Omega} \ \Omega_r}{B \leq A \to \Omega} trans$$

Theorem 7 (Subject reduction for η for extensions of $|\mathsf{T}_{\leq}^{\mathsf{BCD}}$) η SUBJRED holds for systems $|\mathsf{T}_{\leq}$ containing the subtyping rules of $|\mathsf{T}_{\leq}^{\mathsf{BCD}}$.

PROOF: By Lemma 38 we have (GSUBST). By Lemma 37 we have (NFVAR). By Lemma 39 we have (INVVAR \leq). By Lemma 40 we have (INVAPP $_{\cap}$). By Lemma 41 we have (INVABS $_{\cap}$). $(var), (\leq), (\cap), (\Omega)$ and Tables 8 and 10 hold for IT_{\leq} .

By Lemma 54 we have:

$$\frac{\Gamma \vdash t: \bigcap_{k \in K} E_k \to F_k \quad \cdots \quad G \leq E_k \cdots \quad \bigcap_{k \in K} F_k \leq H}{\Gamma \vdash t: G \to H}$$

By Lemma 53 we deduce (η SUBJRED₀). By Lemma 12 we deduce (η SUBJRED).

Statement (Implicative types [IMPTYP])

For any type A, there exist a non-empty set I and two families $(B_i)_{i \in I}$ and $(C_i)_{i \in I}$ of types such that $A \leq \bigcap_{i \in I} B_i \to C_i$ and $\bigcap_{i \in I} B_i \to C_i \leq A$.

Statement (Subject expansion for η_0 [η SUBJEXP₀]) If $\Gamma \vdash t : A$ and $t \leftarrow_{\eta_0} u$ then $\Gamma \vdash u : A$.

Lemma 55 (Subject expansion for η_0) $MONOT_{\leq} \wedge IMPTYP \wedge (Table 7) \wedge \left(\frac{\Gamma \vdash t : A \cap B}{\Gamma \vdash t : A}\right) \wedge \left(\frac{\Gamma \vdash t : A \cap B}{\Gamma \vdash t : B}\right) \Longrightarrow \eta SUBJEXP_0$

- PROOF: By (IMPTYP), we have $A \leq \bigcap_{i \in I} B_i \to C_i$ and $\bigcap_{i \in I} B_i \to C_i \leq A$. We prove the result by induction on the size of the non-empty set I.
 - If I is a singleton {1}, we have $A \leq B_1 \rightarrow C_1$ and $B_1 \rightarrow C_1 \leq A$. By (MONOT \leq), $\Gamma, x: B_1 \vdash t: A$ thus we can derive:

$$\frac{ \begin{array}{ccc} \overline{\Gamma, x: B_1 \vdash t: A & A \leq B_1 \rightarrow C_1 \\ \hline \Gamma, x: B_1 \vdash t: B_1 \rightarrow C_1 \end{array} \leq & \hline \overline{\Gamma, x: B_1 \vdash x: B_1} & var \\ \hline \hline \hline \hline \Gamma, x: B_1 \vdash tx: C_1 & abs \\ \hline \hline \hline \hline \Gamma \vdash \lambda x.(tx): B_1 \rightarrow C_1 & abs \\ \hline \hline \Gamma \vdash \lambda x.(tx): A & \end{array} \leq \\ \end{array}$$

• If I is not a singleton, we have $I = I' \cup I''$ (with both I' and I'' non-empty and disjoint), $A \leq \bigcap_{i \in I'} B_i \to C_i \cap \bigcap_{i \in I''} B_i \to C_i$ and $\bigcap_{i \in I'} B_i \to C_i \cap \bigcap_{i \in I''} B_i \to C_i \leq A$. We can derive:

$$\frac{\Gamma \vdash t : A \qquad A \leq \bigcap_{i \in I'} B_i \to C_i \cap \bigcap_{i \in I''} B_i \to C_i}{\frac{\Gamma \vdash t : \bigcap_{i \in I'} B_i \to C_i \cap \bigcap_{i \in I''} B_i \to C_i}{\Gamma \vdash t : \bigcap_{i \in I'} B_i \to C_i}} \leq$$

and

$$\frac{\Gamma \vdash t : A \qquad A \leq \bigcap_{i \in I'} B_i \to C_i \cap \bigcap_{i \in I''} B_i \to C_i}{\frac{\Gamma \vdash t : \bigcap_{i \in I'} B_i \to C_i \cap \bigcap_{i \in I''} B_i \to C_i}{\Gamma \vdash t : \bigcap_{i \in I''} B_i \to C_i}} \leq$$

thus, by induction hypothesis, $\Gamma \vdash \lambda x.(t x) : \bigcap_{i \in I'} B_i \to C_i$ and $\Gamma \vdash \lambda x.(t x) : \bigcap_{i \in I''} B_i \to C_i$, so that:

$$\frac{\Gamma \vdash \lambda x.(t\,x): \bigcap_{i \in I'} B_i \to C_i \qquad \Gamma \vdash \lambda x.(t\,x): \bigcap_{i \in I''} B_i \to C_i}{\Gamma \vdash \lambda x.(t\,x): \bigcap_{i \in I' \cup I''} B_i \to C_i} \cap \qquad \bigcap_{i \in I' \cup I''} B_i \to C_i \le A} \le \Box$$

Statement (Subject expansion for η [η SUBJEXP]) If $\Gamma \vdash t : A$ and $t \leftarrow_{\eta} u$ then $\Gamma \vdash u : A$. **Lemma 56** (Subject expansion for η) GSUBST $\land \eta$ SUBJEXP₀ $\Longrightarrow \eta$ SUBJEXP.

PROOF: If $\Gamma \vdash t : A$ and $t \leftarrow_{\eta} u$ then $t = c\{t'/x\}$ and $u = c\{u'/x\}$ with $t' \leftarrow_{\eta_0} u'$. Assume that $\Gamma, \Delta \vdash t' : B$ then by $(\eta \text{SUBJEXP}_0)$ we have $\Gamma, \Delta \vdash u' : B$, thus by (GSUBST) we obtain $\Gamma \vdash u : A$.

5.1.1 Additional results

Lemma 57

$$\eta \text{SUBJRED}_0 \land \text{MONOT}_{\leq} \land (refl) \land (\cap_l) \land (Table \ 7)$$
$$\Longrightarrow \left(\frac{\Gamma \vdash t : \bigcap_{k \in K} E_k \to F_k \quad \cdots \quad G \leq E_k \cdots \quad \bigcap_{k \in K} F_k \leq H}{\Gamma \vdash t : G \to H} \right)$$

PROOF: Assume $\Gamma \vdash t : \bigcap_{k \in K} E_k \to F_k$, if $x \notin t$ we have $\Gamma, x : G \vdash t : \bigcap_{k \in K} E_k \to F_k$ by (MONOT_<) and then for each $k \in K$:

We then build:

$$\frac{ \cdots \quad \Gamma, x: G \vdash t \, x: F_k \quad \cdots }{ \frac{ \Gamma, x: G \vdash t \, x: \bigcap_{k \in K} F_k \quad \bigcap_{k \in K} F_k \leq H }{ \frac{ \Gamma, x: G \vdash t \, x: H }{ \Gamma \vdash \lambda x.(t \, x): G \to H } } } \leq$$

If $K = \emptyset$, we have:

$$\frac{ \overline{\Gamma, x: G \vdash t \, x: \Omega} \quad \Omega \leq H }{ \frac{\Gamma, x: G \vdash t \, x: H }{\Gamma \vdash \lambda x. (t \, x): G \rightarrow H} abs } \leq$$

By $(\eta \text{SUBJRED}_0)$, we conclude $\Gamma \vdash t : G \to H$.

5.2 One concrete solution

The system $\mathsf{IT}_{\leq}^{\mathsf{BCD}\eta}$ is the particular case of IT_{\leq} where the relation \leq is defined *exactly* by the rules of Tables 8, 10 and 11.

PROOF: Similar to the proof of Lemma 32 but using the number of rules plus the number of (X_l) rules as the size of a derivation.

$$\overline{X \le A \to X} X_l \qquad \underline{A \le \Omega \to X} A_r$$

Table 11: Extensionality subtyping rules

Lemma 59 (Transitivity-free implication inversion for $\mathsf{IT}^{\mathsf{BCD}\eta}_{\leq}$) In $\mathsf{IT}^{\mathsf{BCD}\eta}_{\leq}$, TRANSELIM \Longrightarrow IMP $_{\cap}$.

PROOF: By induction on the derivation of $\bigcap_{i \in I} (A_i \to B_i) \leq A \to B$. We consider each possible last rule from Tables 8, 10 and 11 except (*trans*) (thanks to (TRANSELIM)). Since rules from Table 11 are not possible last rules, we can rely on the proof of Lemma 51.

Theorem 8 (Subject reduction for $\mathsf{IT}_{\leq}^{\mathsf{BCD}\eta}$) $\beta \mathsf{SUBJRED}$ holds for $\mathsf{IT}_{\leq}^{\mathsf{BCD}\eta}$.

PROOF: By Lemma 38 we have (GSUBST). By Lemma 36 we have (MONOT \leq). By Lemma 37 we have (NFVAR). By Lemma 39 we have (INVVAR \leq). By Lemma 40 we have (INVAPP $_{\cap}$). By Lemma 41 we have (INVABS $_{\cap}$). By Lemma 58 we have (TRANSELIM). By Lemma 59 we deduce (IMP $_{\cap}$).

By Lemma 24 we deduce (SUBST). By Lemma 42 we deduce (INVABSIMP_{\cap}). By Lemma 43 we deduce (β SUBJRED₀). By Lemma 10 we deduce (β SUBJRED).

Lemma 60 (Implicative types for extensions of $\mathsf{IT}^{\mathsf{BCD}\eta}_{\leq}$) IMPTYP holds for systems containing the subtyping rules of $\mathsf{IT}^{\mathsf{BCD}\eta}_{<}$.

PROOF: By induction on the type A:

• If A = X, we choose $I = \{1\}$, $B_1 = \Omega$ and $C_1 = X$. We have:

$$\overline{X \leq \Omega \to X} X_l \quad \text{and} \quad \overline{\Omega \to X \leq \Omega \to X} X_r^{reft}$$

• If $A = \Omega$, we choose $I = \{1\}$, $B_1 = \Omega$ and $C_1 = \Omega$. We have:

$$\overline{\Omega \leq \Omega \to \Omega} \to \Omega \quad \text{and} \quad \overline{\Omega \to \Omega \leq \Omega} \ \Omega_r$$

- If $A = A' \rightarrow B'$, we choose $I = \{1\}$, $B_1 = A'$ and $C_1 = B'$.
- If $A = A' \cap A''$, by induction hypothesis, we have I', $(B_i)_{i \in I'}$, $(C_i)_{i \in I'}$, I'', $(B_i)_{i \in I''}$ and $(C_i)_{i \in I''}$ such that $A' \leq \bigcap_{i \in I'} B_i \to C_i$, $\bigcap_{i \in I'} B_i \to C_i \leq A'$, $A'' \leq \bigcap_{i \in I''} B_i \to C_i$ and $\bigcap_{i \in I''} B_i \to C_i \leq A''$. We choose $I = I' \cup I''$ and we have:

$$A' \cap A'' \le \bigcap_{i \in I'} B_i \to C_i \cap \bigcap_{i \in I''} B_i \to C_i$$

and

$$\bigcap_{i \in I'} B_i \to C_i \cap \bigcap_{i \in I''} B_i \to C_i \le A' \cap A''$$

by:

$$\frac{D_1 \leq E_1}{D_1 \cap D_2 \leq E_1} \cap_l^1 \quad \frac{D_2 \leq E_2}{D_1 \cap D_2 \leq E_2} \cap_l^2$$
$$D_1 \cap D_2 \leq E_1 \cap E_2$$

Theorem 9 (Subject expansion for η for $|\mathsf{T}_{\leq}^{\mathsf{BCD}\eta}$) η SUBJEXP holds for $|\mathsf{T}_{<}^{\mathsf{BCD}\eta}$.

PROOF: By Lemma 38 we have (GSUBST). By Lemma 36 we have (MONOT_{\leq}). By Lemma 60 we have (IMPTYP). Table 7 holds for $\mathsf{IT}_{\leq}^{\mathsf{BCD}\eta}$.

$$\underbrace{ \frac{\Gamma \vdash t : A \cap B}{\Gamma \vdash t : A} \underbrace{ \frac{\overline{A \leq A}}{A \cap B \leq A} \cap_{l}^{1}}_{\Gamma \vdash t : A} \quad \text{and} \quad \underbrace{ \frac{\overline{B \leq B}}{\Gamma \vdash t : A \cap B} \underbrace{ \frac{\overline{B \leq B}}{A \cap B \leq B} \cap_{l}^{2}}_{\Gamma \vdash t : B} \leq }$$

By Lemma 55 we deduce (η SUBJEXP₀). By Lemma 56 we deduce (η SUBJEXP).

5.2.1 Additional results

Lemma 61 (Necessity of IMPTYP for η SUBJEXP₀) η SUBJEXP₀ \land (*var*) \land INVVAR \leq \land INVABS $_{\cap}$ \land INVAPP $_{\cap}$ \land (*Table 8*) \land (*Table 10*) \Longrightarrow IMPTYP.

PROOF: By (var) and $(\eta \text{SUBJEXP}_0)$, we have $x : A \vdash \lambda y.x \, y : A$. By (INVABS_{\cap}) , there exist $I, (B_i)_{i \in I}$ and $(C_i)_{i \in I}$ such that $\bigcap_{i \in I} B_i \to C_i \leq A$ and for all $i \in I, x : A, y : B_i \vdash x \, y : C_i$. For each $i \in I$, by (INVAPP_{\cap}) , there exist $J_i, (D_i^j)_{j \in J_i}$ and $(E_i^j)_{j \in J_i}$ such that $\bigcap_{j \in J_i} E_i^j \leq C_i$ and for all $j \in J_i, x : A, y : B_i \vdash x : D_i^j \to E_i^j$ and $x : A, y : B_i \vdash y : D_i^j$. By (INVVAR_{\leq}) , we obtain $A \leq D_i^j \to E_i^j$ and $B_i \leq D_i^j$. We then have:

$$\cdots \frac{A \leq D_i^j \to E_i^j \qquad \frac{B_i \leq D_i^j}{D_i^j \to E_i^j \leq B_i \to E_i^j} \to_l}{A \leq B_i \to E_i^j \qquad trans} \\ \cdots \\ \frac{A \leq B_i \to E_i^j \qquad \cdots}{A \leq B_i \to \bigcap_{j \in J_i} E_i^j \qquad \bigcap_{j \in J_i} E_i^j \leq C_i} \\ A \leq \bigcap_{i \in I} B_i \to C_i \\ \end{array}$$

If some J_i is empty, we use:

$$\frac{\overline{A \leq B_i \to \Omega} \to \Omega}{A \leq B_i \to C_i} \to \Omega \leq C_i \to \gamma_r$$

If I is not empty, we are done. Otherwise we have $\Omega \leq A$. This entails:

$$\overline{A \leq \Omega \to \Omega} \to \Omega$$
 and $\overline{\Omega \to \Omega \leq \Omega} \stackrel{\Omega_r}{\Omega \to \Omega \leq A} trans$

- [MONOT] If $\Gamma \vdash t : A$ and $\Delta \supseteq \Gamma$ then $\Delta \vdash t : A$ (where $\Delta \supseteq \Gamma$ means that each typing declaration x : B in Γ appears in Δ).
- $[\text{MONOT}_{\leq}] \quad \text{If } \Gamma \vdash t : A, \ \Delta \leq \Gamma \text{ and } A \leq B \text{ then } \Delta \vdash t : B \text{ (where } \Delta \leq \Gamma \text{ means that for each typing declaration } x : C \text{ in } \Gamma \text{ there is a declaration } x : D \text{ with } D \leq C \text{ in } \Delta \text{)}.$
- [NFVAR] If $x \notin t$ and $\Gamma, x : B \vdash t : A$ then $\Gamma \vdash t : A$.
- [GSUBST] Assume that $\Gamma \vdash t\{v/x\} : A$ and for all Δ and B, $\Gamma, \Delta \vdash v : B$ implies $\Gamma, \Delta \vdash u : B$, then $\Gamma \vdash t\{u/x\} : A$.
- [SUBST] If $\Gamma, x : A \vdash t : B$ and $\Gamma \vdash u : A$ then $\Gamma \vdash t[u/x] : B$.
- [COSUBST] If $\Gamma \vdash t[u/x] : B$ with $x \notin u$ and Γ contains declarations for the free variables of u then there exists a type A such that $\Gamma, x : A \vdash t : B$ and $\Gamma \vdash u : A$.
- [INVVAR] If $\Gamma \vdash x : A$ then $x : A \in \Gamma$.
- [INVVAR_{\leq}] If $\Gamma \vdash x : A$ then there exists B such that $B \leq A$ and $x : B \in \Gamma$.
- [INVAPP] If $\Gamma \vdash t u : A$, there exists a type B such that $\Gamma \vdash t : B \to A$ and $\Gamma \vdash u : B$.
- $[INVAPP_{\leq}] \quad \text{If } \Gamma \vdash t \, u : A, \text{ there exist } B \text{ and } C \text{ such that } B \leq A, \ \Gamma \vdash t : C \to B \text{ and } \\ \Gamma \vdash u : C.$
- $[INVAPP_{\cap}] \quad \text{If } \Gamma \vdash t \, u : A, \text{ there exist a set } I \text{ and two families } (B_i)_{i \in I} \text{ and } (C_i)_{i \in I} \text{ such } \\ \text{ that } \bigcap_{i \in I} B_i \leq A \text{ and for all } i \in I, \ \Gamma \vdash t : C_i \to B_i \text{ and } \Gamma \vdash u : C_i.$
- [INVABS] If $\Gamma \vdash \lambda x.t : A$, there exist B and C such that $A = B \to C$ and $\Gamma, x : B \vdash t : C$.
- $[INVABS_{\leq}] \quad \text{If } \Gamma \vdash \lambda x.t : A, \text{ there exist } B \text{ and } C \text{ such that } B \to C \leq A \text{ and } \Gamma, x : B \vdash t : C.$
- $\begin{bmatrix} \text{INVABS}_{\cap} \end{bmatrix} \quad \text{If } \Gamma \vdash \lambda x.t : A, \text{ there exist a set } I \text{ and two families } (B_i)_{i \in I} \text{ and } (C_i)_{i \in I} \text{ such that } \bigcap_{i \in I} B_i \to C_i \leq A \text{ and for all } i \in I, \ \Gamma, x : B_i \vdash t : C_i.$
- [INVABSIMP] If $\Gamma \vdash \lambda x.t : A \to B$ then $\Gamma, x : A \vdash t : B$.
- [INVABSIMP] If $\Gamma \vdash \lambda x.t : A \to B$, there exist A' and B' such that $A \leq A', B' \leq B$ and $\Gamma, x : A' \vdash t : B'$.
- $\begin{bmatrix} \text{INVABSIMP}_{\cap} \end{bmatrix} \quad \text{If } \Gamma \vdash \lambda x.t : A \to B, \text{ there exist a set } I \text{ and two families } (A_i)_{i \in I} \text{ and } (B_i)_{i \in I} \\ \text{ such that } \bigcap_{i \in I} B_i \leq B \text{ and for all } i \in I, A \leq A_i \text{ and } \Gamma, x : A_i \vdash t : B_i. \end{bmatrix}$
- [TRANSELIM] If $A \leq B$ is derivable then $A \leq B$ is derivable without the (trans) rule.
- $[IMP_{\leq}] \quad If A \to B \leq C \to D \text{ then } C \leq A \text{ and } B \leq D.$
- $[IMP_{\cap}] \quad If \bigcap_{i \in I} (A_i \to B_i) \le A \to B \text{ then there exists } J \subseteq I \text{ such that for all } i \in J, \\ A \le A_i \text{ and } \bigcap_{i \in J} B_i \le B.$
- [IMPTYP] For any type A, there exist a non-empty set I and two families $(B_i)_{i \in I}$ and $(C_i)_{i \in I}$ of types such that $A \leq \bigcap_{i \in I} B_i \to C_i$ and $\bigcap_{i \in I} B_i \to C_i \leq A$.
- $[\beta SUBJRED_0]$ If $\Gamma \vdash t : A$ and $t \rightarrow_{\beta_0} u$ then $\Gamma \vdash u : A$.
- $[\beta SUBJRED] \quad \text{If } \Gamma \vdash t : A \text{ and } t \to_{\beta} u \text{ then } \Gamma \vdash u : A.$
- $[\eta \text{SUBJRED}_0]$ If $\Gamma \vdash t : A$ and $t \rightarrow_{\eta_0} u$ then $\Gamma \vdash u : A$.
- $[\eta \text{SUBJRED}] \quad \text{If } \Gamma \vdash t : A \text{ and } t \to_{\eta} u \text{ then } \Gamma \vdash u : A.$
- $\begin{bmatrix} \beta \text{SUBJEXP}_0 \end{bmatrix} \quad \text{If } \Gamma \vdash t : A \text{ with } \Gamma \text{ containing declarations for the free variables of } u \text{ and } t \leftarrow_{\beta_0} u \text{ then } \Gamma \vdash u : A.$
- $\begin{bmatrix} \beta \text{SUBJEXP} \end{bmatrix} \quad \text{If } \Gamma \vdash t : A \text{ with } \Gamma \text{ containing declarations for the free variables of } u \text{ and } t \leftarrow_{\beta} u \text{ then } \Gamma \vdash u : A.$
- $[\eta SUBJEXP_0]$ If $\Gamma \vdash t : A$ and $t \leftarrow_{\eta_0} u$ then $\Gamma \vdash u : A$.
- $[\eta \text{SUBJEXP}] \quad \text{If } \Gamma \vdash t : A \text{ and } t \leftarrow_{\eta} u \text{ then } \Gamma \vdash u : A.$

Table 12: List of the main statements

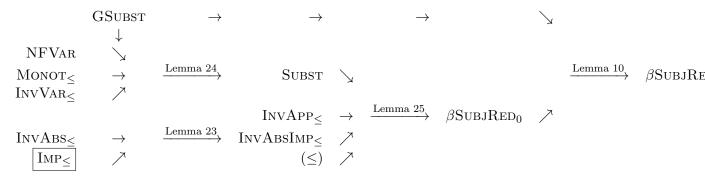
The boxed statements below are those which depend on the subtyping rules in a non monotonic way. A good way to prove them is to rely on TRANSELIM.

A Proofs of β SubjRed

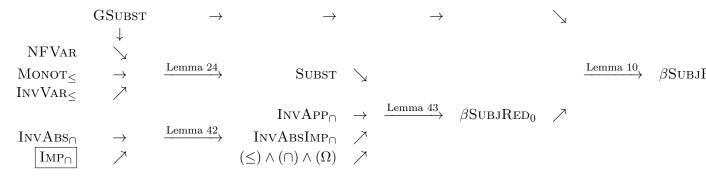
A.1 Simple types

GSubst ↓ NFVAR Lemma 8 Lemma 10 Monot Subst β SUBJRED INVVAR Lemma 9 INVAPP β SUBJRED₀ \nearrow $\stackrel{\text{Lemma 7}}{\longrightarrow}$ INVABS INVABSIMP

A.2 Simple types with subtyping



A.3 Intersection types



B Proof of β **SubjExp with intersection**

 $\begin{array}{cccc} \text{COSUBST} & \searrow & \text{GSUBST} & \searrow \\ (abs) & \rightarrow & \xrightarrow{\text{Lemma 45}} & \beta \text{SUBJEXP}_0 & \rightarrow & \xrightarrow{\text{Lemma 46}} & \beta \text{SUBJEXP} \\ (app) & \nearrow & \end{array}$

C Proofs of η SubjRed

C.1 Simple types

C.2 Simple types with subtyping

C.3 Intersection types

D Proof of η **SubjExp with intersection**