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Abstract

We present some results and comments around the ongoing development of the Yalla library which provides a
deep embedding of linear logic in Coq relying on an explicit exchange rule.

The Yalla library (https://perso.ens-lyon.fr/olivier.laurent/yalla/) provides a deep embedding of Lin-
ear Logic (LL) [Gir87] in Coq in order to allow users to prove meta-theoretical properties of (variants of) LL.

Various developments around deep embeddings of LL into theorem provers already exist (for example [PW99,
CLR17, XORN17]) but either they do not really consider proving serious meta-theoretical properties (such as cut
elimination), or they rely on sequents defined as multisets. This is for example the case of [XORN17] which is
probably the closest to what we do here. While allowing to prove properties of the LL sequent calculus, the main
specificity of Yalla is thus to rely on an explicit exchange rule to be ready for computational interpretations of proofs
through the Curry-Howard correspondence. Moreover some variants of the system are taken into account such as
cyclic linear logic, introduction of the mix rules, etc.

The presented work focuses on the propositional setting (clearly quantification should be part of future work but
would depend on a choice of representation for binders).

1 Sequents as Lists

Sequents and Curry-Howard. Sequent calculus systems (in particular for LL) are often formalized by defining
sequents as finite multisets which is not appropriate to give computational content to proofs through the Curry-Howard
correspondence. Here is an intuitionistic example:

A ∈ LA,AM
ax

A,A ` A →
A ` A→ A →

` A→ A→ A
λx.λy.?

vs

ax
A ` A

wk
A,A ` A →
A ` A→ A →

` A→ A→ A
λx.λy.x

and

ax
A ` A

wk
A,A ` A

ex (12)
A,A ` A →
A ` A→ A →

` A→ A→ A
λx.λy.y

with

Γ ` A
wk

Γ, B ` A

Γ, A ` B →
Γ ` A→ B

On the left-hand side, we use a multiset LA,AM and it is not possible to distinguish the two occurrences of A. On the
right-hand side, sequents are lists and an explicit exchange rule specifies which permutation of the formulas is applied,
making possible to follow formula occurrences along derivations.

Proofs with Lists. The inductive type we consider for LL proofs in Yalla is based on:

Inductive ll: list formula -> Type :=

| ex_r: forall l1 l2, ll l1 -> Permutation_Type l1 l2 -> ll l2

| tens_r: forall A B l1 l2, ll (A :: l1) -> ll (B :: l2) -> ll (tens A B :: l2 ++ l1)

...

Note the use of Type as output for ll (this allows us in particular to define the size of proofs as a function ll l

-> nat), and the use of Permutation_Type in the exchange rule. Permutation_Type is the direct adaptation of
Permutation from the standard library to the type list A -> list A -> Type instead of list A -> list A ->

Prop. Similarly we have adapted Equalities to CEqualities and Orders to COrders by turning Prop into Type in
relations (following CRelationClasses). This opens the question of having a more systematic use of Type instead of
Prop in the standard library. The move works reasonably well but some troubles occur with setoid_rewrite.
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In order to simplify the use of permutations, we have developed some naive automation to solve goals of the shape
Permutation _ _, ..., Permutation _ _ |- Permutation _ _. A more systematic approach (such as a decision
procedure if possible) would be useful.

The important use of manipulations of lists led us to propose some add-ons for the standard library (mainly on
lists and permutations). This includes some very natural properties which could be added to the standard library.

Multisets. Even if the Yalla library is developed with lists and permutations, we want the user to be able to define
his own inductive type for proofs relying on multisets, and to use Yalla results anyway. For this we want a notion
of finite multisets for which equality is Coq equality (without relying on proof irrelevance) and which exactly defines
the quotient of lists up to permutation (with functions list A -> FinMultiset A and FinMultiset A -> list A).
The material we can find in the standard library or others (CoLoR library1, P. Letouzey’s work2, or [XORN17]) do not
fit this specification. We have axiomatized the corresponding notion:

Class FinMultiset M A := {

empty: M;

add: A -> M -> M;

elts: M -> list A;

elts_empty: elts empty = @nil A;

elts_add: forall a m, Permutation (elts (add a m)) (a :: elts m);

retract: forall m, fold_right add empty (elts m) = m;

perm_eq: forall l1 l2, Permutation l1 l2 -> fold_right add empty l1 = fold_right add empty l2 }.

and we provide a construction of such finite multisets from any UsualOrderedTypeFull by using ordered lists (note
that choosing between orders notions from Orders or Relation_Definitions or Relations_1 in the standard library
is not completely immediate for the beginner).

2 Linear Logic Specificities

Parametrized Rules. Following the idea of levels in D. Pous’ relation-algebra3, our inductive type for proofs
is in fact parametrized in such a way that the user could choose: to consider full permutations or cyclic ones only
(with a dedicated adaptation of the Permutation library for cyclic permutations), to add open hypotheses, to include
the cut rule or not, to use mix rules or not. This makes the inductive type heavier to manipulate but it allows us to
factorize a lot of results in the library (with, in the case of permutations in particular, a tension sometimes between
trying to make one single but more involved proof, or to simply split into two cases).

It is then strongly suggested to the users to define their own inductive type for the specific proof system they want
to study. In this way they do not have to manipulate the parametrized inductive type of Yalla in their development,
but just once and for all in proving equivalence between their type and an instance of the type of the library. Such
interface files are provided in Yalla for a few chosen natural instances, and could be used as models for others.

Cut Elimination. The cut-elimination property is proved by a rather standard induction on the size of the cut
formula and on the sum of the sizes of the premises (this size is defined as a mix of the number of rules and of the
height of the proof by using a sum for binary multiplicative rules and a max for binary additive rules). Various cases
are similar, and we still do not have a clear opinion about what is the best approach to factorize proofs here: write
ltac code, simply copy-paste tactics, rely on Coq automation, etc.

We would like to thank Damien Pous for his crucial help in the development of the Yalla library.

References

[CLR17] Kaustuv Chaudhuri, Leonardo Lima, and Giselle Reis. Formalized meta-theory of sequent calculi for
substructural logics. Electronic Notes in Theoretical Computer Science, 332:57–73, June 2017.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[PW99] James Power and Caroline Webster. Working with linear logic in Coq. In Theorem Proving in Higher
Order Logics: Emerging Trends, September 1999.

[XORN17] Bruno Xavier, Carlos Olarte, Giselle Reis, and Vivek Nigam. Mechanizing linear logic in Coq. In S. Alves
and R. Wassermann, editors, Logical and Semantic Frameworks with Applications, pages 60–77, 2017.

1http://color.inria.fr/doc/CoLoR.Util.Multiset.MultisetList.html
2https://github.com/coq-contribs/fsets/blob/master/MultiSets.v
3http://perso.ens-lyon.fr/damien.pous/ra/

2

http://color.inria.fr/doc/CoLoR.Util.Multiset.MultisetList.html
https://github.com/coq-contribs/fsets/blob/master/MultiSets.v
http://perso.ens-lyon.fr/damien.pous/ra/

	Sequents as Lists
	Linear Logic Specificities

