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Abstract

Here is the report of the six weeks internship I did in 2016 in the MC2 team
of the LIP, under the direction of Omar Fawzi. I worked on Differential Privacy, a
cryptography concept whose aims is to provide algorithms that try to maximize the
accuracy of queries on a statistical database while minimizing the chances of identifying
it’s records [Wik16]. The goal was to find a similar definition usable with quantum
algorithms. To do so, I first tried to understand the link between several definitions of
Differential Privacy, expressed in term of statistical distribution (it’s the point of view
of the initial definition), or in term of divergence (it’s more natural to use this notion
of distance in quantum algorithms). I introduced my own definition, which appears to
be equivalent to pure Differential Privacy. Moreover I found a better bound for the
advanced k-fold composition theorem. Finally I introduced a definition of Differential
Privacy that applies on Quantum Algorithms.
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CHAPTER 1

THE MC2 TEAM OF THE LIP

I did my L3 three weeks internship in the LIP, in the MC2 team (Modèles de calcul,
Complexité, Combinatoire) under the direction of Omar Fawzi.

1.1 The LIP

The LIP (Laboratoire de l’Informatique du Parallélisme) gathers 57 permanent faculties
and researchers, 40-50 PhD students and about 20 scientists working on temporary posi-
tions. There are also 12 engineers and helping people. Guillaume Hanrot is the currently
chairman of the LIP, while the vice char is Isabelle Guérin-Lassous. The laboratory is situ-
ated in the Monod building in ENS Lyon, and is associated with the CNRS, the ENS Lyon,
the INRIA, the UCB Lyon 1 and is part of MILYON (Laboratoire d’Excellence "Mathé-
matiques et Informatique à Lyon").

They work on lot’s of different topics, linked with computer and information sciences. They
are also involved in inter-disciplinary projects. The LIP is divided into 7 teams :

• AriC (Arithmetic and Computing)
• Avalon (Algorithms and Software Architectures for Distributed and HPC Platforms)
• Compsys (Compilation and Embedded Computing Systems)
• DANTE (Dynamic Network)
• MC2 (Models of computation, Complexity, Combinatorics)
• PLUME (programs and proofs)
• ROMA (Resource Optimization : Models, Algorithms and Scheduling)

1.2 MC2

The MC2 (Modèles de calcul, Complexité, Combinatoire) is a LIP team working on com-
plexity theory and on the relevant combinatorial structures. They try to study the limi-
tations of efficient algorithms, as well as their features (sequential vs parallel, synchronous
vs asynchronous, deterministic vs probabilistic or quantum). The team, leaded by Stéphan
Thomassé, gathers a dozen of members, 4 doctorants, and 2 administration assistants.
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CHAPTER 2

SEVERAL EXISTING DEFINITIONS. . .

2.1 Intuition

When you want to study a phenomenon, you often need to study databases, but sometimes
some private data can be present in these databases. If you are the owner of such a database
you may want to publish your database (for example to let researcher use it), but you do
not want to injure the people involved in it. For example let’s imagine you have a database
showing that the people who smoke electronic cigarette often have cancer. If you publish
your database “as it”, without removing names, anyone could know that Mr XXX has cancer.

A naive approach would be to remove names. However, removing names isn’t enough: for
example, a famous attack has been able to recover the medical records of the governor of
Massachusetts by linking an “anonymized” Netflix database (released for a competition)
containing movies rates, with the Internet Movie Database (IMDb) and an anonymised
medical encounter data [DR14]. Ideally, we would like that whatever an adversary knows,
it couldn’t learn more on somebody after looking the database.

The solution adopted by the social sciences when they try to have statistics on an embar-
rassing questions is to randomize the data. Here is their algorithm: the person that should
answer to the embarrassing question toss a coin. If it’s head, it answers sincerely. If it’s
tail, it toss another coin: if it’s head it answer “Yes”, else “No”. By doing that, you can still
do some statistical operations, but you cannot have information on one specific person.

That’s the point of view adopted by Differential Privacy: providing mathematical guaranties
to ensure that it’s not possible to obtain “too much” personal information from a database,
while allowing people to do statistical operations on it without “too much” error. And to
do so, you need randomization. Now, let’s see how it works in a more formalized point of
view.

2.2 Initial formalization of Differential Privacy

When you use a database, you need to send it queries in order to answer some questions
you have: “What is the mean income of this compagny ?”, “How many people in France
are minor and have a cellphone ?”. . . All these queries can be seen as algorithms that take
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in input a database and gives back a result. As seen above, it’s useful to randomize the
algorithm in order to provide a good privacy, that’s why we need to introduce randomized
algorithm.

Definition 1 (Probability Simplex, [DR14] p. 16). Given a discrete set B, the probability
simplex over B, denoted ∆(B) is defined to be

∆(B) :=

x ∈ R|B|
∣∣∣ ∀i, xi ≥ 0, and

|B|∑
i=1

xi = 1

 (2.1)

Definition 2 (Randomized Algorithm, [DR14] p. 16). A randomized algorithm M with
domain A and discrete range B is associated with a mapping M : A → ∆(B). On input
a ∈ A, the algorithm M outputs M(a) = b with probability (M(a))b for each b ∈ B. The
probability space is over the coin flips of the algorithmM.

Now, let’s formally define a database. A database can be seen in different ways, but here
we will use the more mathematical definition. A database is a set of tuples, each tuple
representing an entry (a row of a database, e.g. a person can be represented by the tuple
(18, 1, 0) to express that he is 18 years old, smoke, but do not have the cancer). We then
just count the number of each tuple in an histogram like representation. Let X be the set
of these tuples, a database can then be represented as an element of N|X |.

Now, we would like that for two very similar databases (with only one person who has a
different entry for example), the result of the randomized algorithm stay the same. Indeed,
if we have that, it wouldn’t be easy from a result to recover information on a specific per-
son. We first need to define the notion of two “very similar” database by defining a distance
between databases:

Definition 3 (Distance between Databases, [DR14] p. 17). The l1 norm of a database x
denoted ‖x‖1 and is defined to be:

‖x‖1 =

|X |∑
i=1

|xi| (2.2)

The l1 distance between two databases x and x′ is ‖x− x′‖1.

Now that everything is well defined, we can now introduce the Differential Privacy:

Definition 4 (Differential Privacy, [DR14] p. 17). A randomized algorithmM with domain
N|X | is (ε, δ)-differentially private if for all S ⊆ Range(M) and for all x, x′ ∈ N|X | such
that ‖x− x′‖1 ≤ 1,

Pr[M(x) ∈ S] ≤ eεPr[M(y) ∈ S] + δ (2.3)
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The special case when δ = 0 is denoted ε-differentially private and we call it pure differential
privacy.

Here the ε and the δ have two very different goals. You can see the ε as “you can be sure
that the two distributions are close to a factor of ε. . . ” and the δ is like “. . . but sometimes
the difference can be huge, it just doesn’t occur more often than with a probability δ”.
That’s why, ideally (in pure differential privacy) we want δ = 0. However it’s not always
possible to achieve this goal, so we cannot avoid the δ.
We will also introduce the L1 distance between two distributions:

Definition 5 (L1 Distance). Let’s define the distance between two distributions p and q on
Ω:

∆(P,Q) :=
1

2

∫
µ∈Ω
|p(µ)− q(µ)|dµ (2.4)

NB: The distance ∆(P,Q) definition is defined in a different manner from one author to
the other. For example, the paper [DR14] used this definition (p. 44):

∆′(P,Q) = max
S
|Pr[P ∈ S]− Pr[Q ∈ S]| (2.5)

However, all these distances are equivalent:

Lemma 1 (Equivalence of distances). For all independent distribution P and Q

∆(P,Q) = ∆′(P,Q) (2.6)

To see the proof of this theorem, please go in appendix.
We can now define the notion of ball:

Definition 6 (Ball). Let’s define for a distribution P and δ > 0 the ball of radius δ centered
at P :

Bδ(P ) :=
{
P ′ : ∆(P, P ′) ≤ δ

}
(2.7)

2.3 Example of an algorithm

Now let’s see the example of an algorithm that provides differential privacy. They are plenty
of algorithms, here we will study the Laplace Mechanism that transforms a deterministic
algorithm f : N|X | → Rk into a (ε, 0)-differential privacy algorithm. The idea is to add
Laplacien noise, depending on the “variations” of f . The formalized notion of variation is
l1-sensitivity, which captures the magnitude by which a single individual’s data can change
the function f :

Definition 7 (l1-sensitivity [DR14]). The l1-sensitivity of a function f : N|X | → Rk is

∆f = max
‖x−x′‖1≤1

‖f(x)− f(x′)‖1 (2.8)
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Then, the noise added depends on the Laplace Distribution :

Definition 8 (The Laplace Distribution). The Laplace Distribution (centered at 0) with
scale b is the distribution with probability density function:

Lap(x|b) =
1

2b
exp

(
−|x|
b

)
(2.9)

Definition 9 (The Laplace Mechanism). Given any function f : N|X | → Rk, the Laplace
mechanism is defined as:

ML(x, f(·), ε) = f(x) + (Y1, . . . , Yk) (2.10)

where Yi are i.i.d random variables drawn from Lap(∆f/ε)

Theorem 2 ([DR14] p. 32). The Laplace mechanism preserves (ε, 0)-differential privacy.

Some theorems exists (see [DR14] p. 34) to bound the error made with this algorithm.
For example, if you want to get the more common name in a list of 10000 names with an
accuracy of 95% , you can show that the error is less than 12.2. If the population used for
the study count 300,000,000 people it’s pretty low !

2.4 The Divergence point of view

In quantum computer science, the natural “distance” between algorithms is formalized with
entropy and Rényi divergence. Three weeks before my internship, Mark Bun and Thomas
Steinke published a paper where they find an equivalent of differential privacy, named
“Zero Concentrated Differential Privacy”, and expressed in term of Rényi divergence [BS16].
Their definition was different from another definition of “(Mean) Concentrated Differential
Privacy”, proposed by Cynthia Dwork and Guy N. Rothblum [DR16]. Let’s see some basic
definitions about divergence, and these let’s see the difference between Mean Differential
Privacy and Concentrated Differential Privacy..

2.4.1 Divergence

We define the Rényi divergence as follows:

Definition 10 (Rényi divergence [vEH12]). For a finite alphabet, and α 6= 1, the Rényi
divergence of a probability P = (p1, . . . , pn) from another distribution Q = (q1, . . . , qn) is

Dα(P ||Q) =
1

α− 1
ln

n∑
i=1

pαi q
1−α
i (2.11)

and in case of continuous distributions,

Dα(P ||Q) =
1

α− 1
ln

∫
pαq1−αdµ (2.12)
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When you compute the limit for α→ +∞ you find the maximum divergence:

Definition 11 (Max Divergence, [vEH12], [DR14] p. 43). The Max Divergence between
two random variables Y and Z taking values from the same domain is defined to be:

D∞ = ln(ess sup
P

p

q
) = max

S⊆supp(Y )

[
ln
Pr[Y ∈ S]

Pr[Z ∈ S]

]
(2.13)

We also define the δ-Approximate Max Divergence between Y and Z as follows:

Dδ
∞(Y ‖Z) = max

S⊆Supp(Y )/Pr[Y ∈S]≥δ

[
ln
Pr[Y ∈ S]− δ
Pr[Z ∈ S]

]
(2.14)

Here are some useful characterizations of the divergence:

Theorem 3 (Divergence Characterization, [DR14] p. 44).

1. Dδ
∞(Y ‖Z) ≤ ε if and only if there exists a random variable Y ′ such that ∆(Y ‖Y ′) ≤ δ

and D∞(Y ′‖Z) ≤ ε

2. We have both Dδ
∞(Y ‖Z) ≤ ε and Dδ

∞(Z‖Y ) ≤ ε if and only if there exist random
variables Y ′, Z ′ such that

∆(Y, Y ′) ≤ δ

eε + 1
,∆(Z,Z ′) ≤ δ

eε + 1
and D∞(Y ′‖Z ′) ≤ ε (2.15)

And we can generate δ-approximate max divergence with a random α:

Definition 12 (Smooth divergence). For any random variable P and Q defined on Ω and
δ > 0, the smooth divergence is defined as follows:

Dδ
α(P ||Q) :=

1

α− 1
ln inf
P ′∈Bδ(P )

∫
x∈Ω

P ′(x)αQ(x)1−αdx

These characterization gives a new definition of equivalent to differential privacy:

Theorem 4 (Differential Privacy and Divergence). M is (ε, δ)-differentially private if for
all x, x′/‖x− x′‖ ≤ 1,

Dδ
∞(M(x),M(x′)) ≤ ε (2.16)

Others definitions has been introduced, like the concentrated differential privacy, that allow
better accuracy than the classical differential privacy. Let see them.
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2.4.2 The (Mean) Concentrated Differential Privacy

Dwork and Rothblum introduced the Concentrated Differential Privacy, renamed as Mean
Concentrated Differential Privacy by Mark Bun and Thomas Steinke. Here is how it is
defined. First let’s define what can be seen as the privacy loss:

Definition 13 (Privacy Loss Random Variable L(Y ‖Z)). For two discrete random variables
Y and Z, the privacy loss random variable L(Y ‖Z), whose range is R, is distributed by

drawing y ∼ Y and outputting ln
(
Pr[Y=y]
Pr[Z=y]

)
.

Now we would like to compare the privacy loss to Gaussian. That’s why we need to define
Subgaussian random variable and Subgaussian Divergence:

Definition 14 (Subgaussian Random Variable [Kah60]). A random variable X is τ -subgaussian
for a constant τ > 0 if

∀λ ∈ R,E[eλX ] ≤ e
λ2τ2

2 (2.17)

Definition 15 (Subgaussian Divergence and Indistinguishability). For two random vari-
ables Y and Z, we say that DsubG(Y ||Z) � (µ, τ) if and only if

• E[L(Y ‖Z)] ≤ µ

• The centered distribution (L(Y ‖Z)−E[LY ‖Z ]) is defined and subgaussian, and its sub-
gaussian parameter is at most τ .

Now let’s define the Mean Concentrated Differential Privacy (mCDP):

Definition 16 ((Mean) Concentrated Differential Privacy [DR16] p. 10). A randomized
algorithm isM is (µ, τ)-mean concentrated differentially (henceforth (µ, τ)-mCDP) private
if for all pairs of adjacent databases x, x′ we have DsubG(M(x)||M(x′)) � (µ, τ)

2.4.3 The Zero Concentrated Differential Privacy

After the Dwork paper on Concentrated Differential Privacy, Mark Bun and Thomas Steinke
published another version of Differential Privacy:

Definition 17 (Zero-Concentrated Differential Privacy, [BS16]). A randomized mechanism
M is (ξ, ρ)-zero-concentrated differentially private (henceforth (ξ, ρ)-zCDP) if, for all x, x′ ∈
N|X | such that ‖x− x′‖ ≤ 1 and all α ∈ (1,+∞),

Dα(M(x)‖M(x′)) ≤ ξ + ρα (2.18)
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2.5 Properties of divergence

2.5.1 Basic properties

Here are some interesting properties of divergence that helped me later:

Theorem 5 (Divergence is positive, [vEH12] p. 8). For all distributions P and Q, and for
all order α ∈ [0,+∞], Dα(P‖Q) ≥ 0.

Theorem 6 (Nondecreasing of Divergence, [vEH12] p. 6). For α ∈ [0,+∞], and P , Q two
distributions, the Rényi divergence Dα(P‖Q) is nondecreasing in α.

Since all finite distribution gives a bounded divergence, I though that it was the general
case. . . But it’s not, as you can see in the next pictures : the Figure 3.1 shows a bounded
divergence, while in Figure 2.1, the divergence isn’t bounded.
Another very interesting property of divergence is expressed in [BS16] p. 14. It allowed me
to find better bounds for the paper [DR16]:

Theorem 7 (Bounded divergence, [BS16] p. 14). Let P and Q be probability distributions
on Ω satisfying D∞(P‖Q) ≤ ε and D∞(Q‖P ) ≤ ε. Then for all α > 1 , Dα(P‖Q) ≤ 1

2ε
2α.
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Figure 2.1 – Divergence of two Gaussian functions such that µP = 4, σP = 4 and µQ =
5, σQ = 5.

2.5.2 Additive property of δ

This lemma allows us to “chain” the distributions.
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Lemma 8 (Additive property of δ). If it exists x, x′ two databases and Y, Y ′ two dis-
tributions such that ∆(M(x)‖Y ) ≤ δ0

eε+1 , ∆(M(x′)‖Y ′) ≤ δ0
eε+1 , D

δ
∞(Y ‖Y ′) ≤ ε0 and

Dδ
∞(Y ′‖Y ) ≤ ε0 then

Dδ+δ0
∞ (M(x)‖M(x′)) ≤ ε0 (2.19)

To see the (pretty straight forward) proof of this theorem, please go in appendix.

2.5.3 Horizontal Composition

The divergence works well with horizontal composition:

Theorem 9 (Horizontal Composition). If Y0, Y
′

0 , Y1, Y
′

1 are independent random variable
(which is the case when you run a randomized algorithm) and if

Dα(Y0‖Y ′0) ≤ ε0 (2.20)

and
Dα(Y1‖Y ′1) ≤ ε1 (2.21)

then
Dα((Y0, Y1)‖(Y ′0 , Y ′1)) ≤ ε0 + ε1 (2.22)

Proof. Just write the definition, separate the factor terms using the fact that the Yi are
independent, apply the ln, and conclude.
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CHAPTER 3

MY FIRST WORK: STUDYING THE CLASSICAL CASE

Each of these definitions adopts a different point of view. My work, in a first time, was to
understand these definitions and try to compare them: are they equivalent ? If not, which
one is the more precise ? Is there some cases where the mCDP is better than the zCDP
? Then I studied the composition theorems, and I found a better bound for the Advanced
(k-fold) composition theorem that I present below.

3.1 Understanding the Rényi Divergence

3.1.1 My conjecture program leads me to my own definition

Understanding the Rényi Divergence was very important to fully understand the differences
between the several definitions of differential privacy. The paper [vEH12] was very helpful
for that, but it wasn’t enough. To help me in my proofs I decided to code an Haskell
program that can check for me the validity of a conjecture (you can see it as a counterex-
ample finder). I implemented every concept defined above in it, to make it able to choose
an arbitrary random algorithm, but also perform operations on simplex like computing the
mean value of an algorithm. . . I also implemented some functions to find the best possible
parameters for the mCDP/zCDP/tCDP functions.

When I ran my program to plot the divergence of a random program, I saw that the
Rényi Divergence was always bounded. Since I didn’t understand the goal of the zCDP
linear approximation (why should I approximate with an linear function something which
is bounded ?), I tried to implement my own definition of Concentrated Differential Privacy:

Definition 18 ((ç,é)-tCDP). A mechanismM is (ç,é)-tCDP if for all α ≥ 1, and for
all x, x′ such that ‖x− x′‖ ≤ 1,

Dα(M(x)‖M(x′)) ≤ min(ç, αé) (3.1)

3.1.2 The deception of the Triangle Inequality

Before studying my definition, I wanted to find a kind of triangle inequality for Rényi
Divergence. [BS16] propose p. 18 a kind of triangle inequality, based on the Hölder’s
inequality:
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Figure 3.1 – Rényi divergence for a given distribution, with comparison of CDP

Theorem 10 (Triangle-like Inequality for Rényi Divergence, [BS16] p. 18). Let P , Q, and
R be probability distributions. Then for all k, α > 1,

Dα(P‖Q) ≤ kα

kα− 1
D kα−1

k−1
(P‖R) +Dkα(R‖Q) (3.2)

However this theorem does provide a real triangle inequality, so I wanted to know if if was
possible to have a real triangle inequality for the Divergence. Unfortunately I showed that
is wasn’t possible, except in the case of α = +∞:

Theorem 11 (Impossible Triangle Inequality for Rényi Divergence). It is not possible to
have a triangle inequality for the divergence in the general case except if α = +∞.
More formally, ∀α > 1, ∃(Pi)i∈N, (Qi)i∈N, (Ri)i∈N / ∃m ∈ R /

∀n ∈ N, Dα(Pn‖Qn) ≤ m,Dα(Qn‖Rn) ≤ m

and
lim

n→+∞
Dα(Pn‖Qn) = +∞

To see the proof of this theorem, please go in appendix.
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3.2 The links between the different definitions

3.2.1 Link between tCDP and Pure Differential Privacy

I finished to understand the interest of the linear approximation of divergence used in
zCDP . My definition, that tries to bound the divergence was in fact equivalent to pure
differential privacy. To show that, we will firstly demonstrate a stronger theorem that will
be useful later, and then the theorem will be deduce as a corollary.

Theorem 12. For all δ ≥ 0, ε > 0, and for all distributions P and Q, we have

Dδ
∞(P‖Q) ≤ ε⇔ ∀S, Pr[P ∈ S] ≤ eεPr[Q ∈ S] + δ (3.3)

Proof. The proof is pretty straight forward when you write the definitions, there is only a
little case study.

Theorem 13. (ç,é)-tCDP is strictly equivalent to pure ε-differential privacy. More pre-
cisely, a (ç,é)-tCDP is ç-differentially private, and an algorithm ε-differentially private
is (ε, ε

2

2 )-tCDP.

Proof. It’s a corollary of Theorem 12 for δ = 0 and Theorem 7:

• IfM is (ç,é)-tCDP, then for all x, x′ / ‖x − x′‖ ≤ 1, D∞(M(x)‖M(x′)) ≤ ç, so
with Theorem 12, ∀S, Pr[M(x) ∈ S] ≤ eçPr[M(x′) ∈ S], which is the definition of
pure ç-differential privacy

• IfM is ε-differentially private, then the Theorem 12 tells us that for all x, x′/‖x−x′‖ ≤
1 D∞(M(x)‖M(x′)) ≤ ε. Since the divergence is nondecreasing (see Theorem 6), for
all α and for all x, x′/‖x − x′‖ ≤ 1, Dα(M(x)‖M(x′)) ≤ ε. So the Theorem 7 let
us know that Dα(M(x)‖M(x′)) ≤ ε2α

2 . So Dα(M(x)‖M(x′)) ≤ min( ε
2α
2 , ε), ieM is

(ε, ε
2

2 )-differentially private.

3.2.2 Link between (ç,é)-tCDP and (ξ, ρ)-zCDP

The link between (ç,é)-tCDP and (ξ, ρ)-zCDP is pretty straight forward, since there
definition are very closed :

Theorem 14. An algorithm (ç,é)-tCDP is (0,é)-zCDP. Reciprocally, An algorithm
(ξ, ρ)-zCDP is (+∞, ρ)-tCDP.

15



3.2.3 Link between (ç,é)-tCDP and (µ, τ)-mCDP

The link between (ç,é)-tCDP and (µ, τ)-mCDP is more complex. Let’s begin with a
lemma:

Lemma 15. For all λ ∈ R (where L is the Privacy Loss Random Variable (Definition 13)
associated with an algorithm (ç,é)-tCDP),

E
[
eλ(L−E(L))

]
≤ exp

(
λ2

2

(
ç+

min(ç,é)

2

)2
)

(3.4)

To see the proof of this theorem, please go in appendix.

Theorem 16. An algorithm (ç,é)-tCDP is
(

min(ç,é),ç+ min(ç,é)
2

)
-mCDP.

Proof. After the proof of the Lemma 15, this proof is immediate from the definition.
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Pure DP

ε-Pure DP

(ç,é)-tCDP

(µ, τ)-mCDP(ξ, ρ)-zCDP

(ε, 1
2ε

2)ç

(min(ç,é)
, ç+ 1

2 min(ç,é))

(µ− τ2

2 ,
τ2

2 )

(∞, ρ)

(0,é)

(ç, ç
2

2 )

Figure 3.2 – Summary of the links between definitions
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3.3 The nice properties of these definitions

Now, after studying the links between the different definitions, I wanted to study the
application. There are some property that you would like to ensure with the Differential
Privacy. For example you would like that the definition can resist to post-processing, group
(I didn’t improved the results for groups, so I won’t present it here), and k-fold composition.
For the k-fold composition, I found a better bound than the one found by Dwork.

3.3.1 Post processing

When you run an algorithm (ε, δ)-differentially private, you would like that even after
applying to the result new computes, the result still stay (ε, δ)-differentially private. That’s
the goal of this theorem to ensure that:

Theorem 17 (Post-Processing). LetM : N|X | → R be a randomized algorithm that is (ε, δ)-
differentially private. Let f : R→ R′ be an arbitrary mapping. Then f ◦M : N|M| → R′ is
(ε, δ)-differentially private.

This concept, pretty natural is already the best one we can expect, and apply for all the
different Differential Privacy definitions that we will see.

3.3.2 k-fold composition

We would like to model (and avoid) an attack where the attacker A can choose the requests
“in real time”. Formally the protocol allowed looks like (where F is a given set of database
access mechanisms):
For i=1 . . . k

• A outputs two adjacent databases x0
i and x1

i , a mechanism Mi ∈ F and parameters
wi.

• A receives yi ∈RMi(wi, xi,b)

Definition 19 (k-fold composition). We say that the family F of database access mecha-
nisms satisfies ε-differential privacy under k-fold adaptive composition if for every adversary
A, we have D∞(V 0, V 1) ≤ ε where V b denotes the view of A in k-fold composition experi-
ment above.

(ε, δ)-differential privacy under k-fold adaptive composition instead requires that Dδ
∞(V 0, V 1) ≤

ε

Here is the main theorem on composition of (ε, δ)-differentially private algorithm. It has
been updated several times, here was the last version:
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Theorem 18 (Advanced (k-fold) Composition, [DR16] p. 2). For all ε, δ, δ′ ≥ 0, the class
of (ε, δ)-differentially private mechanisms satisfies (ε′, kδ + δ′)-differential privacy under
k-fold adaptive composition for

ε′ =
√

2k ln(1/δ′)ε+ kε(eε − 1)/2 (3.5)

3.3.3 Use of the smooth divergence to find a better bound to k-fold
composition

Here I present my proof based on smooth entropy that provide a better bound to the
Advanced k-fold composition theorem than the one proposed by Dwork (Theorem 18).
Before, I just need to introduce a little lemma that was inspired by [RW04] (a similar
lemma was written for entropy).

Lemma 19 (Upper bound of Dδ
∞). For any random variable P and Q, α ≥ 1, and 0 <

δ ≤ ∆(P,Q)

Dδ
∞(P ||Q) ≤ Dα(P ||Q)− ln(δ)

α− 1
(3.6)

(Note that if δ > ∆(P,Q), Dδ
+∞(P ||Q) = 0)

To see the proof of this theorem, please go in appendix.

Theorem 20 (New Advanced k-fold composition : better bounds). Let’s M1 . . .Mn be
n independent algorithms (ε, δ)-differentially private (here independent means that there is
no share of random bit between runs). Let x1 . . . xn and x′1 . . . x

′
n, such as ∀i, xi and x′i are

neighbour databases. Then the composition of all queries is
(
kε2

2 +
√

2k ln(1/δ′)ε, nδ + δ′
)
-

differentially private. In other words we have :

Dkδ+δ′
∞ (M1(x1) . . .Mn(xn)‖M′1(x′1) . . .M′n(x′n)) (3.7)

To see the proof of this theorem, please go in appendix.

3.3.4 Trade-off δ/ε

I also proved another theorem by using the Lemma 19. I didn’t find yet an application, but
it provides a kind of trade-off between ε and δ : if you accept to loose in δ, you can get a
better ε.

Theorem 21 (Trade-off δ/ε). Let P and Q be two random variables such that D∞(P ||Q) ≤
ε and D∞(Q||P ) ≤ ε, and let 0 < δ ≤ ∆(P,Q) (if δ > ∆(P,Q), then Dδ

∞(P‖Q) = 0).
Then

Dδ
∞(P‖Q) ≤ 1

2
ε2

(
1 +

ε√
2 ln(1/δ)

)
(3.8)

To see the proof of this theorem, please go in appendix.
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CHAPTER 4

EXTENSION OF DIFFERENTIAL PRIVACY TO QUANTUM
ALGORITHMS

The initial goal of my internship was to define differential privacy for Quantum Algorithms.
I didn’t have many time left to do that but I tried to find a few equivalents between the
two worlds at the end of my internship.

4.1 Definition

4.1.1 State

In Quantum Algorithms, we work with Quantum state. The more general view of a Quan-
tum state is called the Density Matrix. It represents both the statistical distribution (clas-
sical case) and the pure quantum randomness. A density matrix is an operator (“matrix”)
which is

• positive semidefinite

• hermitian

• with a trace equal to 1

It is represented like this (with ∀i, λi > 0 and
∑

i λi = 1):

ρ =
∑
i

λi|ψi〉〈ψi| (4.1)

To have an intuition, when the state is only classical, the matrix is diagonal and has the
probabilities on the diagonal (you can notice that the trace is indeed equal to 1). Now let’s
try to define a Quantum divergence of divergence.

4.1.2 Divergence

In Quantum world the divergence isn’t really easy to define, because of one major problem:
the operator aren’t commutative anymore. So the product PαQ1−α isn’t well defined. . . A
lot of different definitions of Rényi divergence exist, as explained in [Tom15], but I will use
one with a special property: the max-divergence is a majorant of all divergence.
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Definition 20 (Maximum Quantum Rényi Divergence [Tom15]). For any ρ, σ ∈ P(A) we
define the quantum max-divergence as

Dα(ρ‖σ) =
1

α− 1
ln Tr(σ

1
2 (σ−

1
2 ρσ−

1
2 )ασ

1
2 ) (4.2)

The limit for α→ +∞ is

D∞(ρ‖σ) = inf{λ : ρ ≤ exp(λ)σ} (4.3)

For any Rényi divergence D′α we have

D′α(ρ‖σ) ≤ Dα(ρ‖σ) (4.4)

We can then use this Quantum definition of divergence with classical differential privacy
definitions. Here is the Quantum equivalent of Zero-Concentrated Differential Privacy:

Definition 21 (Quantum Zero-Concentrated Differential Privacy). A quantum randomized
mechanism M is (ξ, ρ)-quantum-zero-concentrated differentially private (henceforth (ξ, ρ)-
qzCDP) if, for all x, x′ ∈ N|X | such that ‖x− x′‖ ≤ 1 and all α ∈ (1,+∞),

Dα(M(x)‖M(x′)) ≤ ξ + ρα (4.5)

4.2 Proof of the 1
2ε

2α in the Quantum case

In the Quantum case you can also use a Quantum equivalent of the Theorem 7:

Theorem 22 (Quantum bounded divergence). Let ρ and σ be probability distributions on
P(A) satisfying D∞(ρ‖σ) ≤ ε and D∞(σ‖ρ) ≤ ε. Then for all α > 1

Dα(ρ‖σ) ≤ 1

2
ε2α (4.6)

To see the proof of this theorem, please go in appendix.

4.3 Interesting property

I would like to use the following property (taken from [Tom15]) to proof a similar result to
the Theorem 20. However because of lack of time I didn’t finish it (since the definition are
different (not the same distance...) it’s not perfectly straight forward).

Theorem 23 ([Tom15], prop 6.5 p. 99). Let ρ ∈ S(A), 0 < ε < 1 and α ∈ (1,+∞). Then

Dε
max(ρ‖σ) ≤ D′α(ρ‖σ) +

g(ε)

α− 1
(4.7)

where g(ε) = −log(1−
√

1− ε2) and D′α is any quantum Rényi divergence.
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CHAPTER 5

CONCLUSION

To conclude, during this internship I learned lot’s of things in this field of mathematics.
I got a better intuition about Rényi divergence and I understood the main differences be-
tween the different definitions of differential privacy expressed in term of divergence. I also
found a better bound for the Advanced (k-fold) composition theorem.

These definition can be extended to Quantum world, and I think that the proofs can be
easily translated from classical world to quantum world, as shown in Theorem 22.

I also learned more practical things, such as how to be well organized: it’s easy to get lost
in it’s note when you are trying to proof something during several days. Differential privacy
was for me a totally unknown field, and the subject was crossing both cryptography and
quantum computer science, which was very interesting for me. For the first time I felt like
if I were a researcher, it was a great experiment ! I would have wanted to spend more time
on Quantum divergence, but 6 weeks are quite short to study everything you want. . .

I just want to conclude my report with a special thanks to my supervisor Omar Fawzi,
who was always present to help me during this 6 weeks internship and who always guided
me toward good idea. Thank you !
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APPENDIX A

PROOFS OF ABOVE THEOREMS

A.1 Proof of the Equivalence of distances (Lemma 1)

Proof of Lemma 1.

∆′(P‖Q) = max
S⊂Ω
|Pr[P ∈ S]− Pr[Q ∈ S]| (A.1)

= max
S⊂Ω

∣∣∣∣∫
S
p(µ)dµ−

∫
S
q(µ)dµ

∣∣∣∣ (A.2)

= max
S⊂Ω

∣∣∣∣∫
S
p(µ)− q(µ)dµ

∣∣∣∣ (A.3)

= max
S⊂Ω

∣∣∣∣∣
∫
µ∈S:p(µ)−q(µ)≥0

|p(µ)− q(µ)|dµ−
∫
µ∈S:p(µ)−q(µ)<0

|q(µ)− p(µ)|dµ

∣∣∣∣∣
(A.4)

= max

(∫
µ∈Ω:p(µ)−q(µ)≥0

|p(µ)− q(µ)|dµ,
∫
µ∈Ω:p(µ)−q(µ)<0

|q(µ)− p(µ)|dµ

)
(A.5)

By posing A =
∫
µ∈Ω:p(µ)−q(µ)≥0 |p(µ)− q(µ)|dµ and B =

∫
µ∈Ω:p(µ)−q(µ)<0 |q(µ)−p(µ)|dµ we

have ∆′(P‖Q) = max(A,B) But A−B = 0, ie A = B, so

∆′(P‖Q) =
1

2
(A+B) (A.6)

ie
∆′(P‖Q) =

1

2
(

∫
µ∈Ω
|p(µ)− q(µ)|dµ) = ∆(P‖Q) (A.7)

A.2 Proof of the Additive property of δ (Lemma 8)

Proof of Lemma 8. Let’s suppose that exists x, x′ two databases and Y, Y ′ two distributions
such that ∆(M(x)‖Y ) ≤ δ0

eε+1 , ∆(M(x′)‖Y ′) ≤ δ0
eε+1 , D

δ
∞(Y ‖Y ′) ≤ ε0 and Dδ

∞(Y ′‖Y ) ≤
ε0. The characterization theorem (Theorem 3) gives us that ∃Z,Z ′ such that
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• D∞(Z,Z ′) ≤ ε0

• ∆(Y ‖Z) ≤ δ
eε0+1

• ∆(Y ′‖Z ′) ≤ δ
eε0+1

Still using the characterization theorem (in the other sens this time), we just need to show
that

∆(M(x)‖Z) ≤ δ + δ0

eε0+1
(A.8)

(the same property withM(x) is exactly the same demonstration) Let’s show it:

∆(M(x)‖Z) = max
S
|Pr[M(x) ∈ S]− Pr[Z ∈ S]| (A.9)

= max
S
|Pr[M(x) ∈ S]− Pr[Y ∈ S] + Pr[Y ∈ S]− Pr[Z ∈ S]| (A.10)

≤ max
S
|Pr[M(x) ∈ S]− Pr[Y ∈ S]|+ |Pr[Y ∈ S]− Pr[Z ∈ S]| (A.11)

≤ δ + δ0

eε0+1
(A.12)

A.3 Proof of the Impossible Triangle Inequality for Rényi Di-
vergence (Theorem 11)

Proof of the Theorem 11. Let α ∈ (1,+∞), n ∈ N∗. Let Pn, Qn, Rn the probability families
distributed as:

Pr[Pn = 0] =
1

n
α−1
α

; Pr[Pn = 1] = 1− 1

n
α−1
α

(A.13)

Pr[Qn = 0] =
1

n
; Pr[Qn = 1] = 1− 1

n
(A.14)

Pr[Rn = 0] =
1

n
α
α−1

; Pr[Rn = 1] = 1− 1

n
α
α−1

(A.15)

Since α > 1, ∃M ∈ N such that ∀n ≥ M , (Pr[Pn = 0], P r[Qn = 0], P r[Rn = 0]) ∈ [0, 1]3.
So if needed the sequences can be shifted to be well defined.
Then, we just need to see that for all n

Dα(Pn‖Qn) =
1

α− 1
ln

((
1

n
α−1
α

)α( 1

n

)1−α
+

(
1− 1

n
α−1
α

)α(
1− 1

n

)1−α
)

(A.16)
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is bounded by a constant m (the left part is equal to 1, and the right part has 1 for limit in
+∞ and is continuous so it is bounded). You can show the same thing with Dα(Qn‖Rn).
However, the divergence Dα(Pn‖Rn) isn’t bounded :

Dα(Pn‖Rn) ≤ 1

α− 1
ln

((
1

n
α−1
α

)α( 1

n
α
α−1

)1−α
)

(A.17)

≤ 1

α− 1
ln (n) (A.18)

So
lim
n→∞

Dα(Pn‖Rn) = +∞ (A.19)

so the triangle inequality isn’t possible for all α ∈ (1,+∞)

A.4 Proof of the Lemma 15

Proof of the Lemma 15. Let’sM : N|X | → B be a (ç,é)-differentially private algorithm.
To proof this theorem I used the Hoeffding’s lemma :

Lemma 24 (Hoeffding’s lemma). Let X be any real-valued random variable with expected
value E(X) = 0 and such that a ≤ X ≤ b almost surely. Then for all λ ∈ R,

E
[
eλX

]
≤ exp

(
λ2(b− a)2

8

)
. (A.20)

We would like to use it with
X = L− E(L) (A.21)

Let’s bound it : Firstly, let’s bound |L| on each entry b ∈ B. Let x, x′ be two neighbour
databases.

Lb = ln
Pr[M(x) = b]

Pr[M(x′) = b]
(A.22)

≤ ln

(
sup
i

Pr[M(x) = bi]

Pr[M′(x) = bi]

)
(A.23)

= D∞(M(x),M(x)) (A.24)
≤ç (A.25)

In the same idea

−Lb = − ln
Pr[M(x) = b]

Pr[M(x′) = b]
(A.26)

= ln
Pr[M(x′) = b]

Pr[M(x) = b]
(A.27)
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so with the same argument we have ∀b, |Lb| ≤ç .

We also need a bound on E(L) :

E(L) =

∫
p ln

p

q
dµ (A.28)

= D1(M(x)‖M(x′)) (A.29)
≤ min(ç,é) (A.30)

(A.31)

Since E(L) is a divergence, it is also positive, so 0 ≤ E(L) ≤ min(ç,é) Now, by using
the two boxed result, we have

−ç−min(ç,é) ≤ L− E(L) ≤ç (A.32)

so using Hoeffding’s lemma we have

E
[
eλL−E(L)

]
≤ exp

(
λ2(2ç+ min(ç,é))2

8

)
(A.33)

which conclude the proof.

A.5 Proof of the lemma Upper bound of Dδ
∞ (Lemma 19)

Proof of Lemma 19. Let’s begin by noting that if Q is null on a null set, we can just remove
this null set from Ω and do the proof as it, the result will stay true with the whole Ω. Now,
if Q is null on a non null set, then Dα(P ||Q) = +∞ so the result remains true. In the
following we can therefore consider that ∀x ∈ Ω, Q(x) 6= 0.
Let sm ≥ 1 and S =

{
x/P (x)

Q(x) ≥ sm
}
.

We can define a distribution P ′ such that ∀x ∈ Ω,

P ′(x)

Q(x)
≤ sm (A.34)

and

∆(P, P ′) =

∫
x∈S

P (x)− P ′(x) (A.35)

and ∀x ∈ S, P ′(x) ≤ P (x). Indeed, the two distributions

P1(x) := smQ(x) if x ∈ S, 0 otherwise (A.36)
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P2(x) := smQ(x) (A.37)

are such that ∫
x∈Ω

P1(x)dx ≤ 1 ≤
∫
x∈Ω

P2(x)dx (A.38)

(the inequalities are true because sm ≥ 1). So to build P ′ just define P ′(x) = smQ(x) if
x ∈ Ω (this ensure ∆(P, P ′) =

∫
x∈S P (x)− P ′(x)), and else find values between P1 and P2

to ensure that P ′ is well normed.
We then have ∫

x∈Ω
P (x)αQ(x)1−αdx =

∫
x∈Ω

P (x)αQ(x)1−αdx (A.39)

=

∫
x∈Ω

P (x)

(
P (x)

Q(x)

)α−1

dx (A.40)

≥
∫
x∈S

P (x)

(
P (x)

Q(x)

)α−1

dx (A.41)

≥ sα−1
m

∫
x∈S

P (x)dx (A.42)

≥ sα−1
m

∫
x∈S

P (x)− P (′x)dx (A.43)

= sα−1
m ∆(P, P ′) (A.44)

(A.45)

We deduce of this inequality the following statement:

1

α− 1
ln

(∫
x∈Ω

P (x)αQ(x)1−αdx

)
≥ 1

α− 1
ln(sα−1

m ∆(P, P ′)) (A.46)

ie

Dα(P ||Q) ≥ ln(sm) +
ln(∆(P, P ′))

α− 1
(A.47)

Because ∀x, P
′(x)
Q(x) ≤ sm, ln(sm) ≥ D∞(P ′||Q) so

Dα(P ||Q) ≥ D∞(P ′||Q) +
ln(∆(P, P ′))

α− 1
(A.48)

ie
D∞(P ′||Q) ≤ Dα(P ||Q)− ln(∆(P, P ′))

α− 1
(A.49)
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And by definition of Dδ
∞, we have

Dδ
∞(P ||Q) ≤ Dα(P ||Q)− ln(∆(P, P ′))

α− 1
(A.50)

Now, let’s show that we can choose P ′ such that ∆(P, P ′) = δ: we would then have

Dδ
∞(P ||Q) ≤ Dα(P ||Q)− ln(δ)

α− 1
(A.51)

which would end the proof.
To show that P ′ exists, let’s see that the function

f : [1,+∞) −→ R
s 7−→ ∆(P, Ps)

where Ps is a distribution such that ∀x, Ps(x)
Q(x) ≤ s and, by writing Ss := {x/P (x)

Q(x) ≥ s},
∆(P, Ps) =

∫
x∈Ss P (x) − Ps(x)dx (we have already shown at the beginning of the proof

that such a distribution could be defined). Then, you can notice that:

• f is continue

• f(1) = 0. Indeed, ∀x, Ps(x) ≤ Q(x), so in order to have Ps normed to 1, you must
have Ps = Q, that means f(1) := ∆(Ps, Q) = 0

• lim
s→+∞

f(s) = ∆(P,Q). Indeed, because Q can be consider as non null„ lim
s→+∞

|Ss| = 0.

We then have lim
s→+∞

∆(P, Ps) = lim
s→+∞

∫
x∈Ss P (x) − P ′(x) = 0, so lim

s→+∞
f(s) :=

lim
s→+∞

∆(Ps, Q) = ∆(P,Q).

We have δ ≤ ∆(P,Q), so the intermediate value theorem let us find a sm such that f(sm) :=
∆(P, Psm) = δ.

A.6 Proof of the New Advanced k-fold composition theorem
(Theorem 20)

Proof of Theorem 20. Let’s M1 . . .Mn be n independent algorithms (ε, δ)-differentially
private (here independent means that there is no share of random bit between runs). Let
x1 . . . xn and x′1 . . . x′n n neighbour databases. For all i there is

Dδ
∞(Mi(xi)‖Mi(x

′
i)) ≤ ε (A.52)
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By characterization ∀i,∃Pi, Qi such that ∀i,

Dδ
∞(Pi‖Qi) ≤ ε (A.53)

∆(Mi(x), Pi) ≤
δ

eε + 1
(A.54)

∆(Mi(x
′), Qi) ≤

δ

eε + 1
(A.55)

so with the Theorem 7 we have for all α > 1 :

Dα(Pi‖Qi) ≤
1

2
αε2 (A.56)

You have then with the Theorem 9 :

Dα(P1 . . . Pn‖Q1 . . . Qn) ≤ kαε2

2
(A.57)

Let δ′ ∈ (0,∆((P1 . . . Pn), Q1 . . . Qn)]. We can then apply the Lemma 19 :

Dδ′
∞(P1 . . . Pn‖Q1 . . . Qn) ≤ Dα(P1 . . . Pn‖Q1 . . . Qn)− ln(δ′)

α− 1
(A.58)

We use A.57 :

Dδ′
∞(P1 . . . Pn‖Q1 . . . Qn) ≤ kαε2

2
− ln(δ′)

α− 1
(A.59)

Now, since this is true for all α, let’s minimize it in α to find a better bound. Let

f(α) =
kαε2

2
− ln(δ′)

α− 1
(A.60)

We derive it :

f ′(α) =
kε2

2
+

ln(δ′)

(α− 1)2
(A.61)

The minimum is obtained when f ′(α) = 0 :

kε2

2
+

ln(δ′)

(α− 1)2
= 0 (A.62)

So

(α− 1)2 =
2 ln(1/δ′)

kε2
(A.63)

ie

α = 1 +

√
2 ln(1/δ′)√

kε
(A.64)
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Let’s inject it in A.59:

Dδ′
∞(P1 . . . Pn‖Q1 . . . Qn) ≤

k

(
1 +

√
2 ln(1/δ′)√

kε

)
ε2

2
− ln(δ′)(

1 +

√
2 ln(1/δ′)√

kε

)
− 1

(A.65)

=
kε2

2
+
√

2k ln(1/δ′)ε (A.66)

Now, the Lemma 8 about the additive property of δ let us conclude :

Dnδ+δ′
∞ (M1(x1) . . .Mn(xn)‖M′1(x′1) . . .M′n(x′n)) ≤ kε2

2
+
√

2k ln(1/δ′)ε (A.67)

A.7 Proof of the Trade-off δ/ε theorem (Theorem 21)

Proof of Theorem 21. We will use the result of the Lemma 19. Let P and Q be two random
variables such that D∞(P ||Q) ≤ ε and D∞(Q||P ) ≤ ε, and let 0 < δ ≤ ∆(P,Q). We then
have for all α > 1:

Dδ
∞(P ||Q) ≤ Dα(P ||Q)− ln(δ)

α− 1
(A.68)

and because Dα(P ||Q) ≤ 1
2ε

2α, we have

Dδ
∞(P ||Q) ≤ 1

2
ε2α− ln(δ)

α− 1
(A.69)

Let’s find the α that minimize this quantity, by derivating the above expression:

d

dα

(
1

2
ε2α− ln(δ)

α− 1

)
=

1

2
ε2 +

ln(δ)

(α− 1)2
(A.70)

This is null if and only if

(αm − 1)2 = − ε2

2 ln(δ)
(A.71)

If we suppose δ < 1, we have

αm = 1 +

√
ε2

2 ln(1/δ)
= 1 +

ε√
2 ln(1/δ)

(A.72)

This is greater than 1, so the minimum is

Dδ
∞(P ||Q) ≤ 1

2
ε2

(
1 +

ε√
2 ln(1/δ)

)
(A.73)
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A.8 Proof of the Quantum equivalent of Bounded divergence
(Theorem 22)

Proof of Theorem 22. Let P and Q be probability distributions on P(A) satisfying

D∞(P‖Q) ≤ ε (A.74)

and D∞(Q‖P ) ≤ ε. Let α > 1. As explained in [Tom15], we can bound Dα by the max-
divergence. Let’s rewrite the unitary operator on the eigenvectors basis : σ−

1
2 ρσ−

1
2 =∑

i ti|ψi〉〈ψi|. The Equation A.74 gives us ∀i, ti ≤ eε. Moreover, by definition of D∞ we
have

σ ≤ eερ (A.75)

By multiplying by σ−
1
2 on the right and on the left, we have :

e−ε ≤ σ−
1
2 ρσ−

1
2 (A.76)

so with the same argument as above, we also have ∀i, ti ≥ e−ε. So ∀i,∃λi such that

ti = λie
ε + (1− λi)e−ε (A.77)

Let’s inject it in the definition of Dα :

e(α−1)Dα(ρ‖σ) ≤ Tr[σ
1
2 (σ−

1
2 ρσ−

1
2 )ασ

1
2 ] (A.78)

= Tr[σ
1
2 (
∑
i

(λie
ε + (1− λi)e−ε)|ψi〉〈ψi|)ασ

1
2 ] (A.79)

= Tr[σ
1
2

∑
i

(λie
ε + (1− λi)e−ε)α|ψi〉〈ψi|σ

1
2 ] (orthonormal basis) (A.80)

=
∑
i

(λie
ε + (1− λi)e−ε)α Tr[σ|ψi〉〈ψi|] (A.81)

≤
∑
i

λie
εα + (1− λi)e−εα Tr[σ|ψi〉〈ψi|] (Jensen) (A.82)

= eαε
∑
i

λi Tr[σ|ψi〉〈ψi|] + e−εα
∑
i

(1− λi) Tr[σ|ψi〉〈ψi|] (A.83)

By posing A =
∑

i λi Tr[σ|ψi〉〈ψi|] and B =
∑

i(1− λi) Tr[σ|ψi〉〈ψi|] we then have

e(α−1)Dα(ρ‖σ) ≤ eαεA+ e−αεB (A.84)
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and A + B = 1. By evaluating A.84 with α = 1, we have two equations for two unknown
variables (A and B) : we can solve it into

A =
1− e−ε

eε − e−ε
(A.85)

B =
e−ε − 1

eε − e−ε
(A.86)

(A.87)

The end of the proof is like the classical case in [BS16, p. 14] : we inject the above A and
B in A.84, express the exp in term of sinh, and conclude with the inequality

sinh(x)− sinh(y)

sinh(x− y)
≤ e

1
2
xy (A.88)

We then have
Dα(ρ‖σ) ≤ 1

2
ε2α (A.89)
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