
Random Numbers from Bell inequalities: Eve’s Memory Matters

Paul Fermé
Adviser: Omar Fawzi

Laboratoire de l’Informatique du Parallélisme, École Normale Supérieure de Lyon

Introduction
Randomness is an essential tool in computer science. In particular, it is a critical part of cryptographic protocols,
whose security depends on the quality of the randomness used. However, producing randomness is a complicated
task. Can we certify randomness, ie. the unpredictability, of devices we cannot trust a priori?

This seems to be an impossible task: no matter what statistical tests a sequence of bits pass, it could always be
that this sequence is hard coded in the randomness device. Thus, an adversary could perfectly predict the sequence
of outputs of the device. It is indeed impossible if we restrict ourselves to classical mechanics.

However, there is a quantum solution to this issue: Bell inequality violations [1] can be used to certify true
randomness [6, 11]. As an example, we can look at the CHSH game [5]:

Figure 1: The CHSH game (as presented in [13]): first, a referee distributes (uniformly) the bits x and y to Alice
and Bob. Then, Alice and Bob return the bits a and b to the referee. The goal is to get a⊕ b = x ∧ y.

If they are allowed to agree on a common strategy before the game begins, Alice and Bob cannot communicate
once they have received x, y. Classically, they can win with probability at most 3/4, even if they share some
common random bits. However quantumly, sharing an entangled pair allow them to reach a success probability of
cos2(π/8) ' 0.85 > 3/4! In fact, any strategy that has a success probability greater than 3/4 must be randomized :
indeed, a deterministic strategy is inherently classical, so its success probability is smaller than 3/4.

This critical observation leads to an interesting consequence: a statistical test estimating the value of this prob-
ability certifies the presence of randomness, under the only assumption that Alice and Bob are not communicating.
This was first noticed in [6], and quantified in [11]. The drawback is that we need some initial random bits to
perform the statistical test, although it is possible to create more randomness than used: this is why we speak of
randomness expansion, which will be the topic we focus on in this report.

We will study the impact of giving more or less power to the adversary preparing the device on the quantity of
randomness produced, in the general case of Bell inequality violations and through the particular example of the
CHSH game.

1

Contents

I Preliminaries 3

1 Background 3
1.1 Classical Information Theory . 3
1.2 Quantum Theory . 3

1.2.1 Quantum States . 3
1.2.2 Measurement . 4
1.2.3 Entanglement . 4

2 Setting 5
2.1 Non-communicating boxes . 5

2.1.1 Classical behaviour . 5
2.1.2 Quantum behaviour . 6
2.1.3 Non-signalling behaviour . 6

2.2 Bell inequalities . 6
2.3 Randomness expansion . 7

2.3.1 The setting . 7
2.3.2 Device behaviour assumptions . 8
2.3.3 Eve’s memory assumptions . 8
2.3.4 Quantification of the randomness produced . 9

3 Semidefinite programming 10
3.1 Presentation . 10
3.2 NPA method . 10

II Results 11

4 Classification of problems 11
4.1 NS vs Empty . 11

4.1.1 Definition . 11
4.1.2 Relaxation . 12

4.2 NS vs NS . 13
4.2.1 Definition . 13
4.2.2 Relaxation . 13
4.2.3 Equivalent formulation . 13

4.3 NS vs C . 14
4.3.1 Definition . 14
4.3.2 Equivalence to NS/NS with no input for Eve . 14

4.4 Q vs Empty . 15
4.4.1 Definition . 15
4.4.2 Relaxation . 15

4.5 Q vs Q . 16
4.5.1 Definition . 16
4.5.2 Relaxation . 16
4.5.3 Equivalent formulation . 17

4.6 Q vs C . 18
4.6.1 Definition . 18
4.6.2 Equivalence to Q/Q with no input for Eve . 18
4.6.3 Relaxation . 19

5 Comparisons 19
5.1 Comparison to [11] . 19
5.2 CHSH∗ . 19

2

Part I

Preliminaries
1 Background

1.1 Classical Information Theory
We want to define what is the “quantity of randomness” included in a random source, also called quantity of
information. We will achieve this via the notion of min-entropy :

Definition 1.1.1 (min-entropy). Let X be a random variable. The min-entropy of X is defined by:

Hmin(X) := − log pguess(X), where pguess(X) := max
x

Pr(X = x)

pguess(X) can be interpreted as the winning probability of the best strategy guessing the value of X without any
information: simply bet on one value x which happens with the biggest probability for X. The bigger Hmin(X),
the harder it is to guess the value of X.

Min-entropy represents roughly the number of extractable bits of the source, with the help of randomness
extractors (see [12] for a detailed presentation).

We are also interested in the conditional min-entropy of random variables, which is an extension of the previous
definition with conditional probabilities:

Definition 1.1.2 (conditional min-entropy). Let X,Y be random variables.

• The conditional min-entropy of X given that Y = y is defined by:

Hmin(X|Y = y) := − log pguess(X|Y = y)

where pguess(X|Y = y) := maxx Pr(X = x|Y = y)

• The conditional min-entropy of X given Y is defined by:

Hmin(X|Y) := − log pguess(X|Y)

where pguess(X|Y) :=
∑
y Pr(Y = y)pguess(X|Y = y)

These definitions of pguess can also be interpreted as before, but now the adversary has access to y to improve
its guess.

Remark. We will write Hmin(X|y) and pguess(X|y) when y is a fixed possible outcome of the random variable Y .

1.2 Quantum Theory
This short introduction, made as minimal as possible to understand the rest of the report, is based on [13].

1.2.1 Quantum States

What is a quantum system? Classically, a two-states system is a bit, with its two particular states being 0 and 1.
The analogue of the classical bit is called qubit (quantum bit), and the possible states of this two-states system are
|0〉 and |1〉 (“ket” 0 and “ket” 1).

So far, nothing in our description distinguishes a bit from a qubit. In fact, quantum theory predicts that the
above states are not the only possible states of a qubit. Arbitrary superpositions (linear combinations) of the above
two states are possible: a general qubit is of the form

α |0〉+ β |1〉

with α, β ∈ C and |α|2 + |β|2 = 1

3

The coefficients α and β are probability amplitudes — they are not probabilities themselves but they allow us
to calculate probabilities. The unit-norm constraint leads to the Born rule (the probabilistic interpretation) of the
quantum theory, which we will see in the measurement part.

To consider formally these superpositions, we use vectors

|0〉 :=

[
1
0

]
, |1〉 :=

[
0
1

]
and a general qubit is just a unit-norm vector in C2

|ψ〉 := α |0〉+ β |1〉 =

[
α
β

]
We also introduce the notation 〈ψ| (“bra”) which is the conjugate transpose of |ψ〉: 〈ψ| := |ψ〉†. The useful

property that follows is that the canonical scalar product can be written as

〈ψ′|ψ〉 := 〈ψ′| |ψ〉 =
[
α′ β′

] [α
β

]
= α′α+ β′β

More generally:

Definition 1.2.1 (quantum system, quantum state). A quantum state is a unit-norm vector of a finite dimension
Hilbert space H (the quantum system).

1.2.2 Measurement

The measurement postulate of quantum mechanics, also called the Born rule, is the following: when we measure
the system |ψ〉 (ie. try to get some information about it), then

1. With probability |〈0|ψ〉|2 = |α|2, the system “collapses” into the classical state 0

2. With probability |〈1|ψ〉|2 = |β|2, the system “collapses” into the classical state 1

More generally:

Definition 1.2.2 (projection-valued measurement (PVM)). A projection-valued measurement on a space H is a
set of operators (matrices) {Eo }o∈O on this Hilbert space such that:

1. Eo � 0 ie. E†o = Eo and ∀ |ψ〉 , 〈ψ|E0 |ψ〉 ≥ 0 (semidefinite positiveness)

2. EoEo′ = δo=o′Eo (orthogonality)

3.
∑
o∈O Eo = 1 (completeness)

The measurement output of such a process is o with probability 〈ψ|Eo |ψ〉, and the resulting state becomes
Eo|ψ〉

〈ψ|E†
oEo|ψ〉

(of norm 1).

It is indeed a probability distribution, since 〈ψ|Eo |ψ〉 ≥ 0 and
∑
o∈O 〈ψ|Eo |ψ〉 = 〈ψ|ψ〉 = 1. We get back the

canonical measurement by taking E0 = |0〉 〈0| and E1 = |1〉 〈1|.
Remark. “∀ |ψ〉 , 〈ψ|E0 |ψ〉 ≥ 0” is a consequence of hermicity and orthogonality: 〈ψ|Eo |ψ〉 = 〈ψ|E2

o |ψ〉 =
〈ψ|E†oEo |ψ〉 = ‖Eo |ψ〉 ‖2 ≥ 0

1.2.3 Entanglement

We will now present the most exciting feature of quantum mechanics, which makes the CHSH game quantumly
interesting: entanglement. In order to do so, we will first present composite systems, ie. having more than one
qubit.

For this, we need first to define the tensor product of matrices A⊗B in the following way

Definition 1.2.3 (tensor product).

A⊗B := (Ai,jB)i,j =

 A1,1B . . . A1,mAB
...

. . .
...

AnA,1B . . . AnA,mAB

 of size nAnB ×mAmB

4

The composite system of 2 qubits |ψ〉 ∈ C2 and |φ〉 ∈ C2 is thus described as |ψ〉 ⊗ |φ〉 ∈ C2 ⊗ C2 ' C4. We
write also |ψ〉 |φ〉 := |ψ〉 ⊗ |φ〉, and for basis vectors |01〉 := |0〉 |1〉 = |0〉 ⊗ |1〉.

However, not every vector of unit-norm in C4 is of the from |ψ〉 ⊗ |φ〉. When it is not the case, we say that the
two systems are entangled. For instance, the bell pair

|
〉 =
|00〉+ |11〉√

2

is one of those entangled systems.
Now, to understand what these entangled states can bring to us, we have to introduce the notion of local

measurements: since now we have systems that can be larger than a qubit, it is possible to measure only subsystems.

Definition 1.2.4 (local measurement). On a system A⊗B, a local measurement {Ma }a on A acts on the global
system as {Ma ⊗ 1B }a (and similarly for B).

Thus, on the example of the bell pair, if we measure the first qubit (our system A) on the standard basis:

1. With probability 〈
| |0〉 〈0|⊗1B |
〉 = 〈
| |00〉 〈00|+|01〉 〈01| |
〉 = 1
2 , we will get the outcome 0 and the resulting

state will be |0〉〈0|⊗1B |
〉1
2

= |00〉

2. Similarly, with probability 1
2 , we will get the outcome 1 and the resulting state will be |11〉

Thus, the local measurement on A has transformed the state of B: then, if B measures its system in the standard
basis, then he will get the same output of A with probability 1!

2 Setting
We will describe in this section what is randomness expansion. In order to do so, we will present what are non-
communicating boxes and Bell inequalities.

2.1 Non-communicating boxes
Our setting is a game between two players, Alice and Bob, who cannot communicate with each other. Alice (resp.
Bob) has an input x ∈ X (resp. y ∈ Y) and outputs a ∈ A (resp. b ∈ B) accordingly to some probabilistic
behaviour.

Figure 2: A general game between Alice and Bob, leading to a distribution p(ab|xy)

We are interested in studying what joint distributions can be produced by such non-communicating boxes,
depending on the power given to them.

2.1.1 Classical behaviour

Here, Alice and Bob can only share some common randomness (independent of the inputs):

Definition 2.1.1 (classical behaviour). We say that a joint distribution p(ab|xy) is classical if it is of the form

p(ab|xy) =
∑
m

q(m)pm(ab|xy) =
∑
m

q(m)pAm(a|x)pBm(b|y)

where q is a probability distribution and pAm(a|x) (resp. pBm(b|y)) is the behaviour of Alice’s box (resp. Bob’s box)
when m occurs.

5

2.1.2 Quantum behaviour

We now make the assumption that Alice and Bob share a joint state |ψ〉, and that they can perform only local
measurements:

Definition 2.1.2 (quantum behaviour). We say that p(ab|xy) is quantum if there exists a state |ψ〉 in some Hilbert
space H, sets of local PVMs {Mx

a : a ∈ A }x for Alice and {Ny
b : b ∈ B }

y
for Bob, such that:

p(ab|xy) = 〈ψ|Mx
a ⊗N

y
b |ψ〉

2.1.3 Non-signalling behaviour

Here, we do not describe the physical process occurring between Alice and Bob. We only make the assumption
that Alice and Bob do not communicate, that they have a non-signalling behaviour. It means that, looking only at
Alice’s (resp. Bob’s) box, the distribution does not depend on y (resp. x):

Definition 2.1.3 (non-signalling conditions). We say that the joint distribution p(ab|xy) is non-signalling if it
satisfies:

∀a, x, y, y′,
∑
b

p(ab|xy) =
∑
b

p(ab|xy′)

∀b, y, x, x′,
∑
a

p(ab|xy) =
∑
a

p(ab|x′y)

Indeed, p(a|xy) :=
∑
b p(ab|xy) =

∑
b p(ab|xy′) = p(a|xy′), so we can in fact talk about p(a|x) := p(a|xy0),

which does not depend on the choice of y0: the distribution of Alice does not depend on y. However, the correlation
of outputs between Alice and Bob may depend on both x and y!

We can also check that previous behaviours do not communicate, ie. are non-signalling

1. If p classical: ∑
b

p(ab|xy) =
∑
b

∑
m

q(m)pAm(a|x)pBm(b|y) =
∑
m

q(m)pAm(a|x)

2. If p quantum:∑
b

p(ab|xy) =
∑
b

〈ψ|Mx
a ⊗N

y
b |ψ〉 = 〈ψ|Mx

a ⊗
(∑

b

Ny
b

)
|ψ〉 = 〈ψ|Mx

a ⊗ 1B |ψ〉

In both cases, it is independent of y, and the other case is symmetric.

2.2 Bell inequalities
Before defining what are those Bell inequalities, we start by looking in more details at the example of the CHSH
game [5] presented in the introduction.

Assume that you have two non-communicating boxes with binary inputs and outputs, leading to a joint distri-
bution p(ab|xy). The goal is to find

ωS := max
p∈S

Pr(a⊕ b = x ∧ y) = max
p∈S

1

4

(∑
xy=00,01,10

(
p(00|xy) + p(11|xy)

)
+ p(01|11) + p(10|11)

)
where S is either the set of classical behaviour (C), quantum behaviours (Q) or non-signalling behaviours (NS).

It is easy to see that ωC = 3/4: the best deterministic strategy for Alice and Bob is to output both 0 (or 1) all
the time, which reaches this probability of success. Sharing random bits, thus having some randomized strategy,
do not help, since it will be only a convex combination of deterministic strategies.

We have ωNS = 1. Just define

p(ab|xy) :=

{
1
2 if a⊕ b = x ∧ y
0 otherwise

which is indeed non-signalling and leads to Pr(a⊕ b = x ∧ y) = 1.

6

We have a gap between those two values, which is interesting theoretically, but we do not know if such non-
signalling events are possible physically. On the other hand, we know that quantum behaviours can be achieved in
our world. In [4], it was shown that ωQ = cos2(π/8) = 1/2 + 1/2

√
2. It is indeed obtained by taking:

|ψ〉 := |
〉 =
|00〉+ |11〉√

2

M0
0 := |0〉 〈0| ,M0

1 := |1〉 〈1|

M1
0 := Uπ/4 |0〉 〈0|U†π/4,M

1
1 := Uπ/4 |1〉 〈1|U†π/4

N0
0 := U−π/8 |0〉 〈0|U†−π/8, N

0
1 := U−π/8 |1〉 〈1|U†−π/8

N1
0 := Uπ/8 |0〉 〈0|U†π/8, N

1
1 := Uπ/8 |1〉 〈1|U†π/8

where Uθ :=

[
cos θ − sin θ
sin θ cos θ

]
More generally, we speak of Bell expressions, which are linear combinations of the coefficients p(ab|xy). We

usually define CHSH as
CHSH :=

∑
x,y

(−1)xy(Pr(a = b|xy)− Pr(a 6= b|xy))

= 8× Pr(a⊕ b = x ∧ y)− 4

The Bell inequality here is that classically, CHSH ≤ 8× 3/4− 4 = 2, which is violated quantumly with the value
obtained with the previous strategy 8× (1/2 + 1/2

√
2)− 4 = 2

√
2.

It leads to the following definition:

Definition 2.2.1 (Bell expression, Bell expectation). A Bell expression I is a series of coefficient cxyab, which
associates to any behaviour p(ab|xy) a Bell expectation Ip :=

∑
xyab cxyabp(ab|xy).

We denote by IC the maximal classical Bell expectation, IQ the maximal quantum Bell expectation and INS
the maximal non-signalling Bell expectation:

IC := max
p classical

Ip

IQ := max
p quantum

Ip

INS := max
p non-signalling

Ip

We always have IC ≤ IQ ≤ INS . The expressions we are interested in are the ones when there is gap in that
sequence of inequalities, and especially when IC < IQ.

2.3 Randomness expansion
Let us focus now on the heart of this report, the main topic we have worked on: randomness expansion, introduced
in [6] and first quantified in [11].

2.3.1 The setting

An (untrusted) adversary Eve prepares a device with two parts. We ensure that they do not communicate. We
want to certify that this device is producing outputs unpredictable by Eve, without any more assumptions on it:
we say that it is device-independent.

In order to do so, given a Bell expression I = { cxyab }, we assume that we are able to estimate the Bell
expectation Ip of the device, where p := {p(ab|xy)} is its behaviour. For this, random inputs uncorrelated to the
device are used (see for instance [11]).

Remark. In fact, random inputs are needed: the device could be preprogrammed to output a given sequence.
However, after the estimation, we can use the device for fixed inputs.

In this report, we will not focus on how we estimate this value, which is explained in more details in [11].

7

As observed in the introduction, if we have Ip > IC , then we are guaranteed that some random process occurred
in the device. Indeed, if the device were deterministic, then we would have Ip ≤ IC .

Now, we want to find lower bounds on the quantity of randomness produced, ie. the min-entropy of the output.
In order to do so, we will rather focus on upper bounds on pguess: the smaller it is, the better the randomness is.
The only numerical data we have is the Bell expectation of the device Ip.

2.3.2 Device behaviour assumptions

First, we assume that the inputs x, y are revealed at the end of the protocol: Eve has access to them to make its
guess.

Then, we assume that the device behaviour is either

1. classical,

2. quantum,

3. or non-signalling

The first case is not interesting, since no randomness can be produced. On the other hand, both other cases are
relevant. The quantum case makes the assumption that Eve prepares devices that use only quantum processes, which
are the strongest non-communicating phenomenons physically achievable as far as we know. The non-signalling
case makes only the assumption that Eve prepares non-communicating devices: maybe Eve uses physical processes
stronger than quantum physics, that have not been discovered by the science community.

So, the case giving the more power to Eve is the non-signalling one, and it is thus the weakest assumption from
our point of view.

2.3.3 Eve’s memory assumptions

Remark. This part is new, and is the main topic of this report.

Does Eve keep track of data of the device, while we use it, in order to improve its prediction of the outputs?
This is what we call the memory of Eve, and is thus a new kind of assumptions. The simplest case is to answer
negatively to this question: as soon as we have the device in our hands, Eve has no power at all on it, and the only
information she will have are the inputs x, y at the end of the protocol. Then, the quantity we will focus on would
be pguess(AB|xy) := maxa,b p(ab|xy).

In the other cases, Eve’s memory can either be classical, quantum or non-signalling.

Classical memory The idea of a classical memory is the following: Eve picks one of |M | devices at random
according to some distribution, and keeps track of the one she used.

Definition 2.3.1 (classical memory). We say that Eve has a classical memory if there exists a random variable
M independent of X and Y :

1. ∀m ∈ M,pm(ab|xy) is either quantum or non-signalling (depending on the power we want to give to Alice
and Bob)

2. Eve has access to m to make its guess:

pguess(AB|xyM) :=
∑
m

Pr(M = m)pguess(AB|xym) =
∑
m

max
a,b

Pr(M = m)pm(ab|xy)

The local behaviour of Alice and Bob is then p(ab|xy) :=
∑
m Pr(M = m)pm(ab|xy).

Now we present the cases of quantum and non-signalling memory. For this, we model Eve’s memory as a third
non-communicating box, with input i (which will be given the inputs (x, y)) and output e which will be the guess
of Eve for (a, b) (we will see in the results part that giving directly the guess of Eve as the output of its memory
box is not a restriction of its power). This leads to a global distribution p(abe|xyi), and we will be interested in
pguess(AB|xyE) :=

∑
a,b p(ab(a, b)|xy(x, y)).

8

Figure 3: A game between Alice and Bob with the presence of Eve’s memory, leading to p(abe|xyi)

Quantum memory

Definition 2.3.2 (quantum behaviour). We say that p(abe|xyi) is a quantum behaviour if there exists a state |ψ〉
in some Hilbert space H, sets of local PVMs {Mx

a : a ∈ A }x for Alice, {Ny
b : b ∈ B }

y
for Bob, and {Λie : e ∈ E }i

for Eve such that:

p(abe|xyi) = 〈ψ|Mx
a ⊗N

y
b ⊗ Λei |ψ〉

Non-signalling memory

Definition 2.3.3 (non-signalling conditions). We say that the joint distribution p(abe|xyi) is non-signalling if it
satisfies:

∀b, e, x, y, i, x′,
∑
a

p(abe|xyi) =
∑
a

p(abe|x′yi)

∀a, e, x, y, i, y′,
∑
b

p(abe|xyi) =
∑
b

p(abe|xy′i)

∀a, b, x, y, i, i′,
∑
e

p(abe|xyi) =
∑
e

p(abe|xyi′)

Remark. This definition implies also that this non-signalling property is true for pairs of inputs:

∀e, x, y, i, x′, y′,
∑
a,b

p(abe|xyi) =
∑
a,b

p(abe|x′y′i)

∀b, x, y, i, x′, i′,
∑
a,e

p(abe|xyi) =
∑
a,e

p(abe|x′yi′)

∀a, x, y, i, y′, i′,
∑
b,e

p(abe|xyi) =
∑
b,e

p(abe|xy′i′)

Since p is non-signalling in both cases, we can define what is the local behaviour of Alice and Bob p(ab|xy) :=∑
e p(abe|xyi0) (which does not depend on i0).

2.3.4 Quantification of the randomness produced

With all the previous assumptions on Eve’s power on the behaviour of the device and its memory, we are able to
state what we want to compute.

We focus only at one use of the device. As remarked before, two cases are possible: either X,Y are uniformly
distributed, or fixed to x0, y0. Let us recall that in the first case

pguess(AB|XY Z) :=
1

|X||Y |
∑
x,y

pguess(AB|xyZ)

for Z = ∅,M,E, . . .

9

Thus, depending on all these parameters, we will focus on programs of the form

Maximize pguess(AB|x0y0Z)/pguess(AB|XY Z)

subject to p Q/NS with a ∅/C/Q/NS memory
Ip ≥ Ibell

The maximization here is from the point of view of Eve, who tries to get the biggest pguess possible depending
on its power and on the fact that the Bell expectation of the device must be greater than Ibell.

Sometimes, these programs will be only linear programs, or simple enough to solve them exactly. However, and
especially in the quantum case, sometimes it is not even known to be computable. We will then look at relaxations
of these programs, to get upper bounds on the value of pguess, especially with the help of semidefinite programs.

3 Semidefinite programming

3.1 Presentation
Semidefinite programs (SDPs) (see [7]) are a large class of optimization problems that can be solved in polynomial
time. Semidefinite programming has been extensively used in various contexts in quantum information: we could
say semidefinite programming is to quantum computational problems what linear programming is to combinatorial
problems. Like with linear programming, it can be used to relax some complex problems, and some good properties
of that class help to understand the original problem.

A semidefinite program is an optimization problem over X ∈ Sn of the form:

maximize Tr[CX]
(

=
∑
i,j

Ci,jXi,j

)
subject to Tr[AiX] = bi, i = 1, . . . ,m

X � 0 (ie. XT = X and ∀v, vTXv ≥ 0)

with C,A1, . . . , Am ∈ Sn, b1, . . . , bm ∈ R.
Remark. We can encode constraints of the form 〈Ai, X〉 ≥ bi with the help of slack variables: we will use in our
particular programs both equality and inequality constraints.

3.2 NPA method
We present here the general method introduced in [9, 10] to relax problems involving quantum behaviours as
presented before.

We introduce this method in the case where Eve has no memory, this latter case will be treated in a similar way.

Let A′ := (X,A), B′ := (Y,B) and Σ := (A′ ∪B′), and let fix some measurement operators {Mx
a , a ∈ A }x and

{Ny
b , b ∈ B }y.
For γ ∈ Σ, we define

Xγ :=

{
Mx
a ⊗ 1B if γ = (x, a)

1A ⊗Ny
b if γ = (y, b)

For w ∈ Σn, we define the product operator Xw := Xw1 . . . Xwn .

Let |ψ〉 be a state of A⊗B.
We define the following m×m complex matrix indexed by words in Σ of size smaller than n:

Ω(n)
u,v := 〈ψ|X†uXv |ψ〉

Then we have that:

1. Ω(n) � 0

2. Ω(n) verifies linear equations that follow from the ones on {Mx
a , a ∈ A }x and {Ny

b , b ∈ B }y.

10

For instance, since
∑
a(Mx

a)† = 1A, then

∀w,
∑
a

Ω
(n)
(x,a),w :=

∑
a

〈ψ| (Mx
a)†Xw |ψ〉 = 〈ψ|Xw |ψ〉 = Ω

(n)
∅,w

Proof. For the first point, we have indeed, for z in Cm

z†Ω(n)z =
∑
i,j

ziΩ
(n)
i,j zj =

∑
i,j

zi 〈ψ|X†iXj |ψ〉 zj = 〈ψ|V †V |ψ〉 ≥ 0

where V :=
∑
i ziXi.

If the equations we are considering are using only real coefficients, we can have a m×m real positive semidefinite
matrix satisfying the same inequalities as Ω(n): we take instead Ω(n)+Ω(n)

2 .
With these two properties, we have thus a hierarchy (indexed by n) of semidefinite relaxations of our initial

program.

Part II

Results
4 Classification of problems
In this section, we will study the different scenarios depending on three parameters:

1. Alice and Bob are quantum (Q) or non-signalling (NS).

2. Eve has no memory (∅), a classical memory (C), a quantum memory (Q) or a non-signalling memory (NS).

3. For pguess, X,Y are fixed to x0, y0 or uniformly distributed.

We describe the different scenarios as: “Alice and Bob power” vs “Eve’s memory power”. We will study each
scenario in different steps:

1. Formal definition of the problem.

2. Solve the problem directly if possible, otherwise relax it to a linear or semidefinite program.

3. Presentation of the numerical results for CHSH.

Remark. All linear and semidefinite programs were encoded in Julia [2] and solved with Gurobi [8] or SCS [3].

4.1 NS vs Empty
4.1.1 Definition

NS/∅ := maximize pguess(AB|x0y0) = max
a,b

px0y0ab

or pguess(AB|XY) =
1

|X||Y |
∑
x,y

max
a,b

pxyab, with pxyab := p(ab|xy)

subject to pxyab ≥ 0∑
a,b

pxyab = 1

∑
b

pxyab =
∑
b

pxy′ab∑
a

pxyab =
∑
b

px′yab∑
x,y,a,b

cxyabpxyab ≥ Ibell

11

4.1.2 Relaxation

x0, y0 fixed We can solve this problem by solving the |A||B| linear programs with the same constraints, but the
objective function “maximize px0y0a0b0” for all a0, b0. Then, taking the maximum over all a0, b0 gives us exactly
“ maximizemaxa,b px0y0ab”

X,Y uniform In this case, we cannot solve our problem directly: it is not of the form of a linear program, and
we cannot do the same trick as before since there is a sum left to the max. Thus, we have to relax our problem.
First, we encode max as a variable λxyab:

NS/∅bis := maximize
1

|X||Y |
∑
x,y

λxyabpxyab

subject to NS/∅ constraints
λxyab ∈ { 0, 1 }∑
a,b

λxyab = 1

We have already that NS/∅bis = NS/∅, since the formulation λxyab is equivalent to a maximum. With Gurobi, it
is possible to solve (small) integer linear programs, so the constraint on λxyab is not an issue; however the product of
variables λxyabpxyab is. We relax this product as a new variable encoding the product, αxyabx′y′a′b′ := λxyabpx′y′a′b′ :

NS/∅relax := maximize
1

|X||Y |
∑
x,y

αxyabxyab

subject to NS/∅ constraints
λxyab ∈ { 0, 1 }∑
a,b

λxyab = 1

αxyabx′y′a′b′ ≥ 0 (since λxyab, px′y′a′b′ ≥ 0)∑
a′,b′

αxyabx′y′a′b′ = λxyab (since
∑
a′,b′

px′y′a′b′ = 1)

∑
a,b

αxyabx′y′a′b′ = px′y′a′b′ (since
∑
a,b

λxyab = 1)

We have in fact that NS/∅relax = NS/∅bis(= NS/∅), so it is not only a relaxation but the actual exact solution.
Indeed

∀x, y,∃!(axy, bxy) : λxyaxybxy = 1 =
∑
a′,b′

αxyaxybxyx′y′a′b′

and
∀x, y,∀(a, b) 6= (axy, bxy), λxyab = 0 =

∑
a′,b′

αxyabx′y′a′b′

Since αxyabx′y′a′b′ ≥ 0, then ∀(a, b) 6= (axy, bxy), αxyabx′y′a′b′ = 0. Hence∑
a,b

αxyabx′y′a′b′ = αxyaxybxyx′y′a′b′ = px′y′a′b′

So we have that αxyabx′y′a′b′ = λxyabpx′y′a′b′ , thus the equality between the programs.

Numerical results for CHSH In figure 5 page 22, there is a gap between the value of pguess when X,Y is
uniform and when it is fixed to 0, 0, the first being smaller than the second.

12

4.2 NS vs NS
4.2.1 Definition

NS/NS := maximize pguess(AB|x0y0E) =
∑
a,b

qx0y0(x0,y0)ab(a,b)

or pguess(AB|XY E) =
1

|X||Y |
∑
x,y,a,b

qxy(x,y)ab(a,b), with qxyiabe := p(abe|xyi)

subject to qxyiabe ≥ 0∑
a

qxyiabe =
∑
a

qx′yiabe∑
b

qxyiabe =
∑
b

qxy′iabe∑
e

qxyiabe =
∑
e

qxyi′abe = pxyab∑
a,b

pxyab = 1

∑
x,y,a,b

cxyabpxyab ≥ Ibell

4.2.2 Relaxation

We have already linear programs in both cases: we can directly solve this program.

Numerical results for CHSH In both cases, we get the same curve as the one for NS vs Empty and X,Y fixed
to 0, 0. Thus, as shown in figure 6 page 22, there is a gap between the value of pguess with X,Y uniform if Eve has
a non-signalling memory or not.

4.2.3 Equivalent formulation

An alternative definition of pguess, if we do not assume that Eve’s box output is not directly the guess for (a, b),
would be:

p′guess(AB|x0y0E) =
∑
e

max
a,b

qx0y0(x0,y0)abe

p′guess(AB|XY E) =
1

|X||Y |
∑
x,y,e

max
a,b

qxy(x,y)abe

We will prove that it is in fact an equivalent definition of pguess. First, we prove it when X,Y are fixed to x0, y0.
This definition gives more power to the adversary: if { qxyiabe } is a solution of NS/NS for pguess(AB|x0y0E),

then
p′guess(AB|x0y0E) =

∑
e

max
a,b

qx0y0(x0,y0)abe =
∑
a′,b′

max
a,b

qx0y0(x0,y0)ab(a′,b′)

≥
∑
a,b

qx0y0(x0,y0)ab(a,b) = pguess(AB|x0y0E)

On the other hand, let { qxyiabe } be a solution of NS/NS for p′guess(AB|x0y0E). First, we take

aie, bie such that, if i = (x, y) : qxyiaiebiee = max
a,b

qxyiabe

If there is more than one solution, we choose one of them arbitrarily.
Then, we define

q′xyiab(a′,b′) :=
∑

e:(aie,bie)=(a′,b′)

qxyiabe

13

We can check easily that q′xyiab(a′,b′) is a solution of NS/NS:

1. q′xyiabe =
∑

e′:(aie′ ,bie′)=e

qxyiabe′ ≥ 0

2.
∑
e

q′xyiabe =
∑
a′,b′

q′xyiab(a′,b′) =
∑
a′,b′

∑
e:(aie,bie)=(a′,b′)

qxyiabe =
∑
e

qxyiabe = pxyab

3.
∑
a

q′xyiabe =
∑
a

∑
e′:(aie′ ,bie′)=e

qxyiabe′ =
∑
a

∑
e′:(aie′ ,bie′)=e

qx′yiabe′ =
∑
a

q′x′yiab(a′,b′)

4.
∑
b

q′xyiabe =
∑
b

∑
e′:(aie′ ,bie′)=e

qxyiabe′ =
∑
b

∑
e′:(aie′ ,bie′)=e

qxy′iabe′ =
∑
b

q′xy′iab(a′,b′)

Finally

pguess(AB|x0y0E) =
∑
a,b

q′x0y0(x0,y0)ab(a,b) =
∑
a,b

∑
e:(a(x0,y0)eb(x0,y0)e)=(a,b)

qx0y0(x0,y0)abe

=
∑
e

qx0y0(x0,y0)a(x0,y0)eb(x0,y0)ee

=
∑
e

max
a,b

qx0y0(x0,y0)abe = p′guess(AB|x0y0E)

Since these definitions do not depend on the inputs x, y of Alice and Bob, the uniform case works in the same
way.

4.3 NS vs C
4.3.1 Definition

NS/C := maximize pguess(AB|x0y0M) =
∑
m

max
a,b

px0y0abm

or pguess(AB|XYM) =
1

|X||Y |
∑
x,y,m

max
a,b

pxyabm, with pxyabm := q(m)pm(ab|xy) = Pr(abm|xy)

subject to pxyabm ≥ 0∑
a,b,m

pxyabm = 1

∑
b

pxyabm =
∑
b

pxy′abm∑
a

pxyabm =
∑
a

px′yabm (non-signalling conditions with a factor q(m))∑
x,y,a,b

cxyab
∑
m

pxyabm ≥ Ibell (since
∑
m

pxyabm = p(ab|xy))

4.3.2 Equivalence to NS/NS with no input for Eve

With the equivalent formulation of pguess for NS/NS, we see that this case is exactly the same thing as considering
that we are in the NS/NS case, but without input i for Eve. Thus, when X,Y are fixed to x0, y0, the two problems
are equivalent. This was confirmed by experimental results.

However, when X,Y are uniform, though they could be different in theory, we have not found an example to
confirm that conjecture.

14

4.4 Q vs Empty
4.4.1 Definition

Q/∅ := maximize pguess(AB|x0y0) = max
a,b
〈ψ|Mx0

a ⊗N
y0
b |ψ〉

or pguess(AB|XY) =
1

|X||Y |
∑
x,y

max
a,b
〈ψ|Mx

a ⊗N
y
b |ψ〉

subject to Mx
a � 0, Ny

b � 0∑
a

Mx
a = 1A,

∑
b

Ny
b = 1B

Mx
aM

x
a′ = δa=a′M

x
a , N

y
bN

y
b′ = δb=b′N

y
b

〈ψ|ψ〉 = 1∑
x,y,a,b

cxyab 〈ψ|Mx
a ⊗N

y
b |ψ〉 ≥ Ibell

4.4.2 Relaxation

x0, y0 fixed We relax this problem, after transforming it into |A||B| programs as in the NS vs Empty case, with
the NPA method: Ωu,v = 〈ψ|X†uXv |ψ〉 = 〈ψ|Xu∗Xv |ψ〉, where u∗ := u|u| . . . u1.

First we consider words of length smaller than 1, Σ≤1 = {w }, over the alphabet Σ = A ∪ B, where A =
{α = (x, a) } , B = {β = (y, b) }

Q/∅1 := maximize “pguess(AB|x0y0)” =
∑
a,b

Ω(x0,a)◦(y0,b),(x0,y0,a,b)

subject to Ω ∈ Pos(1 + |A|+ |B|)
Ωα,β ≥ 0∑
a

Ω(x,a),w =
∑
b

Ω(y,b),w = Ω∅,w

Ω(x,a),(x,a′) = δa=a′Ω(x,a),∅

Ω(y,b),(y,b′) = δb=b′Ω(y,b),∅

Ω∅,∅ = 1∑
x,y,a,b

cxyabΩ(x,a),(y,b) ≥ Ibell

If we extend it to words of length smaller than 2, Σ≤2 = Σ≤1 ∪AA ∪AB ∪BB, we get

Q/∅2 := maximize “pguess(AB|x0y0)” =
∑
a,b

Ω(x0,a)◦(y0,b),(x0,y0,a,b)

subject to Ω ∈ Pos(1 + |A|+ |B|+ |A||A|+ |B||B|+ |A||B|)
Q/∅1 constraints with w ∈ Σ≤2

Ωγ◦γ′,∅ = Ωγ′,γ for γ, γ′ ∈ Σ = A ∪B
Ωγ1◦γ2,γ3 = Ωγ2,γ1◦γ3 for γ1, γ2, γ3 ∈ Σ

Ωα◦γ,β◦γ′ = Ωβ◦γ,α◦γ′ for γ, γ′ ∈ Σ

Ω(x,a)◦(x,a′),w = δa=a′Ω(x,a),w

Ω(y,b)◦(y,b′),w = δb=b′Ω(y,b),w

(we could extend other constraints, but seems useless in practice)

X,Y uniform : the form of this program is not something we can relax directly with the NPA method, and thus
was not studied.

15

Numerical results for CHSH In figure 7 page 23, the two relaxations curves are shown, and prove that
increasing the level of the relaxation improves the bound on our problem. Furthermore, the curve obtained for level
2 is the same as in the founding paper [11]. This is the reason why we did not extend all possible constraints to
this level: this semidefinite program is already hard to compute, but is enough to reach the solution of [11], which
is claimed to be full level 2.

4.5 Q vs Q
4.5.1 Definition

Q/Q := maximize pguess(AB|x0y0E) =
∑
a,b

〈ψ|Mx0
a ⊗N

y0
b ⊗ Λx0y0

ab |ψ〉

or pguess(AB|XY E) =
1

|X||Y |
∑
x,y,a,b

〈ψ|Mx
a ⊗N

y
b ⊗ Λxyab |ψ〉

subject to Mx
a � 0, Ny

b � 0,Λie � 0∑
a

Mx
a = 1A,

∑
b

Ny
b = 1B ,

∑
e

Λie = 1E

Mx
aM

x
a′ = δa=a′M

x
a , N

y
bN

y
b′ = δb=b′N

y
b ,

ΛieΛ
i
e = δe=e′Λ

i
e

〈ψ|ψ〉 = 1∑
x,y,a,b

cxyab 〈ψ|Mx
a ⊗N

y
b ⊗ 1E |ψ〉 ≥ Ibell

4.5.2 Relaxation

For both cases x0, y0 fixed and X,Y uniform, we relax this problem with the NPA method as in the Q vs Empty
case: Ωu,v = 〈ψ|Xu∗Xv |ψ〉. However, here, for γ ∈ Σ = A∪B∪E, where A = {α = (x, a) } , B = {β = (y, b) } , E =
{ ε = (x, y, a, b) }

Xγ :=

Mx
a ⊗ 1B ⊗ 1E if γ = (x, a)

1A ⊗Ny
b ⊗ 1E if γ = (y, b)

1A ⊗ 1B ⊗ Λxyab if γ = (x, y, a, b)

First we consider words in Σ≤1.1 = {w } = { ∅ } ∪ A ∪ B ∪ AB ∪ E, the concatenation of letters being denoted
by ◦. The program is described in equation (1) page 21.

Remark. We call it level 1.1, since it is not totally level 1 (we need to have Ω(x,a)◦(y,b),(x,y,a,b), relaxation of
〈ψ|Mx

a ⊗N
y
b ⊗ Λxyab |ψ〉), but not completely level 2.

We also consider the relaxation extended to more words of length 2, but not all of them since it would be too
hard to compute: Σ≤1.2 = Σ≤1.1 ∪AA ∪BB. It is described in equation (2) page 21.

Numerical results for CHSH In figure 8 page 23, we see the two different relaxations of the program when
X,Y are fixed to 0, 0. The relaxation of level 1.1 is equal to the non-signalling case; we need to go to level 1.2 to
see that it is not equal in fact: even with a quantum memory, this case is less powerful than the non-signalling one.

In figure 9 page 24, we have the same two curves in the case when X,Y are uniform. Similarly, we need to go
to level 1.2 to have something better than the non-signalling upper bound.

Furthermore, as shown in figure 10 page 24, the average case gives a better upper bound than the fixed case,
which was expected since the program Q/Q is expected to have a smaller value when considered in the uniform
case.

Also, we see in figure 11 page 25 that the two programs Q/∅1 and Q/Q1.2 are almost identical in the case when
X,Y are fixed to 0, 0. We conjecture, as in the non-signalling case, that Q/Q and Q/∅ are equal for the CHSH
game, when we consider X,Y fixed to x0, y0.

16

4.5.3 Equivalent formulation

Similarly to what has been done in the NS vs NS case, we have equivalent definitions of pguess:

p′guess(AB|x0y0E) =
∑
e

max
a,b
〈ψ|Mx0

a ⊗N
y0
b ⊗ Λx0y0

e |ψ〉

p′guess(AB|XY E) =
1

|X||Y |
∑
x,y,e

max
a,b
〈ψ|Mx

a ⊗N
y
b ⊗ Λxye |ψ〉

The proof is similar to the one in the non-signalling case. We prove it when X,Y are fixed to x0, y0.
This definition gives more power to the adversary, exactly like in the non-signalling case : p′guess(AB|xyE) ≥

pguess(AB|xyE).
On the other hand, let {|ψ〉 ,Mx

a , N
y
b ,Λ

i
e} be a solution of Q/Q for p′guess(AB|x0y0E). First, we take

aie, bie such that, if i = (x, y) : 〈ψ|Mx
aie ⊗N

y
bie
⊗ Λie |ψ〉 = max

a,b
〈ψ|Mx

a ⊗N
y
b ⊗ Λie |ψ〉

If there is more than one solution, we choose one of them arbitrarily.
Then, we define

Λ′i(a′,b′) :=
∑

e:(aie,bie)=(a′,b′)

Λie

We can check easily that q′xyiab(a′,b′) is a solution of NS/NS:

1. Λ′ie =
∑

e′:(aie′ ,bie′)=e

Λ′ie′ � 0

2.
∑
e

Λ′ie =
∑
a′,b′

Λ′i(a′,b′) =
∑
a′,b′

∑
e:(aie,bie)=(a′,b′)

Λie =
∑
e

Λie = 1E

3. Λ′ieΛ′ie′ =

(∑
ε:(aiε,biε)=e

Λiε

)(∑
ε′:(aiε′ ,biε′)=e

′

Λiε′

)
=

∑
ε,ε′ as defined before

ΛiεΛ
i
ε′

=
∑

ε,ε′ as defined before

δε=ε′Λ
i
ε =

{∑
ε:(aiε,biε)=e

Λ′iε = Λie if e = e′

0 otherwise, since { ε } ∩ { ε′ } = ∅

Finally
pguess(AB|x0y0E) =

∑
a,b

〈ψ|Mx0
a ⊗N

y0
b ⊗ Λ′x0y0

a,b |ψ〉

=
∑
a,b

∑
e:(a(x0,y0)eb(x0,y0)e)=(a,b)

〈ψ|Mx0
a ⊗N

y0
b ⊗ Λx0y0

e |ψ〉

=
∑
e

〈ψ|Mx0
a(x0,y0)e

⊗Ny0
b(x0,y0)e

⊗ Λx0y0
e |ψ〉

=
∑
e

max
a,b
〈ψ|Mx0

a ⊗N
y0
b ⊗ Λx0y0

e |ψ〉 = p′guess(AB|x0y0E)

Since these definitions do not depend on the inputs x, y of Alice and Bob, the uniform case works in the same
way.

17

4.6 Q vs C
4.6.1 Definition

Q/C := maximize pguess(AB|x0y0M) =
∑
m

pm max
a,b
〈ψm|Mx0

a ⊗N
y0
b |ψ

m〉

or pguess(AB|XYM) =
1

|X||Y |
∑
x,y,m

pm max
a,b
〈ψm|Mx

a ⊗N
y
b |ψ

m〉

subject to Mx
a � 0, Ny

b � 0∑
a

Mx
a = 1A,

∑
b

Ny
b = 1B

Mx
aM

x
a′ = δa=a′M

x
a , N

y
bN

y
b′ = δb=b′N

y
b

〈ψm|ψm〉 = 1

pm ≥ 0∑
m

pm = 1

∑
x,y,a,b

cxyab

(∑
m

pm 〈ψm|Mx
a ⊗N

y
b |ψ

m〉
)
≥ Ibell

4.6.2 Equivalence to Q/Q with no input for Eve

If {pm, |ψm〉 ,Mx
a , N

y
b } is a solution of Q/C, then take

|ψ〉 :=
∑
m

√
pm |ψm〉 ⊗ |m〉

Λm := |m〉 〈m|

which is a solution of Q/Q.
With the formulation with p′guess, we have

p′guess(AB|x0y0E) =
∑
m

max
a,b
〈ψ|Mx0

a ⊗N
y0
b ⊗ Λm |ψ〉

=
∑
m

max
a,b

√
pm 〈ψm|Mx0

a ⊗N
y0
b

√
pm |ψm〉 = pguess(AB|x0y0M)

For the other direction, let {|φm,j〉}j=1,...,im be the local states on A⊗B after measurement Λm occurring with
probability {pm,j}j=1,...,im respectively (

∑
m

∑im
j=1 pm,j = 1):

〈ψ|Mx0
a ⊗N

y0
b ⊗ Λm |ψ〉 =

im∑
j=1

pm,j 〈φm,j |Mx0
a ⊗N

y0
b |φ

m,j〉

Thus, taking p′m′ := pm,j and |ψm
′〉 := |φm,j〉 gives a solution of Q/C of value

pguess(AB|x0y0M) =
∑
m′

pm′ max
a,b
〈ψm

′
|Mx0

a ⊗N
y0
b |ψ

m′
〉

=
∑
m

im∑
j=1

pm,j max
a,b
〈φm,j |Mx0

a ⊗N
y0
b |φ

m,j〉

≥
∑
m

max
a,b

im∑
j=1

pm,j 〈φm,j |Mx0
a ⊗N

y0
b |φ

m,j〉

=
∑
m

max
a,b
〈ψ|Mx0

a ⊗N
y0
b ⊗ Λm |ψ〉 = p′guess(AB|x0y0E)

and thus the equivalence is shown.

18

4.6.3 Relaxation

In order to have significant results, we would have to relax this problem to a mixture of integer linear programming
and semidefinite programming, which we are not able to solve, so we did not compute anything for these hypothesis.

5 Comparisons

5.1 Comparison to [11]
We can summarize the results of the best relaxations we have, for the case of CHSH, in terms of Hmin, in figure
4. We have the same values of NS/∅ (= NS/NS) and Q/∅2 as presented in [11], and we are now able to place our
lower bound Q/Q1.2 in between:

Figure 4: NS/∅(Blue), Q/Q1.2(Green) and Q/∅2(Red) : “Hmin(AB|00)” depending on Ibell

5.2 CHSH∗

In this section, we will study another Bell inequality, in order to disprove some conjectures, which is an asymmetric
version of CHSH:

CHSH∗ :=
∑
x,y

(−1)xy(Pr(a = b|xy)− Pr(a 6= b|xy)) +
1

2
p(01|10)

In figure 12 page 25, we look at the non-signalling case, when X,Y are fixed to 1, 0 respectively. There is a
gap between the two curves, which compute the exact value of the game. It disproves the conjecture that NS/∅ =
NS/NS for any Bell game when X,Y is fixed.

For the quantum case, we will try to give some clues that there is also a gap by looking at relaxations. When
Eve has no memory, we see in figure 13 page 26 and figure 14 page 26 that there is a big gap between the different
choices of x0, y0, even when we increase the level of relaxation. On the contrary, when Eve has a quantum memory,
we see in figure 15 page 27 that the gap is really small between the different choices of x0, y0. The curves Q/∅1 and
Q/Q1.2 are totally different here, whereas they were the same in the case of CHSH.

19

Conclusion
We have studied the influence of Eve holding a memory on randomness expansion. We were able to prove experi-
mentally that having a memory improves the power of the adversary. Also, if the inputs are fixed, we have shown
that in any cases, having a classical memory is enough. The average case on the other hand is still open, and we
conjecture that having a quantum memory is stronger than having a classical one.

References
[1] John S Bell. On the einstein podolsky rosen paradox, 1964.

[2] Jeff Bezanson, Stefan Karpinski, Viral B Shah, and Alan Edelman. Julia: A fast dynamic language for technical
computing. arXiv preprint arXiv:1209.5145, 2012.

[3] O’Donoghue Brendan, Chu Eric, Parikh Neal, and Boyd Stephen. Operator splitting for conic optimization
via homogeneous self-dual embedding. arxiv, 2013.

[4] Boris S Cirel’son. Quantum generalizations of bell’s inequality. Letters in Mathematical Physics, 4(2):93–100,
1980.

[5] John F Clauser, Michael A Horne, Abner Shimony, and Richard A Holt. Proposed experiment to test local
hidden-variable theories. Physical review letters, 23(15):880, 1969.

[6] Roger Colbeck. Quantum and relativistic protocols for secure multi-party computation. arXiv preprint
arXiv:0911.3814, 2009.

[7] Robert M Freund. Introduction to semidefinite programming (sdp). Massachusetts Institute of Technology,
2004.

[8] Inc. Gurobi Optimization. Gurobi optimizer reference manual, 2015.

[9] Miguel Navascues, Stefano Pironio, and Antonio Acin. Bounding the set of quantum correlations. Physical
Review Letters, 98(1):10401, 2007.

[10] Miguel Navascués, Stefano Pironio, and Antonio Acín. A convergent hierarchy of semidefinite programs char-
acterizing the set of quantum correlations. New Journal of Physics, 10(7):073013, 2008.

[11] Stefano Pironio, Antonio Acín, Serge Massar, A Boyer de La Giroday, Dzimitry N Matsukevich, Peter Maunz,
Steven Olmschenk, David Hayes, Le Luo, T Andrew Manning, et al. Random numbers certified by bell’s
theorem. Nature, 464(7291):1021–1024, 2010.

[12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends R© in Theoretical Computer Science, 7(1 3):1–336,
2011.

[13] Mark M Wilde. From classical to quantum shannon theory. arXiv preprint arXiv:1106.1445, 2011.

20

Relaxations of Q/Q

Q/Q1.1 := maximize “pguess(AB|x0y0E)” =
∑
a,b

Ω(x0,a)◦(y0,b),(x0,y0,a,b)

or “pguess(AB|XY E)” =
1

|X||Y |
∑
x,y,a,b

Ω(x,a)◦(y,b),(x,y,a,b)

subject to Ω ∈ Pos(1 + |A|+ |B|+ |A||B|+ |E|)
Ωα,β ≥ 0

Ωα◦β,ε ≥ 0∑
a

Ω(x,a),w =
∑
b

Ω(y,b),w =
∑
a,b

Ω(x,y,a,b),w = Ω∅,w∑
a

Ω(x,a)◦β,w = Ωβ,w∑
b

Ωα◦(y,b),w = Ωα,w

Ω(x,a),(x,a′) = δa=a′Ω(x,a),∅

Ω(y,b),(y,b′) = δb=b′Ω(y,b),∅

Ω(x,a)◦β,(x,a′) = δa=a′Ω(x,a)◦β,∅

Ωα◦(y,b),(y,b′) = δb=b′Ωα◦(y,b),∅

Ω(x,y,a,b),(x,y,a′,b′) = δ(a,b)=(a′,b′)Ω(x,y,a,b),∅

Ω∅,∅ = 1

Ωα◦β,∅ = Ωβ,α∑
x,y,a,b

cxyabΩ(x,a),(y,b) ≥ Ibell

(1)

Q/Q1.2 := maximize “pguess(AB|x0y0E)” =
∑
a,b

Ω(x0,a)◦(y0,b),(x0,y0,a,b)

or “pguess(AB|XY E)” =
1

|X||Y |
∑
x,y,a,b

Ω(x,a)◦(y,b),(x,y,a,b)

subject to Ω ∈ Pos(1 + |A|+ |B|+ |A||B|+ |A||A|+ |B||B|+ |E|)
Q/Q1.1 constraints with w ∈ Σ≤1.2

Ωγ◦γ′,∅ = Ωγ′,γ for γ, γ′ ∈ A ∪B
Ωγ1◦γ2,γ3 = Ωγ2,γ1◦γ3 for γ1, γ2, γ3 ∈ A ∪B
Ωα◦γ,β◦γ′ = Ωβ◦γ,α◦γ′ for γ, γ′ ∈ A ∪B
Ω(x,a)◦(x,a′),w = δa=a′Ω(x,a),w

Ω(y,b)◦(y,b′),w = δb=b′Ω(y,b),w

(we could extend other constraints, but already hard to compute)

(2)

21

Figure 5: NS/∅: pguess(AB|00)(Blue) and pguess(AB|XY) depending on Ibell

Figure 6: NS/∅(Green), NS/NS(Blue) : “pguess(AB|XY)” and “pguess(AB|XY E)” depending on Ibell

22

Figure 7: Q/∅1(Green) and Q/∅2(Blue) : “pguess(AB|00)” depending on Ibell

Figure 8: Q/Q1.1(Blue) and Q/Q1.2(Green) : “pguess(AB|00E)” depending on Ibell

23

Figure 9: Q/Q1.1(Blue) and Q/Q1.2(Green) : “pguess(AB|XY E)” depending on Ibell

Figure 10: Q/Q1.2 : “pguess(AB|00E)”(Green) and “pguess(AB|XY E)”(Blue) depending on Ibell

24

Figure 11: Q/∅1(Blue) and Q/Q1.2(Green) : “pguess(AB|00)” and “pguess(AB|00E)” depending on Ibell

Figure 12: NS/∅(Green), NS/NS(Blue) : pguess(AB|10) and pguess(AB|10E) depending on Ibell

25

Figure 13: Q/∅1 : “pguess(AB|10)”(Blue) and “pguess(AB|00)”(Green) depending on Ibell

Figure 14: Q/∅2 : “pguess(AB|10)”(Blue) and “pguess(AB|00)”(Green) depending on Ibell

26

Figure 15: Q/Q1.2 : “pguess(AB|10E)”(Blue) and “pguess(AB|00E)”(Green) depending on Ibell

27

