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Abstract
Randomness extractors are an important building block for classical and quantum cryptography.
However, for many applications it is crucial that the extractors are quantum-proof, i.e., that
they work even in the presence of quantum adversaries. In general, quantum-proof extractors are
poorly understood and we would like to argue that in the same way as Bell inequalities (multi
prover games) and communication complexity, the setting of randomness extractors provides a
operationally useful framework for studying the power and limitations of a quantum memory
compared to a classical one.

We start by recalling how to phrase the extractor property as a quadratic program with linear
constraints. We then construct a semidefinite programming (SDP) relaxation for this program
that is tight for some extractor constructions. Moreover, we show that this SDP relaxation is even
sufficient to certify quantum-proof extractors. This gives a unifying approach to understand the
stability properties of extractors against quantum adversaries. Finally, we analyze the limitations
of this SDP relaxation.
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1 Introduction

1.1 Randomness extractors
A randomness extractor is a procedure to distill from a weakly random system as much
(almost) uniform random bits as possible. Such objects are essential in many cryptographic
protocols, in particular in quantum key distribution and device independent randomness
expansion [3, 26, 12, 24, 35]. In this context, the process of transforming a partly private
string into one that is almost uniformly random from the adversary’s point of view is called
privacy amplification [5, 4]. Even though we take a cryptographic point of view in this
paper, we should mention that randomness extractors are very useful combinatorial objects
in particular in the study of the computational power of randomness (see [34] for a survey).

More precisely, a randomness extractor is described by a family of functions Ext = {fs}s∈D
where fs : N →M . We use N = 2n to denote the input system (consisting of strings of n

∗ UMR 5668 LIP - ENS Lyon - CNRS - UCBL - INRIA, Université de Lyon

© Mario Berta, Omar Fawzi and Volkher B. Scholz;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 SDPs for randomness extractors

bits), M = 2m (bit-strings of length m) to denote the output system, and D = 2d (d bits) to
denote the seed system that labels the functions fs. Note that in a slight abuse of notation,
we use the same letter for the actual set of inputs/outputs as well as its size. We say that
Ext is a (k, ε)-extractor if for any random variable X taking values in N ,

Hmin(X) := − log pguess(X) ≥ k =⇒ fUD (X) is ε-close to UM , (1)

where UD is uniformly distributed on D and independent of X and UM denotes the uniform
distribution over M . As mentioned in the equation, the min-entropy Hmin(X) is defined by
the maximum probability of success in guessing a source X with only the knowledge of the
distribution p of X. In this case, we simply have Hmin(X) = − log max p(x). To quantify
the distance between distributions, we use the total variation distance.1 Equation (1) can
thus be more explicitly written as

∀x ∈ N, p(x) ≤ 2−k =⇒ 1
D

∑
s∈D
y∈M

∣∣∣∣∣∣
∑

x:fs(x)=y

p(x)− 1
M

∣∣∣∣∣∣ ≤ ε . (2)

Even though the concept was already present in [5, 4], the definition of randomness extractors
was formulated in [23]. The typical example of a family {fs}s of functions that satisfy
this condition are randomly chosen functions. In fact, one can show [29, 25] that choosing
D functions fs independently at random among all the functions from N to M satisfies
equation (2) with the following parameters

m = k − 2 log(1/ε)−O(1) and d = log(n− k) + 2 log(1/ε) +O(1) . (3)

In fact, we even know that these parameters cannot be improved except for additive con-
stants [25]. Probabilistic constructions are interesting, but for applications we usually want
the functions fs to be efficiently computable. The most famous example of an explicit
extractor is given by two-universal hash functions [5, 4, 17]. However, this construction
has a seed size d that of the order of n, very far from the logn achieved by probabilistic
constructions (3). Constructing efficiently computable extractors that match the parameters
of randomly chosen functions has been the subject of a large body of research. Starting
with the work of Nisan and Ta-Shma [22] and followed by Trevisan’s breakthrough res-
ult [33], there has been a lot of progress in achieving polylogarithmic seed size, and there are
now many intricate constructions that come close to the parameters in (3) (see the review
articles [28, 34]).

1.2 Quantum-proof randomness extractors
For applications in classical and quantum cryptography (see, e.g., [26, 20]) and for constructing
device independent randomness amplification and expansion schemes (see, e.g., [11, 21, 13])
it is important to find out if extractor constructions also work when the input source is
correlated to another (possibly quantum) system Q. That is, we would like that for all
classical-quantum input density matrices ρQN =

∑
x∈N ρ(x) ⊗ |x〉〈x| acting on QN with

conditional min-entropy

Hmin(N |Q)ρ := − log pguess(N |Q)ρ ≥ k , (4)

1 It is more convenient here to use simply the `1 norm between the distributions, ignoring the 1
2 factor in

the usual definition of the total variation distance.
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where pguess(N |Q) denotes the maximal probability of guessing the system N given Q, the
output is uniform and independent of Q,2

1
D

∑
s∈D
y∈M

∥∥∥∥∥∥
∑

x:fs(x)=y

ρ(x)− 1
M

∑
x∈N

ρ(x)

∥∥∥∥∥∥
1

≤ ε . (5)

As observed in [19, Proposition 1], if we restrict the system Q to be classical with respect to
some basis {|e〉}e∈Q then every (k, ε)-extractor as in (2) is also a

(
k + log(1/ε), 2ε

)
-extractor

in the sense of (5). That is, even when the input source is correlated to a classical system
Q, every extractor construction still works (nearly) equally well for extracting randomness.
However, if Q is quantum no such generic reduction is known and extractor constructions
that also work for quantum Q are called quantum-proof.3 Examples of (approximately)
quantum-proof extractors include:

Spectral (k, ε)-extractors are quantum-proof (k, 2
√
ε)-extractors [8, Theorem 4]. This in-

cludes in particular two-universal hashing [26, 32], two-wise independent permutations [30],
as well as sample and hash based constructions [18].
One-bit output (k, ε)-extractors are quantum-proof (k + log(1/ε), 3

√
ε)-extractors [19,

Theorem 1].
(k, ε)-extractors constructed along Trevisan [33] are quantum-proof

(
k + log(1/ε), 3

√
ε
)
-

extractors [14, Theorem 4.6] (see also [2]).
We emphasize that all these stability results are specifically tailored proofs that make use
of the structure of the particular extractor constructions. In contrast to these findings it
was shown by Gavinsky et al. [16, Theorem 1] that there exists a valid (though contrived)
extractor for which the decrease in the quality of the output randomness has to be at least
ε 7→ Ω(mε).4 As put forward by Ta-Shma [31, Slide 84], this then raises the question if the
separation found by Gavinsky et al. is maximal, that is:

Is every (k, ε)-extractor a quantum-proof
(
O(k + log(1/ε)), O(m

√
ε)
)
-extractor or

does there exists an extractor that is not quantum-proof with a large separation, say
ε 7→ (2mε)Ω(1)?

We note that such a stability result would make every extractor with reasonable parameters
(approximately) quantum-proof. However, for reasons discussed later it is unclear if such a
generic quantum-proof reduction is possible and small sets of randomly chosen functions are
interesting candidates to study this possibly large classical/quantum separation.

1.3 Our results
We write the extractor condition (2) as a quadratic optimization program. The optimal
value for this program denoted as C(Ext, k) is the smallest error ε such that Ext is a
(k, ε)-extractor. We then construct a semidefinite programming (SDP) relaxation for this
program whose optimal value is denoted SDP(Ext, k). This program gives an efficiently
computable procedure to certify that a family of functions Ext is a (k, ε)-extractor for
ε = SDP(Ext, k).

2 Other notions for weaker quantum adversaries have also been discussed in the literature, e.g., in the
bounded storage model (see [14, Section 1] for a detailed overview).

3 Note that the dimension of Q is unbounded and that it is a priori unclear if there exist any extractor
constructions that are quantum-proof (even with arbitrarily worse parameters).

4 Since the quality of the output randomness of Gavinsky et al.’s construction is bad to start with, the
decrease ε 7→ Ω(mε) for quantum Q already makes the extractor fail completely in this case.
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We show that this certification procedure gives us much more: it certifies that Ext
is a quantum-proof (k,

√
2ε)-extractor. Thus, we give a general efficient method for

proving that an extractor is quantum-proof. This technique can recover in a unified way
many of the currently known methods for constructing quantum-proof extractors. In
particular, we can show that constructions based on two-universal hashing [27, 32] are
quantum-proof, and that any extractor with entropy deficit n− k or output size m small
is quantum-proof [6] (for m = 1 this was first shown in [19]). This latter result is a basic
building block for showing that Trevisan based extractors are quantum-proof [14].
We consider the limitations of this SDP relaxation. Even though SDP(Ext, k) is a tight
bound on C(Ext, k) for many extractor constructions, there can be a large gap between
these two values. In particular, if Extrand is given by a small number of randomly
chosen functions, then C(Extrand, k)� SDP(Extrand, k). This shows that the method we
propose cannot be used to prove that a small set of randomly chosen functions define
good extractors. This means that other techniques would be needed to determine whether
Extrand is a quantum-proof extractor or not.

2 Preliminaries

2.1 Quantum information
In quantum theory, a system is described by an inner-product space, that we denote here
by letters like N,M,Q.5 Note that we use the same symbol Q to label the system, the
corresponding inner-product space and also the dimension of the space. Let MatQ(S) be the
vector space of Q×Q matrices with entries in S. Whenever S is not specified, it is assumed
to be the set of complex numbers C, i.e., we write MatQ(C) =: MatQ. The state of a system
is defined by a positive semidefinite operator ρQ with trace 1 acting on Q. The set of states
on system Q is denoted by S(Q) ⊂ MatQ(C). The inner-product space of a composite system
QN is given by the tensor product of the inner-product spaces Q⊗N =: QN . From a joint
state ρQN ∈ S(QN), we can obtain marginals on the system Q by performing a partial trace
of the N system ρQ := TrN [ρQN ]. The state ρQN of a system QN is called quantum-classical
(with respect to some basis) if it can be written as ρQN =

∑
x ρ(x)⊗ |x〉〈x| for some basis

{|x〉} of N and some positive semidefinite operators ρ(x) acting on Q with
∑
x Tr[ρ(x)] = 1.

We denote the maximally mixed state on system N by υN .
To measure the distance between two states, we use the trace norm ‖A‖1 := Tr[

√
A∗A],

where A∗ is the conjugate transpose of A. In the special case when A is diagonal, ‖A‖1
becomes the familiar `1 norm of the diagonal entries. Moreover, the Hilbert-Schmidt norm
is defined as ‖A‖2 :=

√
Tr[A∗A], and when A is diagonal this becomes the usual `2 norm.

Another important norm we use is the operator norm, or the largest singular value of A,
denoted by ‖A‖∞. When A is diagonal, this corresponds to the familiar `∞ norm of the
diagonal entries. For a probability distribution PN on the set N , ‖PN‖`∞ corresponds to the
optimal probability with which PN can be guessed successfully. We write

Hmin(N)P := − log ‖PN‖`∞ , (6)

the min-entropy of PN . More generally, the conditional min-entropy of N given Q is used to
quantify the uncertainty in the system N given the system Q. The conditional min-entropy

5 In the following all spaces are assumed to be finite-dimensional.
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is defined as

Hmin(N |Q)ρ := − log min
σQ∈S(Q)

∥∥(idN ⊗ σ−1/2
Q )ρNQ(idN ⊗ σ−1/2

Q )
∥∥
∞ , (7)

with generalized inverses. Note that in the special case where the system Q is trivial, we
have Hmin(N)ρ = − log ‖ρN‖∞.

2.2 Semidefinite programming
Semidefinite programs (SDP) are a large class of optimization problems that can be efficiently
solved. Even if one is not explicitly interested in solving it numerically, a semidefinite program
often has appealing properties such as strong duality. Semidefinite programming has been
extensively used in various contexts in quantum information.

We use a formulation of semidefinite programs sometimes called vector programs. For
some fixed values αx,x′ , βx,x′,k and γk, the optimization program can be written as follows:

maximize
∑
x,x′

αx,x′~ax · ~ax′ (8)

subject to
∑
x,x′

βx,x′,k~ax · ~ax′ ≤ γk for all k (9)

Here the optimization is over all vector ~ax (of arbitrary finite dimension) that satisfy the
constraints stated above. Note that we can always assume that the dimension of the vectors
~ax is bounded by the number of vectors, i.e., the size of the set x runs over.

3 Quadratic programs for randomness extractors

It is useful to see the definition of extractors using the following optimization program:

Error for extractor Ext = {fs}

C(Ext, k) := maximize 1
D

∑
s,y

∑
x

(
δfs(x)=y −

1
M

)
p(x)βs,y (10)

subject to 0 ≤ p(x) ≤ 2−k (11)∑
x

p(x) = 1 (12)

− 1 ≤ βs,y ≤ 1 (13)

I Definition 1. Ext is a (k, ε)-extractor if and only if C(Ext, k) ≤ ε.

To relate this to the definition given in the introduction, it suffices to observe that
the optimal choice for βs,y is the sign of

∑
x

(
δfs(x)=y − 1

M

)
p(x) so the objective function

becomes 1
D

∑
s,y

∣∣∑
x

(
δfs(x)=y − 1

M

)
p(x)

∣∣. The conditions (11) and (12) ensure that the
input distribution has min-entropy at least k.

To simplify the program (10) we note that this function is convex in the distribution
p and so the maximum is attained in the extreme points of the feasible region. These are
simply the distributions that are uniform over a set of size at least 2k. So we can equivalently
write

C(Ext, k) = max
{∑
s,y

∣∣∣∣∣ 1
KD

∑
x∈L

δfs(x)=y −
1

MD

∣∣∣∣∣ : L ⊆ N,L ≥ 2k
}

, (14)
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where again in a slight abuse of notation, we use the letter L for the actual set as well as its
size. As the expression being maximized is the `1 norm between two probability distributions,
we can write it as:

C(Ext, k) = 2 ·max

 1
KD

∑
x∈L,(y,s)∈R

δfs(x)=y −
R

MD
: L ⊆ N,L ≥ 2k, R ⊆M ×D

 .

(15)

This allows us to interpret C(Ext, k) in graph-theoretic terms. For that we introduce a
bipartite graph with left vertex set N and right vertex set M × D, and there is an edge
between vertices x and (y, s) if and only if fs(x) = y. By writing E(L,R) for the set of edges
with one endpoint in L and the other endpoint in R, this expression is simply

C(Ext, k) = 2 ·max
{
E(L,R)

2kD − R

MD
: L ⊆ N,L ≥ 2k, R ⊆M ×D

}
. (16)

Written in this way, we see that the optimization in C(Ext, k) is a kind of bipartite
densest subgraph problem. Algorithms for a slightly different problem known as the densest
K-subgraph problem have been extensively studied, see e.g., [15, 9]. The best known approx-
imation algorithms for this problem achieve a factor of Nα for some constant α, but even
ruling out constant factor approximations is only known using quite strong assumptions [1].

We can similarly write a program for the error of Ext against potentially quantum
adversaries:

Error for extractor Ext = {fs} against quantum adversaries

Q(Ext, k) := maximize 1
D

∑
s,y

∑
x

(
δfs(x)=y −

1
M

)
Tr [ρ(x)Bs,y] (17)

subject to 0 ≤ ρ(x) ≤ 2−kσ (18)∑
x

Tr[ρ(x)] = 1 (19)

Tr[σ] = 1 (20)
‖Bs,y‖∞ ≤ 1 (21)

Here the maximization is understood over all ρ(x) of arbitrary dimension. Unlike for SDPs
for which one can give an upper bound on the dimension of the vector of an optimal solution,
no such bound is know in this setting. In fact, we do not even know if the quantity Q is
computable.

I Definition 2. Ext is a quantum-proof (k, ε)-extractor if and only if Q(Ext, k) ≤ ε.

To see that this definition coincides with the definition given in the introduction, observe
that for fixed ρ(x), the maximum over Bs,y of the quantity

∑
x

(
δfs(x)=y − 1

M

)
Tr [ρ(x)Bs,y] is

‖
∑
x

(
δfs(x)=y − 1

M

)
ρ(x)‖1. The constraints on ρ(x) and σ ensure that the state

∑
x ρ(x)⊗

|x〉〈x| has conditional min-entropy at least k.

4 Semidefinite relaxations for randomness extractors

4.1 A relaxation for the extractor condition
Motivated by the fact that the two quantities C(Ext, k) and Q(Ext, k) are generally difficult
to understand, we introduce a SDP that, as we show later, provides a relaxation for both of
these quantities. For Ext = {fs}s∈D and fixed k, we define:
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SDP relaxation for error of Ext = {fs}

SDP(Ext, k) := maximize 1
D

∑
s,y,x

(
δfs(x)=y −

1
M

)
~ax ·~bs,y (22)

subject to 0 ≤ ~ax · ~ax′ ≤ 2−k · q(x) (23)
q(x) ≤ 2−k (24)∑
x

q(x) = 1 (25)∑
x,x′

~ax · ~ax′ ≤ 1 (26)

‖bs,y‖2 ≤ 1 (27)

We maximize over all possible dimensions of the vectors ~ax and ~bx. Moreover, the Cauchy-
Schwarz inequality implies that the optimal choice for ~bs,y is∑

x

(
δfs(x)=y − 1

M

)
~ax

‖
∑
x

(
δfs(x)=y − 1

M

)
~ax‖2

, (28)

and thus the objective function of the SDP relaxation becomes

1
D

∑
s,y

∥∥∥∥∥∑
x

(
δfs(x)=y −

1
M

)
~ax

∥∥∥∥∥
2

, (29)

subject to the constraints on the vectors ~ax stated in (22). By simply plugging ~ax = p(x),
q(x) = p(x) and ~bs,y = βs,y, we see that this SDP gives an upper bound on the extractor
program (10).

I Proposition 3. For any Ext and k, C(Ext, k) ≤ SDP(Ext, k). In other words, if
SDP(Ext, k) ≤ ε, then Ext is a (k, ε)-extractor.

This gives a computationally efficient criterion for certifying that an extractor is good.
As we show in Section 4.3, this method can certify that many important constructions are
good extractors. However, this technique does in general not give a tight characterization of
extractors and there can be a large gap between the values C(Ext, k) and SDP(Ext, k) as we
will see in Section 4.4.

4.2 A relaxation for the error against quantum adversaries
A very interesting property about the SDP (22) is that it also gives an upper bound on
the error of an extractor against quantum adversaries. This means that if an extractor
satisfies the stronger property SDP(Ext, k) ≤ ε then it is not only a (k, ε)-extractor but also
a quantum proof (k,

√
2ε)-extractor.

I Theorem 4. For any Ext and k, we have

C(Ext, k) ≤ Q(Ext, k) ≤
√

2 · SDP(Ext, k) . (30)

Proof. Let ρ =
∑
x ρ(x)⊗ |x〉〈x| be a quantum state on QN with Hmin(N |Q)ρ ≥ k. By the

definition of the conditional min-entropy, this implies that there exists σ ∈ S(Q) such that
ρ(x) ≤ 2−kσ for all x ∈ N . We now define the average state ρ̄ =

∑
x ρ(x) and ω = ρ̄+σ

2 , as
well as the vectors ~ax as the list of entries of the matrix 1√

2ω
−1/4ρ(x)ω−1/4. This is so that
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we have ~ax · ~ax′ = 1
2Tr[ω−1/2ρ(x)ω−1/2ρ(x′)]. As the trace of the product of two positive

semidefinite operators is nonnegative, we have ~ax · ~ax′ ≥ 0. Moreover, we have

~ax · ~ax′ = 1
2Tr[ω−1/2ρ(x)ω−1/2ρ(x′)] ≤ 1

2Tr[ω−1/2ρ(x)ω−1/22−kσ] (31)

≤ 1
2 · 2

−kTr[ω−1/2ρ(x)ω−1/22ω] ≤ 2−kTr[ρ(x)] . (32)

We set q(x) = Tr[ρ(x)]. Note that we have q(x) = Tr[ρ(x)] ≤ 2−kTr[σ] = 2−k and∑
x q(x) ≤ 1. We can also write∑
x,x′

~ax · ~ax′ = 1
2Tr[ω−1/2ρ̄ω−1/2ρ̄] ≤ 1

2Tr[ω−1/2ρ̄ω−1/22ω] ≤ 1 . (33)

We now analyze the objective function. We use the following Hölder-type inequality for
operators ‖αβγ‖1 ≤ ‖|α|4‖1/41 ‖|β|2‖

1/2
1 ‖|γ|4‖

1/4
1 , see e.g., [10, Corollary IV.2.6]. The error

the extractor makes on input ρ is given by

1
D

∑
s,y

∥∥∥∥∥∑
x

(
δfs(x)=y −

1
M

)
ρ(x)

∥∥∥∥∥
1

≤ 1
D

∑
s,y

‖ω‖1/41

∥∥∥∥∥∥
(∑

x

(
δfs(x)=y −

1
M

)
ω−1/4ρ(x)ω−1/4

)2
∥∥∥∥∥∥

1/2

1

‖ω‖1/41 (34)

= 1
D

∑
s,y

√√√√√Tr

∑
x,x′

(
δfs(x)=y −

1
M

)(
δfs(x′)=y −

1
M

)
ω−1/2ρ(x)ω−1/2ρ(x′)

 (35)

= 1
D

∑
s,y

√√√√∑
x,x′

(
δfs(x)=y −

1
M

)(
δfs(x′)=y −

1
M

)
2 · ~ax · ~ax′ (36)

=
√

2
D

∑
s,y

∥∥∥∥∥∑
x

(
δfs(x)=y −

1
M

)
~ax

∥∥∥∥∥
2

. (37)

This proves that the error the extractor makes in the presence of quantum adversaries is
upper bounded by

√
2 · SDP(Ext, k). J

4.3 Applications
We now give several applications of the SDP relaxation. We show that many results about
quantum-proof extractors can be shown with the SDP quantity. First, let us consider general
results that do not use the structure of the functions in Ext but simply the extractor’s
parameters. We know the advantage obtained by a quantum adversary compared to a
classical one can by bounded by a function of the number of output bits m or the min-entropy
deficit n− k [6] (for m = 1 this was first shown in [19]). In particular, if m or n− k are small,
then the quantum advantage cannot be large. We show that this is actually a property of
the SDP.

I Theorem 5. For any Ext and k, we have for any ε > 0,

SDP
(
Ext, k + log(1/ε)

)
≤
√

2m
√

C(Ext, k) + ε (38)
SDP(Ext, k) ≤ 3KG2n−kC(Ext, k − 1) , (39)

where KG ≤ 1.8 is Grothendieck’s constant.
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Proof. As Ext is usually clear from the context, we use C(k) and SDP(k) for C(Ext, k)
and SDP(Ext, k). To prove (38), we consider an optimal solution for SDP(k + log(1/ε)).
Define p(x, x′) = ~ax · ~ax′ , with p̄(x) =

∑
x′ p(x, x′). Now consider the set Sε = {x ∈ N :

p̄(x) ≤ εq(x)}. Then
∑
x∈Sε p̄(x) ≤ ε

∑
x∈Sε q(x) ≤ ε. Using the fact that ~ax define a feasible

solution for SDP(k + log(1/ε)), we have for x /∈ Sε, p(x, x′) ≤ 2−(k+log(1/ε))q(x) ≤ 2−kp̄(x).
We can then write using the Cauchy Schwarz inequality,

1
D

∑
s,y

∥∥∥∥∥∑
x

(
δfs(x)=y − 2−m

)
~ax

∥∥∥∥∥
2

≤

√√√√ 1
D

∑
s,y

∥∥∥∥∥∑
x

(
δfs(x)=y − 2−m

)
~ax

∥∥∥∥∥
2

2

√
2m . (40)

We now look at the expression 1
D

∑
s,y

∥∥∑
x

(
δfs(x)=y − 2−m

)
~ax
∥∥2

2 which equals

1
D

∑
s,y

∑
x,x′

(
δfs(x)=y − 2−m

)
·
(
δfs(x′)=y − 2−m

)
p(x, x′) (41)

≤ 1
D

∑
s,y

∑
x

∣∣∣∣∣∑
x′

(
δfs(x)=y − 2−m

)
·
(
δfs(x′)=y − 2−m

)
p(x, x′)

∣∣∣∣∣ (42)

≤ 1
D

∑
s,y

∑
x

∣∣∣∣∣∑
x′

(
δfs(x′)=y − 2−m

)
p(x, x′)

∣∣∣∣∣ . (43)

We separate the sum into x ∈ Sε and x /∈ Sε and get

1
D

∑
s,y

∑
x

∣∣∣∣∣∑
x′

(
δfs(x′)=y − 2−m

)
p(x, x′)

∣∣∣∣∣ (44)

= 1
D

∑
s,y

∑
x

p̄(x)

∣∣∣∣∣∑
x′

(
δfs(x′)=y − 2−m

) p(x, x′)
p̄(x)

∣∣∣∣∣ (45)

=
∑
x∈Sε

p̄(x) 1
D

∑
s,y

∣∣∣∣∣∑
x′

(
δfs(x′)=y − 2−m

) p(x, x′)
p̄(x)

∣∣∣∣∣ (46)

+
∑
x/∈Sε

p̄(x) 1
D

∑
s,y

∣∣∣∣∣∑
x′

(
δfs(x′)=y − 2−m

) p(x, x′)
p̄(x)

∣∣∣∣∣ ≤ ε+ C(k) , (47)

which proves (38).
We now prove the inequality (39). For that, we simply upper bound SDP(Ext, k) by

forgetting several constraints and then apply Grothendieck’s inequality (Theorem 9). Observe
first that for any feasible vectors ~ax for the SDP, we have ‖~ax‖22 ≤ 2−kq(x) ≤ 2−2k.

SDP(Ext, k) ≤ max
{

1
D

∑
s,y,x

(
δfs(x)=y − 2−m

)
~ax ·~bs,y : ‖~ax‖2 ≤ 2−k, ‖~bs,y‖2 ≤ 1

}
(48)

≤ KG max
{

1
D

∑
s,y,x

(
δfs(x)=y − 2−m

)
axbs,y : |ax| ≤ 2−k, |bs,y| ≤ 1

}
(49)

= KG max
{

1
D

∑
s,y

∣∣∣∣∣∑
x

(
δfs(x)=y − 2−m

)
ax

∣∣∣∣∣ : |ax| ≤ 2−k
}

. (50)
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We partition the set of x ∈ N into {x : ax ≥ 0} and {x : ax < 0} and write∣∣∣∣∣∑
x

(
δfs(x)=y − 2−m

)
ax

∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑

x:ax≥0

(
δfs(x)=y − 2−m

)
ax

∣∣∣∣∣∣ (51)

+

∣∣∣∣∣ ∑
x:ax<0

(
δfs(x)=y − 2−m

)
(−ax)

∣∣∣∣∣ . (52)

Let us write α+ :=
∑
x:ax≥0 ax. If α+ ≥ 1, then we define p+(x) = max{ax,0}

α+
. Observing

that α+ ≤ 2n−k, we have

1
D

∑
s,y

∣∣∣∣∣∣
∑

x:ax≥0

(
δfs(x)=y − 2−m

)
ax

∣∣∣∣∣∣ = α+ ·
1
D

∑
s,y

∣∣∣∣∣∑
x

(
δfs(x)=y − 2−m

)
p+(x)

∣∣∣∣∣ (53)

≤ α+C(k + log(α+)) ≤ 2n−kC(k) , (54)

where we have used the abbreviation C(k) = C(Ext, k). Otherwise (if α+ < 1), we define
p+(x) = max{ax, 0}+ (1− α+)2−n. We get

1
D

∑
s,y

∣∣∣∣∣∣
∑

x:ax≥0

(
δfs(x)=y − 2−m

)
ax

∣∣∣∣∣∣ (55)

= 1
D

∑
s,y

∣∣∣∣∣∑
x

(
δfs(x)=y − 2−m

)
(p+(x)− (1− α+)2−n)

∣∣∣∣∣ (56)

≤ 1
D

∑
s,y

∣∣∣∣∣∑
x

(
δfs(x)=y − 2−m

)
p+(x)

∣∣∣∣∣+ (1− α+) 1
D

∑
s,y

∣∣∣∣∣∑
x

(
δfs(x)=y −

1
M

)
2−n

∣∣∣∣∣ (57)

≤ C(k − 1) + (1− α+)C(n) . (58)

With a similar argument for the set {x : ax < 0}, we reach the bound

1
D

∑
s,y

∣∣∣∣∣∑
x

(
δfs(x)=y − 2−m

)
ax

∣∣∣∣∣ (59)

≤ max{2 · 2n−kC(k),C(k − 1) + C(n) (60)
+ 2n−kC(k), 2C(k − 1) + (1− α+ − α−)C(n)} ≤ 3 · 2n−kC(k − 1) . (61)

Finally, we get SDP(k) ≤ 3KG2n−kC(k − 1). J

Some specific constructions are also known to be quantum-proof, in particular construc-
tions based on two-universal hash functions [26, 27, 32]. This type of construction is captured
by spectral extractors [8]. For an extractor Ext = {fs}s∈D we define the linear maps [Ext]
and τ that map vectors of dimension N to vectors of dimension DM as follows:

[Ext]
(∑

x

p(x)|x〉〈x|N

)
= 1
D
·
∑
s,y

∑
x

δfs(x)=yp(x)|y〉〈y|M ⊗ |s〉〈s|D (62)

τ

(∑
x

p(x)|x〉〈x|N

)
=
(∑

x

p(x)
)
vM ⊗ vD . (63)
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Note that we used a quantum notation and identified vectors with diagonal matrices. A
spectral (k, ε)-extractor is then defined via the largest eigenvalue bound

λ1

(
[Ext]∗ · [Ext]− τ∗ · τ

)
≤ 2k−m−dε , (64)

where ∗ refers to the adjoint of a linear map. We prove next that for spectral extractor, there
can be at most a quadratic gap between C(Ext, k) and SDP(Ext, k).

I Theorem 6. Let Extspec = {fs}s∈D be a spectral (k, ε)-extractor as defined in (64). Then,
we have

SDP(Extspec, k) ≤
√
ε . (65)

The proof can be found in Appendix B. Another class of extractors that are quantum-
proof are Trevisan based constructions [14, 2]. These are particularly important to un-
derstand because they are the only known quantum-proof constructions with short seed
d = O(poly(logn)) (cf. the optimal parameters (3)). Trevisan’s construction can be thought
of as a composition of one-bit output extractors cleverly interleaved by slightly reusing the
seed. Specifically, the construction is based on a family of subsets S1, . . . , Sm ⊂ {1, . . . , d}
such that for each i we have

|Si| = l and
∑
j<i

2|Si∩Sj | ≤ r(m− 1) , (66)

for some r > 0. Such a family {Si}i∈{1,...,m} is also called weak (l, r)-design. Now, take a
one-bit output extractor Extone = {gt}t∈{0,1}l with gt : N → {0, 1}, and a weak (l, r)-design
as defined in (66). Trevisan then defines a m-bit output extractor

ExtTrev = {fs}s∈D with fs : N →M (67)
fs(x) := gs|S1(x) ◦ gs|S1(x) ◦ · · · ◦ gs|Sm(x) , (68)

where s|Si denotes the l-bits of s that correspond to the position indexed by the set Si, and
◦ means concatenation.6 The basic idea of the proof is to bound the quality of ExtTrev as
a function of the quality of Extone. Then (using Theorem 5) one can relate the quality of
Extone against quantum adversaries to its quality against classical adversaries. We give (in
the Appendix) a concise proof of this result using our notation in terms of the quantum
program (17).

I Theorem 7. Let {Si}i∈{1,...,m} be a weak (l, r)-design as defined in (66), and Extone =
{gt}t∈{0,1}l be a one-bit output extractor. Then, we have for Trevisan’s extractor ExtTrev =
{fs}s∈D as defined in (67)–(68),

Q(ExtTrev, k) ≤ m ·Q(Extone, k − r(m− 1)) (69)

≤ 2m ·
√

C(Extone, k − r(m− 1)− log(1/ε)) + ε , (70)

for any ε > 0.

6 Actual parameters for Trevisan based extractor constructions are, e.g, discussed in detail in [14, Section
5].
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4.4 Gap between C and SDP
In this section, we show that there can be a large gap between the value C and SDP. In
fact, we show that SDP cannot be used to prove that randomly chosen functions are good
randomness extractors. As discussed in (3), random functions are good extractors with
essentially optimal parameters. In other words, for a family of functions Extrand = {fs}s∈D
chosen at random, we have with very high probability that

C(Extrand, k) ≤ ε for m = k − 2 log(1/ε)−O(1) (71)
d = log(n− k) + 2 log(1/ε) +O(1) . (72)

In contrast to this, we find that the SDP relaxation for random constructions can become
very large for sufficiently small min-entropy k.

I Theorem 8. Let Ext = {fs}s∈D be a family of functions such that

γ1
DN2

M
≤
∑
x,x′,s

δfs(x)=fs(x′) ≤ γ2
DN2

M
, (73)

and k ≤ log
(
γ1

N
M

)
. Then, we have

SDP(Ext, k) ≥ 1
2

√
M

γ2D
. (74)

When the functions fs are chosen at random, then the condition (73) is satisfied with
very high probability for constant values of γ1 and γ2 (see Proposition 11 for a proof). Hence,
we find that for instance if k = n/2, m = n/4 and d = O(logn), with high probability
SDP(Extrand, k) � 2, whereas we have with very high probability C(Extrand, k) ≤ 1

n . As
clearly Q(Ext, k) ≤ 2, this also shows that Q can be much smaller than SDP.

Moreover we can show that for Trevisan’s extractor, we cannot replace Q(ExtTrev) with
SDP(ExtTrev, k) in general in Theorem 7. This is because if the one-bit extractors {gt} in
Trevisan’s construction are chosen at random, then it is possible to show that the condition
(73) is satisfied with high probability for constant values of γ1 and γ2 (see Proposition 11 for
a proof).

Proof of Theorem 8. Use ~ax = α−1/2 ·
∑
s,y δfs(x)=y|s〉|y〉, α =

∑
x,x′

∑
s,y δfs(x)=yδfs(x′)=y.

By definition the normalization condition
∑
x,x′ ~ax · ~ax′ ≤ 1 is satisfied. Moreover, for any

fixed x, x′, we have

~ax · ~ax′ = 1
α

∑
s,y

δfs(x)=yδfs(x′)=y ≤
D

α
≤ 1
γ1

M

N2 ≤
1
γ1

M

N
q(x) , (75)

where we used the lower bound on γ1 and we choose q(x) = 1/N . Now if k ≤ log
(
γ1

N
M

)
, the

min-entropy condition for the vectors is satisfied. Now let us analyze the objective function
by choosing ~bs,y = |s〉|y〉. We find

1
D

∑
s,y

∑
x

(
δfs(x)=y −

1
M

)
~ax ·~bs,y = 1

D

∑
s,y

∑
x

(
δfs(x)=y −

1
M

)
α−1/2δfs(x)=y (76)

= 1
Dα1/2

∑
s,x

(
1− 1

M

)
= N

α1/2

(
1− 1

M

)
≥ 1

2

√
M

γ2D
, (77)

which proves the claim. J
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5 Discussion

Theorem 8 shows limitations of the SDP relaxation presented here. In fact, even though
the error of the extractor C(Ext, k) and Q(Ext, k) are clearly bounded by 2, the value
SDP(Ext, k) can be much larger. In [7], we present an improved SDP relaxation that has
the property of always being bounded by 2. In addition, we propose a converging hierarchy
of SDPs that gives increasingly tight characterizations of quantum-proof extractors.
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A Useful Lemmas

I Theorem 9 (Grothendieck’s inequality). For any real matrix {Aij}, we have

max

∑
i,j

Aij~ai ·~bj : ‖~ai‖2 ≤ 1, ‖~bj‖2 ≤ 1

 (78)

≤ KG ·max

∑
i,j

Aijaibj : ai, bj ∈ R, |ai| ≤ 1, |bj | ≤ 1

 . (79)

I Theorem 10 (Chernoff bound). Let Xi ∈ {0, 1} be independent and identically distributed
random variables, and µ := E {

∑
iXi}. Then, we have

P
{∑

i

Xi ≥ (1 + δ)µ
}
≤
(

eδ

(1 + δ)(1+δ)

)µ
for any δ > 0 (80)

P
{∑

i

Xi ≤ (1− δ)µ
}
≤
(

e−δ

(1− δ)(1−δ)

)µ
for any 0 < δ < 1 . (81)

B Missing Proofs

Proof of Theorem 6. We start with the expression 1
D

∑
s,y ‖

∑
x

(
δfs(x)=y − 1

M

)
~ax‖2 for

the SDP, where the vectors ~ax fulfill the conditions stated in (22). Using Cauchy-Schwarz,
we may bound

1
D

∑
s,y

∥∥∥∥∥∑
x

(
δfs(x)=y −

1
M

)
~ax

∥∥∥∥∥
2

≤

 1
D

∑
s,y

∥∥∥∥∥∑
x

(
δfs(x)=y −

1
M

)
~ax

∥∥∥∥∥
2

2

1/2

2m/2 .

(82)
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We now take a closer look at the expression in the brackets. Expanding the norm squared
gives rise to the expression

1
D

∑
s,y

(∑
x

(
δfs(x)=y −

1
M

)
~ax

)
·

(∑
x′

(
δfs(x′)=y −

1
M

)
~ax′

)
(83)

= 1
D

∑
s,y

(∑
x

δfs(x)=y~ax

)
·

(∑
x′

δfs(x′)=y~ax′

)

− 1
D

∑
s,y

1
M

∑
x,x′

δfs(x)=y~ax · ~ax′

− 1
D

∑
s,y

1
M

∑
x,x′

δfs(x′)=y~ax · ~ax′

+ 1
D

1
M2

∑
s,y

∑
x,x′

~ax · ~ax′ . (84)

Let us examine the cross terms:

1
D

∑
s,y

1
M

∑
x,x′

δfs(x)=y~ax · ~ax′ = 1
D

∑
s

1
M

∑
x,x′

~ax · ~ax′ , (85)

since for each fixed pair s, x ∈ D ×N there is exactly one y ∈M such that fs(x) = y. The
second cross term evaluates analogously to the same value, which is also equal to the fourth
term in the expansion of the norm, and hence we are left with

1
D

∑
s,y

(∑
x

δfs(x)=y~ax

)
·

(∑
x′

δfs(x′)=y~ax′

)
− 1
D

∑
s,y

1
M

(∑
x

~ax

)
· 1
M

(∑
x′

~ax′

)
.

(86)

Introducing the maps ψs and τ from `2(N) to `2(M),

ψs : ~ex 7→
∑
y

δfs(x)=y~ey and τ : ~ex 7→
1
M

∑
y

~ey (87)

this may be written as

1
D

∑
s

ψs(~a) · ψs(~a)− τ(~a) · τ(~a) , (88)

where the dot now means taking the scalar product in the Hilbert space `2(M)⊗H and we
set ~a =

∑
x ~ex ⊗ ~ax ∈ `2(N)⊗H. However, this is up to a factor of 1

D exactly the defining
expression of a spectral extractor. Hence we may bound

1
D

∑
s

ψs(~a) · ψs(~a)− τ(~a) · τ(~a) ≤ 2k ε

M
‖~a‖2 . (89)

The last norm evaluates to

‖~a‖2 =
∑
x

~ax · ~ax ≤ 2−k
∑
x

q(x) = 2−k , (90)

and comparison with (82) gives the desired bound. J
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Proof of Theorem 7. Consider a feasible solution of (17) given by ρ(x), σ, Bs,y all acting
on a Hilbert space Q. The objective function can be written as

1
2d
∑
s,y,x

(
δfs(x)=y − 2−m

)
Tr[ρ(x)Bs,y]

= 1
2d
∑
s,x

∑
y∈{0,1}

(
m−1∑
t=0

1
2m−t−1

t+1∏
k=1

δfs(x)k=yk −
1

2m−t
t∏

k=1
δfs(x)k=yk

)
Tr[ρ(x)Bs,y] (91)

=
m−1∑
t=0

1
2d
∑
s,x

∑
y1,y2,...yt+1

t∏
k=1

δfs(x)k=yk

(
δfs(x)t+1=yt+1 −

1
2

)
Tr[ρ(x)Cs,y1,y2,...,yt+1 ] ,

(92)

where we defined

Cs,y1,...,yt,yt+1 := 1
2m−t−1

∑
yt+2,...,ym∈{0,1}

Bs,yt+2,...,ym . (93)

We now start using the particular structure of the extractor in (68). From now, we fix the
value of t and the dependence on t of many variables are omitted to lighten the notation.
The seed s can be specified by a = s|St+1 ∈ {0, 1}l and b = s|Sct+1 ∈ {0, 1}d−l where Sct+1 is
the complement on St+1 in the set {1, . . . , d}. We will thus interchangeably use s and (a, b).
Using this notation with the structure of fs, we obtain

1
2d
∑
s,y,x

(
δfs(x)=y − 2−m

)
Tr[ρ(x)Bs,y]

=
m−1∑
t=0

1
2d

∑
x

a∈{0,1}l

b∈{0,1}d−l

∑
y1,y2,...yt+1

δhx,b(a)=y1...yt

(
δga(x)=yt+1 −

1
2

)
Tr[ρ(x)Ca,b,y1,y2,...,yt+1 ]

(94)

=
m−1∑
t=0

1
2l

∑
x

a∈{0,1}l

∑
z∈{0,1}

(
δga(x)=z −

1
2

)
1

2d−l
∑

b∈{0,1}d−l
Tr[ρ(x)Ca,b,hx,b(a),z] (95)

where hx,b(a) represents the first t bits of fs(x). Note that for a fixed x and b, the outcome
of this function only depends on the bits of s that belong to one of the sets S1, . . . , St. In
particular, the first bit of hx,b only depends on the substring of a corresponding to indices
in S1 ∩ St+1. Thus, for any x, b, the function hx,b belongs to the family Ft of functions
h : {0, 1}l → {0, 1}t for which the j-th bit hj of h is a function hj : {0, 1}Sj∩St+1 → {0, 1}.
Thus, for any x, b only

∑t
j=1 2|Sj∩St+1| ≤ r(m − 1) bits are sufficient to fully describe the

function hx,b. As a result, |Ft| ≤ 2r(m−1).
Let us define new positive operators on a larger Q⊗H ⊗G system as

ρ̂(x) := 1
2d−l

∑
b∈{0,1}d−l
h∈Ft

ρ(x)⊗ δh=hx,b |h〉〈h|H ⊗ |b〉〈b|G (96)

σ̂ := 1
|Ft|2d−l

∑
b∈{0,1}d−l
h∈Ft

σ ⊗ |h〉〈h|H ⊗ |b〉〈b|G (97)

Ĉa,z :=
∑
b,h∈Ft

Ca,b,h(a),z ⊗ |h〉〈h| ⊗ |b〉〈b| . (98)
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Note that σ̂ as well as
∑
x ρ̂(x) have unit trace and ‖Ĉa,z‖∞ ≤ 1. In addition,

ρ̂x ≤
1

2d−l
∑

b∈{0,1}d−l
h∈Ft

ρ(x)⊗ |h〉〈h|H ⊗ |b〉〈b|G ≤ |Ft|2−kσ̂ ≤ 2−k+r(m−1)σ̂ , (99)

where we used the fact that ρ(x) ≤ 2−kσ. This shows that the newly defined operators
ρ̂(x), σ̂, Ĉa,z satisfy the constraints of (17) for the extractor Extone with min-entropy k −
r(m− 1). Looking at the value of the objective function for this solution, we obtain

1
2l
∑
a,z,x

(
δga(x)=z −

1
2

)
Tr[ρ̂(x)Ĉa,z] = 1

2l
∑
a,z,x

(
δga(x)=z −

1
2

)
Tr[ρ̂(x)Ĉa,z] (100)

= 1
2l
∑
a,z,x

(
δga(x)=z −

1
2

)
1

2d−l
∑
b

Tr[ρ(x)Ca,h(a),z] ,

(101)

which is exactly the t-th term in the sum in (95). To relate Q(Extone, k − r(m − 1)) to
C(Extone, k − r(m− 1)− log(1/ε)) + ε, we use Theorem 4 and Theorem 5. J

I Proposition 11. Suppose the functions fs : N →M from the family {fs}s∈D are chosen
at random with fs(x) and fs′(x′) uniformly distributed and independent whenever x 6= x′.
Then, we have for N ≥ 16 that

P


∣∣∣∣∣∣
∑
x,x′,s

δfs(x)=fs(x′) −
(
DN + DN(N − 1)

M

)∣∣∣∣∣∣ ≥ 1
2
DN(N − 1)

M

 ≤ 1
16 . (102)

This of course includes the case when the functions fs are chosen uniformly and independ-
ently, but also the case of Trevisan’s construction where the one-bit extractor is a randomly
chosen function.

Proof of Proposition 11. We start by separating the cases x = x′ and x 6= x′,

∑
x,x′,s

δfs(x)=fs(x′) = DN +
∑
s,x6=x′

δfs(x)=fs(x′) . (103)

We compute the expectation over the choice of f :

E
f

 ∑
s,x6=x′

δfs(x)=fs(x′)

 = DN(N − 1) 1
M

, (104)

simply using the fact then for x 6= x′, fs(x) and fs(x′) are independently chosen. We now
would like to show that with high probability this random variable is close to its expectation.
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For that we compute the second moment

E
g


 ∑
s,x6=x′

δfs(x)=fs(x′)

2
 (105)

=
∑

s1,s2,x1 6=x2,x′1 6=x′2

P {fs1(x1) = fs1(x′1), fs2(x2) = fs2(x′2)} (106)

=
∑

s1,s2,x1 6=x2,x′1 6=x′2,{x1,x′1}6={x2,x′2}

P {fs1(x1) = fs1(x′1), fs2(x2) = fs2(x′2)} (107)

+
∑

s1,s2,x1 6=x2,x′1 6=x′2,{x1,x′1}={x2,x′2}

P {fs1(x1) = fs1(x′1), fs1(x2) = fs1(x′2)} (108)

≤ D2N(N − 1)(N(N − 1)− 2) 1
M2 (109)

+ 2
∑

s1,s2,x1 6=x2

P {fs1(x1) = fs1(x′1)} (110)

= D2N(N − 1)(N(N − 1)− 2) 1
M2 + 2D2N(N − 1) 1

M
. (111)

As a result the variance is at most

Var

 ∑
s,x6=x′

δfs(x)=fs(x′)

 (112)

≤ D2N(N − 1)(N(N − 1)− 2) 1
M2 + 2D2N(N − 1) 1

M
−
(
DN(N − 1) 1

M

)2
(113)

≤ 2D2N(N − 1) 1
M

. (114)

Using Chebyshev’s inequality gives with a standard deviation σ ≤
√

2D
√
N(N − 1)/M we

have

P


∣∣∣∣∣∣
∑
s,x6=x′

δfs(x)=fs(x′) −
DN(N − 1)

M

∣∣∣∣∣∣ ≥ 4σ

 ≤ 1
16 . (115)

But 4σ ≤ 4
√

2D
√
N(N − 1)/M ≤ 1

2
DN(N−1)

M for N ≥ 16. J
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