HW 3: circuits, randomness.

(due Tuesday, April 6th)

Problem 1 (Circuits). Show that any boolean function $f : \{0,1\}^n \to \{0,1\}$ can be computed by a circuit of size $O(2^n)$.

Bonus: Improve this bound to $O(\frac{2^n}{n})$.

Problem 2 (Sparse languages and \mathbf{P}/\mathbf{poly}). Recall that a language $A \subseteq \{0,1\}^*$ is said to be sparse if there is a polynomial p(n) such that $|L \cap \{0,1\}^n| \le p(n)$ for all positive integers n.

Show that $\mathbf{P}/\mathbf{poly} = \bigcup_{A \text{ sparse}} \mathbf{P}^A$.

Problem 3. We define the class \mathbf{BPP}' as the set of languages L such that there is a polynomial-time Turing machine M and a polynomial q such that

$$\begin{split} x \in L \implies & \mathbf{P} \\ r \in \{0,1\}^{q(n)} \left\{ M(x,r) = 1 \right\} \geq \frac{1}{10} + \frac{1}{n} \\ x \notin L \implies & \mathbf{P} \\ r \in \{0,1\}^{q(n)} \left\{ M(x,r) = 1 \right\} < \frac{1}{10} \;, \end{split}$$

where n = |x| is the size of x. Prove that **BPP' = BPP**.