HW II: Random variables and expectation (due Feb 14th, before tutorial)

- 1. (From GS) Let X_1, \ldots, X_n be independent discrete random variables that are symmetric about 0, i.e., X_i and $-X_i$ have the same distribution. Let $S_n = \sum_{i=1}^n X_i$. Show that for all t, $\mathbf{P} \{S_n \ge t\} =$ $\mathbf{P} \{S_n \le -t\}$. What if we drop the independence assumption? Justify your answer.
- 2. (a) Let X₁,..., X_n be independent and uniform {0,1} random variables. A streak is a consecutive sequence of 0's or 1's. For a given integer p ∈ {1,...,n}. For example, the sequence 00011001 has 4 streaks of length 2. What is the expected number of streaks of length p? For which value p* is this expectation 1 (or closest to 1 if not integer)?
 - (b) Show that for $p \le \alpha p^*$ with $\alpha < 1$, the probability that there is a streak of length p goes to 1 as $n \to \infty$.