HW IV: Chernoff (due March 7th before tutorial)

1. Let X be an arbitrary random variable with $0 \le X \le 1$ and $\mathbf{E} \{X\} = p$. Consider the random variable $Y \in \{0, 1\}$ with $\mathbf{P} \{Y = 1\} = p$. Show that for any $\lambda > 0$, $\mathbf{E} \{e^{\lambda X}\} \le \mathbf{E} \{e^{\lambda Y}\}$.

Using this fact, show that the Chernoff bound we saw in class still holds if we replace the condition $X_i \in \{0, 1\}$ by $X_i \in [0, 1]$.

2. Suppose you are given a randomized polynomial-time algorithm A for deciding whether x ∈ {0,1}* is in the language L or not. Suppose it has the following property. If x ∈ L, then P {A(x) = 0} ≤ 1/4 and if x ∉ L, then P {A(x) = 1} ≤ 1/3. Note that the probability here is taken over the randomness used by the algorithm A and not over the input x. Construct a randomized polynomial-time algorithm B that is allowed to make independent calls to A such that for all inputs x ∈ {0,1}*, we have P {B(x) = 1_{x∈L}} ≥ 1 − 2^{-|x|}. Here 1_{x∈L} = 1 if x ∈ L and 0 otherwise, and |x| denotes the length of the bitstring x.