HW VIII: Convergence and Markov chains

(due before April 25th at 8:00)

1. Convergence

- (a) Let $\{X_n\}$ be a sequence of random variables with $\mathbf{E}\{X_n\} = 5$ and $\mathbf{Var}\{X_n\} = \frac{1}{\sqrt{n}}$ for all n. Is it true that X_n must converge in probability to 5?
- (b) Let $\{X_n\}$ be independent and identically distributed random variables with $\mathbf{E} \{X_n\} = 4$ and $\mathbf{Var} \{X_n\} = 9$ for all n. Find C(n, x) such that

$$\lim_{n \to \infty} \mathbf{P} \left\{ X_1 + \dots + X_n \le C(n, x) \right\} = \Phi(x) ,$$

where $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$.

- (c) Give an example of sequence $\{Y_n\}$ such that Y_n converges in probability to 0, $\frac{Y_n}{n}$ converges almost surely to 0, but Y_n does not converge almost surely to 0.
- 2. Markov chains
 - (a) For a Markov chain with state space S of size d and transition matrix {P_{i,j}} what is the largest value of N such that P^N_{i,j} > 0 but Pⁿ_{i,j} = 0 for all 1 ≤ n < N.