HW IX: Markov chain mixing time (due May 9th before tutorial)

Let P be the transition matrix of a Markov chain on a finite state space S, with stationary distribution $\{\pi_i\}_{i\in S}$. Our objective here is to give a method to obtain bounds on the time for the Markov chain to converge to the stationary distribution π .

1. First, we need to define a distance between probability distributions. For two distributions μ and ν on S, we define

$$\|\mu - \nu\|_{TV} = \max_{A \subset S} |\mu(A) - \nu(A)|$$
.

Prove that $\|\mu - \nu\|_{TV} = \frac{1}{2} \sum_{i \in S} |\mu(i) - \nu(i)|.$

2. Let X, Y be random variables taking values in S (and living in the same probability space) such that X has distribution μ and Y has distribution ν . Show that $\|\mu - \nu\|_{TV} \leq \mathbf{P} \{X \neq Y\}.$

Bonus: Prove that for any μ and ν , there exists a coupling of X and Y, i.e., a joint probability space, such that $X \sim \mu$ and $Y \sim \nu$ and we have $\|\mu - \nu\|_{TV} = \mathbf{P} \{X \neq Y\}$.

3. The convergence theorem we showed (or will show) in class amounts to saying that for any starting state *i*, we have $||P_{i,.}^n - \pi||_{TV} \to 0$ as $n \to \infty$. Here $P_{i,.}^n$ is the probability distribution of the state of the chain at time *n* starting at state *i*. We now use question 2 to obtain a bound on the mixing time of a specific Markov chain.

We consider a Markov chain P with state space S_n the set of permutations of $\{1, \ldots, n\}$. When we are at state σ , we choose $i \in \{1, \ldots, n\}$ uniformly at random and the next state is given by $\sigma' = \sigma \cdot (i \ i - 1 \dots 1)$, i.e., the composition of the permutation σ and the cycle permutation $1 \mapsto 2, 2 \mapsto 3, \dots, i \mapsto 1$. In words, think of $1, \dots, n$ as cards arranged in some order given by $\sigma(\sigma(i))$ is the number of the *i*-th card) and we shuffle the set of cards by taking the top card and mapping it to a random position *i*, getting a new arrangement of cards given by σ' .

- (a) Show that the uniform distribution u over S_n is a stationary distribution.
- (b) Let $\{X_t\}$ and $\{Y_t\}$ be Markov chains with transition matrix P starting at $X_0 = \sigma$ and Y_0 having distribution u. Show that

$$\|P_{\sigma, \cdot}^t - u\|_{TV} \le \mathbf{P}\left\{X_t \neq Y_t\right\}$$

(c) Choose a coupling, i.e., a joint probability space for $\{X_t\}$ and $\{Y_t\}$ in such a way to have $\mathbf{P}\{X_t \neq Y_t\} \leq \frac{1}{10}$ for $t = O(n \log n)$.