



































































































































I M y im
S E W D S

Tt
noisy
channels decoding

encoding quantum

Objective I s s small
M large

I Classical quantum channels

Inputof W is classical finite set

Def A classical quantumchannelWurth inputspace
and outputspace BeHilperpaspagllection Wakex

of density operators Woeacting on B

Ex Classical channel WCHA
ex yey

Why a probability outputy for input se

For example Binary symmetric channel flip probabilityf
X10,1 Y lol c

O O

1 I

WColo WCSIs l f WColl W Ilo f






































































































































Can see it as a classical quantum channel with

output B a Hilbertspan ofdimension1ft
Wn Zig.lyHlyxyl

where ly yEY is a fixed orthonormal basis

Wo 10 01 and We ItXH 1 7 1,6 tiny

Can see W as a quantum
channel that start

by measuring is a basis Inn
ex followed

by preparation

Indu W

Tunnel W satisfyingWClaxal Wa
for NEX

andWinxn1 0 for seta

Given W and n 1 integer can define

W input X and output BY
Wgn

an WaiWai Wen

N W B

Un W Bn






































































































































m I M

Def An M code Ep for W is given
by

E M X encoding function

Decoding is a POUM Ds seems
B

Ex For a classical channel we
may

assume Ds are

diagonal D diagCDs y ye y
Ds y Probabilityof decoding to s when

seeing y
POUM condition I DCy 1

Def The error probability perr E D of an M code

for W is defined by

Pen ED A IME T DsWEED

bab.tt cessfuldecodiy

If perr E D s E we say that E D is an M E ode

Remark Used a uniform prior on
M anothernatural

choice is
perrmax E D

moggy ICDsWEcss

perr and perrmay are related see TD

2190,15 yE 0,1 flipeachbtw.pl
yM2 Efr 010tE21 1 1 Do Jingleslast






































































































































31 612023

Ex dim B 1 1 Wa lexal
IX o code given by
E s Is XS identifying X with IXD
Ds IsXsl

Fx Tr lsxsl.IS Xsl 1

Lt ee SCB and Wa e for all n EX
useless channel output does not depend on input

For any choice of CE D we have

II I Ds e 1 perr E D 1 1m

Question Fixed E largestM for which there
exists an CM E code for W

MoPCW E max M 3 ME codeforW

Objective Characterize MPWE in termsof
simple properties of W

Importantspecial case W with large n

E small

egg fig log tint e

n

mimberfbistansmtd per channel use






































































































































Intuition MOP WE should be given by
a conclakon measure between inputand outputofW

given a probability measure Px on X let

EXB IexPxG laxalowse Cq
state

Recall we wat
ex IB QB and CBTx exB

To characterize MPW E need

upper
bound called converse

lower bound called achievability

Converse

Tho If there exists an M E codefor W

then
logM s supDEEB leers

R ta
Rk Channel Wis arbitrary one shot entropy measure expected
For Wind DE will become a relativeentropy D

Proof Consider an M E code E D

Let C REX FSELA ECS n

and define Px a Ya for NEC and Renko n






































































































































Then Tran
QB FELIX Wa Faggin

and
F IIdaxalo D

S EG n

As D is a POM OE e I

ICFexa ImEETCEG.EDU
IMIT DsWEI
1 E

by thefactthat E D is an ME code

On the other hand Egan
T Fey 0g Tfidaxaties.ge ers

IImEIcTfnxHYEpEs YIEBD

fTrfEÉIs CB

IM
a p GI

Fexers Tr Feast

So DI ex lepers logM






































































































































Achievability

Th For any
E ECOD

and any E E o E and a o
tunable parameters
forthe bond

and M satisfying

logM s supDE existexes log aPx
thereexists an Me code

Notthe same E Ekgbutcanchoose it arbitrarily a small error termclose to E

Rk Achievability statementmatches converse up to error

terms that are small in many settings of interest

Proof uses the probabilistic method does not

give an explicit E D that is an M e code but
rather we choose EP at random and shoothat
on average it has an error probability s

E

Proof Let E E c 0 Px distribution on X

By definition then exist FEPosCX B7s.t

TCFexo 1 E

and I Fey 2
exellexers

Willconstruct ED from F






































































































































E MI X Mshould satisfy E
choose E s random with distribution Px
independentlyfor everySEEM

Do seen a Porr

Want to use the test F distinguishing exp
from
exes

operator onB

Simple to see that we may assume F Eeylaxate
Would like to set D FELD

does not work as I Fec I in general
On70

we have to normalize it

Let
FÉÉÉÉÉ ÉÉ LA

A dilaxer

Not that Do 70
and I'D AK E AK A AA I

Rt Thisconstruction is sometimescalled
Compute error probability
For a fixed s it is given by

M good menswear

I Trd WeG THE D WEED
decodestwhen ICE AKE A Wee
s is transmitted






































































































































Operator inequality Hayashi Nagaoka
For any c 0 OE SEI OST

I Stt S S TJ s Gtc I S GetE T

tie difference is a positive semidefm
1 Stl s Str 1 Er Esqoperator e Ite

Elementary fact For A s B and W 0

TCAW TCBW

Moe Hayashi Nagaoka fact
with S Fee and F FIFEs

ICI MEGMYWEG E CAC THEFEDWED
2 Cto IFT FEATWEED

So

Perr EP FIE I I CDsWea

AM I C ICE FELDWELD

Ic d III Fec Weed
Rk we did not use our choice for E so far we now

use it by computing the expectation over the choiceof E
E Per EDIFICE E ICE FEDWEI

or Etc
ÉÉIF

DThin E






































































































































I ICI E WE FIRE CAN TCCI E Wa

Ey RG ICI E Wa
L TIE laxalofa I Pxcalaxnlow
L
TnCIffB by assumption

E

E ICE WED Iggy EGAN EGAN TREND

In REDRADICEWa
Tr El lanata E BG taxa'D EdBenway

F exo g

2 DÉexpellees
As a result

per E D I Ea M 1 2
MEB exes

Defensesum over s s

Using condition on M in

É E

Thereexists E D ok perr Ep E






































































































































This characterization of logMPW E is very
general

Important special case where we can evaluate the
expression more explicitly Memoryless channelW

Def Lt W be a
cq
channel

The classical capacity W of W is defined by
CCW fins tim logMYf

A optimal rate for transmitting information

Corollary Forany cg channel W

spy
IA ByeCCW

s suffsup IX X B Bn
Px xn CXXan

Whr
f xp B Finkxn

ai en Woe Wnt Wan

Notation X X Xu B B Bn
Proof
We have

IIftp.DHCexallexfmj I g
CCnl'him ftp.DCexrillexnoea

n p






































































































































We should evaluate by lymphspy expellee
23 supp

I X B
ex

Let Px achieve the sup

Choose Pan PyoPx Px X Xu independent
distribution Px

I Dri exile e
n

Stein lemma
D explexEB
IX B

EB
as sup supp II CX Bye
In the converse partof Stein's lemma we showed

Dilello a DEE
Kolistipplexylfxted
Is In sappy

I X Byng
is super

additive ex

TPI app Ian pygmy
app IX By

fat m feltfan
Fekete lemma

Rt Actually easytosee CCW supftp.ICXBY.ynpn






































































































































How to compute

For cq
channel http fenaddirne

Lemma For any m

In sup
ICX B

supp ICX B

Proof 3 simple alwaystime not only cq
channels

s Let Pyu be arbitrary fan I Balanlinamxowsen

ICY B H B H BMX

HLB E É H Bi subadditnly

H BMX II PxnG a H B
Wnpowne Wan

Propertyof vonNeumann entropy
conditionalentropy average of entropy of conditionalstate

cnn.ggyg i ie
entropies

III Riad H Bw
II H BilXi






































































































































So I X B s É H Bi HBilXi

II I Xi Bi

n
pyp

I X B
ex

Da

Th Shannon theoremfor Cq
channels

The capacityof a cq
channel is given by

w
sup IA B

ex
ExB E PxG laxHoWn

Rk If Wa W for all se CCW 0

Surprisingly converse also true

CCW O Wa W Fa
This is surprising justusing repetition will notwork

See TD






































































































































2 General quantum channels

Now W LCA L B quantum channel

Very similar definitions

Def An M code Ep for W is given by
E CH SCA encoding function

Decoding is a POVM Ds seems
B

Def The error probability perr E D of an M code

for W is defined by

per ED n IME T DsW EGD
bab.tt ccessfuldecodiy

If perr E D s E we say that E D is an M E ode

Looking back at the proofs for cq
channels we see

that it suffices to optimize over choices of 1EYESCA
and consider the corresponding Cq

channel Wat Ny
We then define as before for n Tifa ex

fx Ie
n 1AM WIN This is called

an ensemble






































































































































Th Any Col E code for Al satisfies

logM s supp suppDri expellee
and there exists and M E codefor W

legMe supp supp Dri explexed legEEE

Basically the same proof good exercise to redo
it yourself

Rk we take supremum over arbitrarilylarge X but in

many cases can bound it

Important special case NY

Def The classical capacity CCM of a quantum
channel W is defined as somedef as for cq

channels

CAD Inglis logMCW e
n

Same as before
using

Stein lemma IDE D

Notation XO gf.eu CEE gwhereQB I Px a KNOW F










































































Rk In literature X D is called the Holevo information

of W See Wilde Ch13 or Watrous Ch8 forproperties

The Holero informationof an ensemble PxCD ran
also commonly denoted EXE for Exa InPx Glaxo Tt

KERCHFY
Withthis notation for a cq

channelW CCW supXGPxGw

Th Holero Schumacher Westmorland HSW

Lt D be a quantum channel

CW Is FX W sap IXC.my

Proof is the same as what we did in
Cq

case

Question Is X additive undertensor product
ie X O In XG

Note that X W nX w is simple follows

from the fact that DCexoell ro r 2DCello
Answer NO in general i.e there exists
channels Ms K X W 2 X W

This means that optimal choicesof state Isa will beentangled
Construction in Hastings 2009 by choosing A

random

and a very
involved analysis See book Alice Bob meetBanach



But then are families of channels for which

additivity can be proved
parameterSECODResearch question

Consider the amplitude damping channeletf
Coo fol

en en
Cotten Foe
Fiero E e

A unknown Simplisticmodelfor decay of2 bud
atomdue to spontaneousemissionofphoton


