

Objective: $* \mathbb{P}\{s \neq \hat{s}\}$ small

* M large.

1. Classical-quantum channel.

Input of W is classical
Def: A classical-quantan channel W with input space X and output space B_{a} Hilbert a space collation $\left\{W_{x}\right\}_{x \in X}$ of density operators W_{x} acting on B.
Ex: Classical channel: $\{W(y \mid x)\}_{x \in x, y \in y}$ $W(y \mid x)=$ probability output y for input x.
For example: Binary symmetric channel flip probability f
 $\begin{array}{cc}0 \cdot \xrightarrow[1-f]{\stackrel{1-f}{f}} & 0 \\ 1 \cdot \xrightarrow[w(1)]{l} & 1\end{array}$ $w(0 \mid 0)=w(1 \mid 1)=1-f, \quad W(0 \mid 1)=W(1 \mid 0)=f$.

Can ore it as a classical-quantms channel with output B a Hilbert space of dimension $|y|$

$$
W_{x}=\sum_{y \in y} w(y \mid x)|y x y|
$$

where $\{|y|: y \in y\}$ is a fixed orthonormal basis.

- $W_{0}=10 \times O 1$ and $\left.W_{1}=1+X+1 \quad 1+7=\frac{1}{\sqrt{2}}(10)+117\right)$
- Can ere W as a quantum channel that starts by measning is a basis $\left\{|x\rangle_{x}\right\}_{x}$ followed by preparation

$$
\begin{gathered}
\text { quantum charnel } W \text { satisfying } W(|x \times x|)=W_{x} . \\
\text { for } x \in X . \\
\text { and } W\left(\mid x \times x^{\prime}\right)=0 \text { for } x \neq x^{\prime}
\end{gathered}
$$

- Given W and $n \geqslant 1$ integer, can define $W^{\otimes n}$: input X^{n} and output $B^{\otimes n}$

$$
\begin{aligned}
& \left(W_{x_{1}-x_{n}}^{\otimes n}=W_{x_{1}} \otimes W_{x_{2}} \otimes \ldots \otimes W_{x_{n}} .\right. \\
& x_{1}-W B_{1} \\
& \vdots \\
& x_{n}-W \beta_{n}
\end{aligned}
$$

$[M]:\{1, \ldots, M\}$.
Def: $A_{n} M$-code (E,D) for W is given by

- $E:[M] \rightarrow \chi$ encoding functor
- Decadiry is a POVM $\left\{D_{s}\right\}_{S \in[M]} m B$.

Ex: For a classical channel, we may assume $\left\{D_{S}\right\}$ ane diagonal $D_{s}=\operatorname{diag}\left(D_{s}(y): y \in Y\right)$
$D_{s}(y)=$ Probability of decoding to s when seeing y. POUM conditun: $\sum_{s}^{1} D_{s}(y)=1$.
Def: The error probability Per (E, D) of an M-code for W is defined by

$$
\operatorname{perr}(E, D)=1-\frac{1}{M} \sum_{s \in[M]} \operatorname{Tr}\left(D_{S} W_{E(s)}\right)
$$

If $\operatorname{perr}(E, D) \leqslant \varepsilon$, we say that (E, D) is an (M, ε)-code
Remark: Used a uniform prior on $[M]$, another national choice is

$$
\operatorname{perr,max}(E, D)=\max _{s \in[T]} 1-\operatorname{Tr}\left(D_{s} W_{E(s)}\right)
$$

perv and perr,max are related (be TD)

$$
\begin{aligned}
& x \in\{0,1\}_{10}^{10} \longrightarrow \text { wits } y \in\{0,1\}_{10}^{10} \text { wits flap couch er wop } 1 / 4 \\
& M=2 . \quad E(1)=\widetilde{0 \ldots 0} \quad E(2)=\tilde{1} \ldots 1 \quad D_{0}=\sum_{y \cdot l|l| \leq 5} \lg x|y|,
\end{aligned}
$$

$E_{x}: \cdot \operatorname{dim} B=|X| . \quad W_{x}=|x X x|$
$(|x|, 0)$ code given by

$$
\begin{aligned}
& E(s)=\mid s \times s) \quad \text { (identifying } \\
& D_{s}=|s \times s| \\
& \frac{1}{|x|} \sum_{s^{\prime}}^{\prime} \operatorname{Tr}(|s \times s| \cdot|s \times s|)=1
\end{aligned}
$$

(idenrifyry X with $[|X|])$
 (useless channel, output does not depend on input)
For any choice of (E, D), we have

$$
\sum_{s \in[M]} T_{n}\left(D_{s} e\right)=1 \Rightarrow \operatorname{perr}(E, D)=1-\frac{1}{M}
$$

Question: Fixed ε, largest M for which there exists an (M, ε)-code for W ?

$$
M^{\text {opt }}(W, \varepsilon)=\operatorname{map}\{M: 子(M, \varepsilon) \text {-code for } W\} \text {. }
$$

Objective: Characterize $M^{\text {opt }}(W, \varepsilon)$ in terms of "simple" properties of W.
Important special case: W wi th longe n.

$$
\lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty} \frac{\underbrace{\log _{2} M^{o p}\left(w^{\infty n}, \varepsilon\right)}}{M}=?
$$

number of bits transmitted per channel we

Intuition: $M^{\text {opp }}(W, \varepsilon)$ should be given log a conclation measure between input and output of W. given a probability measure P_{x} on X let

$$
\rho_{x B}=\sum_{x \in X} P_{x}(x)|x \times x| \otimes W_{x} \quad \text { cq-statt }
$$

Recall we wite $\rho_{x}=T_{B} \rho_{x B}$ and $\rho_{B}=T_{x} \rho_{x B}$.
To characterize $M^{\text {opt }}(W, \varepsilon)$ meed:

* upper bound (called converse)
* lower bound (called achievabiilly)

Converse
Th: If there exits an (M, \mathcal{E}) code for W then $\log M \leqslant \sup _{P_{x}}^{D_{H^{2}}^{2}\left(\rho_{x B} \| \rho_{x} \otimes \rho_{B}\right)}$
Re: Channel $W_{\text {s }}$ arbitrary, "one-shitr a entropy measme expected For W ind, D_{H}^{ε} will become a elative entropy D.
Proof: Consider an (M, ε) code. (E, D).

$$
\operatorname{der} C=\{x \in \mathcal{X}: \exists s \in[r]: E(s)=x\}
$$

and define $P_{x}(x)=i / C \mid$ for $x \in C$ and $P_{x}(x)=0 \quad x \notin C$

Then

$$
C_{x B}=\frac{1}{|C|} \sum_{x \in C}|x \times x| \otimes W_{x}
$$

$\operatorname{Tr}_{S}\left(X_{x B}\right)$
$=\frac{1}{19} \sum_{x \in c} T_{2}($ max an - $\left.\frac{1}{1 \mid} \right\rvert\, \sum_{n \in C}(x x a)$.
and

$$
F=\frac{|c|}{M} \sum_{x \in C}|x \times x| \otimes\left(\sum_{s: E(s)=x}^{1} D_{s}\right)
$$

As $\left\{D_{s}\right\}$ is a POVN1, $O \leq F \leq I$

$$
\begin{aligned}
\operatorname{Tr}\left(\rho_{x B}\right) & \left.=\frac{1}{M} \sum_{x \in C} T r\left(\sum_{s: E(S)=x} D_{s}\right) W_{x}\right) \\
& =\frac{1}{M} \sum_{\Delta=1}^{M} \operatorname{Tr}\left(D_{s} W_{E(s)}\right) \\
& \geqslant 1-\varepsilon .
\end{aligned}
$$

by the fact that (E, D) is an (M, ε)-code.
On the other hand,

$$
\begin{aligned}
& \left.=\frac{|C|}{M} \sum_{x \in C}^{1} T_{r}\left(| | x \times x \mid \otimes \sum_{D: E(0)=x} D_{s}\right)\left(\frac{|x \times x|}{|C|} \otimes \rho_{B}\right)\right) \\
& =\frac{1}{M} \operatorname{Tr}\left(\left(\sum_{(\in C \in}^{1} \sum_{0: E(0)=x}^{1} D_{s}\right) e_{B}\right)
\end{aligned}
$$

So $D_{H}^{\varepsilon}\left(\rho_{x B} \| \rho_{x} \otimes \rho_{B}\right)^{\prime \prime} \geqslant \log M$

Achievability
Th：For any $\varepsilon \in(0,1)$
and any $\Sigma^{\prime} \in(0, \varepsilon)$ and $\left.c>0\right]$ tumble parameter and M satisfying：

$$
\begin{aligned}
& \otimes \log M \leqslant \sup _{P_{x}} D_{A}^{\varepsilon^{\prime}}\left(\rho_{x B} \| \rho_{x} \otimes \rho_{B}\right)-\underbrace{-\log \frac{2+c+c^{-1}}{\varepsilon-\left(C_{+c}\right) \varepsilon^{\prime}}} \\
& \text { then exists an }(M, \varepsilon)-\text { ode. }
\end{aligned}
$$

Nor tot mane E bat can chose it abbitaring clock 有 ε ． a oneal errortern

Rk：＊Achievabilly statement matches converse up to error terms that are＂small＂in many setting of interest．
＊Proof was the paobublistic method：does nor give an expliat (E, D) that is an (M, ε) code but rather we choose (E, D) at random and alow－the on average，it has an error probability $\leq \varepsilon$ ．
Proof：oft $\varepsilon^{\prime}<\varepsilon, c>0, P_{x}$ distrablim on χ ．
By definition，then exits $F \in \operatorname{Pos}(X \otimes B)$ att．

$$
T_{2}\left(F \rho_{x B}\right) \geqslant 1-\varepsilon^{\prime}
$$

and $\operatorname{Tr}\left(F_{\left.\rho_{x} \otimes \rho_{B}\right)}\right)=2^{-D_{H}^{\varepsilon^{\prime}}\left(\rho_{x B} \| \rho_{x} \otimes \rho_{B}\right)}$
Will conotmet（ E, D ）form F ．
$* E:[M] \rightarrow X \quad(M$ should satisfy $*$)
choose $E(\Delta)$ random with dotrubution P_{X}. independently for every $s \in[M]$.

* $\left\{D_{\Delta}\right\}_{\Delta \in[M]}$ a POVM.

Want to use the test F destingushing $\rho_{\times B} f_{\text {nom }} \rho_{x} Q_{B}$ -

Simple to see that we may assume $F=\sum_{x \in X}|x \times x| \otimes \nabla_{x}^{\frac{t}{F}}$
Would like to at $D_{s}=F_{E(0)}$
\rightarrow does nut work as $\sum_{\Delta} F_{E(0)} \neq I$ in general.
\rightarrow we have to normalize it.
Let $\Lambda=\sum_{0 \in(t) D} F_{E(0)} \geqslant 0$.

$$
D_{\Delta}=\Lambda^{-1 / 2} F_{E(0)} \Lambda^{-1 / 2}
$$

$$
\left[\Lambda^{-1 / 2}=\sum_{i=\lambda_{i} \neq 0} \lambda_{i}^{-1 / 2}\left|e_{i} x_{i}\right|\right. \text { for }
$$

$$
\left.\Lambda=\sum_{i} l_{i} \mid e_{i} x_{1}\right]
$$

Not thar $D_{\Delta} \geqslant 0$
and $\sum_{\Delta} D_{D}=\Lambda^{-1 / 2} \sum_{\Delta}^{\prime} F_{E(0)} \Lambda^{-1 / 2}=\Lambda^{-1 / 2} \Lambda \Lambda^{-1 / 2}=I$.
Compute error probability
 paty-god massumin.
For a fixed Δ it is green by:

$$
\begin{aligned}
& 1-\underbrace{\operatorname{Tr}\left(D_{\Delta}\right.} W_{E(0)})=\operatorname{Tr}\left(T-D_{0}\right) W_{E(0)} \\
& \underbrace{}_{\substack{\text { decode } \Delta \text { when } \\
0 \text { is rimmanted }}}=T_{2}\left(\mathbb{E}-\Lambda^{-1 / 2} F_{E(0)} N^{-k}\right) W_{E(0)}) \text {. }
\end{aligned}
$$

Operator inequality (Hayashi-Nagaot-a)
For any $c>0, O \leq S \leq I, O \leq T$,

$$
I-(S+T)^{-1 / 2} S(S+T)^{-1 / 2} \leq(1+C)(I-S)+\left(2+C+i^{-1}\right) T
$$

$\tau_{i e}$ difference is a positive semidalyinte operator.
Elementary fact: For $A \leq B$ and $W \geqslant 0$

$$
\operatorname{Tr}(A W) \leq \operatorname{Tr}(B W)
$$

Moe Hayashi-Nagaoka + Fact:
\rightarrow with $S=F_{E(0)}$ and $T=\sum_{\theta \neq 0} F_{E(0)}$

$$
\begin{aligned}
T_{2}\left(\left(I-n^{-1 / 2} F_{E(0)} \Lambda^{-1 / 2}\right) W_{E(0)}\right) & \leq(1+c) T_{2}\left(\left(I-F_{E(0)}\right) W_{E(0)}\right) \\
& +\left(2+c+c^{-1}\right) \sum_{s^{\prime} \neq 0} T_{r}\left(F_{E\left(0^{\prime}\right)} W_{E(0)}\right)
\end{aligned}
$$

So

$$
\begin{aligned}
& \operatorname{perr}(E, D)=\frac{1}{M} \sum_{0 \in[M]}^{1}\left(1-\operatorname{Tr}\left(D_{s} W_{E(0)}\right)\right) \\
& \leqslant \frac{1}{M} \sum_{\Delta \in[-1]}\left[(1+c) \operatorname{Tr}\left(\left(I-F_{E(0)}\right) W_{E(0)}\right)\right. \\
&\left.+\left(2+c+c^{-1}\right) \sum_{D^{\prime} \neq 0}^{1} \operatorname{Tn}\left(F_{E\left(0^{\prime}\right)} W_{E(0)}\right)\right]
\end{aligned}
$$

Re: we did not we our choice for E so for, we now use it by computing the expectation over the choice of E.

$$
\begin{aligned}
& \underset{\lambda}{\mathbb{E}}\{\operatorname{per}(E, D)\} \leqslant \frac{1}{M_{0}} \Sigma_{0}\left(\frac{1}{(1+C)} \mathbb{E}\left\{\operatorname{Tr}\left(\left(I-F_{E(0)}\right) \omega_{E(0)}\right)\right\}\right. \\
& \text { over the } \\
& \begin{array}{l}
\text { randomness } \\
\text { in dolulu }
\end{array} \\
& +\left(2+c+c^{-1}\right) \underbrace{\sum_{\Delta \prime}^{\prime} \neq\left\{\operatorname{Tr}\left(F_{E\left(0^{\prime}\right)} W_{E(0)}\right)\right\}}_{(2)}]
\end{aligned}
$$

(1)

$$
\begin{aligned}
\mathbb{E}\left\{\operatorname{Tr}\left(\left(I-F_{E(0)}\right) W_{E(0)}\right)\right\} & =\sum_{x \in X}^{1} \mathbb{P}\{E(\Delta)=x\} \operatorname{Tr}\left(\left(I-F_{x}\right) W_{x}\right) \\
& =\sum_{x \in X}^{1} P_{x}(x) \operatorname{Tr}\left(\left(I-F_{x}\right) W_{x}\right) \\
& \left.=1-\operatorname{Tr}\left(\sum_{x}|1 a \times x| \otimes F_{x}\right) \cdot \sum_{x}^{\prime} P_{x}(x) p_{x} \times x \mid \otimes W_{x}\right) \\
& =1-\underbrace{\operatorname{Tr}\left(F \rho_{\times B}\right)}_{\geqslant 1-\varepsilon^{\prime}} \text { by assumplion } \\
& \leq \varepsilon^{\prime} .
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \mathbb{E}\left\{\operatorname{Tr}\left(F_{E\left(\Delta^{\prime}\right)} W_{E(0)}\right)\right\}=\sum_{x, x^{\prime} \in X} \mathbb{P}\left\{E(0)=x, E\left(0^{\prime}\right)=x^{\}}\right\} \operatorname{Tr}\left(F_{x^{\prime}}, W_{x}\right) \\
& =\sum_{x, x^{\prime}} P_{x}(x) P_{x}\left(x^{\prime}\right) T_{2}\left(F_{x} w_{x}\right) \\
& =T_{2}\left(\left(\sum_{x}^{1}\left|x^{x} x x\right| \otimes \Phi_{x^{\prime}}\right)\left(\left(\sum_{x^{\prime}}^{\prime} P_{x}\left(x^{\prime}\right) \mid x^{\prime} x x^{\prime}\right)\right) \otimes\left(\sum_{x} P_{x}(x) W_{x}\right)\right) \\
& =\pi r\left(F \rho_{x} \otimes \rho_{B}\right) \\
& =2^{-D_{H}^{\varepsilon^{\prime}}\left(\rho_{x B} \| \rho_{x} \otimes \rho_{B}\right)}
\end{aligned}
$$

As a result

$$
\begin{aligned}
& \text { As a usult } \\
& \mathbb{E}\{\operatorname{per}(E, D)\} \leq(1+c) \varepsilon^{\prime}+\left(2+c+c^{\prime}\right) \underbrace{(M-1)}_{\text {because we sum }} 2^{-D_{H}^{\varepsilon^{\prime}}\left(\rho x_{B} \| \rho^{\prime} \neq 0 \text {. } e_{\infty}^{\otimes}(B)\right.}
\end{aligned}
$$

Mong condion on M in (b)

$$
\stackrel{\downarrow}{\leqslant} \varepsilon
$$

\Rightarrow There exiots (E, D) s.r. $\operatorname{perr}(E, D) \leq \varepsilon$

This chanacterization of $\log M^{\text {opt }}(w, \varepsilon)$ is very general.
Important special care where ve can evaluate the expussion more explicitly: Memoryless channel $W^{s n}$.
Def: Lir W be a eq channel.
The classical capacity $C(W)$ of W is defined by

$$
C(w):=\lim _{\varepsilon \rightarrow 0} \lim _{m \rightarrow \infty} \frac{\log M^{\circ p^{r}}(w, \varepsilon)}{n}
$$

* optimal rate for transmitting information.

Corollary: Forany eq chancel W

$$
\sup _{P_{x}} I(X: B)_{P_{x B}} \leq C(W) \leq \sup _{n} \frac{1}{n_{P_{P}}} \sup _{x_{1}-x_{n}} I\left(X_{1} \cdots X_{n}: B_{1} \cdots B_{n}\right)_{X_{x_{1}-x_{n} b_{1}-\theta_{n}}}
$$

where $\rho_{x_{1}-x_{n} B_{1}-B_{n}}=\sum_{x_{1} \cdots x_{n} x_{1}-x_{n}}\left(x_{1} \cdots x_{n}\right) W_{x_{1}} \otimes W_{x_{2}} \otimes \cdots W_{x_{n}}$
Notation: $X^{n}:=X_{1} \ldots X_{n} \quad B^{n}=B_{1} \ldots B_{n}$
Proof:
We have

We should evaluatu $\lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty} \frac{1}{n} \sup _{P_{x^{n}}} D_{H}^{\varepsilon}\left(\rho_{x^{n} B^{n}} \| \rho_{x^{n}} \otimes \rho_{g^{n}}\right)=: \alpha$

- $\alpha \geqslant \sup _{P_{x}} I(x: B)_{P_{x B}}$ Ler P_{x}^{x} achivere the eup. Choose $P_{x^{n}}=P_{x} \otimes P_{x} \cdots \otimes P_{x} \quad\left(X_{1} \cdots x_{n}\right.$ ind degendarit.

$$
\alpha \geqslant \lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty} \frac{D_{H}^{2}\left(e_{x B}^{\otimes n} / e_{x}^{\infty n} \otimes \rho_{B}^{\otimes n}\right)}{n}
$$

Stén lemma:

$$
\begin{aligned}
& =D\left(\rho_{x B} \|_{X} \otimes \rho_{B}\right) \\
& =I(X: B)_{\rho_{X B}} .
\end{aligned}
$$

$$
\cdot \alpha \leqslant \operatorname{aup}_{M} \sup _{P_{x^{n}}} \frac{1}{n} I\left(X^{n}: B^{n}\right)_{\text {(xisn }^{n}}
$$

In the converse pont of Stein's limme, we showed

$$
\begin{aligned}
& D_{H}^{\varepsilon}\left(\rho^{\| \sigma}\right) \leq \frac{D\left(e^{\| \sigma}\right)+1}{1-\varepsilon} \\
& \alpha \leqslant \lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty} \frac{1}{n} \frac{\operatorname{arp}}{\rho_{x^{n}}} \frac{D\left(\rho_{x^{n} B^{n}} \| \rho_{x^{*}} \cdot \theta \rho_{n}\right)+1}{1-\varepsilon} \\
& =\lim _{m \rightarrow \infty} \frac{1}{n} \operatorname{aup}_{x^{n}} I\left(X^{n}: B^{n}\right)_{e_{\times B^{n}}} \quad f(n):=\operatorname{anp}_{P^{n}} I\left(x^{n}: B^{n}\right)
\end{aligned}
$$

Rh: Acharlly easy to see $C(W)=\operatorname{supp}_{m \text { pap }}^{n} \cdot I\left(x^{n}: B^{n}\right)_{x^{n} g^{n}}$.

How to compate $\underbrace{\sup _{n} \frac{1}{n} \operatorname{aup}_{P_{x^{n}}} I\left(X^{n}: B^{n}\right)_{X^{n} B^{n}}}$?

Lemma: For any n

$$
\frac{1}{n} \sup _{P_{x^{n}}} I\left(X^{n}: B^{n}\right)=\operatorname{Aup}_{x} I(X \cdot B)
$$

Proof:- $\geqslant \operatorname{simple}$ (alwanys tho, not orly cq chomelo)

- $5 \operatorname{Ler} P_{x^{n}}$ be anbitary

$$
I\left(X^{n}: B^{n}\right)=H\left(B^{n}\right)-H\left(B^{n} / X^{n}\right)
$$

$$
* H\left(B^{n}\right) \leq \sum_{i=1}^{n} H\left(B_{i}\right)
$$

$$
* H\left(B^{n} / X^{n}\right)=\sum_{x_{1}-x_{n}}^{i=1} P_{x^{n}}\left(x_{1}-x_{n}\right) H\left(B^{n}\right) W_{x_{1} \otimes N_{1} W_{x_{2}} \otimes-\Delta W_{x_{n}}}
$$

Pooperty of von Neamamn enthopy:
conditional entrongy = average of entroppy of conditional sater.

$$
\begin{aligned}
& =\sum_{i=1}^{n} \sum_{x_{i}} P_{X_{i}}\left(x_{i}\right) H(B)_{w_{x_{i}}} \\
& =\sum_{i=1}^{n} H\left(B_{i} / X_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (subaddiinkly). }
\end{aligned}
$$

So

$$
\begin{aligned}
I\left(X^{n}: B^{n}\right) & \leq \sum_{i=1}^{n} H\left(B_{i}\right)-H\left(B_{i} \mid X_{i}\right) \\
& =\sum_{i=1}^{n} I\left(X_{i}: B_{i}\right) \\
& \leq n \cdot \sup _{x} I(X: B)_{P_{\times B}}
\end{aligned}
$$

Th (Shannon theorem for Cq chanel)
The capacity of a cqchamel is given by

$$
\begin{aligned}
& C(W)=\operatorname{aup}_{P_{x}} I(X: B)_{\rho_{X B}} \\
& l_{\times B}=\sum_{x} P_{x}(x)|x \times x| O W_{x}
\end{aligned}
$$

$R_{k}:$. If $W_{x}=w$ for all $x \Rightarrow C(w)=0$ Surprisingly, converse also true

$$
C(W)=0 \quad \Leftrightarrow \quad W_{x}=W \quad \forall x
$$

This is surprising, yurt ming "mpelitim" will not work.
2. General quantum channels.

Now $W: L(A) \rightarrow L(B)$ quantum chanel.
Very similes difinimion:
Def: An M-code (E, D) for W is given by

- $E:[M] \rightarrow S(A)$ encoding functor
- Decadry is a POVM $\left\{D_{s}\right\}_{s \in[M]} m B$.

Def: The error probability Per (E, D) of an M-code for W is define by

$$
\operatorname{per}(E, D)=1-\underbrace{\frac{1}{M} \sum_{s \in[M]} \operatorname{Tr}\left(D_{s} W(E(s))\right)}
$$

If $\operatorname{per}(E, D) \leq \varepsilon$, we say that (E, D) is an (M, ε)-code
Looking back at the proofs for cq channel, we see that it suffices to optimize over choices of $\left\{\sigma_{A}^{x}\right\} \in S \in(A)$ and consider the conesponding cq chanel $W_{x}=W\left(\sigma_{A}^{x}\right)$ We then define (as before) for $\left\{P_{X}(x), \sigma_{A}^{x}\right\}_{x} \in x$

$$
P_{X B}=\sum_{x \in X} P_{x}(x)|x x x| \otimes W\left(\sigma_{A}^{x}\right)
$$

This is called an ensemble

Th: Any $(01, \varepsilon)$-code for We satisfors

$$
\log M \leq \sup _{\sigma_{A}} \quad \operatorname{supp}_{P_{x}} D_{H}^{\varepsilon}\left(\rho_{x B} \| \rho_{x} \oplus \rho_{B}\right)
$$

and there exists and (M, ε)-code for W

$$
\log M \geqslant \sup _{\sigma_{A}} \sup _{P_{X}} D_{H}^{\varepsilon^{\prime}}\left(\rho_{X B} \| \rho_{x} \otimes \rho_{B}\right)-\log \left(\frac{\left.2+c+c^{-1}\right)}{\varepsilon-\left(1+c \varepsilon^{\prime}\right)}\right.
$$

Basically the same proof. (good exercice to redo ir yourself)
Rh: we take supuemum over arbitrarily longe X but in many cads can bound it.
Important special case: $W^{\otimes n}$.

Def: The classical capacity C(W) of a quentin channel W is defined as : or same def as for aq chanel

$$
C(w):=\lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty} \frac{\log M^{0 \phi p}\left(w^{\otimes n}, \varepsilon\right)}{n}
$$

Same as before: using Stein lemma $\frac{1}{x} D_{H}^{\varepsilon} \rightarrow D$.
Notation: $X(w):=\sup _{\left\{\sigma_{A}^{x}, P_{x}(x)\right\}} \underbrace{D\left(l_{x B} \| \rho_{x} \otimes \rho_{B}\right)}_{\text {where } \rho_{x B}=\sum_{x} P_{x}(n) \mid x\left(x \times N \otimes W\left(\sigma_{A}^{2}\right)\right.} \underbrace{D}_{I \times B}$

Re: In litentan $\chi(w)$ is called the Holevo information of W. See [Wilde, Ch B] ar [Wahoo, Ch 8] for poopution. x The Holevo information of an ensemble $\left\{P_{x}(x), \sigma_{A}^{x}\right\}$ also commonly denoteat $\underbrace{I(X: A)} \sum_{x A}$ for $\rho_{x A}=\sum_{x} P_{x}(n)|x \times x| \otimes \sigma_{A}^{x}$

With this notation, for a cq channel $W: C(\omega)=\sup _{p_{x}} X\left(\left\{P_{x}\left(-0, n, w_{1}\right)\right.\right.$
Th (Holevo-Schumacher-Westmorland, HSW)
Let W be a quantum channel

$$
C(w)=\lim _{n \rightarrow \infty} \frac{1}{n} X\left(w^{\infty n}\right)=\sup _{n} \frac{1}{n} X\left(w^{\infty}\right)
$$

Proof is the same as what we did in Cq case.
Question: Is X additive under terror product ie. $\chi\left(w^{\infty n}\right) \stackrel{?}{=} n \chi(\omega)$
Note that $\chi\left(w^{2 n}\right) \geqslant n \chi(w)$ is simple, follows from the fact that $D(e \otimes \rho \| \sigma \otimes \sigma)=2 D(e \| \sigma)$.
Answer:. NO in general, ie., there exits channels w st. $\chi\left(w^{2}\right)>2 X(w)$.
This means that optimal choice of states $\sigma_{A_{1} A_{2}}^{x}$ will be entangled Construction in [Hastings, 2009] by choosing w and a very involved analysis. [See book Alice \& Bob meet Band]

- Bur thun are famlies of channel for wrich additivily can be proved.
Research question:
Consider the amplitude dampang channel $A_{\gamma}^{p a}$

$$
\left(\begin{array}{ll}
\rho_{00} & \rho_{01} \\
\rho_{10} & \rho_{11}
\end{array}\right) \xrightarrow{A_{8}}\left(\begin{array}{cc}
\rho_{00}+\rho_{\rho_{11}} & \sqrt{1-\gamma} \rho_{01} \\
\sqrt{1-\gamma} \rho_{10} & (1-\gamma) \rho_{11}
\end{array}\right)
$$

C(CA) unewonen. [Simplishc mode for deccyy of 2 -uvd armond du to spownincons entision of paran

