
 
Jan 17thFinite dimensional Hilbert space ZL

u VE ZL up inner product
d EA cu do day vs

edu no I n o

t complex conjugate

Linear operators ZI ZI L 71,74
LCH H H

For an operator SEL 71,71 the adjoint S is

defined by LCED
cu Su Su u for all MEH WEH

Important classes of operators SELCH
S is unitary if 55 55

identityS is Hermitian if 5 5

S is positive we write SE Pos A if578 Sis Hermitian and ca Su 2,0 for all melt
S is an orthogonal projection if 5 5 5
such an S is positive

Bra ket notation

We identify u E H with ME LCE 71
defined by In A H

d is d u
het

The adjoint Int E LCH 4 is devoted É
71 C



ul H A

Ots Cee v7

We have ill he E LCE Q identified with Q
he v7

will denote inner product by cello
IN MI EL H
Ex ei is a basis of FL thenI orthonomal
then I I leixeil

Rk We will often use shorthand Ii for lee
1a for ten

Spectral decomposition
For any

Hermitian SEL H there

exists an orthonormal basis of 71 ei at

S É dileixeil
with di ER
In other words S written in ONB ei

is diagonal s 8
Him



S is positive iff di 0 to

For f R G

f s If di liked

Tensor products

Multiple systems A B C X Y

Hilbertspan Ha Btec
Hilbertspacefor joint system Ha071
vector space spanned by not

bilinear

for UEHa NEH
inner product Cukor luxor chin N'in

and linear extension

For SEL CHA FIL TE Lala Ali define Sot
SOT un G TN and linear extension

In HD



Span SOT

We identify Lattin and Lamotta that
In particular a 107 luxor fixed

onbasis

Trs Ite See

Def A density operator e on H is atnormalized
positive operator on H ie e EPos 7 and Tf1

The setofdensity operators is denoted 5671
e is said to be pure if rank e 1

CE HKT Ynet

C dnt I maximally mixed

Density operator formalism

If a system is representedby a vector 14 e.g so ten

Then the density operator e representing this system is

given by I txt l

eg p Tip in the basis ions

Composition Stateof a composite system is given
by density operators on FlaxHps if individualstate spaces are Ha and HB



Independent stateof jointsystem is taxes
if individual stats are fat and fB

Notation Ha A

for short we call the Hilbertspace A

Evolution Isolated evolution of a subsystem A
corresponds to a unitary on A For a stat

fab on composite system A B with evolution

on A given by Ua and the B systemunchanged

CAB MCA IB LABCÉOIB

Measurement A measurement on subsystem A is

defined by operators Mnf ex for some set X
Ma EL A satisfying EfxMEMa I

Probof outcome se pet MaxIB ABM B

Check Ii pay Ii TyMÉMnxIeaB T ears

TrCST Tr TS
Postmeasurement state conditioned on N

CAB n Mn B CABMixID
PG



Special case projective measurement

Youmightbe used to special case

Ma Be with Pa projector ie PI Pa Pi
coming from the spectral decompositionof

observableO

O fi x Pa
A general measurementcan model e.g a unitaryfollowed

by a projective measurement Ma followedbyPutney

PG TUCKVAIN CABCAB IB

Tn Te

Special case POVM measurement

Often we are notinterested in postmeasurementstate
but only in the probability distribution ploy

PG I no IB CAB MEIR
Tn MiMa F AB

We let En MaMa
I only need to know En to determine
pen and not Mn



Def A positive operatorvalued measure POUM on A

is a family Eat ex of posture operators on A such

that EexEn Ia
Probability of outcome n Tn Ene

Quantum channels

General way of describing
evolution of stateof

a system
The Hilbertspace can change A B forgeta system

add a particle

E should map SCA to SCB
Edensity operates E densityoperators

Def A quantumchannel E is a linear map from
LCA to L B satisfying Ips convex combinations

EGeoteple pEe thpiece

Completely positive
For Epos A Ece EPos B positive

For any
Hilbert space R

e E Pos AOR COIR e EPOS BOR

Completely positive

Identity on LCR superoperator
Trace preserving
For TELLA TrECT ICT



Ex E LCA LCA U unitary on A

ECT UTU
Completely positive

for art ELCA

Etr e WIR CUEIN O

Lav Idea In vs
UI In V e WEIRD 30

More generally a map

ECT STS for all T
is completely positive

Trace
preserving I UTU TOUT IN

Partial hate map
importantexample

fab
E SCA B stat of a composystem

What is the state of system A on its own

Should be a valid quantum channel
corresponds to forgetting B

Try LCA B LCA

T to IIAC BDT Iamb
where lbs fours a basisof B



Not that TB LEADTrapfrom LB Q
identity LCA LCA

TB Ea B CaTher La if eBESCB

Ty plays the role of taking themarginal distribution

of a jointdistribution la onBofA

fab I Pla b lax al bxb lbs onBofB

then Ca Trp lab Iif Pla b laxal
Check Complete ositivity Tt IaxocbDT Iamb is CP

Sum of CP is CP
Trace

preserving Tn Io Cbl T I 0lb It IxolbxbIT
Tr T

Measurements

Misaex I MaMa Ia
Wantthe outputofthe channel to contain

both

the outcome n and the postmeasurementstate
stateInput A Output X At

postmeasuremer

holds outcome dimX141
fixed basis IN nex



M LCA LGA
T

Extgatiittona
Check CP mxxlxoMnTMÉ KxM T GNOME

YEA TEA A

Same argument

Tran
preserving Ian

t
E'Mima

ICI mama TMI FEITIMEMnt ITE
Tn SOT ICS ICT

Can check that this models the measurement

MG I I MagMilaxal Maad
NEX Tranent

probofoutcome n Foskmeasemmar

state conditioned one

Rk Such a state is called a classical quantum state
i e of the form

Exa Ex Ray sexy
castrati

ins fixed basis ya density operator



Distance measures between states

Def The trace distance between two states
e and o in SCA is defined by

Ace 5 L leH_ Tle d

dit dieigenvalues of e r

Rk Alee 0 D er Hellstalls L

Invariant under unitary
A Meat Uru Acer

For
E Iai P a lax al

r Q a laxal

Ale r EEalPlaacy
calledtotal variation distance between P andQ

Data processing importantproperty for any
distance measure

E quantum channel

ACE e ECD ACE o



Operational interpretation distinguishing states

Hypotheses System A is either in

Ho
go Hi p

Question Minimum probability of error

Strategy given by a POVM Eo Es
He

Prior Ho withprobability 42
H withprobability 42

Error probably
ftp.t lEgg

e
butwe wronglysayH

butwronglysayHo

Type I error Type I error

Often HoandH playasymetricrole

Proposition The minimum error probably over all possible

strategies is
12 ID foil

Rk Hypothesis testing can also be considered
in different regimes eg fix Type I errors E and

minimize Type II error



Def The hypothesis testing titty
parameter E Elo D is defined by

DJ ell r max logTn Er
OSE E I

THEe L E
V E corresponds to Eo

Rk DEAD ELord EE I E I E

2 DIEN is the minimum Type II error
if Type I error EE

For E 1 Dilello re forinteresting

For E O Dilello logTn Ter
where Te projector onto thesupportofe

Ii llixeil where f I di leixeili di to
9
eigendecomposition

For
e r D elle loge e

O if E small
For cand r hang orthogonal support i.e er 0

Dilello to



Announcement

Please send an email to
Omar fawzi ens lyon.fr
if you're planning to take the course

Evaluation will be

Paper presentation report
One homework near the end

You are encouraged to prepare
the

problems you
couldn't cover in tutorial

for the following time



Jan 25th
Further remarks about DICello

In general no closed form expression but it

min Tn Er subject to Tn Ee l E
OES I

is a convex optimization program more specifically
it is a semi definite program
can be computed efficiently for small

dimension

Classical case e ZIPA lax 4
r I QG laxal

VEX

A natural test

For samplese computePeng
If I output P

If s 1 output Q
bike blood ratio

Prop Di satisfies tu data processing inequality

i e for any quantum
channel E we have

Dri Ece 11 Ecr e DE ell r

Proof Very intuitive If I have a strategy to distinguish

Ece from Ecr can distinguish e and t byfirstapplying E
then At strategy



Lt E be such that

DEKE e 11Eco log I EEE and ICE Ecelate

Not that LCH is itself a Hilbertspan with inner

product S T T ST
So E E L LHD has an adjoint denoted E it
satisfies

ICE EGD ICE EGD TREE D
Ei Hermitian

and ICE ECE Tr ETE e
Fact E completely positive completely positive

E Aaa preserving E is unital i.e

ECI I

As a result ECE satisfies

0 40 ECE ECI I

and it is a feasible solution for the programfor DECe Ilr
So Ece 11EG e Dri ello es



Special stateof interest
n ooh

with n e

Th Quantum Stein Lemma
Lt E ECO D and e r E SCA

Then

time IDE Ello D Cello
9

Thequantum relativeWillgiveproof sketch entropy

Def For ÉÉ5cÉtÉÉsÉYL an af.it
dimensional Hilbert space the quantum relativeentropy
is defined by supple Spangled di 03

if e Eddilentil

Hello fledge logos if
supple le supper

re else

Rk loge I logdi leix lil for EI dileixed
di 0Classical case ne e and o

commute

e IP G lax al r IQ G taxa

DGM I PG logPIE
teenkopy or Kullback Leiblerdivergence



py g

quantum relative entropy can be seen as a noncommutative

generalization of KL divergence thin are others as well

Th Properties of the quantum relativeentropy
We have D ell r 0 for e r E SCA
with equality eff e r

Data
processing for

D for a quantum channel E

DCECellECD DCello

We skip the proof proof ofdata processing noteasy
D can be used to defineentropies

Def For a stat LAB
E SCA B we define

H A EID Cal IA Recall Ca Treas
entropy

sign
I notnormalized

HCA B
e

D LABI IAG von Neumann
entropies

conditional
entropy

I A B D CABACARB
mutual

information

Properties in TD



Proof of Stein lemma
Will only give element See references forfull proofs
Recall him IDE 81 8 DCello

Achievability have to give a strategy

Will restrict to case where e and o commit

e I'PG taxa QCD laxal

f g.in G4 PGn kxaixo olxnxunl

8 TI a Q a Impala taxan

Will define a test for this hypothesis testing problem

Given Xi Xu
Compute R P Xi PC P xD

QEDQED QED will let 8 30 at

If I log R Dcpya g f
80 is a parameter

the end

Return Samples from P

Else Return SamplesfromQ
In quantum

notation corresponds to

E I 12 an X 2 and

it clearly ni an PG Penn
QED Q ay

32m
DCPQ o

dependson n



Analysis of this test

If samples are from R Hypothesis 0

Ex p Ily R DCP1107 83 GREED

III logPEI DCPIQ S

But IELIogPEI I PG logPII D Pla

So by the lawoflarge numbers

1

TheconstraintTreen 1 E satisfied for large enough n

If samples are frm Q Hypothesis 1

I a

X Xang
a log R DellaB EIGG ay

11 I PEI 21107 8

T Erin I QQ Q a
I Ah

QED Qun In
Pla S
PG PG

2
DCPHQ D

In Pla D II
PGD PG



So

log Tn Eon n DCPIQ 8

and IDE f 118 DCPHQ S
for largeenough n

Works for any d 0 so we have

him IDE endrin DCP 11Q

Converse
Will only prove general

Eso him In Di et 118 Deny
quantum
case

The statement is that it holds forany EE Con

Let E be such that Tr Een at E

We apply the data
processing inequalityfor the

quantum channel

E LCA LG
T I oxo Tr Et

Hal TCI E T

ECE loxol Tn Een hat 1 Treen

E Hn lo Xo Tr Eon MXN I I CEE



We have on one side

Dce drone log g ICE logon
Not that if e Ii dalaxal for a basis in

f II dada da la anXa at

loge I É logdi ta anxa nnl
K Nn i A

Ih Ia FA Gea IA Fan
So Talen log e nice loge
and Denton n DEAD
But

DCE 110795 86511Econ
ICEe logIEEE Ca t.ee GFIEEIon

7 1 Tn Eg login Erin
t elementary inequalities

So Igt Eon E MDG.tl gy smDCellr
l

A E

IDE Ello s Della
n e

t g n

letting more then E o we getthe desired result as



Rk Di is called a one shot entropy
measure as it has an operational interpretation for
any

state Many others Hmh Cryptography

worstcase entropy

The usual relative entropy D
and corresponding von

Neumann
entropyH

only has an operational interpretation in

an iid independentidenticallydistributed

or average setting



Feb 8th
Purificationof a quantum state

Prop Any quantum state 14 EA B can be written
30 Schmidtcoefficients

H I SfMi 0173
where this are eigenvectorsof Trill4x4 unitnorm
and IND are eigenvectors of Ty xx orthogonal

and s are the eigenvalue of TracyXxl
and of Trfltxtl

Same as the singular value decomposition using
the isomorphism

Iggy IIIa
Consequence If far is pure then yaanders have th somenonzeroeigenvalues

Prop For any density operator AESCA and
a Hilbert span B with dim B ranked there
exists a stat LAB E SCAB a t

TB LAB fit
LAB is pure

Proof Spectral decomposition CA Éhiluikdil r rankles
Lt Kittin be r orthonormal vectors in B



Define CAB 14 41

with H IGN Idi AXON's
rank fam I by

construction

TBears II didimimilaolggldh
II di ImiMila La

Another similaritymeasure forquantum state Fidelity
For pure stats 147 147 491421 is a useful

similarly measure Fidelity generalizes it for density operators

Def The fidelity between e and r E SCA is

defined by FG D Are roll T FeF
11511 Tn Est

Rk If one of the state is pure 5 14 41 then
FCer Chet
If e is also pure e 19441 FCer 141431

F er I and Fle r o if e t have
orthogonal supports



If e IP i tix it I QE lixil

Fly r E'Feira
By Cauchy Schwarz easyto see Fleer te er

The fidelity does not have a direct operational

meaning
like tan distance but it is often very

convenient to use

Th Uhlmann

Let La JA E S A and let B with dmBedimA
Then

Flea G max Fleas TAB
CABITAB

purificationof
CA TA

GIEFER more 14141
Man Man
purification of
Caleb

Proof Lt liz be an orthonormal basisof A and

lip an orthonormal basis of B assume dimA dimB

Define I Eff I Ii lips EAOB
unnormalized entangled state



Claim For any purification Had of Ca
there ext untan's Up Up such that

MAB FAVA UB EJB
In fact writeSchmidtdecomposition

May I Miami B where di are eigenvalues
off and Iup eigenvectors

fer Ur be the unitary 1
5197Up be theunitary 107 Hi

So Pavao likely Mi Imi No
which proves the claim

Similarly MAB FAVAWB I AB
Another useful fact about IIIB

IACSB I Is SA IB IEP
where Sa SEFTranspose in

fixed basis liz
To be accurate SEWSEW
with W like tips

Transpose trick
So
KHEKEIUFEFAVAXOU.VE I

KEIVEFAFAVACUEVDTOIB.IE I
WonA



IT VIFarraVA UVa
Tn rearraU where U ValvivetUnt

unitary

Lemma Operator S
moggy

ITISDl TEs

Proof Polar decomposition Cauchy Schwarz

This concludes theproof of
Uhlmann a

Rk Some consequences

OsFCe r L

F
LAB TAB E FCLA I Tt

max F fare TABc E YIra fight
Tas

ABC SABC

purificationA
specific purificationoffa

andTA

Satisfies data processing inequality E quantumchannel

Fly r EF Ece ECA see TD

Lemma e r E SCA

1 FlersAle H e AFLAT



More on the representationofquantum
channels

Recall we defined a quantum channel E LCA L B

completelypositive Aaa preserving
ExoIp posike Tr E Tr

3ways of representing a quantum channel

Choi one operator in LCA B
Kraus a listof operators in LCA B
Stine

spring
an operator in LCA B E newspanto be

defined

The Choi operator Fix a basis of A laJa er F A

JEB II laxataEClax.lk EL CARB

Eat E E
unnormalized maximally entangled stateRt Weoftenjustwrite A insteadofA

Ex E I identity channel BEA
JE É Ia laaka a'l
E T B G

JK IA

ECS Tr S a Constant output

JE za laxat xoT laxalt 8 IA T



Does JE capture everything about E
Choi Jamiolkowski isomorphism L LCA LB LCA B

E ts JE
and its inverse is Transpose withrespecttobaristas

J Sat I STEIB J

Check te
I taxa F laxa Ia laxatxtyflaxa.to I J

a a

Taxi
Eat laxa'to call aka E Jia's

I laxall no cat Jia'S

J

JE can be used to easily check if E is a valid quantumchannel

Th E El LCA CBD is completely positive

JEB Z O

E is trace preserving a JAE III
th

Coney Caleteposity can be checked efficiently

forallR CE E 5 30 for SE Pos ROA

Theorem says sufficient to take RIA and SI la axil
aas



Proof I is obvious

R Jake I dal laxYul eigendecomposition

Write Sa If Kasaki directly CP
ECS

I'sTraCSCnXIBIYuXexD_IIcalS
txoIB.lenxenta

Can watt 14m I cairn 1 0163
So Max Yal I cable dewlapsaka o lb'xbl

b

Egg doe Cal
Satta's lbxbl.ca b ten alula b

I Dacab'inb'sca Sala Tbl Yuliab rn
i bi bl

Ii Kasa Kat where kn cab'Mulhallran

direct as T lixjl Jj
Tn Tra CSI IF ICICI Jarl

Tr SÉTrB JAB
Tr SI
Tn Sa Be



Corollary Any CP map E LCA LLB can be written as

ELSA IKSAKE
where Ka ELCAB called Kraus operators

with r s dimA dimB actually r rank E

E is truepreserving off E KE ka IA
Rk Also called operator sum representation

Kraus

Stinespringdilation

Corollary Any CP map E LCA LCB
can be written as

ELSA TE MSM
where ME LCA BOE
with dim E E mA mB

is tace preserving off Mffinimerry
Proof
Writ E Sa Takasaki ie preserves norms

Lr E span in HMM11 114711



and M Fei kn 01k

Then MSAME Z knSaki In XV a
n n

Interpretation

Can see any
evolution modeled

by quantum
channel E LCA CB as a embay evolution

A

Inputspanofinterest U
B

outputspan ofinterest

fixed state
10
R E environment we

do nothave access
to

U 1420107 MIX check such a

R unitary exist


