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Quantum error correction
Lecture 2: the stabilizer formalism

a) Stabilizer codes

To go further than the 9-qubit code of Shor, it is useful to take inspiration from classical
coding theory. And indeed, the class of quantum stabilizer codes will be the generalization
of classical linear codes.

Classical linear codes.
A linear code C encoding k logical bits in n bits is denoted [n, k] and is a subspace of
Z

n
2 = {0, 1}n of dimension k, i.e. of size 2k.

There are two convenient ways of describing such a code:

(i) as the image of a parity check matrix G of size k × n

C = ImG = {xTG : x ∈ {0, 1}k},

(ii) as the kernel of a parity check matrix H of size (n− k)× n:

C = kerH = {x ∈ {0, 1}n : Hx = 0}.

The generator matrix is convenient to describe the encoding circuit, the parity-check
matrix is convenient to describe the error correction process.
Let c ∈ C be a codeword. If e ∈ {0, 1}n is an error (the ones in e correspond to the bits
which have been flipped by the noise), then the syndrome of e is defined as

H(c+ e) = Hc+He = He.

The minimum distance d of the code C is the minimum weight of an error e 6= 0 that
belongs to the code, i.e. such that He = 0. It is the minimum number of bits that need
to be flipped to map a codeword to another codeword. We say that C is an [n, k, d] code.
Such a code can detect any error of weight 6 d− 1 and correct any error of weight bd−1

2
c.

For instance, there exist code families (Cn) with parameters [n, k, d] with k = Θ(n), d =
Θ(n).

A coding scheme is as follows:

– the initial message M is a k-bit long random variable,
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– the encoder is E : {0, 1}k → {0, 1}n,M 7→ X, and is described by the generator

matrix,

– the encoded message X is sent through the channel N , which is usually described
as a conditional probability distribution: p(Y = y|X = x),

– the output Y is fed into a decoder which reads the syndrome HY outputs a guess
M̂ for the message.

A classical channel N : X → Y is defined by conditional probabilities: pY |X(y|x). Define
the capacity C(N ) of the channel as

C(N ) = max
pX(x)

I(X;Y )

where I(X;Y ) = H(X)+H(Y )−H(XY ) is the mutual information between the random
variables X and Y , and the optimization is over probability distributions for variable X.
A simple example is the binary symmetric channel: X, Y ∈ {0, 1} and pY |X(y|x) = p if
y 6= x, which has capacity C(BSC) = 1− h(p).
Claude Shannon established the following surprising result.

Theorem 1 (Channel coding theorem). One can reliably send information at any rate
k/n < C(N ) by exploiting error correcting codes over sufficiently many uses of the chan-
nel. The maximal error probability (maxm Pr[m̂ 6= m]) goes to 0 when the code size goes
to infinity.

The proof of this theorem is via a random coding argument. A major issue is that
decoding a random (linear) code is believed to be hard, and to take exponential time.
For this reason, one of the main goals of channel coding in the past 60 years has been to
devise explicit coding schemes that approach the rate promised by the theorem but such
that both the encoding and decoding operations can be performed efficiently.

We now move to the quantum generalization of classical linear codes. This formalism –
stabilizer codes – was developed by Daniel Gottesman in his PhD thesis in the late 90s.

Pauli and Clifford groups
Let us recall first what the Pauli and Clifford groups are. The single-qubit Pauli group
P1 is the group 〈i1, X, Z〉 generated by the Pauli matrices. Its n-qubit generalisation is
the n-fold tensor product of P1, that is Pn = P⊗n1 :

Pn = 〈E1 ⊗ E2 ⊗ . . .⊗ En : Ei ∈ P1〉,

and has cardinality 4n+1. An important property of Pauli operators is that any two of
them either commute or anticommute.

Theorem 2. Let P,Q ∈ Pn. Then either PQ = QP or PQ = −QP .
Proof. For single-qubit matrices, we have

[X,X] = [Y, Y ] = [Z,Z] = 0, {X, Y } = {X,Z} = {Y, Z} = 0.

Let us write the Pauli operators as products of n single-qubit matrices: P = P1 . . . Pn

and Q = q1 . . . Qn. Then P and Q commute if and only if they anticommute in an even
number of positions. Otherwise, they anticommute.
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The Clifford group Cn is the automorphism group of the Pauli group:

Cn = {U ∈ U(C2n) : UPnU
† = Pn}.

In words, any Pauli operator P is mapped to a Pauli operator via conjugation by a
Clifford unitary.

Theorem 3. The Clifford group Cn is generated by H, P and CNOT :

H =
1√
2

[
1 1
1 −1

]
, P =

[
1 0
0 i

]
, CNOT =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .
Definition 4 (Normalizer). The normalizer of S in the Pauli group Pn is

N(S) = {g ∈ Pn : gS = Sg}.

A quantum code Q of parameters [[n, k, d]] is a linear subspace of (C2)⊗n of dimension 2k.
The stabilizer construction is very much inspired by the classical construction of linear
codes, and there are two main ways to define a stabilizer code:

(i) via its encoding circuit : this is Clifford unitary U ∈ U(C2n) applied on |ψ〉⊗ |0〉n−k
where |ψ〉 ∈ (C2)⊗k is a logical state of k qubits and |0〉n−k is an (n − k)-qubit
ancilla. This gives

Q = {U |ψ〉 ⊗ |0〉n−k : |ψ〉 ∈ (C2)⊗k}.

(ii) via its stabilizer, i.e. a group S = 〈g1, . . . , gn−k〉 generated by a set of n − k Pauli
operators that commute and that don’t contain −1. The code is then defined as
the elements of the Hilbert space that are stabilized by G:

Q = {|ψ〉 ∈ (C2)⊗n : gi|ψ〉 = |ψ〉,∀i ∈ [n− k]}.

In other words, the code is defined as the +1 eigenspace of the generators. This
space is well defined since the commutation condition ensures that the generators
are all codiagonalizable. Moreover, since each generator is a Pauli operator, it has
eigenvalues equal to ±1.

In order to make reliable computations with a noisy quantum computer, the idea is to
encode information with a quantum error correcting code and then perform the compu-
tation on the encoded state. We need a way to act on such states. This is done via logical
operators.

Definition 5 (Logical operator). A logical operator of the stabilizer code with stabilizer
S is a Pauli operator that leaves the code globally invariant, but that acts nontrivially
on codewords. It is given by the set N(S) \ S, and corresponds to a Pauli operator that
commutes with all the generators of S, but that doesn’t belong to S.
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A logical operator will map a word in the quantum code to an orthogonal codeword.
The fact that the encoding circuit of a stabilizer code is a Clifford operation is particularly
useful because it implies that logical Pauli errors correspond to Pauli physical errors.

Example 6. Both the 3-qubit code and Shor’s 9-qubit code are stabilizer codes: this is
because their encoding circuit is a Clifford unitary. As a consequence, these codes can
also be described by their stabilizer. We have see that the stabilizer of the 3-qubit code is
〈Z1Z2, Z2Z3〉 and that the stabilizer of Shor’s 9-qubit code is

〈Z1Z2, Z2Z3, Z4Z5, Z5Z6, Z7Z8, Z8Z9, X1X2X3X4X5X6, X4X5X6X7X8X9〉.

It is straightforward to check that these groups are Abelian. As expected, these stabilizers
admit respectively 2 = 3− 1 (three physical qubits and one logical qubit) and 8 = 9− 1 (9
physical qubits for a single logical qubit) elements.
The Pauli operators Z1 and X1X2X3 are logical operators for the 3-qubit code and for
Shor’s 9-qubit code, respectively:

3-qubit code :Z1|+̄〉 = |−̄〉
Shor’s code :X1X2X3|1̄〉 = −|1̄〉.

The stabilizer description is particularly useful to correct the errors. The idea is to
measure the syndrome, that is to measure the eigenvalues of the stabilizer generators for
the quantum state. The syndrome associated with error E ∈ Pn is the (n− k)-bitstring
~s = (s1, . . . , sn−k) defined by

si =

{
0 if [E, gi] = 0,
1 if {E, gi} = 0.

If si = 1, meaning that the error anticommutes with a stabilizer, then E|ψ〉 is a −1
eigenvalue of gi (if |ψ〉 is a valid codeword):

giE|ψ〉 = −Egi|ψ〉 = −E|ψ〉.

In particular, the syndrome doesn’t depend on the specific codeword, only on the Pauli
error.
Note that it is easy to devise a quantum circuit to measure any Pauli operator (and
in particular, any generator of the stabilizer group). The following picture for instance
depicts a circuit to measure P1P2P3 with Pauli operator Pi acting on qubit i:

The eigenvalues of any Pauli measurement P are 1 and −1, and the projector on the
eigenspaces are P± = 1

2
(1± P ).
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Definition 7 (Minimum distance). The minimum distance of a stabilizer code with sta-
bilizer S is the minimum weight of a nontrivial logical operator:

dmin(Q) = min{|E| : [E, gi] = 0∀i, E /∈ 〈g1, . . . , gn−k〉}
= min{|E| : E ∈ N(S) \ S}.

Example 8. We have seen in the previous example that Z1 and X1X2X3 are logical
errors for both the 3-qubit code and Shor’s 9-qubit code, respectively. This implies that
their respective minimum distances are upper bounded by 1 and 3. Since the 9-qubit code
can correct any single-qubit error, its minimum distance is at least 3, which means that
it is exactly 3.

Coding scenario. Action of the environment

A coding scheme is as follows:
– the initial message is a k-qubit quantum state |ψ〉 ∈ (C2)⊗k,

– it is mapped to an n-qubit state by applying an encoding operator U applied to
|ψ〉 ⊗ |0〉n−k (i.e., state and ancilla)

– the n-qubit state goes through a noisy channel (communication channel, storage
device, interaction with environment, etc) corresponding to a completely positive
trace preserving map (cptp) N . Alternatively, the channel is a unitary interaction
between the codeword and the environment (assumed to be pure).

– a decoder with access to the output of the channel measures the syndrome of the
error, outputs a guess for the error, and returns |ψ̂〉 for the initial state

An important difference with classical coding is that in the quantum case, the “error”
is not uniquely defined, and errors differing by an element of the stabilizer group are
equivalent, since they act exactly in the same way on all codewords. This phenomenon is
called degeneracy. For this reason, a quantum error correction procedure will generally not
aim at recovering the “true” error that occurred, but rather the equivalence class of this
error. This subtle difference with the classical scenario will lead to severe complications
when devising efficient decoding algorithms.
An alternative description of the noisy channel is as an interaction with the environment.
One starts with some pure product states of 3 registers: data, ancilla, environment,
modeled as a quantum space D⊗A⊗E. The initial state has the form |ψ〉D⊗|0〉A⊗|0〉E,
where |0〉E is unknown (but that doesn’t matter). The encoding corresponds to acting
on D and A via the encoding map U . The new state is

(UDA ⊗ 1E)|ψ〉D ⊗ |0〉A ⊗ |0〉E = |ψ̄〉DA ⊗ |0〉E.
The quantum channel is modeled as a unitary interaction V with the environment:

V |ψ̄〉DA ⊗ |φ〉E =
∑
Pi∈Pn

Pi|ψ̄〉DA ⊗ |ePi
〉E

where the states |ePi
〉 are not necessarily normalized nor orthogonal. The quantum chan-

nel entangles the three registers. The decoding process acts on D and A, with the goal
of returning the original state in D and an entangled state in AE. In thermodynamical
terms, the data data is cooled down (returns to being pure) while ancilla is heated up.
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b) CSS codes

The CSS codes (for the name of their inventors, Calderbank, Shor, Steane) form an
interesting subclass of all stabilizer codes where the generators of the stabilizer group
are either products of Pauli-X or products of Pauli-Z. This is an appealing restriction
because the commutativity condition between the generators now needs to be checked
only between X-type and Z-type generators, since both X-type generators and Z-type
generators obviously commute among themselves. In that case, both types of generators
are described by binary words (with 1s at the coordinates corresponding to an X or
Z-type operator).

A general way of defining both classes of generators is by choosing special types of classical
codes. Let C be an [n, k] classical linear code with a n × k generator matrix G and an
(n− k)× n parity-check matrix H. This means

C = {Gy : y ∈ Fk
2} = kerH.

Here we consider column vectors.
The dual code of C, denoted C⊥, is defined as

C⊥ = {y ∈ Zn
2 : x · y = 0, ∀x ∈ C}.

This is an [n, n− k] linear code. Moreover the generator and parity-check matrices of C
and C⊥ are swapped (up to transposition):

G⊥ = HT , H⊥ = GT .

We say that a code C is weakly self-dual if C ⊆ C⊥ and (strictly) self-dual if C = C⊥. A
necessary and sufficient condition for C to be weakly self-dual is that GTG = 0.

Definition 9. A CSS code CSS(C1, C2) is defined from two classical linear codes C1, C2
of parameters [n, k1] and [n, k2], such that C2 ⊆ C1. The quantum code has parameters
[[n, k1 − k2]] and is spanned by the vectors

|xj + C2〉 :=
1

2k2/2

∑
y∈C2

|xj + y〉,

where the elements of {xj}j=1...2k1−k2 belong to the quotient C1/C2. In other words, they
satisfy xi + xj /∈ C2, for any pair xi 6= xj.

Lemma 10. The code CSS(C1, C2) is a stabilizer code.

The proof will be treated in exercise.
In particular, if C is weakly self-dual with parameters [n, k], then CSS(C⊥, C) is a stabilizer
code with parameters

[[n, n− 2k]].

Codewords of the CSS code have the form |x + C2〉 where x ∈ C1 and two codewords
|x+ C2〉 and |x′ + C2〉 differ if and only if x and x′ belong to different cosets of C2 in C1.
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An example of CSS code is Steane’s 7-qubit code, where we take C2 = C⊥1 and C1 to be
the [7, 4] Hamming code with generator1 and parity-check matrices

G =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1
1 1 0 1


, H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .

One can construct general Hamming codes by taking all possible words (except the all-
zero word) for the columns of the parity-check matrix. These generalized codes have
parameters [2m−1, 2m−m−1, 3] and can tolerate one bit-flip since they all have distance
3. One can check that the dual of the Hamming code is weakly self-dual, since (G⊥)TG⊥ =
HHT = 0, and therefore CSS(C1, C⊥1 ) is a valid CSS code encoding 4−3 = 1 logical qubit.
Taking x0 = 0000000 and x1 = 1111111 as representatives of C1/C⊥1 , and enumerating
the elements of C⊥1 = Im(H) as

C⊥1 = {0000000, 0001111, 0110011, 0111100, 1010101, 1011010, 1100110, 1101001},

we obtain the logical qubits as

|0̄〉 =
1

2
√

2
(|0000000〉+ |0001111〉+ |0110011〉+ |0111100〉+ |1010101〉

+ |1011010〉+ |1100110〉+ |1101001〉,

|1̄〉 =
1

2
√

2
(|1111111〉+ |1110000〉+ |1001100〉+ |1000011〉+ |0101010〉

+ |0100101〉+ |0011001〉+ |00101101〉.

This illustrates one of the main strengths of the stabilizer formalism: in general, the
logical qubits are given by very long expressions (a superposition over an exponential
number of basis states), and the generators of the stabilizer yield a much more efficient
description of the code.
The generators of the stabilizer can be chosen to be the rows of H1 for X-type generators
and the rows of H⊥2 = H1 for Z-type generators:

X4X5X6X7,

X2X3X6X7,

X1X3X5X7,

Z4Z5Z6Z7,

Z2Z3Z6Z7,

Z1Z3Z5Z7.

Lemma 11. The minimum distance of a CSS code CSS(C1, C2) is min(d(C1), d(C⊥2 )).
1Here, we take the convention that the image of G is the right image, i.e., Im(G) = {Gx : x ∈ Z4

2}.
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This implies that Steane’s 7-qubit code is a [[7, 1, 3]] quantum code.
We prove the lemma by describing an explicit error correction strategy for a CSS code.

Error correction for a CSS code.

The general strategy is as usual: measure the syndrome and apply a correction. For
CSS codes, the syndrome is naturally divided into two parts: X-type errors are corrected
with the syndrome of the Z-type generators, and Z-type errors are corrected with the
syndrome of the X-type generators. This suggests a two-part procedure:

– X-type errors: (i) compute the syndrome for code C1 (i.e. for generators of the
form Zf for f a row of H1): this is the reversible operation

|y〉|0 . . . 0〉 7→ |y〉|s1(y)〉,

with s1(y) = H1y, the syndrome of y with respect to code C1; (ii) measure the
syndrome, and (iii) correct for bit-flips by applying Pauli-X corrections;

– swapping between codes: apply a Hadamard transform to every qubit;

– Z-type errors: same procedure as before but for the code C⊥2 , i.e. generators of
the form Xe for e a row of H⊥2 ;

– returning to the initial code: apply again a Hadamard transform to every qubit.

Let us verify that this decoding procedure correctly recovers the codeword provided that
the weight of the error is less than t, where t is the maximum number such that both C1
and CT2 can tolerate t errors2.
Consider a Pauli error XvZw with bit strings v, w ∈ {0, 1}n applied to a codeword∑

j αj|xj + C2〉. The state becomes

XvZw
∑
j

αj|xj + C2〉 =
∑
j

αj(−1)v·wZw|xj + v + C2〉

where we used that XvZw = (−1)v·wZwXv.
The first step of the correction procedure corrects X-type errors by computing the syn-
drome relative to C1. This will yield the syndrome of v for C1, and provided that |v| 6 t,
the procedure will return v and apply the Pauli correction Xv, giving,∑

j

αj(−1)v·wXvZw|xj + v + C2〉 = Zw
∑
j

αj|xj + C2〉.

2The parameter t is related to the minimum distance via d = 2t+ 1.
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After the Hadamard transformation, the state becomes

H⊗nZw
∑
j

αj|xj + C2〉 = XwH⊗n
∑
j

αj|xj + C2〉 (since H⊗nZw = XwH⊗n)

=
∑
j

αjX
wH⊗nXxj |C2〉

=
∑
j

αjX
wH⊗nXxjH⊗n|C⊥2 〉 (proven in exercise)

=
∑
j

αjX
wZxj |C⊥2 〉.

Using the same argument as before, one can compute the syndrome relative to C⊥2 and
correct the X-type error. This will work correctly provided that |w| 6 t, where t is a
lower bound on the correction capacity of C⊥2 . Undoing the Hadamard transform then
returns the original codeword.

Gilbert-Varshamov bound. The first bound guarantees the existence of good quantum
codes, such that both the number of logical qubits and the minimum distance are linear
in n.

Theorem 12 (Gilbert-Varshamov). There exist CSS codes [[n, k, d]] with rate R = k/n
satisfying

R > 1− 2h

(
d

n

)
,

where h(x) = −x log2 x− (1− x) log2(1− x) is the binary entropy.

Proof. The proof strategy is a counting argument. Once we fix a code, it is always possible
to apply a random linear transformation to it to get another code. In particular, this
shows that any vector is equally likely to belong to a random code. Let us therefore use
the union bound to bound the probability that a random code of dimension k contains a
nonzero word of weight less than d:

P(code of dim k with word of weight 6 d) 6 (number of words)× (word has weight 6 d)

6 2k

∑d
i=0

(
n
i

)
2n

≈ 2k2nh( d
n)2−n

≈ 2n( k
n
−1+h( d

n)).

In particular, if k
n
> 1− 2h

(
d
n

)
, then this probability is strictly less than 1.
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