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Quantum error correction:
Lecture 3 — the toric code

At the end of the 90s, Alexei Kitaev showed that cellullations of surfaces (and of higher-
dimensional manifolds) gave a very general method to derive CSS codes, with parameters
depending on the properties of the surface. The most famous example is the toric code,
which can be realized by taking a square cellullation of a torus.

Consider an N × N square grid on a torus, and put a qubit on each of the 2N2 edges.
We define a CSS code by choosing the following generators of weight 4:

– plaquette operators: for each plaquette p on the grid, define gXp :=
⊗

e∈∂p Xe, where
e ∈ ∂p means that edge e belongs to the boundary of plaquette p,

– star operators: for each vertex v in the grid, define gZv :=
⊗

e∼v Ze, where i ∼ v
means that edge e is incident to vertex v.

Let us immediately verify that these generators commute: for this, it is enough to notice
that a vertex and a plaquette operator either do not overlap, or else overlap in exactly 2
positions.

Figure 1: Local structure of the toric code: qubits are placed on edges, vertex operators
are the product of X operators applied to the 4 neighboring qubits of a vertex, plaque-
tte operators are the product of Z operators applied to the 4 qubits on the boundary
of a plaquette (By James Wootton, https://commons.wikimedia.org/w/index.php?
curid=11823316)

There are N2 vertices on the grid and N2 plaquettes, so we have defined 2N2 generators.
Note, however, that these generators are not independent since the product of all vertex
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operators is the identity, and the product of all plaquette operators is also the identity
(this is because every qubit, i.e. every edge, belongs to two plaquettes and to two stars):⊗

p

gXp = 1,
⊗
v

gZv = 1.

There are the only nontrivial relations, meaning that there are 2N2 − 2 independent
generators for 2N2 qubits, which yields 2 logical qubits.
From our earlier definition of CSS codes, we need two classical codes C1 and C2, with
C2 ⊆ C1:

– the code C1 is the cycle code of the grid: the support of codewords corresponds to
a cycle, i.e. its boundary is zero;

– the code C2 is generated by words whose support is the boundary of a set of pla-
quettes.

The inclusion C2 ⊂ C1 follows from the fact that the boundary of a boundary is always
zero:

∂∂ = 0.

This relation is at the heart of all topological/homological quantum error correcting code
constructions.

CSS codes from algebraic topology. More formally, one can define the following
chain complex:

C2 = F
N2

2
∂2−→ C1 = F

2N2

2
∂1−→ C0 = F

N2

2

where C2, C1, C0 are vector spaces corresponding respectively to the spaces of plaquettes
(Z-generators), edges (qubits) and vertices (or star, X-generators), and such that

∂1 ◦ ∂2 = 0.

The classical codes of the CSS construction are given by

C1 = ker ∂1, C2 = Im ∂2.

In this language, the space of Z-logical operators is (ker ∂1)/(Im ∂2), which is, by defi-
nition, the first homology group of the complex. In order to study the X-type logical
operators, one can consider the co-complex, where the boundary operators are the trans-
posed operators of the boundary operators of the complex:

C0 = F
N2

2

∂T
1−→ C1 = F

2N2

2

∂T
2−→ C2 = F

N2

2 .

This is again a valid complex since ∂T
1 ◦ ∂T

2 = 0.
Every such chain complex of length 3 gives rise to a CSS code.
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Logical operators of the toric code. In order to describe the logical qubits of the
toric code, we need to understand the equivalence classes of C1/C2, that is, the cycles
that are not a boundary. There are indeed two inequivalent families of such cycles,
corresponding to the two types of loop around the torus. These cycles are homologically
nontrivial meaning that they cannot be deformed (by addition of boundary) to yield the
zero cycle. For this reason, the toric code is an example of topological code: properties of
the quantum code result from the topology of the underlying manifold. In fact, the toric
code is given by a specific cellullation of the torus, that is, a decomposition of the torus
in plaquettes. The standard toric code uses square plaquettes but one could choose other
types of plaquettes, for instance triangles.

Figure 2: Local structure of the toric code: qubits are placed on edges, vertex operators
are the product of X operators applied to the 4 neighboring qubits of a vertex, plaque-
tte operators are the product of Z operators applied to the 4 qubits on the boundary
of a plaquette (By James Wootton, https://commons.wikimedia.org/w/index.php?
curid=11823316)

In particular, since the minimum size of a nontrivial cycle is N , we deduce that the
minimum distance of the code is also N , and the parameters of the toric code read:

[[2N2, 2, N ]].

Another particularly interesting feature of the toric code is that it is an example of low-
density parity-check (LDPC) code, meaning that each generator only involves a constant
number of qubits (4 for the toric code) and that each qubit is only involved in a constant
number of generators (4 again for the toric code). This LDPC condition is particularly
important when it comes to experimental implementation since measuring the syndrome
for the toric code will only require small circuits involving at most 4 physical qubits for
each bit of the syndrome. In fact, the leading approaches to build a quantum computer
are based on the toric code (or its cousin the surface code).

Despite an intensive study of quantum LDPC codes, it turned out to be extremely dif-
ficult to find better LDPC codes than the toric codes. For about 20 years, the best
bound for the minimum distance was n1/2 log1/4 n. In 2020, a series of papers showed
that dmin = Θ(n/ log n) is achievable! This was quickly followed by 2 major break-
throughs: Hastings, Haah and O’Donnell showed how to get dmin ≈ n3/5, and then
Panteleev and Kalachev achieved a distance n/ log n. Finally, in November 2021, Pan-
teleev and Kalachev proved the existence of asymptotically good quantum LDPC codes
with dimension k = Θ(n) and distance dmin = Θ(n). We will discuss some examples of
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codes better than the toric code in the next lecture.

Decoding the toric code.

Let us first consider X-type errors. Their associated syndrome is obtained via the Z-type
generators, corresponding to vertices. Let XE be an X-type error with support on the
set E. Then the syndrome of XE is given by the set of vertices in the boundary of E:

s(XE) = ∂E.

In order to decode, one must therefore find an error with the appropriate syndrome, that
is to find a pattern of small weight with a given boundary, such that this pattern differs
from the true error by a sum of generators: they should differ by a boundary. A partic-
ularly popular decoder is the algorithm minimum weight perfect matching. This is not
optimal, however, since the most probable error isn’t necessarily the error of minimum
weight, but rather the error whose equivalence class is the most probable. However, the
minimum weight perfect matching algorithm is efficient. More precisely, its complexity
scales like the cube of the number of qubits, i.e. like N6. While this is efficient in the
computer science sense, that is polynomial time, this is far from fast, and alternative
decoders have been devised which have a complexity scaling linearly with the number of
qubits, but slightly worse efficiency (that is, they cannot correct errors as large as the
minimum weight perfect matching decoder).

In order to address Z-type errors, it is convenient to exploit Poincaré duality : the dual
of the cellulation looks exactly like the initial cellulation, but with the roles of vertices
and plaquettes exchanged. In other words, one can correct Z-type errors with the same
approach as explained for the X-type errors, but working in the dual cellulation.

The threshold of the toric code is about 10 − 11% for the depolarizing channel, corre-
sponding to an error model where X, Y , Z errors occur independently with probability
p/3 and not error occurs with probability 1 − p. This means that for error rates below
the threshold, increasing the code size will result in better (lower) logical error rate (after
optimal decoding).

Beyond the toric code. This approach isn’t limited to tessellations of the torus, but
can be generalized in a straightforward way to cellullations of arbitrary closed manifolds
in arbitrary dimensions. Even dimensions are convenient to exploit the Poincaré duality,
and this is why the 4-dimensional toric code is also quite popular. One can also change the
geometry and work with hyperbolic geometry rather than Euclidean space. In particular,
hyperbolic geometry is very useful to get codes with a large dimension. It is then possible
to define quantum codes with a linear dimension k = Θ(n) and with a polynomial distance
dmin = Ω(n1/5), which is not possible in Euclidean geometry.
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