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Quantum error correction:
Lecture 4 — hypergraph product codes

Note. During the class, I covered quantum Tanner codes instead of hypergraph product
codes.

The toric code that we discussed in the previous lecture is the simplest topological code.
In general, one can define a topological code for any tessellation of a closed manifold.
Let us restrict ourselves to 2D surfaces. In this case, a tessellation is a partition of the
surface into a set of elementary cells called plaquettes (of dimension 2) together with
edges (dimension 1) and vertices (dimension 0). A topological code is a CSS code defined
by two classical codes C1 and C2, with the property that C⊥2 ⊆ C1, where

– the code C1 is the cycle code of the tessellation: the support of codewords corre-
sponds to a cycle, i.e. its boundary is zero;

– the code C⊥2 is generated by words whose support is the boundary of a set of
plaquettes.

The inclusion C⊥2 ⊂ C1 follows from the fact that the boundary of a boundary is always
zero:

∂1 ◦ ∂2 = 0

for the complex

C2 = F
P
2

∂2−→ C1 = F
E
2

∂1−→ C0 = F
V
2

where C0 is the F2-space with the basis given by the vertices V (0-dimensional objects),
C1 is the F2-space with basis elements corresponding to edges E (1-dimensional objects)
and C2 is the F2-space with basis elements corresponding to plaquettes P (2-dimensional
objects).
Physical qubits are associated with edges, Z-type generators are associated with plaque-
ttes and X-type generators are associated with vertices. The space of logical operators
corresponds to homologically non trivial cycles (i.e. cycles that are not a boundary):

C1/C⊥2 = ker ∂1/im ∂2.

This group is called the first homology groupH1 of the tessellation and its dimension gives
the number of logical qubits encoded in the quantum code. For a closed 2-dimensional
surface, the dimension of H1 is twice the number of holes in the surface. For the toric
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code, it is equal to 2.

It is also useful to consider the co-complex of the tessellation:

C2 = F
P
2

∂T
2←− C1 = F

E
2

∂T
1←− C0 = F

V
2

where arrows are reversed and boundary operators are replaced by coboundary operators.
The matrix of a coboundary operator is simply the transposed matrix of the corresponding
boundary operator. Formally, the three spaces of binary vectors C2, C1, C0 should be
replaced by their dual space, i.e. the spaces of linear forms on C2, C1, C0. However, for
a finite dimensional space Fn

2 , both the space and its dual are isomorphic and we can
ignore this issue.
The minimum distance of a CSS code is the minimum of two distances: d = min(dX , dZ)
where

dX = min
w∈C1\C⊥

2

|w|, dZ = min
w∈C2\C⊥

1

|w|.

In particular, dX is the minimal length of a cycle that is not a boundary. Similarly, dz is
the minimal length of a cocycle that is not a coboundary. For the toric code, it is possible
to show that the distance scales like the square-root of the length of the code.

Codes obtained in this way from tessellations of 2D surfaces are one of the main ap-
proaches towards quantum fault-tolerant computing, yet they don’t display very good
parameters. In fact, Bravyi, Poulin and Terhal have showed that their parameters always
satisfy:

kd2 = O(n).

This is quite far from the ideal upper bound that would scale like n3.

Finding quantum LDPC codes for which d grows significantly faster than
√
n has re-

mained completely opened for more than 20 years. A simpler task was to improve the
rate k/n of the code without decreasing the distance below

√
n. The main new idea in

this direction was the hypergraph product code construction due to Jean-Pierre Tillich
and Gilles Zémor.

CSS codes from algebraic topology. Following the idea of the topological quantum
code construction described above, we can see that a CSS code is in general given by a
chain complex of length 3:

C2 = F
mZ
2

∂2−→ C1 = F
n
2

∂1−→ C0 = F
mX
2

where C2, C1, C0 are vector spaces corresponding respectively Z-generators, physical qubits
and X-generators, and such that

∂1 ◦ ∂2 = 0.

The classical codes of the CSS construction are given as before by

C1 = ker ∂1, C2 = Im ∂2.

In this language, the space of Z-logical operators is again H1 = (ker ∂1)/(Im ∂2).
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Tensor product of chain complexes. A natural way to obtain a chain complex of
length 3 is to take the tensor product of two chains complexes of length 2:

(C1
∂C−→ C0) ⊗ (D1

∂D−→ D0).

This gives a new chain complex

(C1 ⊗D1)
∂2−→ (C0 ⊗D1 + C1 ⊗D0)

∂1−→ (C0 ⊗D0),

with

∂2 := (∂C ⊗ idD, idC ⊗ ∂D)

∂1 := idC ⊗ ∂D + ∂C ⊗ idD.

It is immediate to check that

∂1 ◦ ∂2 = (idC ⊗ ∂D + ∂C ⊗ idD)(∂C ⊗ idD, idC ⊗ ∂D)

= ∂C ⊗ ∂D + ∂C ⊗ ∂D

= 0

since we work over F2.

Note that a chain complex of length 2 is nothing but a classical linear code, where the
boundary operator plays the role of the parity check matrix. This means that starting
with two arbitrary classical codes (specified by their parity-check matrices), one obtains a
quantum CSS code: this is the hypergraph product construction. Note that the terminol-
ogy of hypergraph product code construction comes from the initial intuition behind the
construction: the idea was to take the product of the Tanner graphs of two classical codes.

Let us change the notations a little bit and denote by C1 = [n1, k1, d1] and C2 = [n2, k2, d2]
the two classical codes with respective parity-check matrices H1 and H2. We also define
the transpose codes CT

1 = [n1− k1, k
T
1 , d

T
1 ] and CT

2 = [n2− k2, k
T
2 , d

T
2 ] that admit HT

1 and
HT

2 as their parity-check matrices.

Theorem 1. The hypergraph product code C1 ⊗ C2 has the following parameters

Jn1n2 + (n1 − k1)(n2 − k2), k1k2 + kT
1 k

T
2 ,min(d1, d2, d

T
1 , d

T
2 )K.

The toric code as an hypergraph product code. A first example of hypergraph
product code is obtained by taking C1 = C2 to be a repetition code with an n× n cyclic
parity-check matrix. In this case, we get n1 = n2 = n, k1 = k2 = kT

1 = kT
2 = 1 and

d1 = d2 = dT1 = dT2 = n. One exactly recovers the parameters of the toric code J2n2, 2, nK.

Hypergraph product code of two good LDPC codes. Consider two good classical
codes, that is ki, di = Θ(n). If the parity-check matrices are chosen to be full rank, then
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kT
1 = kT

2 = 0 and we get the corresponding minimum distances dT1 , d
T
2 = ∞. Then the

resulting CSS code has parameters:

JΘ(n2),Θ(n2),Θ(n)K.

In other words, one keeps the same distance than the toric code, but the number of logical
qubits is now linear in the length instead of being constant!

Decoding hypergraph product codes. Given the remarkable parameters of the con-
struction and its versatility, it is natural to ask whether it is possible to decode hypergraph
product codes efficiently. Several solutions exist and try to mimic the decoding of clas-
sical LDPC codes. One solution is particularly efficient and comes with a decoder that
can be parallelized to work in logarithmic depth: the small-set-flip decoder of quantum
expander codes. Such codes even offer the possibility of quantum fault-tolerance with
only a constant space overhead instead of a polylogarithmic overhead as promised by
concatenation.
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