Quantum Information Theory

Exercise sheet 7

(Dated: March 5, 2022)

- 1. Write an expression for a generator matrix encoding k bits using r repetitions for each bit. This is a [rk, k] linear code and should have a $rk \times k$ generator matrix.
- 2. Let H be a parity check matrix such that any d-1 columns are linearly independent, but there exists a set of d linearly dependent columns. Show that the code defined by H has distance d.
- 3. A CSS code $CSS(\mathcal{C}_1, \mathcal{C}_2)$ is defined from two classical linear codes \mathcal{C}_1 , \mathcal{C}_2 of parameters $[n, k_1]$ and $[n, k_2]$, such that $\mathcal{C}_2 \subseteq \mathcal{C}_1$. The quantum code has parameters $[[n, k_1 k_2]]$ and is spanned by the vectors

$$|x_j + \mathcal{C}_2\rangle := \frac{1}{2^{k_2/2}} \sum_{y \in \mathcal{C}_2} |x_j + y\rangle,$$

where the elements of $\{x_j\}_{j=1...2^{k_1-k_2}}$ belong to the quotient $\mathcal{C}_1/\mathcal{C}_2$. In other words, they satisfy $x_i + x_j \notin \mathcal{C}_2$, for any pair $x_i \neq x_j$.

The X-type generators are given by the k_2 rows of $H_2^{\perp} = G_2^T$ and the Z-type generators are given by the $n - k_1$ rows of H_1 .

Let $e \in \mathbb{Z}_2^n$ correspond to a row of H_2^{\perp} (i.e., $e \in \mathcal{C}_2$), the associated X-generator is

$$X^e = \bigotimes_{i=1}^n X_i^{e_i}$$

Similarly, if f is a row of H_1 , then define the corresponding Z-generator as

$$Z^f = \bigotimes_{i=1}^n Z_i^{f_i}$$

Show that such generators commute, and that they stabilize the codewords.

4. Let \mathcal{C} be a linear code [n, k] and define the quantum state

$$|\mathcal{C}\rangle = \frac{1}{\sqrt{|\mathcal{C}|}} \sum_{y \in \mathcal{C}} |y\rangle.$$

Show that

$$H^{\otimes n}|\mathcal{C}\rangle = |\mathcal{C}^{\perp}\rangle$$

where \mathcal{C}^{\perp} is the dual code defined as

$$\mathcal{C}^{\perp} = \{ y \in \mathbb{Z}_2^n : x \cdot y = 0, \forall x \in \mathcal{C} \}.$$
(1)

5. Consider a quantum error correcting code that encodes one logical qubit into five physical qubits, with the logical qubit states

$$\begin{split} |\bar{0}\rangle &= \frac{1}{4} (|00000\rangle \\ &+ |10010\rangle + |01001\rangle + |10100\rangle + |01010\rangle + |00101\rangle \\ &- |11000\rangle - |01100\rangle - |00110\rangle - |00011\rangle - |10001\rangle \\ &- |01111\rangle - |10111\rangle - |11011\rangle - |11101\rangle - |1110\rangle) \\ |\bar{1}\rangle &= \frac{1}{4} (|11111\rangle \\ &+ |01101\rangle + |10110\rangle + |01011\rangle + |10101\rangle + |11010\rangle \\ &- |00111\rangle - |10011\rangle - |11001\rangle - |11100\rangle - |01110\rangle \\ &- |10000\rangle - |01000\rangle - |00010\rangle - |00001\rangle) \end{split}$$

(a) Show that $|\bar{0}\rangle$ and $|\bar{1}\rangle$ are simultaneous eigenstates with eigenvalue +1 of the operators

XZZXI, IXZZX, XIXZZ, ZXIXZ.

Note that you don't need to check every case to prove this.

- (b) Show that this code can correct an X or Z error acting on any of the five qubits. Hint: explain how the different possible errors would be reflected by a measurement of the syndrome error.
- (c) Explain why this implies that the code can correct any single-qubit error.
- (d) Find the logical Pauli operators \bar{X} and \bar{Z} satisfying $\bar{X}|\bar{0}\rangle = |\bar{1}\rangle, \bar{X}|\bar{1}\rangle = |\bar{0}\rangle, \bar{Z}|\bar{0}\rangle = |\bar{0}\rangle, \bar{Z}|\bar{1}\rangle = -|\bar{1}\rangle.$