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Abstract

In this note, we present some notable results due to Roberson and Mančinska
[7] on quantum homomorphisms, precisely, the quantum sandwich theorem, the
decision problem, and some results on quantum graph parameters.
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1 Introduction

Unless stated otherwise, all graphs considered in this note are finite and simple. A
homomorphism from a graph X to a graph Y is a map f from V (X) to V (Y ) such
that x ∼ x′ implies f(x) ∼ f(x′), where ’∼’ denotes the adjacency relation between
two vertices in a graph. If X admits a homomorphism to Y , we will write X → Y ,
and X 6→ Y otherwise. For deeper discussion of graph homomorphisms, we refer
the reader to course note CR-17, lecture 9, and for details of graph definitions and
properties throughout this note, the best general reference is textbook Graph Theory
[2] by Bondy and Murty.

Before defining the quantum version of graph homomorphism, we first describe
the homomorphism game, which states as follows. For graphs X and Y , the (X,Y )-
homomorphism game is played between two players, Alice and Bob, and a referee.
The referee sends Alice and Bob vertices xA, xB ∈ V (X) respectively, and then they
reply to the referee vertices yA, yB ∈ V (Y ) accordingly. Though Alice and Bob
are allowed to agree on a strategy beforehand, they are not allowed to communicate
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during the game. In order to win the (X,Y )-homomorphism game, they must return
yA, yB satisfying following conditions,

consistency: if xA = xB, then yA = yB;

adjacency preserving: if xA ∼ xB, then yA ∼ yB.

We say that Alice and Bob can win the game if they have a strategy to win with
probability 1. The next proposition yields the equivalence between graph homomor-
phism and homomorphism game.

Proposition 1. Alice and Bob can win the (X,Y )-homomorphism game if and only
if X → Y .

The quantum homomorphism game are completely the same as classical homo-
morphism game except that Alice an Bob are allowed to share a quantum state
beforehand. If quantum players can win the (X,Y )-homomorphism game, we say

that there is a quantum homomorphism from X to Y , and write X
q→ Y , and X 6 q→ Y

otherwise. Clearly by the definition, if classical players can win the homomorphism
game, then so do quantum players, and hence X → Y implies X

q→ Y . However,
the reader may agree that such definition of quantum homomorphism is not very
appealing. In the next part, we will develop a mathematical definition of quantum
homomorphism.

Before going on, we would like to say briefly about the birth of quantum homo-
morphism. Quantum homomorphism was introduced very recently [7] by Roberson
and Mančinska in the hope of better understanding not only mysterious graph no-
tions as graph homomorphism, chromatic number, clique number, etc. but also the
advantage of quantum strategies over classical strategies in quantum information
and game theory. The origin of quantum homomorphism can be traced back to
2002 when Galliard and Wolf [5] introduced the quantum version of graph chro-
matic number. Since then, quantum graph parameters has been a topic of active
research in quantum information theory. For a recent account of this topic, we refer
the reader to the paper [3] due to Cameron et. al., and [6] due to Pausen et. al.

1.1 An alternative definition

A projector E of dimension d is a d × d matrix which are both idempotent i.e.
E2 = E, and Hermitian, i.e. E = E†. A projector is real if all its entries are
real numbers. Two projectors E,E′ are said to be orthogonal if EE′ = 0. A
measurement, or sometimes called POVM, is a collection of positive semi-definite
operators (Ei)1≤i≤k such that

∑k
i=1Ei = I. A measurement is projective if each Ei

is a projector.

Proposition 2. If (Fi)1≤i≤k are orthogonal projectors, then E =
∑k

i=1 Fi is a
projector.

Proof. Since Fi are idempotent, Hermitian, and pairwise orthogonal, it follows easily
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that E is both Hermitian and idempotent by arguments below,

E =
∑
i

Fi =
∑
i

F †i =

(∑
i

Fi

)†
= E†;

E2 =

(∑
i

Fi

)2

=
∑
i

F 2
i +

∑
i 6=j

FiFj =
∑
i

Fi = E.

In the light of definitions above, we now can provide a natural strategy for wining
the quantum homomorphism game. Alice and bob first share some quantum state
|ψ〉 ∈ CdA ⊗ CdB , and each possesses a collection of measurements (Ex)x∈V (X) =
((Exy)y∈V (Y ))x∈V (X) of dimension dA and (Fx)x∈V (X) = ((Fxy)y∈V (Y ))x∈V (X) of di-
mension dB, respectively. After receiving x and x′ from the referee, Alice performs
Ex while Bob performs Fx′ on their part of the share state |ψ〉, then they return the
outputs y and y′ to the referee. Clearly,

P
(
output y, y′| input x, x′

)
= 〈ψ|(Exy ⊗ Fx′y′)|ψ〉.

Thus to win the game, the following conditions need to be met,

consistency: 〈ψ|(Exy ⊗ Fxy′)|ψ〉 = 0 for y 6= y′;

adjacency preserving: 〈ψ|(Exy ⊗ Fx′y′)|ψ〉 = 0 for x ∼ x′ and y 6∼ y′.

It seems that using the same measurements for both player is feasible, and well
chosen measurements could discard |ψ〉. Precisely, Alice and Bob can win the game
if there exists a collection of projectors

(
Exy

)
x∈V (X),y∈V (Y )

satisfying∑
y∈V (Y )

Exy = I, ∀x ∈ V (X); (1)

Exy ⊗ Exy′ = 0 for y 6= y′; (2)

Exy ⊗ Ex′y′ = 0 for x ∼ x′ and y 6∼ y′, (3)

where condition (1) is for ensuring that Ex are measurements. Interestingly, the
inverse direction holds, and when Exy are real projectors.

Theorem 3 ([7, 3]). X
q→ Y if and only if there exists a collection of real projectors(

Exy

)
x∈V (X),y∈V (Y )

satisfying (1), (2), and (3).

As promised, Theorem 3 yields an alternative definition of quantum homomor-
phism, which is said in [8] ”palatable to mathematicians, and not too offensive to
physicists”. In fact both definitions are useful in the context of proving mathe-
matical results, which the reader may see throughout the note (or at least, right
below).

Proposition 4. X → Y implies X
q→ Y .

Proof. Let f be a homomorphism from X to Y . Let Exy = I if f(x) = y, and
Exy = 0 otherwise. It is easily seen that all conditions (1), (2), and (3) hold, and

hence X
q→ Y .
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For the sake of comprehensiveness, we provide below some properties of quantum
homomorphisms. Proofs can be found in [7].

1. Transitivity: if X
q→ Y and Y

q→ Z, then X
q→ Z.

2. Km
q→ Kn if and only if m ≤ n.

3. Suppose that X
q→ Y and X is connected, then there is some connected

component C of Y such that X
q→ C.

4. Lifting to classical homomorphism: if X
q→ Y , then there exists a graph Y ′

(not necessarily finite) such that X → Y ′.

2 Main results

The order of this section is as follows. We first present the Lovász ϑ number and the
quantum version of sandwich theorem. Then we offer the reader some taste about
the decision problem of quantum homomorphisms, and finally, provide some other
results on quantum graphs parameters.

2.1 Quantum sandwich theorem

The Lovász ϑ number was first introduced by Lovász in 1979, which is often defined
as follows. Let AX range over all symmetric matrices of size |V (X)| such that aij = 1
whenever i = j or (i, j) /∈ E(X). Then the Lovász number of X, denoted ϑ(X), is
the minimum possible of the largest eigenvalue of AX . The Lovász theta number
of the complement of a graph is often denoted ϑ(X); however we here prefer to
use ϑ(X) as in [7]. Although Lovász number is defined to deal with the Shannon
capacity of graph, it has a natural connection to graph homomorphism.

Proposition 5. If X → Y , then ϑ(X) ≤ ϑ(Y ).

We give below an alternative definition of ϑ(X), which will be more useful in the
sense of quantum homomorphism. For m ∈ N and ε > 0, let S(m, ε) be the infinite
graph whose vertices are unit vectors in Rm and two vectors u and v are adjacent if
uT v = −ε. Then

ϑ(X) = min
X→S(m,ε)

(1 + 1/ε).

We here recall definitions of some parameters of graph X in the context of graph
homomorphism,

chromatic number: χ(X) := min{n : X → Kn};
clique number: ω(X) := max{n : Kn → X};
independence number: α(X) := ω(X).

Unlike three above parameters, whose decision problems are known to be NP-
complete, Lovász number can be computed in polynomial-time. The best known
result for Lovász number is the sandwich theorem, which yields a polynomial-time
bound for all three parameters (the bound of α(X) can be given via the bound of
ω(X)).
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Theorem 6 (Lovász sandwich theorem). ω(X) ≤ ϑ(X) ≤ χ(X).

Thank to the definition of quantum homomorphism, we now can now well define
corresponding quantum graph parameters as follows.

quantum chromatic number: χq(X) := min{n : X
q→ Kn};

quantum clique number: ωq(X) := max{n : Kn
q→ X};

quantum independence number: αq(X) := ωq(X).

It follows easily that ωq(X) ≤ χq(X). Indeed suppose ωq(X) = m and χq(X) = n.

Then by transitive property of quantum homomorphism, Km
q→ X

q→ Kn implies
Km

q→ Kn, and hence m ≤ n, i.e. ωq(X) ≤ χq(X). The central result in [7] is
the quantum version of sandwich theorem, which is much more appealing than the
original.

Theorem 7 (Quantum sandwich theorem, [7]).

ω(X) ≤ ωq(X) ≤ ϑ(X) ≤ χq(X) ≤ χ(X).

Proposition 4 immediately establishes the first and last inequalities. To deal
with the others, we first prove the quantum version of Proposition 5.

Theorem 8. If X
q→ Y , then ϑ(X) ≤ ϑ(Y ).

Proof. Suppose that ϑ(Y ) = 1+1/ε, then there exists m such that Y → S(m, ε). In
other words, there are unit vectors (vy)y∈V (Y ) ∈ Rm such that vTy vy′ = −ε if y ∼ y′.
If there is m′ such that X → S(m′, ε), then ϑ(X) ≤ 1 + 1/ε, the theorem is proved.
We now find such m′.

Since X
q→ Y , there exists real projectors Exy of dimension d satisfying Theorem

3. Let vec(Exy) denote the vector of size d2 obtained by putting the first column of
Exy over the its second column, over the third, etc. For every x ∈ V (X), we define

vectors ux ∈ Rmd2 as follows,

ux =
1√
d

∑
y∈V (Y )

vy ⊗ vec(Exy).

=⇒ uTxux′ =
1

d

( ∑
y∈V (Y )

vy ⊗ vec(Exy)

)T( ∑
y′∈V (Y )

vy′ ⊗ vec(Ex′y′)

)
=

1

d

∑
y,y′∈V (Y )

vTy vy′vec(Exy)vec(Ex′y′)

=
1

d

∑
y,y′∈V (Y )

vTy vy′Tr(ExyEx′y′)

We will prove that the map f : X → S(md2, ε) where f(x) = ux is a valid homomor-
phism. To this end, we first prove that ux ∈ V (S(md2, ε)), i.e. ux are unit vectors.
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Condition (2) yields Tr(ExyExy′) = 0 for all y 6= y′. Thank to condition (1) and the
facts that Exy are idempotent and vy are unit vectors, we have

uTxux =
1

d

∑
y∈V (Y )

vTy vyTr(ExyExy)

=
1

d

∑
y∈V (Y )

Tr(Exy)

=
1

d
Tr

( ∑
y∈V (Y )

Exy

)
=

1

d
Tr(I) = 1.

Hence ux are unit vectors. We are left with the task of showing that if x ∼ x′ then
uTxux′ = −ε. For every x ∼ x′, condition (3) yields Tr(ExyEx′y′) = 0 for all y 6∼ y′.
Thus

uTxux′ =
1

d

∑
y∼y′

vTy vyTr(ExyEx′y′)

=
−ε
d

∑
y∼y′

Tr(ExyEx′y′)

=
−ε
d

∑
y,y′∈V (Y )

Tr(ExyEx′y′)

=
−ε
d

Tr

(( ∑
y∈V (Y )

Exy

)( ∑
y′∈V (Y )

Ex′y′

))
=
−ε
d

Tr(I2) = −ε.

Proof of Theorem 7. Let n = ωq(X), then Kn
q→ X. Theorem 8 yields n = ϑ(Kn) ≤

ϑ(X), which establishes the second inequality. The third inequality can be settled
by the same manner. It is also valuable to note that α(X) ≤ αq ≤ ϑ(X) can be
directly obtained from Theorem 7.

2.2 Quantum homomorphism decision problem

Though the decision problem if X → Y for arbitrary X and Y is known to be
NP-complete, until now the complexity of the decision problem for quantum ho-
momorphism is still open (at least, base on our knowledge). In this part, we will
discuss about a promising approach to solve such problem. The method is reducing
the quantum decision problem into an equivalent problem on deciding the quantum
independent number of another graph. In other words, we reduce the problem if
X

q→ Y for arbitrary X and Y into if Kn
q→ Z for some graph Z, which is believed

to be simpler.

For graphs X and Y , we define their homomorphic product, denoted X n Y , to
be the graph with vertex set V (X) × V (Y ) and distinct vertices (x, y) and (x′y′)
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being adjacent if either x = x′, or x ∼ x′ and y 6∼ y′. The homomorphic product
has been well studied; the following are their useful properties,

K|V (Y )| → X n Y ; (4)

X n Y → K|V (X)|. (5)

The next theorem reduces the quantum decision problem to an equivalent one.

Theorem 9. X
q→ Y if and only if αq(X n Y ) = |V (X)|.

Proof. Let |V (X)| = m and |V (Y )| = n and Z = X n Y . The theorem can be

restated as X
q→ Y if and only if ωq(Z) = m. Property (5) deduces χ(Z) ≤ m.

Combining with quantum sandwich theorem yields ωq(Z) ≤ m. Hence

ωq(Z) = m⇐⇒ ωq(Z) ≥ m

⇐⇒ max{d : Kd
q→ Z} ≥ m

⇐⇒ Km
q→ Z.

For this reason, it turns out to prove that X
q→ Y if and only if Km

q→ Z.

In one direction, suppose X
q→ Y , then Alice and Bob has a quantum strategy for

winning the (X,Y )-homomorphism game. We will show Km
q→ Z by constructing

a quantum strategy for wining (Km, Z)-homomorphism game. Since |V (Km)| =
|V (X)|, we can assume that Km and X share the same vertex set. Now suppose that
Alice and Bob receive xA, xB for (Km, Z)-homomorphism game, they will perform
measurements for the (X,Y )-homomorphism game and obtain yA, yB, then return to
the referee (xA, yA), (xB, yB) ∈ V (Z). It remains to prove that (xA, yA), (xB, yB) are
successful answers, which can be easily confirmed by examining the two conditions.

• Consistency: if xA = xB then yA = yB, i.e. (xA, yA) = (xB, yB).

• Adjacency preserving: if xA 6= xB, then xA ∼ xB in Km, there are two cases,

– xA ∼ xB in X, then yA ∼ yB in Y , then (xA, yA) 6' (xB, yB) in X n Y ,
where ’6'’ denotes ”neither equal nor adjacent to”. Hence (xA, yA) ∼
(xB, yB) in Z.

– xA 6' xB in X, then clearly (xA, yA) 6' (xB, yB) in X n Y . Hence
(xA, yA) ∼ (xB, yB) in Z.

For the other direction, since Km
q→ Z, there are real projectors Fi(x,y) of di-

mension d with i ∈ V (Km) and (x, y) ∈ V (Z) satisfying Theorem 3, which can be
expressed as follows,∑

x∈V (X)
y∈V (Y )

Fi(x,y) = I, ∀i ∈ V (Km);

Fi(x,y) ⊗ Fi′(x′,y′) = 0 if


i = i′ and (x, y) 6= (x′, y′), or (a)
i 6= i′ and x = x′, or (b)
i 6= i′ and x ∼ x′ and y 6∼ y′. (c)
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For each x ∈ V (X) and y ∈ V (Y ) we let

Exy =
∑

i∈V (Km)

Fi(x,y).

Proposition 2 ensures that Exy are projectors. The proof is completed by showing
that conditions (1), (2) and (3) hold for Exy. Indeed

ExyEx′y′ =

( ∑
i∈V (Km)

Fi(x,y)

)( ∑
i′∈V (Km)

Fi′(x′,y′)

)
=

∑
i,i′∈V (Km)

Fi(x,y)Fi′(x′,y′).

• If x = x′ and y 6= y′, (a) and (b) imply that all addends of ExyEx′y′ are 0, and
so ExyEx′y′ = 0, which confirms (2).

• If x ∼ x′ and y 6∼ y′, (a) and (c) imply that all addends of ExyEx′y′ are 0, and
so ExyEx′y′ = 0, which confirms (3).

We are left with the task of verifying (1). To this end, we first show that

rank

( ∑
y∈V (Y )

Exy

)
= d, ∀x ∈ V (X). (6)

We let Mx =
∑

y∈V (Y )Exy. Since Exy has are d × d matrix, clearly rank(Mx) ≤ d
for every x. Furthermore,∑

x∈V (X)

rank(Mx) =
∑

x∈V (X)
y∈V (Y )

rank(Exy)

=
∑

x∈V (X)
y∈V (Y )

rank

( ∑
i∈V (Km)

Fi(x,y)

)

=
∑

i∈V (Km)

rank

( ∑
x∈V (X)
y∈V (Y )

Fi(x,y)

)

=
∑

i∈V (Km)

rank(I) = md.

Hence (6) holds, i.e. Mx has full rank, and so is inversible. By verifying (2), we
proved that (Exy)Y ∈V (Y ) are pairwise orthogonal; thus by Proposition 2, Mx is
idempotent. Hence

Mx = IMx = M−1x MxMx = M−1x Mx = I.

In other words, ∑
y∈V (Y )

Exy = I, ∀x ∈ V (X),

which validates (1) and completes the proof.
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We can deduce from Theorem 9 a straightforward corollary as below, which
(and also Theorem 8) though fails to provide a certificate for X

q→ Y , can still give

a certificate for X 6 q→ Y in polynomial-time.

Corollary 10. If X
q→ Y , then ϑ(X n Y ) = |V (X)|.

Proof. By Property (5), quantum sandwich theorem, and Theorem 9, we have

|V (X)| = αq(X n Y ) ≤ ϑ(X n Y ) = ϑ(X n Y ) ≤ χ(X n Y ) ≤ |V (X)|.

2.3 Graph parameters: classical vs quantum

Another interesting question in quantum homomorphism is characterizing the family
of pairs (X,Y ) such that X

q→ Y but X 6→ Y . The first approach is finding
(X,Y ) where one of them is a complete graph. Quantum sandwich theorem gives

χq(X) ≤ χ(X), so if the inequality turns out to be strict, X
q→ Km but X 6→ Km

where m = χq(X). The same argument holds for ω and α. It is not hard to find
such graphs X. People then started to ask how large the gaps can be. In the next
two theorems, Theorems 11 and 12, we will show very impressive results that the
gaps between quantum and classical parameters can actually be exponential.

For n ∈ N, let us denote by Ωn the graph whose vertices are the ±1 vectors of
length n with orthogonal vectors being adjacent. The Cartesian product of X and
Y , denoted X�Y , is the graph with vertex set V (X)×V (Y ) with two vertices being
adjacent if they are equal in one coordinate and adjacent in the other. Here are
some elementary properties of these concepts.

Ωn
q→ Kn (7)

X nKn = X�Kn. (8)

α(X�Y ) ≤ min{α(X)|V (Y )|, α(Y )|V (X)|}. (9)

Theorem 11 ([1, 4]). For any n divisible by 4, χ(Ωn) > 2n while χq(Ωn) ≤ n.

Proof of the former inequality can be found in [4] while proof of the latter is
available in [1].

Theorem 12. There exists an ε > 0 such that for any n divisible by 4,

αq(Ωn�Kn)

α(Ωn�Kn)
≥ 1

n

(
2

2− ε

)n

.

Proof. Properties (7), (8) and Theorem 9 yield

αq(Ωn�Kn) = |V (Ωn)| = 2n.

It was proved in [4] that there exists an ε > 0 such that for any n divisible by 4,
α(Ωn) ≤ (2 − ε)n. Property (9) implies α(Ωn�Kn) ≤ n(2 − ε)n, which completes
the proof.
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3 Perspectives

The quantum sandwich theorem states that

ω(X) ≤ ωq(X) ≤ ϑ(X) ≤ χq(X) ≤ χ(X).

Theorems 11 and 12 provide exponential gaps for the first and the last inequalities.
It is natural to ask can we also obtain exponential gaps for the second and the
third ones. Such question is still open, but a strict example for the second and
third inequalities can be easily found, for example ωq(C5) = 2, ϑ(C5) =

√
2, while

χq(C5) = 3, where C5 is the cycle of length 5. Besides, the decision problem is still
the central open question in quantum homomorphism. An efficient algorithm for
this problem would yield one more example showing the advantage of quantum over
classical computing.

Since quantum homomorphism was introduced very recently, there has been little
achievement on this topic. The most notable work [6] is due to Paulsen et. al., in
which the authors develop not only one but five different definitions of quantum
chromatic number. These variances come from the fact that ”the set of correlations
of quantum experiments may possibly depend on which set of quantum mechanical
axioms one chooses to employ”. Besides, there are still several interesting aspects of
quantum homomorphism discussed in [7] that we do not include into this note, for
example quantum version of Shannon capacity and projective rank.
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