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1 Introduction
Quantum computers are a severe threat to our modern cryptography, as with Shor’s
algorithm [14], assymetric cryptography may not be secure anymore.

However, the problem has been less studied for symmetric cryptography in the past.
Using Grover’s algorithm [5], one can find the private key of an encryption scheme using
O(
√
n) operations instead of an optimal O(n) in the classical setting (where n is the

number of possible keys). This means that in the general case, doubling the key size
could be enough to restore the same level of security as before. But is this result still
optimal for schemes of symmetric cryptography?

The paper [6] proves that it is not the case: using Simon’s algorithm [15] and some
properties of its behavior in the non-ideal case that we are going to detail next, the authors
manage to break the security of some symmetric cryptographic constructions, followed
by many widely used message authentication and authenticated encryption modes (ie,
algorithms used to forge authentication codes supposedly unforgeable by an unauthenti-
cated user). The complexity of the attack goes from an exponential one in the classical
setting to a linear one. It ends by detailing how to speed-up a known attack strategy in
the quantum setting: slide attacks.

2 Simon’s algorithm and attack strategy

2.1 Simon’s algorithm and results

As we already know, Simon’s problem [15] is given by:

Given f : {0, 1}n → {0, 1}n such that there exists s ∈ {0, 1}n which
verifies for all x, y ∈ {0, 1}n, [f(x) = f(y)]⇔ [x⊕ y ∈ {0n, s}], find s.

We will call the hypothesis over f of this problem Simon’s promise.
It can be solved using quantum circuits in O(n), with high probability. For the record,

the algorithm works by returning in O(1) time a vector orthogonal to s.
However, the condition on the function may not always be met. We will suppose that

there is always a s respecting the condition, but that it may not be the only one. In that
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case, we define ε, which will be bigger if there are more “collisions” (ie, x, y such that
f(x) = f(y)):

ε(f, s) = max
t∈{0,1}n\{0,s}

Pr
x

[f(x) = f(x⊕ t)]

In the perfect case where all the collisions have difference s, we have ε(f, s) = 0, and
ε will go up to 1, which is the only value for which s can never be recovered.

In order to exploit Simon’s algorithm in the non-ideal case, we use the following
theorem:

Theorem 1. If ε(f, s) ≤ p0 < 1, then Simon’s algorithm returns s with cn queries, with
probability at least 1−

(
2
(
1+p0
2

)c)n.
If we have no bound on ε(f, s), we can still establish the following result:

Theorem 2. After cn steps of Simon’s algorithm, if t is orthogonal to all the vectors
returned by the different steps of the algorithm, then for all p0, Prx[f(x⊕ t) = f(t)] ≥ p0
with probability at least 1−

(
2
(
1+p0
2

)c)n.
2.2 Attack strategy

The general attack strategy will rely on applying Simon’s algorithm on a function hand-
crafted from the encryption system, which we shall name Simon’s function, such that
there exists s which verifies:

• f(x) = f(x⊕ s) for all x

• we have ε(f, s) < 1

• s gives some information which helps break the cryptosystem

The function f will always be such that it can be computed by a quantum circuit,
although we are not going to detail it here.

3 Three-round Feistel, Even-Mansour construction

3.1 Three-round Feistel

The Feistel scheme is a classical algorithm used to build a random permutation out of
random functions or permutations, proved secure in the classical setting [11].

A three-round Feistel scheme takes (xL, xR) as an input and gives (yL, yR) = E(xL, xR)
as an output, with:

(u0, v0) = (xL, xR) (ui, vi) = (vi−1 ⊕Ri(ui−1), ui−1), (yL, yR) = (u3, v3)

The attack was described by Kuwakado and Morii [8] in the case where the Ri are
permutations, which is the case we are going to consider first. It uses the following as
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Simon’s function, where α0 6= α1 are arbitrary constants:

f : {0, 1} × {0, 1}n → {0, 1}n

b, x 7→ yR ⊕ αb where (yR, yL) = E(αb, x)

which gives:
f(b, x) = R2(x⊕R1(αb))

Then, we can prove that:

f(b′, x′) = f(b, x)⇔

{
x′ ⊕ x = 0 if b′ = b

x′ ⊕ x = R1(α0)⊕R1(α1) if b′ 6= b

Applying Simon’s algorithm on this function with s = 1 ‖ R1(α0) ⊕ R1(α1) gives
R1(α0) ⊕ R1(α1), which makes it distinguishable from a random permutation, because
applying Simon’s algorithm on a random permutation gives 0 with overwhelming proba-
bility [3] (this is a consequence of Theorem 2).

Moreover, the article shows that the result extends when the Ri are random functions
in general. In order to do this, we just need to prove that ε(f, s) < 1: actually, we have
ε(f, s) < 1/2, which can be proven using Theorem 1 and the fact that random functions
have few enough collisions [3].

3.2 Even-Mansour construction

The Even-Mansour construction [4] is a way to build a block cipher from a public per-
mutation P :

Ek1,k2(x) = P (x⊕ k1)⊕ k2
This construction is secure in the classical setting, requiring 2n/2 queries, where n is

the size of x.
However, it was shown by Kuwakado and Morii [9] that the construction is broken in

the quantum setting, using this function:

f : {0, 1} → {0, 1}n

x 7→ Ek1,k2(x)⊕ P (x) = P (x⊕ k1)⊕ P (x)⊕ k2

It can again be shown that we have f(x⊕ k1) = f(x) (ie, what we want with s = k1)
and ε(f, k1) < 1/2. Therefore, Simon’s algorithm gives us k1, which obviously breaks the
construction.

4 LRW construction
The LRW construction [10] turns a block cipher into a family of unrelated block ciphers.
Given a universal hash function h (which is part of the key), we define:

Ẽt,k(x) = Ek(x⊕ h(t))⊕ h(t)
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We will use the following function as Simon’s function:

f : {0, 1}n → {0, 1}n

x 7→ Ẽt0,k(x)⊕ Ẽt1,k(x)

which gives
f(x) = Ek(x⊕ h(t0))⊕ h(t0)⊕ Ek(x⊕ h(t1))⊕ h(t1)

The function satisfies f(x) = f(x ⊕ s) with s = h(t0) ⊕ h(t1), and it can again be
shown that it satisfies ε(f, s) ≤ 1/2 with overwhelming probability, assuming Ek behaves
as a random permutation (which is a reasonable assumption, since it is needed for the
security of the construction).

This gives a distinguisher between the LRW construction and an ideal block cipher,
which would give 0 with overwhelming probability as seen for the three-round Feistel
scheme.

Moreover, h is often of the form h(t) = f(t) · L, where L is a secret offset, that
h(t0) ⊕ h(t1) reveals. This is the case of MACs and authenticated encryption we are
going to see later.

5 Block cipher modes of operation
The most popular block-cipher based MACs and message authentication schemes are
broken in the quantum setting: the article presents attacks for CBC-MAC and some
variants, GMAC, PMAC, GCM, OCB and some CAESAR candidates. In all cases, a
classical attack would take O(2n/2) operations in the classical cases, but only takes O(n)
in the quantum case.

We will consider a single block cipher Ek acting on blocks of size n and associated with
the key k, and that the message is M composed of l blocks of size n: M = m1 ‖ . . . ‖ ml.
Also, we will consider that the output is of size n.

5.1 CBC-MAC

A MAC (Message Authentication Code) is a code associated to a message used to guar-
antee its authenticity. Its security is therefore defined by the unability to forge a code for
a message by someone with no access to k. More precisely, the attacker must produce
q + 1 valid tags after only q queries to an oracle producing the MACs, ie, the attacker
must produce a valid tag for an input for which he could not query the oracle.

CBC-MAC is one of the first MAC constructions to be created. Here, we will consider
the Encrypted-CBC-MAC variant [1] of CBC-MAC (because the original one is unsafe in
the classical case). It is defined as (where the key is composed of k and k′):

x0 = 0 xi = Ek(xi−1 ⊕mi) CBC-MAC(M) = Ek′(xl)

Again, we will define Simon’s function, for two arbitrary message blocks α0 6= α1:

f : {0, 1} × {0, 1}n → {0, 1}n

b, x 7→ CBC-MAC(αb ‖ x) = Ek′(Ek(x⊕ Ek(αb)))
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Which verifies:

f(b′, x′) = f(b, x)⇔

{
x′ ⊕ x = 0 if b′ = b

x′ ⊕ x = Ek(α0)⊕ Ek(α1) if b′ 6= b

ie, Simon’s promise for s = 1 ‖ Ek(α0)⊕ Ek(α1).
We can therefore get Ek(α0) ⊕ Ek(α1) using Simon’s algorithm and forge messages

using the following scheme:

1. Compute the tag of α0 ‖ m1 for any m1,

2. Use it for α1 ‖ m1 ⊕ Ek(α0)⊕ Ek(α1).

Let us define q′ the number of (quantum) queries made by Simon’s algorithm to learn
Ek(α0) ⊕ Ek(α1). By running the previous forging scheme q′ + 1 times for different m1

(which needs q′ + 1 additional (classical) queries, one for each α0 ‖ m1), we can forge
2(q′ + 1) tags, by only using a total of q′ + (q′ + 1) = 2q′ + 1 queries (q′ for Simon’s
algorithm, q′ + 1 for the α0 ‖ m1). So the security of the code is indeed broken, because
we produced more tags (2(q′ + 1)) than we made queries (2q′ + 1).

5.2 PMAC

PMAC [12] is a parallelizable MAC which uses secret offsets ∆i part of the secret key to
turn a block cipher into a tweakable block cipher. It is defined as:

ci = Ek(mi ⊕∆i) PMAC(M) = E∗k(ml ⊕
∑

ci)

where E∗k is a tweakable block cipher.
Similarly to the attack of LRW, we can get the difference of two ∆i by using:

f : {0, 1}n → {0, 1}n

x 7→ PMAC(m ‖ m ‖ 0n) = E∗k(Ek(m⊕∆0)⊕ Ek(m⊕∆1))

which satisfies f(m⊕ s) = f(m) for s = ∆0 ⊕∆1. It can be shown that ε(f, s) ≤ 1/2
when E is a good cipher, and Simon’s algorithm can be used to get the value of ∆0⊕∆1.

Valid tags can hence be forged, similarly as for CBC-MAC, because the tag for m1 ‖
m1 for an arbitrary m1 is also valid for m1 ⊕ ∆0 ⊕ ∆1 ‖ m1 ⊕ ∆0 ⊕ ∆1. Moreover, for
PMAC, offsets are defined as ∆i = γ(i) · L, where γ is a Gray encoding. L can thus be
recovered from ∆0 ⊕∆1, giving the ability to recover all the ∆i.

5.3 OCB

OCB [13] [12] [7] is an authenticated encryption mode: out of a messageM (which will be
encrypted) and an associated data A (which will only be authenticated), we will return
the encrypted message, along with an authentication tag τ . It will require a nonce N ,
which is a non-repeating input which we will suppose chosen randomly by the oracle in
our security definitions.
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Then, by finding a fN which depends on the nonce N but such that fN(M) = fN(M⊕
∆) for any nonce N , we can use the previous strategy with a random nonce to recover
∆. If ∆ is correctly chosen to be secret, this will provide a valid attack.

OCB is built from the LRW construction previously described. More precisely, it
takes as an input a nonce N , a message M = m1 ‖ . . . ‖ ml and associated data
A = a1 ‖ . . . ‖ a@ and returns a ciphertext C = c1 ‖ . . . ‖ cl and a tag τ :

ci = Ek(mi ⊕∆N
i ) τ = Ek(∆′Nl ⊕

∑
mi)⊕

∑
bi bi = Ek(ai ⊕∆i)

which gives, when the message is empty, the tag:

OCBk(N, ε,A) = φk(N)⊕
∑

bi bi = Ek(ai ⊕∆i)

which can be seen as a random variant of PMAC.
Moreover, the ∆i are independent from the nonce N , so we can apply the same

strategy as for PMAC and produce forgery attacks by using:

fN : {0, 1}n → {0, 1}n

x 7→ OCBk(N, ε, x ‖ x) = Ek(x⊕∆0)⊕ Ek(x⊕∆1)⊕ φk(N)

which verifies fN(a⊕∆0⊕∆1) = fN(a) and ε(fN ,∆0⊕∆1) ≤ 1/2 in the same conditions
as for the PMAC, which allows us to apply the same forgery attack even by using a
random nonce N .

6 Slide attacks
Slide attacks [2] is a class of attacks appliable to some cryptosystems, whose complexity
goes from O(2n/2) in the classical setting to O(n) in the quantum setting.

It can be applied to block ciphers made of r applications of the same round function
R, parametrized by the same key k. The attack works independently of r, and only works
in the case R is vulnerable to plaintext attacks.

In the classical setting, the attacker must collect 2n/2 encryptions of plaintexts, and
must find among it a pair of couples plaintext-ciphertext (P0, C0) and (P1, C1) such that
R(P0) = P1, which implies that R(C0) = C1 (R is supposed to make these couples
recognizable easily). A plaintext attack therefore breaks the scheme. This attack is
therefore faster than a bruteforce attack by a quadratic speed-up.

Using Simon’s algorithm, the attack can even become of linear complexity. In order
to do this, we will denote P the unkeyed round function, and Ek the whole encryption
function. We then define:

f : {0, 1} × {0, 1}n → {0, 1}n

b, x 7→

{
P (Ek(x))⊕ x if b = 0

Ek(P (x))⊕ x if b = 1

The slide property (which is basically the property saying that we get the same circuit
by “shifting” the series of R) gives that P (Ek(x))⊕ k = Ek(P (x⊕ k)), hence:

f(0, x) = P (Ek(x))⊕ x = Ek(P (x⊕ k))⊕ k ⊕ x = f(1, x⊕ k)

Therefore, f satisfies what we want with s = 1 ‖ k. It can be proved that ε(f, s) ≤ 1/2,
and thanks to Simon’s algorithm, k can be recovered in O(n).
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7 Conclusion
The article is really a breakthrough into the analysis of security of our current symmetric
cryptographic schemes in the post-quantum world. It shows that most of the symmetric
cryptography modes are completely broken in the quantum setting. Moreover, slide
attacks received an exponential speedup, also breaking cryptosystems which are sensitive
to it in the classical setting. More constructions might be broken in the quantum setting,
so, in the same way as post-quantum assymetric cryptography, post-quantum symmetric
cryptography will be very different from the one in the classical setting.

However, the article mostly deals with constructions based on already existing block
ciphers (with the three-round Feistel, LRW) and authenticated modes, the attacks on
authenticated encryption often being based on techniques close to the ones on authenti-
cated modes. Symmetric encryption algorithms such as AES, which is probably the most
used nowadays, are not referred to in the article, and so, remain for now unattacked.
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