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1 Introduction

Quantum states are the fundamental elements in quantum theory. How-
ever, there are a lot of discussions and debates about what a quantum state
actually represents. Is it corresponding directly to reality, or is it only a de-
scription of what an experimenter knows of some aspect of reality, a physical
system? There is a terminology to distinct the two theories: ontic state (state
of reality) or epistemic state (state of knowledge). In [1], this is referred as
the ψ-ontic/epistemic distinction.

The arguments started with the beginnings of quantum theory, with the
debates between Bohr-Einstein, concerning the foundations of quantum me-
chanics. In 1935, Einstein, Podolsky and Rosen published a paper stating
that quantum mechanics is incomplete. As a repsonse, Bohr also published
a paper, in which he defended the so called Copenhagen interpretation, a
theory strongly supported by himself, Heisenberg and Pauli, that views the
quantum state as epistemic [2].

One of the scientific works stating that the quantum state is less real is
Spekken’s toy theory [3]. It introduces a model, in which a toy bit as a system
that can be in one of the four states: (-,-), (-,+), (+,-) and (+,+), represent-
ing them on the xy plane, each of them being in a different quadrant. In this
representation, the quantum states are epistemic, they are represented by
probability distributions. Using this toy theory, Spekkens offers natural ex-
planations for some features of quantum theory, like the non-distinguishibility
of the non-orthogonal states and the no-cloning theorem.

There are many others suggesting that the quantum state is merely knowl-
edge, one common argument is the collapse of the state on measurement. If
the quantum state is direct representation of reality, the collapse is a myste-
rious process, which is not well-defined. But if it represents only knowledge,
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the measurement is simply an update for the probability distribution, after
obtaining some new information.

Another argument in favor of the ψ-epistemic interpretation is that a
single qubit may store an infinite amount of information, since there is an
infinite number of qubit states, however only a single bit of classical infor-
mation can be extracted. This could lead to the statement, that the qubit
contains only finite amount of information, representing only the knowledge
about the real physical state.

There are also many arguments supporting the theory, that a quantum
state represents directly reality. One of the biggest argument is coming from
interference phenomena, the famous wave-particle duality problem associated
with the double-slit experiment. The experiment was first performed by
Thomas Young, demonstrating the interference of waves of light. Later,
the experiment was also performed with electrons. The outcome of this
experiment is a theory that both light and matter behave like both particle
and wave [4]. This became the foundation of quantum mechanics. Many
scientists argue that as a consequence of this theory, a real wave function
must exist, which describes a quantum state of a system, thus the quantum
state is ontic.

There are many publications, that aim to prove that the quantum state
represents directly the reality, but none of them managed to provide a com-
plete and accepted proof.

This paper from Pusey, Barrett and Rudolph [5] is the first in a long
time that provides a complete proof about the ψ-ontic/deterministic distinc-
tion, stating that the quantum states represent directly the reality. However,
there are two assumptions in their theory, and the question is still not closed,
because despite that the authors provided a proof, it isn’t accepted by the
whole scientific community. There are many discussions addressing this pa-
per, some of them agreeing with it, others contradicting it.

Mixed states are sometimes, without doubt, representing knowledge about
which pure states were prepared, so they are sometimes epistemic. For this
reason, scientists are only concerned about the nature of pure quantum states
[1].
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2 The Pusey-Barrett-Rudolph (PBR) Theo-

rem

To introduce the main contribution of this paper, first the distinction between
ontic and epistemic states must be formalized. Harrigan and Spekkens [6]
were the first ones in giving such a model. They stated that if a quantum
state is only a representation of knowledge about a real physical system, it
is a subjective knowledge, since it also depends on the information available
to the experimenter. It follows, that distinct quantum states, which are not
orthogonal, may represent the same physical state. This idea is described
more formally in [7], and it is presented next.

Let λ ∈ Λ be a complete specification of the physical state of a system.
Let |ψ〉 be a quantum state of that system. If |ψ〉 also corresponds to a single
λ, then the quantum state is also a complete specification of the physical
state. But it could also correspond to a probability distribution µ(λ) over
the values λ.

Now let’s consider two possible quantum states of the system |ψ1〉 and
|ψ2〉, and their probability distributions µ1(λ) and µ2(λ). If they are or-
thogonal, their probability distributions can’t overlap in order to respect one
prediction of quantum theory, that ”a measurement of the projection oper-
ator (...) on a system prepared in the orthogonal state (...) yields 0” [7].
Formally, the non-overlapping can be written as µ1(λ)µ2(λ) = 0,∀λ ∈ Λ.
However, if |ψ1〉 and |ψ2〉 are not orthogonal, their probability distributions
could overlap: µ1(λ)µ2(λ) 6= 0, so both quantum states could represent the
same physical state λ. On the other hand, if their probability distribution
don’t overlap µ1(λ)µ2(λ) = 0, the quantum states represent directly physical
reality.

In this paper [5], and also in [1], the notion of two probability measures
overlapping is described formally using the variational distance.

Definition 1 The variational distance between two probability measures µ
and ν on the measurable space (Λ,Σ) is

D(µ, ν) = sup
Ω∈Σ
|µ(Ω)− ν(Ω)|

If µ1 and µ2 are two probability distributions, then D(µ1, µ2) = 1, if they
are completely disjoint, i.e. they don’t overlap (µ1(λ)µ2(λ) = 0).

In order to understand better the difference between ontic and epistemic
states, which was presented formally above, an example from classical me-
chanics will be shown, using the same approach as the authors from this
paper. Considering a point particle moving in one dimension, it can be
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(a) An ontic state is a point in phase
space.

(b) An epistemic state is a probability
density on phase space. Contours indi-
cate lines of equal probability density.

Figure 1: Figures from [1]

described by its position x on the line and its momentum p. All other prop-
erties, e.g. energy, can be expresed as function of x and p. In the paper,
the physical property notion is introduceed, meaning some function of the
physical state. This way, the physical state of the particle corresponds to a
point (x, p) in a two-dimensional phase space, shown in 1a. However, if its
position and momentum is not known, the particle’s state is represented with
a probability distribution µ(x, p). Since the distribution doesn’t represent di-
rectly the reality, only some knowledge, it is an epistemic state. Considering
a physical property described before, different values of the property corre-
spond to different disjoint regions of the space phase. This is illustrated in
1b. However, if two probability distributions µ1(x, p) and µ2(x, p) overlap, it
cannot refer to the physiscal property of the system.

To illustrate the same in terms of quantum theory, for two quantum
states |ψ1〉 and |ψ2〉, with probability distributions µ1(λ) and µ2(λ), if the
distributions don’t overlap, the quantum states refer to a physical property
of a system, otherwise, if they overlap even for one pair of quantum states,
they are epistemic states, representing only information.

After these definitions, the main theorem of the paper can be stated:
The quantum state must represent directly the reality, if two assumptions
are true. The first assumption is that isolated systems have a real physi-
cal state, while the other assumption is that the systems that are prepared
independently, have independent physical states. However, the theorem is ex-
pressed in a different way, based on contradiction. It states, that if a quantum
state represents only information about the real physical system, then the
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distributions of two distinct quantum states may overlap, thus resulting a
contradiction with the predictions of quantum theory.

The theorem, in general case, is reformulated more mathematically.

Assumption 1 There exists a measurable set Λ containing possible physical
states λ. Preparation of a quantum system in a state |ψ〉 means, that the
system is in one of the physical state λ, resulting from the sample from a
probability distribution µ(λ) over Λ.

Assumption 2 It is possible to prepare n systems independently in states
|ψ1〉 , ..., |ψn〉.

Theorem 1 Consider a preparation device which can produce a quantum
system in one of the states |ψ1〉 , ..., |ψn〉, each state associated with a proba-
bility distribution µi(λ) to result a λ ∈ Λ. Prepare n systems independently
in states |ψx1〉 , ..., |ψxn〉, where xi ∈ {1, ..., n}. Then, for a small ε > 0, the
probability distributions µ1, ..., µn are completely disjoint, thus the quantum
states represent directly the physical state of the system.

3 Proof of the PBR Theorem

The authors from the paper divided the proof in three parts: first a simple
case is presented, with two distinct qubit states, |0〉 and |+〉, then it is
extended to arbitrary states, |ψ0〉 and |ψ1〉. Finally, it is proven for the
general case, in formal setting, allowing also experimental errors and noise.

3.1 |0〉 and |+〉
Consider two preparation methods of a quatum system, which will end up
in either state |ψ0〉 = |0〉 or |ψ1〉 = |+〉 = (|0〉 + |1〉)/

√
2, with probability

distributions µ0(λ) and µ1(λ). Assume, that the distributions µ0(λ) and
µ1(λ) overlap. Then there exist a probability q > 0 that the physical state
associated to the system is from the overlapping region.

If there are two, independently prepared systems, with the same prop-
erties (two copies), either one of them could be in state |ψ0〉 or |ψ1〉. Now,
there is a probability of q2 that the systems will be in physical states λ1 and
λ2, both from the overlapping regions. It follows that the physical state of
the 2-qubit system is compatible with the four quantum states: |0〉 ⊗ |0〉,
|0〉 ⊗ |+〉, |+〉 ⊗ |0〉 and |+〉 ⊗ |+〉.

Consider performing a measurement of the two systems brought together
with entangled eigenstates:
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|ε1〉 =
1√
2

(|0〉 ⊗ |1〉+ |1〉 ⊗ |0〉),

|ε2〉 =
1√
2

(|0〉 ⊗ |−〉+ |1〉 ⊗ |+〉),

|ε3〉 =
1√
2

(|+〉 ⊗ |1〉+ |−〉 ⊗ |0〉),

|ε4〉 =
1√
2

(|+〉 ⊗ |−〉+ |−〉 ⊗ |+〉),

(1)

where |−〉 = (|0〉−|1〉)/
√

2. It can be easily proven that |ε1〉 is orthogonal
to |0〉 ⊗ |0〉, |ε2〉 is orthogonal to |0〉 ⊗ |+〉, |ε3〉 is orthogonal to |+〉 ⊗ |0〉
and |ε4〉 is orthogonal to |+〉 ⊗ |+〉. According to the quantum theory, all
outcomes have probability zero, because they are orthogonal, it leads to the
contradiction. This way, the assumption, that the two distributions overlap
is false, hence the quantum state is a physical property of the system.

3.2 Arbitrary |ψ0〉 and |ψ1〉
Similar to the previous case, consider a preparation device that can produce
a system in state |ψ0〉 or |ψ1〉, but in this case, they can be arbitrary states,
distinct and non-orthogonal. Also, assume that there exists a probability
q > 0 that the resulting physical state λ of the system after preparation is
from the overlapping region. Consider n systems prepared in this way (n
copies of this device), each of them could be in |ψ0〉 or |ψ1〉 state, so there
will be 2n different joint states of the n systems.

For a given large n, there exist a joint measurement on the n systems
brought together, such that every outcome has 0 probability given one of the
2n possible preparations, which infers the contradiction, i.e. there can be no
overlapping, proving the ontic nature of the quantum states.

First, the quantum states are rewritten with a chosen basis of Hilbert
space:

|ψ0〉 = cos(θ/2) |0〉+ sin(θ/2) |1〉
|ψ1〉 = cos(θ/2) |0〉 − sin(θ/2) |1〉

(2)

Then, the authors propose a quantum circuit that produces this kind of
measurement. For the n input states of the circuit, the following operator
will be applied:

Uα,β = H⊗nRαZ
⊗n
β , (3)
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where H = |+〉 〈0|+|−〉 〈1| is the Hadamard gate, Rα |00...0〉 = eiα |00...0〉
is a rotation gate applied to only one state, and Zβ = |0〉 〈0|+ eiβ |1〉 〈1|. At
the end of the circuit, each qubit is measured.

In the paper it is proven that for any n chosen, such that 21/n − 1 ≤
tan(θ/2), for any 0 < θ < π/2, there exists α and β so that the measurement
has the desired feature described before.

3.3 Formal proof with experimental errors and noise

In this case, consider a more general type of device that can produce a system
in a quantum state |ψi〉, which results in a physical state λ from the set of
possible physical states Λ, sampled from probability distribution µi(λ) over
Λ. By using n copies of this device, n independent system can be prepared
with quantum states |ψx1〉 , ..., |ψxn〉, resulting in physical states λ1, ..., λn
distributed according to the physical distribution µx1(λ1)µx2(λ2)...µxn(λn).

The authors prove that if an experiment is performed using this setting,
the probability for each measurement outcome will be within a small ε > 0.
To show that the probability distributions are distinct, the total variation
distance is used, which will be close to 1.

4 Strengths and weaknesses

This paper can be considered as a milestone in quantum mechanics. It an-
swers the rather old, but much discussed question of whether a quantum
state is ontic or epistemic, and it proves that actually it is ontic, given some
assumptions. Many papers addressed the result of this paper, agreeing with
it, or critisising it.

For instance, Antony Valentini, a theoretical physicist, told the Nature,
that this theorem is ”the most important general theorem relating to the
foundations of quantum mechanics since Bell’s theorem” [8]. But others, e.g.
on a blog [9], this theorem is called garbage, and they use pretty bad words
for those who believe it.

However, there are also some reasonable arguments to criticise this paper.
In a paper by Fine and Schlosshauer [10] it is claimed that ontic and epistemic
models can be converted into to each other, thus the distinction between these
two is just conventional. However, they describe only the procedure, and not
the definition of the equivalence after conversion, i.e. how the converted ontic
state is actually epistemic.

In my opinion, this paper provides an acceptable proof for the nature of
the quantum state, it gives an answer to a very important question, which is
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the fundamental of quantum mechanics, and which has been in the air for a
long time, discussed even by Einstein, Bohr and Schrodinger.

However, there are some apsect that can be considered as weaknesses of
the paper. First, the whole theorem is based on some assumptions. There
are works that try to weaken these assumptions, for instance the work of
Mansfield [11], but the theorem still can’t hold without some assumptions.
As future improvement the eliminations of these assumptions would be the
most important one, because it would answer all those critisisms based on
this argument, and it may get closer to officially answer the big question from
so many years.

As an interesting project related to this paper is to find all the ”gaps” in
quantum theory using this theorem and close them, which could lead to a
better understanding of the quantum field, and may open many new ways.
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