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Abstract

This report presents the results of my work about the Batch Tomography Problem that has been
done in collaboration with Omar Fawzi. The Batch Tomography Problem is an open problem raised
by Scott Aaronson in [Aar16] questioning the possibility of estimating for an unknown quantum state
ρ the probability of each outcome of a set of two-outcome POVMs of size N using only a number of
copies of ρ that would be polynomial in logN .

This document essentially reports the main attempts we made to advance towards a possible
solution to this problem. Most of the presented ideas were given to me by Omar Fawzi, whom I
would like to thank for his help and and the discussions I could have with him.
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1 Problem Statement
In the proof of an unpublished theorem (“Secret Acceptor Lemma”) stating the non-existence of a secure
quantum money scheme with limited storage [Aar16, p. 73], Aaronson provides a method which, given
a mixed state ρ and a set {E1, . . . , EN} of two-outcome POVMs1, provided that Tr (Ei∗ρ) ≥ p for some
i∗, is able to find Ei such that2 Tr (Eiρ) ≥ p− ε using a polylog N number of copies3 of ρ.

Therefore, finding Ei with large Tr (Eiρ) can be done in sublinear time in the number of candidate
POVMs. As a side note, Aaronson raises the possibility of a generalization of this result: would it be
possible to estimate with any fixed precision each one of the Tr (Eiρ)’s using polylog N copies of ρ?

Question 1 (The Batch Tomography Problem, [Aar16, p. 77]). Let ρ be an unknown state, {E1, . . . , EN}
a set of two-outcome POVMs, and suppose we have access to k copies ρ⊗k of state ρ. Is it possible to
estimate with fixed minimum probability p, for all i ∈ J1, NK, the probability Tr (Eiρ) of outcome i, with
fixed precision ε, using only a polylog N number k of copies of ρ?

Remark. A direct method to solve this problem, regardless of the constraint on the number of state
copies, would be determine exactly the d×d matrix ρ – which is initially unknown – using a full quantum
state tomography [AJK04], and subsequently compute Tr (Eiρ) for all i, giving an exact estimation with
probability 1. This can be performed using O

(
d2
)
independent measurement on ρ, i.e., using O

(
d2
)

copies4 of ρ. Note that this is a very high cost: as d = 2n, where n is the number of qubits characterized
by ρ, this method requires a number of copies that is exponential in n.

The following sections present most of our attempts we made to advance towards a solution to this
problem. Section 2 exposes a classical version of this problem that induces a quasi-linear solution.
Section 3 presents some methods based on the Quantum Union Bound and Chernoff bound that turned
out to be ineffective. Section 4 develops another method based on the extension of the classical method
of Section 2, which turned out to be inefficient. Section 5 finally finds a polylog solution to a variant of
the problem under specific conditions.

2 Classical Case
A similar classical problem that can serve as an analogy to the Batch Tomography Problem is the
following.

Question 2. Given an unknown random variable X over a set X and X1, . . . ,XN ⊆ X , how many
independent copies X1, . . . , Xk of X suffice to estimate with fixed minimum probability p, for all i ∈
J1, NK, Pr [X ∈ Xi], with fixed precision ε?

In this classical version, the quantum state ρ is replaced by a random variable, for which each POVM
corresponds to a test of membership to a given set of possible values. The following simple lemma shows
that a logarithmic number of independent copies is sufficient to solve this problem.

Lemma 3. The following estimator solves Question 2 with k = O (logN): for every i, Pr [X ∈ Xi] is
estimated by

Yi =
|{j ∈ J1, kK | Xj ∈ Xi}|

k
=

1

k

k∑
j=1

1Xj∈Xi .

Proof. Let us bound the error probability Perr of the estimator.

Perr = Pr [∃i ∈ J1, NK | |Yi − Pr [X ∈ Xi]| ≥ ε]

≤
N∑
i=1

Pr

∣∣∣∣∣∣1k
k∑
j=1

1Xj∈Xi − Pr [X ∈ Xi]

∣∣∣∣∣∣ ≥ ε


1I.e., (Ei, I − Ei) is a POVM: after measurement, Ei accepts ρ with probability Tr (Eiρ), and rejects it with probability
1− Tr (Eiρ).

2With probability at least 1− 1
N

.
3I.e., polynomial in logN .
4This bound can be improved to O

(
3log d

)
.
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Besides,
(
1Xj∈Xi

)
j
is a family of mutually independent random variables over {0, 1} following the same

distribution, and E
[
1Xj∈Xi

]
= Pr [X ∈ Xi]. Therefore, using Chernoff bound [Hoe63]:

Perr ≤
N∑
i=1

2e−2kε
2

= 2Ne−2kε
2

Since we would want to have Perr bounded by a constant, it follows that k = O (logN). Therefore, a
logarithmic number of copies of X suffices for this estimator to solve the problem.

This method, however, can not be transposed to the quantum case; the computations are actually
generalizable, but it is impossible to transpose the number of states because a measurement in quantum
mechanics may perturb the measured state, thus altering the following measures. In the classical case,
once x has been chosen randomly following Xj , we can test if x ∈ Xi for all i without perturbing the
result, whereas, in the quantum case, once we have measured whether Ei accepts ρ, the resulting state
ρ̃ may be very different from ρ, thus measuring whether Ei+1 accepts ρ̃ cannot give much information
about the probability of Ei+1 accepting ρ.

One way to avoid this problem of damaging measurements is to grant O (logN) states per POVM
Ei, thus giving to each measurement a fresh state ρ. This gives the following lemma.

Lemma 4 ([Aar16, p. 76]). O (N logN) states are sufficient to solve the Batch Tomography Problem.

We present in the following sections some attempts to improve this result.

3 Using the Quantum Union Bound
This section exposes some propositions that are based on a result that helps to minimize the impact of
damaging states.

3.1 Preliminaries
One way to overcome the problem of damaging measurements is to make good use of the Almost As
Good As New Lemma [Aar04], stating intuitively that a two-outcome measurement with a very likely
outcome damages slightly the measured state. This result can be generalized to a set of sequentially
applied POVMs, each of these having a very probable outcome, as the following Quantum Union Bound
states.

Theorem 5 (Quantum Union Bound, [Aar06]). Let Λ1, . . . ,Λm be two-outcome POVMs such that, for
all i ∈ J1,mK, Tr (Λiρ) ≥ 1 − ε. Then, after applying Λ1, . . . ,Λm sequentially to ρ, the probability that
any of the Λi’s rejects is at most m

√
ε.

This allows to solve the Batch Tomography Problem with precision ε = 1
2 with O (logN) states when

the probabilities to estimate are bounded away from 1
2 .

Lemma 6 ([Aar16, p. 76]). Suppose that for all i, Tr (Eiρ) ∈
[
0, 12 −

δ
2

]
∪
[
1
2 + δ

2 , 1
]
, with δ > 0. Then

O (logN) fresh states suffice to solve the problem with precision 1
2 .

Proof. Let us recall that, in this case with precision 1
2 , a valid estimation should output 1 if Tr (Eiρ) ∈[

1
2 + δ

2 , 1
]
, and 0 otherwise.

Let us define, for any i ∈ J1, NK, the following two-outcome POVM:

Πi =
∑

J⊆J1,kK
|J|≥ 1

2

k⊗
j=1

Ēj,Ji , where Ēj,Ji =

{
Ei if j ∈ J
I − Ei otherwise

.

Πi is designed to accept ρ⊗k with probability that is equal to the one of Ei accepting at least half of the
states ρ⊗k. The procedure is the following: for i from 1 to N , we estimate Tr (Eiρ) to 1 if Πi accepts the
current state (initially, ρ⊗k); otherwise, the outputted estimation is 0. Since, with k high enough, each

2



Πi accepts ρ⊗k with a probability tending to either 0 or 1, this method avoids the problem of damaging
measurements, as the following shows.

Suppose we observe the outcome of Πi on ρ⊗k; let us assume without loss of generality that Tr (Eiρ) ∈[
0, 12 −

δ
2

]
(the other case is symmetric). As Pr [Ei accepts ρ] is bounded away from 1

2 , using Chernoff
bound with distance to the mean δ

2 , we get that, by definition of Πi:

Tr
(
Πiρ

⊗k) ≤ e−2k( δ2 )
2

,

which bounds the probability of failure for an isolated estimation. Therefore, using the Quantum Union
Bound, the probability Perr of any of the estimations to fail can be bounded:

Perr ≤ N
√
e−2k(

δ
2 )

2

= Ne−k(
δ
2 )

2

,

which immediately gives k = O (logN), for Perr to be bounded by a constant.

What makes this proof fail when the probabilities to estimate are no longer bounded away from 1
2 is

that we cannot predict what will be the outcome of measuring ρ⊗k using Πi if Tr (Eiρ) is too close to
1
2 – e.g., if Tr (Eiρ) = 1

2 , then Chernoff bound does not provide the “amplification” making the failure
probability tend to 0. Thus, the states are likely to be damaged after any measure.

3.2 Propositions and Deadlock
The previous proof shows how it is possible to decide in which interval a probability Tr (Eiρ) lies, provided
that the value to estimate is bounded away from the separation of these intervals.

An idea that could help to overcome this problem of an “unknown behavior” when approaching this
separation is to choose the pivot value – the fraction to which we compare the proportion of accepted
states by Ei ( 12 in the proof of Lemma 6) – at random, so that the measured states would be damaged
with low probability.

Therefore, a first simple idea to estimate Tr (Eiρ) is to perform a dichotomy using random pivot
values: a random pivot value t is chosen uniformly at random in

[
1
4 ,

3
4

]
; if more than t of the states are

accepted by E1, we iterate on the new interval [t, 1] – otherwise, on [0, t] –, until a sufficient precision is
reached. Unfortunately, as the following analysis shows, the number of states required by this method
is at least quadratic.

Let us focus only on the first step of each dichotomy. In order for the Quantum Union Bound to be
used, the chosen pivot t should not be too close to Tr (Eiρ), which happens with probability at most
2δ, where δ is the deviation to the mean used in Chernoff bound. Furthermore, if t is well chosen, then
the choice of the interval must be correct. This gives the following bound on the probability that all
dichotomy succeed:

Psuccess ≥

first pivot of estimation i avoid Tr (Eiρ)’s neighborhood︷ ︸︸ ︷
(1− 2δ)

N ·

Quantum Union Bound︷ ︸︸ ︷
(1−N Pr [a test fails | pivot is well chosen])

≥ (1− 2δ)
N

(
1−Ne−kδ

2
)

︸ ︷︷ ︸
given by Chernoff bound

If we want Psuccess to be lower-bounded by some constant, we must have:

k = O

(
1

δ2
logN − log

(
1− 1

(1− 2δ)
N

))
= O

(
1

δ2
logN +

1

(1− 2δ)
N

)
,

which would be exponential in N if δ were constant. Even if δ is set to 1
N to prevent the second term from

growing exponentially, it makes the first term explode and finally gives a more than quadratic number
of states.

This example shows how methods based on a sequential estimation – several measurements being
done to the set of states to produce the ith estimation, followed by the same procedure on the resulting set
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Figure 1: Illustration of discretization using intervals.

Figure 2: Schematic representation of the reason why aggregation techniques fails.

of states for the (i+ 1)th one – involving randomization to prevent prohibitive damage to the set states
can fail when there is a constant probability for each estimation that the set of states is irremediably
damaged.

We tried several ideas to overcome this obstacle, mostly based on “hiding” the pivot in the measuring
step: instead of measuring whether a given proportion of states are accepted, we tried to design an
experiment performing a pivot test on several sets of states, but that does not measure the results right
away: it would rather output a value that depends on the results of these tests, value which will be the
result of the measure. This technique allows to hide the low probability of getting a bad pivot – which,
repeated for all i ∈ J1, NK, makes the number of copies explode – inside the measurement, and to leave
to the output function the responsibility to output in all cases a very probable value – which can depend
on the value to estimate, but whose probability should be able to tend to 1 as the number of states grows
–, so that the Quantum Union Bound can be applied. In other words, instead of directly testing one set
of states, we test several sets of states and only measure an aggregation of the given results, which will
hopefully be designed so that the Quantum Union Bound can be applied.

For instance, a first idea would be the following, for precision ε = 1
2 : choose uniformly at random

t ∈ [0, 0.5], and perform two pivot tests on ρ⊗m using t and t + 0.5, which is equivalent to guess in
which interval among {[0, t) , [t, t+ 0.5) , [t+ 0.5, 1]} the probability to estimate lies. We associate to
each possible result a value among {0, 0.5, 1}, as Figure 1 shows. The experiment is repeated several
times – say, n times – on fresh states – i.e., k = nm –, and we only measure the value (0, 0.5 or 1) that
appeared the most during those tests.

However, this idea shows that such strategies are very likely to fail. Indeed, if Tr (Eiρ) is close to
0.25, then the outcomes 0 and 0.5 will have equivalent probabilities to appear, damaging the whole set
of states. We tried several techniques in order to avoid this problem, but it appeared that it could
not be solved – the following presents an intuition of why these techniques are bound to fail. Let us
consider the simplified case with precision 1

2 , knowing that Tr (Eiρ) 6= 1
2 – i.e., we should output 0 if

Tr (Eiρ) < 0.5 , and 1 if Tr (Eiρ) > 0.5. Techniques based on aggregation would have the following
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scheme: if Tr (Eiρ) = 0, then the probability to output 0 will be close to 1, and if Tr (Eiρ) = 1,
the probability to output 0 will be close to 0. Since all aggregations that we tried induced either the
continuity of Pr [output 0] with respect to Tr (Eiρ), or an undetermined behavior in some part of [0, 1],
Pr [output 0] could not be bounded away from 1

2 (see Figure 2). Thus, we could not prove that any of
our ideas did not induce prohibitive damage to the set of states.

4 Extending the Classical Procedure
This section exposes a technique based on an extension of the proof for the classical case developed in
Section 2.

4.1 Quantum Equivalent of the Classical Case
An equivalent case of the classical problem where the same proof skeleton can be used is the case where
the Ei’s are mutually codiagonalizable, i.e. diagonalizable in the same basis.

Lemma 7. If the Ei’s are mutually codiagonalizable, then O (logN) suffice to solve the Batch Tomog-
raphy Problem.

Proof. Let us assume without loss of generality that the Ei’s are diagonal.
Then Ei =

∑d
j=1Ei (j, j) |j〉 〈j|, where 〈j| is the row vector with value 1 at position j and 0 elsewhere,

and:

Tr (Eiρ) =

d∑
j=1

Ei (j, j) Tr (|j〉 〈j|ρ)

Therefore, estimating Tr (Eiρ) can be done by estimating Tr (|j〉 〈j|ρ) for all j. Since these values are
independent from Ei, they can be estimated only once and used for all Ei’s.
Remark. The correspondence with the classical case can be seen here: the previous formula expresses
the law of total probability, with Tr (|j〉 〈j|ρ) being the probability to get j from ρ, and Ei (j, j) the
probability that Ei accepts ρ knowing that it outputted j.
B = (|j〉)j∈J1,dK is a basis of Cd, so we can measure ρ in B. Hence, the procedure is the following:

measure each state of ρ⊗k in B, and store for all j ∈ J1, dK the number Nj of states for which the measure
outputted j. Hence, the estimation for Tr (Eiρ) is

∑d
j=1Ei (j, j)

Nj
k .

Let Perr be the error probability of the whole process, and Ol be the outcome of the lth measurement.

Perr = Pr

∃i ∈ J1, NK |

∣∣∣∣∣∣1k
d∑
j=1

Ei (j, j)Nj − Tr (Eiρ)

∣∣∣∣∣∣ ≥ ε


≤
N∑
i=1

Pr

∣∣∣∣∣∣1k
d∑
j=1

Ei (j, j)Nj − Tr (Eiρ)

∣∣∣∣∣∣ ≥ ε


=

N∑
i=1

Pr

∣∣∣∣∣∣1k
k∑
l=1

 d∑
j=1

Ei (j, j)1Ol=j

− Tr (Eiρ)

∣∣∣∣∣∣ ≥ ε


Besides, E
[∑d

j=1Ei (j, j)1Ol=j

]
=
∑d
j=1Ei (j, j) Tr (|j〉 〈j|ρ) = Tr (Eiρ), and

∑d
j=1Ei (j, j)1Ol=j is

real in [0, 1], since Ei is hermitian positive semi-definite with eigenvalues in [0, 1]. So, using Hoeffding’s
inequality [Hoe63]:

Perr ≤
N∑
i=1

2e−2kε
2

= 2Ne−2kε
2

,

which indeed induces k = O (logN).

We discuss in the following of how this method can be generalized to any set of POVMs Ei’s.
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4.2 Extension
We try in this section to generalize the previous method without any prior hypothesis on the Ei’s.

In the general case, Ei =
∑
j,j′∈J1,dKEi (j, j′) |j〉 〈j′|. However, as (|j〉 〈j′|)j,j′∈J1,dK is not a POVM

(the elements are not all hermitian, for instance), we cannot measure ρ using this family and get the
same result as in the previous section. Instead, we can use the family (Dj)j ∪ (Mj,j′)j 6=j′ ∪

(
M ′j,j′

)
j 6=j′ ,

where:

Dj =
1

2d− 1
|j〉 〈j| , Mj,j′ =

1

2d− 1
(|j〉+ |j′〉) (〈j|+ 〈j′|) and M ′j,j′

1

2d− 1
(|j〉 − |j′〉) (〈j| − 〈j′|) ,

which indeed sum to the identity and are hermitian, positive and semi-definite. The outcome of the
corresponding measurements will be denoted in the following as, respectively, Dj , Mj,j′ and M′j,j′ .

Using this measurement basis:

Tr (Eiρ) =
∑

j,j′∈J1,dK

Ei (j, j′) Tr (|j〉 〈j′|ρ)

(a)
=

∑
j≤j′

Ei (j, j′) Tr (|j〉 〈j′|ρ) +
∑
j>j′

Ei (j′, j) Tr (|j〉 〈j′|ρ)

(b)
=

∑
j≤j′

Ei (j, j′) Tr (|j〉 〈j′|ρ) +
∑
j>j′

Ei (j′, j) Tr (|j′〉 〈j|ρ)

=
∑
j

Ei (j, j) Tr (|j〉 〈j|ρ) + 2
∑
j<j′

< (Ei (j, j′)) Tr (|j〉 〈j′|ρ)

(c)
=

∑
j

Ei (j, j) Tr (|j〉 〈j|ρ) +
∑
j<j′

< (Ei (j, j′)) (Tr ((|j〉 〈j′|+ |j′〉 〈j|) ρ))

Tr (Eiρ) = (2d− 1)

∑
j

Ei (j, j) Tr (Djρ) +
∑
j<j′

< (Ei (j, j′)) Tr ((Mj,j′ −Dj −Dj′) ρ)

 ,

where:

• (a) and (b) are obtained by noticing that Ei and ρ are hermitian;

• (c) uses Tr (|j〉 〈j′|ρ) = Tr (|j′〉 〈j|ρ), obtained from (b).

Therefore, if Ol is the outcome of the lth measure and NDj
and NMj,j′ are the number of outcomes,

respectively, Dj and Mj,j′ , the estimation for Tr (Eiρ) is:

2d− 1

k

∑
j

Ei (j, j)NDj
+
∑
j<j′

< (Ei (j, j′))
(
NMj,j′ −NDj

−NDj′

) ,

which gives the following bounds on Perr:

Perr ≤
N∑
i=1

Pr

[∣∣∣∣∣1k
k∑
l=1

Yl − Tr (Eiρ)

∣∣∣∣∣ ≥ ε
]
,

where:

Yl = (2d− 1)

∑
j

Ei (j, j)1Ol=Dj
+
∑
j<j′

< (Ei (j, j′))
(
1Ol=Mj,j′ − 1Ol=Dj

− 1Ol=Dj′

) .

Hoeffding’s inequality can finally be applied, knowing that Ei (j, j) ∈ [0, 1] and
∣∣∣∑j < (Ei (j, j′))

∣∣∣ ≤√
maximum eigenvalue of EiE

†
i ≤ 1 since Ei is hermitian positive semi-definite and POVM; thus, Yl ∈

[−2 (2d− 1) , 2 (2d− 1)], and:

Perr ≤ 2Ne
− 2kε2

(2(2d−1))2 ,

which finally gives k = O
(
d2 logN

)
.
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4.3 Discussion
We extended in the previous subsection the method used for mutually diagonalizable Ei’s, but the
resulting method requires O

(
d2 logN

)
states, which is worse than the naive method based on the full

tomography of ρ (see Section 1).
This problem, however, does not necessarily disqualify this method. Indeed, the d2 factor results from

the choice of the measurement basis
(
Dj ,Mj,j′ ,M

′
,j,j′

)
, as it can be observed in the previous computations

(it is related to the constraint that any POVM basis should sum to the identity). Therefore, there may
be another basis which could lead to a smaller number of states. We tried5 to find a better basis, but
unfortunately failed to do so. Even though it might not be possible to get a pure polylog N number
of states (without d appearing in the final result, but it seems likely to appear due to the previously
mentioned constraint), there still exists the possibility of an improvement for this method – like, for
instance O (d logN) instead of O

(
d2 logN

)
, result which would be a good progress.

It would also be interesting, if no better measurement basis can be found, to know if this methodology
could work provided some specific properties on the Ei’s – but more general than having them codi-
agonalizable: for instance, O (logN) states suffice to solve the problem if there are a constant number
of non-null off-diagonal elements in each of the Ei’s (using a very similar proof)), giving possibly good
results for sparse matrices. The goal would be to find wider classes of Ei’s that would also give a small
number of states.

5 Restricting to Small Inner Products
This section presents a method solving a variant of the Batch Tomography problem under a new condition
on the Ei’s.

5.1 Result
As all our previous attempts failed to provide an improvement of the O (N logN) result mentioned in
Section 2, we studied particular cases for which the Batch Tomography Problem seemed difficult to solve,
in order to provide possible lower bounds on the number of required states. When studying the case
where the Ei’s were pure states with little inner product between two different Ei, Ej , we realized that
in this case, a variant of the problem – for which the previously presented techniques were ineffective –
could be solved using a simple pivot technique.

5.1.1 Preliminaries

Let us assume that for all i and j with i 6= j, Ei represents a pure state |ψi〉 〈ψi|, and Tr (EiEj) ≤ η < 1
(small inner products between |ψi〉 and |ψj〉). Then the following lemma holds.

Lemma 8. The size of the set {i | Tr (Eiρ) > q} is upper-bounded by 1 if q > 1
2−η .

Proof. Since the Ei’s commute, it is possible to bound Tr (Eiρ) using Tr (Ejρ), by using the results
presented in [dMJS79]6:

Tr (Eiρ) =

probability of getting i from j︷ ︸︸ ︷
Tr (EiEj) ·

probability of getting j from ρ︷ ︸︸ ︷
Tr (Ejρ) +

symmetric case where Ej does not accept ρ︷ ︸︸ ︷
Tr (Ei (I − Ej)) Tr ((I − Ej) ρ)

≤ ηTr (Ejρ) + Tr (Ei) (Tr (ρ)− Tr (Ejρ))

= ηTr (Ejρ) + 1− Tr (Ejρ)

Tr (Eiρ) ≤ 1− (1− η) Tr (Ejρ) .

This gives the following bound on the discrepancy between Tr (Ejρ) and Tr (Eiρ):

Tr (Ejρ)− Tr (Eiρ) ≥ (2− η) Tr (Ejρ)− 1

> (2− η) q − 1 > 0,
5I would like to acknowledge Titouan Carette for his help regarding these attempts.
6The main idea is that, if Ei and Ej commute, then there exists a joint probability distribution for the outcome of both

POVMs Ei and Ej .
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Figure 3: Illustration of the variant of the problem and the settings of the solution.

if Tr (Ejρ) > q > 1
2−η .

In the following, we’ll more generally assume that there exists 1
2 < q < 2

3 such that |{i | Tr (Eiρ) > q}|
is bounded by a constant (which is true for η small enough in the previous result).

5.1.2 Problem Variant and Method

Let us consider the following problem: given the Ei’s and ρ, we would want to estimate Tr (Eiρ) for all
i with precision 3

4 , using the following rules: if Tr (Eiρ) < 1
4 (resp. Tr (Eiρ) > 3

4 ), the corresponding
estimation should be 0 (resp. 1); otherwise, it can be either 0 or 1 (see Figure 3). This variant corresponds
to a version of the problem highlighting the failure of aggregation methods (see Section 3), and its usage
is justified by the fact that the Batch Tomography Problem is trivial for precision 3

4 (one can output 1
2

for all estimations).
The previous assumption will help us to design a method solving this variant using polylog N states,

i.e., that can handle the problem of damaging measurements without having to use logN states per
estimation. Indeed, as the number of Ei’s such that Tr (Eiρ) > 2

3 is bounded by a constant, it is possible
to perform successive pivot tests with pivot value 3

4 , if we are able to detect if the states have been
damaged so that we can replace them (which happens a constant number of times) after the measure,
since the number of Ei’s such that Tr (Eiρ) falls into

[
3
4 − δ,

3
4 + δ

]
is constant (see Figure 3 for an

illustration).
Therefore, we need to be able to decide if a state has been damaged, once the measure is done. A

reliable method could be the following: instead on manipulating a single set of states of size k, the
procedure uses m sets of states, each of those being of size n; the procedure for each estimation consists
in performing a pivot test with pivot value 3

4 separately on each of these sets, and, knowing the results
of these measures:

• if all the results of the pivot tests are the same (all 0’s, or all 1’s), then the procedure outputs this
value – this case corresponds to the case where Tr (Eiρ) 6∈

[
3
4 − δ,

3
4 + δ

]
, i.e. Chernoff bound can

be applied;

• otherwise, it outputs 1 – this case corresponds to Tr (Eiρ) ∈
[
3
4 − δ,

3
4 + δ

]
.

If the estimation that is given for a particular i is 1, then all sets of states are replaced by fresh ones,
since it means there could be a high probability that the sets were damaged.
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Let us perform an analysis of this method. Let us first study the case where Tr (Eiρ) ∈
[
3
4 − δ,

3
4 + δ

]
,

to know if a constant (with respect to N) number of sets of states (with k = O (logN)) is sufficient for
the correct output value to be very probable if this case.

Chernoff bound – lower bounding the probability for an estimation to lie in a neighborhood of its mean
value–, associated with the fact that the binomial probability mass function approaches symmetry when
the number of sample grows, allows to state that, for n sufficiently high to use the near-symmetry of the
binomial probability mass function and to get a sufficiently large lower bound on the previously mentioned
probability, the probability of outputting 1 when Tr (Eiρ) ∈

[
3
4 − δ,

3
4 + δ

]
becomes high enough if the

number of tests m is high enough. Notice that these lower bounds on n and m do not depend on N .
Coupled with a constant-bounded number of state replacements and the usage of the Quantum Union
Bound as we did in Section 3, this allows us to get that this method works for n = O (logN), i.e.
k = O (logN).

5.2 Discussion
This result is interesting in the sense that it is a first step towards a possible method working for the
Batch Tomography problem using pivot tests, assisted by the Quantum Union Bound. The problem at
this point is to be able to extend this method in order to use it for precision 1

2 , which could help for the
Batch Tomography problem. As we did not have the time to study the problem further, we propose in
the following some ideas that could help to find this extension.

The previous result can be extended to the case where the bound on |{i | Tr (Eiρ) > q}| depends on
N : the resulting number of states would be O (bound · logN). If the bound is simply N , then we get the
result mentioned in Section 2 (replacing all states for each estimation); but, if we can find an equivalent
version of the Batch Tomography Problem with a bound of, for instance, O (logN), then the desired
polylog N number of states can be achieved.

We can notice that this method also works symmetrically if the number of Ei’s with Tr (Eiρ) < 1
3

is bounded by a constant. Thus, if we could reduce the Batch Tomography problem – possibly with
precision 1

2 – to the resolution of two problems that are similar to the previous one, with the first one
having a bound on the number of Ei’s with low probability, and the second one a bound on the number
of Ei’s with high probability, then we could solve it efficiently.

Another possibility which might extend the previous method is to artificially lower the inner products
between the Ei’s, by for instance increasing the dimension of the space (this could work since the previous
result does not depend on d).

Finally, an analogy with the classical case could be used in order to find new ideas. Indeed, we can
see the inner products between the Ei’s in this case as a characterization of set coverings between sets
X1, . . . ,XN in the classical case. As for the method presented in Section 4, studying the classical case
can help to design new methods for the quantum problem.

6 Conclusion
We tried during this project to provide non-trivial results regarding the Batch Tomography Problem,
using successively the Quantum Union bound to prevent prohibitive damage to the states, an extension
of the method that is used to solve the classical version of the problem, and a restriction to the case
where the Ei’s are pure states with small mutual inner products. These attempts were eventually not
successful, but provided some possible guidelines for future attempts.

We also worked on other ideas, but the main ones were presented in this report. We also considered the
possibility that the answer to the question was negative, but as we began to think about this possibility,
we ended up finding that subcases that we thought were hard were actually solvable.

My opinion on this problem would be that the answer to this question is negative, if we want the
number of states to be independent from d: it seems, seeing the computations of Section 4, that the
quantum case depends a lot on the dimension. I think, however, that a polylog N result, considering d
as a constant, could be achieved, or at least a sublinear number of states.

Finally, I would like to thank Omar Fawzi for suggesting this problem to me, and for his help and
the discussions I could have with him.
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