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Abstract

The main goal of the paper is to show that the classical efficient
sampling of the IQP circuits’ output probability distribution is equiv-
alent with the collapse of the polynomial hierarchy to its third level
∆3 i.e. it is highly improbable to be possible. Furthermore, it intro-
duces the post-IQP class of languages (along with the IQP circuits
augmented with post-selection) and proves that it is equal to the classi-
cal PP class. The paper also states that if the output of the IQP circuit is
of O(logn) size, then the efficient classical sampling of the distribution
is possible.

1 Introduction

As a general point of view, quantum computing is expected to offer compu-
tational complexity speedup compared to classical algorithms, but there is
no solid theoretical proof that any quantum algorithm can outperform the
best classical algorithm for a task. This deficiency might be easily explained
by the fact that the classical hardness problem is an extremely difficult
issue to address. Because of this reason, the literature usually provides
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conditional hardness proofs stating that if a widely believed to be unlikely
problem is indeed hard, then the addressed problem is hard as well. This
approach is used in the analyzed article as well, to prove the practical
usefulness of the family of quantum circuits that is discussed.

On the other hand, quantum computing not only lacks theoretical proofs
of its benefits but it’s reported that there are difficulties in building a fault-
tolerant and scalable quantum computer to practically prove the field’s
benefits.

The IQP circuits handled in this article aim to approach both of these
issues. On one hand, the authors show that the class of problems that could
be approached using these circuits are likely not efficiently computable by
classical means. On the other hand, IQP circuits are physically restricted by
only consisting of commuting gates which are, according to [2], relatively
simple to implement using super- and semi-conductor qubit systems.

2 Definitions

In the following section, the definitions and the notations used in the article
will be provided.

2.1 General Notions

Definition 2.1 (Computational Process). A computational process C computes
the output of the computational task T, T(w) = y1 · · · ym of size m having the
input w = x1 · · · xn of size n.

Definition 2.2 (Bounded and unbounded error). C computes T with a bounded
error if for all input w the following holds: ∃ε ∈ (0, 1

2) such that prob[C(w) =

T(w)] ≥ 1− ε.
C computes T with a unbounded error if prob[C(w) = T(w)] ≥ 1

2 .

Definition 2.3 (Language and decision task). If the size m of the output, T(w)

is 1, T is called a decision task and it is associated with the subset {w|T(w) = 1}
referred to as a language.
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Definition 2.4 (Circuit family). A circuit family is a set of circuits {Cn} =

{C1, C2, · · · }, where Cn is the circuit which computes the output for each input of
size n.

As seen in 2.4, circuit families are parameterised by the size of their
input n, but for the purposes of this paper, it is more convenient to choose
the inputs w as parameter of the circuit family {Cw}. Thus, the circuits will
act on standard inputs, generally 0 · · · 0 for classical circuits and |0〉 · · · |0〉
for quantum circuits.

Definition 2.5 (Uniform family of circuits). A uniform family of circuits is a
mapping w→ Cw computable in poly(n) time. The description Cw includes the
full layout of the gates used in the circuit, the input and the output lines and the
description of every other register the circuit might need.

Probability distributions {Pw}, m-bit strings are associated to every uniform
circuit family and are defined by the output of the computational process described
by Cw.

2.2 IQP Circuits

Definition 2.6 (IQP circuit). An IQP ("instantaneous quantum polynomial
time" [3]) circuit is a commuting quantum circuit in which every commuting gate
is diagonal in the X basis {(|0〉 ± |1〉)/

√
2}, the input is w = |0〉 |0〉 · · · |0〉 and

the output is the measurement on the output lines.

As it may be more convenient to work in the Z basis, one can note that
it is enough to augment each line of the circuit at its beginning and at its
end with a Hadamard (H) gate and work with diagonal gates in the Z basis
in between. It is easily seen that this definition is equivalent with 2.6 since
HH = I.

Definition 2.7 (Post-selected circuit). The post-selected circuit is a circuit that
has, in addition to its output lines O, disjoint post-selection lines P. In this setting,
the resulting output distribution will be prob[O = x|P = 00 . . . 0]. Practically,
result of the sampling of output of a post-selected circuit is equal to the output
distribution measured only when the measurement on the post-selection lines
yields 00 . . . 0.
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Definition 2.8 (post-IQP class). A language L is in the post-IQP class if and
only if ∃{Cw} uniform family of post-selected IPQ circuits with bounded error
ε, a single output line Ow and post-selection lines Pw such that if w ∈ L then
prob[Ow = 1|Pw = 00 . . . 0] ≥ 1− ε and if w /∈ L then prob[Ow = 0|Pw =

00 . . . 0] ≥ 1− ε.

2.3 Classical Simulation of Quantum Circuits

In the article, the authors differentiates between two notions of classical
simulation of quantum circuits, strong and weak. More than that, they
define two types of weak simulations which they use in the proofs of the
theorems presented in the paper.

Definition 2.9 (Strong simulation). A circuit family is strongly simulable if
any output probability in Pw from the circuits’ output probability distributions,
and any of Pw’s marginal probabilities can be computed with arbitrary precision in
polynomial time.

Definition 2.10 (Weak simulation). A circuit family is weakly simulable if
the circuits’ output probability distribution Pw can be classically sampled in
polynomial time.

Weak simulation can be further divided into subcategories based on the
way its error bounds are defined as follows:

• A circuit family is weakly simulable with multiplicative error c ≥ 1 if there
exist a family Rw of distributions on the same sample space as Pw that
can be sampled in polynomial time and the following inequalities
hold ∀x, w:

1
c

prob[Pw = x] ≤ prob[Rw = x] ≤ c prob[Pw = x]. (1)

• A circuit family is weakly simulable within total variation distance ε if the
following inequality holds for the above defined Rw:

∑
x
|prob[Pw = x]− prob[Rw = x]| < ε.
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3 Results of the Paper

The results of the paper aim to show that IQP circuits, despite their re-
stricted set of gates, are powerful tools in the sense that their results likely
cannot be obtained by classical efficient computations.

The authors argue in the favor of this statement by providing proof that
if the IQP circuits would be classically simulable, it would mean the collapse
of the polynomial hierarchy to its third level which is highly unlikely.

The formal theorem can be stated as follows:

Theorem 3.1. If the output probability distribution of a IQP circuit could be
weakly classically simulated with a multiplicative error 1 < c <

√
2, then the

polynomial hierarchy PH = ∆3.

In order to prove this theorem, the authors stated the following two
theorems to be used in the final proof:

Theorem 3.2. post-IQP = post-BQP = PP.

Proof. The equality of the post-BQP and PP classes has been proven by
Aaronson in [4], so in the following, the proof will focus on the post-
IQP =post-BQP equality. The post-IQP ⊆ post-BQP is trivial, so the proof
focuses on the reverse inclusion.

It assumes an arbitrary uniform quantum circuit having the following
universal set of gates H, Z, CZ and P = ei Π

8 Z and it transforms it into a IQP
circuit by replacing each Hadamard gate (since it is the only gate from the
set that is not diagonal) with an equivalent subcircuit called Hadamard-
gadget which is described by the following function:

|ψ〉a |0〉e → HaCZaeHe |ψ〉a |0〉e .

After applying this transformation to every internal H gate, the resulting
circuit will be a post-IQP circuit having as many additional post-selection
lines as many H gates the initial circuit had (line a, on which the initial H
gate was) and H |ψ〉a will be carried by newly added e lines.

Theorem 3.3. If the output probability distribution of the IQP circuits could
be weakly classically simulated with a multiplicative error 1 < c <

√
2 then

post-BPP = PP.
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Proof. Let’s consider L ∈ post-IQP a language decided with bounded multi-
plicative error by the post-IQP circuit Cw and let Sw(x) = prob[Ox=x&Pw=00···0]

prob[Pw=00···0]
be its output probability distribution. So the output distribution of Cw’s
simulation C′w will be S′w(x) = prob[O′x=x&P′w=00···0]

prob[P′w=00···0] .
By applying the inequality 1 from the definition of the multiplicative

error to Ow and Pw one gets:

1
c2 Sw(x) ≤ S′w(x) ≤ c2Sw(x).

From here, one can derive that C′w can decide L with bounded multi-
plicative error if c2 < 1 + 2δ, where δ = 1

2 − ε, i.e. c <
√

2 suffices in order
to guarantee that L ∈ post-BPP (because post-IQP circuits are indepen-
dent of the error ε meaning that ε can be arbitrarily chosen from the (0, 1

2)

interval).
Thus, by combining 3.2 with post-BPP ⊆ post-BQP, the proof is com-

plete.

Now, that the above two theorems have been shown, the proof of the
main theorem 3.1 of the paper is easily constructed as follows:

Proof. By applying Toda’s theorem which states that PH ⊆ PPP and using
the theorem 3.3, the proof is straightforward:

PH ⊆ PPP = Ppost−BPP ⊆ ∆3.

4 Discussion and Conclusions

As I have already mentioned it in the introduction, IQP circuits try to
address the drawbacks of quantum computation both from theoretical and
from practical points of view. Indeed, it is impressive that there exist a
quantum circuit family that is fairly easily physically manufacturable and
still most probably offers speedup compared to its classical counterparts
(as it is proven in the article). This perspective makes the IQP circuits of
great interest in the quantum complexity research field.
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Since the publication of this paper, several other researchers approached
this subject augmenting its theory by generalizing the theorems proposed
by the authors to other, more general types of quantum circuits and com-
plexity classes as in [5] or by further examining its limitations induced
by the reduced set of allowed gates [5]. Moreover, already the authors
mention it that the proofs provided in the article hold for any other circuit
that is boosted to the PP class by post-selection. It is also easily seen that
the introduction of the IQP class can induce new complexity classes, for
example BPPIQP.

As a conclusion, the IQP circuits are of great interest in quantum com-
plexity theory because of their simplicity combined with their computa-
tional power. I also consider that their analysis could be useful when
examining the properties of more complex but similar quantum circuits.
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