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Discrete quantum random walks

Abstract

In this report, we present the ideas behind the notion of quantum
random walks. We further restrict our attention to the paper ”Search via
quantum walk” by Magniez, Nayak, Roland and Santha and give some
general insights and intuition behind their work. The report is intended
for the final exam evaluation in the subject ”Quantum Information and
Computation”.

1 General overview

Markov chains are widely used in mathematics and in mathematical modeling
for different areas of science such are economics and finance, mathematical biol-
ogy, genetics, chemistry and computer science in general. In classical computer
science Markov chains (random walks) are one of the main algorithmic tool for
developing randomized algorithms. As such they are used in many search or
sampling algorithms. As an example, one of the best algorithms for solving
3SAT is based on the idea of random walk [7]. Nice properties, mathematical
foundations and their wide use motivated researchers to investigate how could
we use Markov chains on quantum computers. Quantum analogues of random
walks emerged gradually in two main directions, discrete time random analogues
and a continuous time quantum walk model which can be track back to the work
of Feynman [5]. It is worth noticing that continuous random walks can be used
as a general model for quantum computation, with any quantum computation
represented in some underlying graph. The result was shown by Childs, based
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on some of the first works on quantum computing by Feynman [3]. Here we
give a short overview of discrete time quantum walks and mostly restrict our
attention to a one of the latest models proposed, as it is described in the work
of Magniez, Nayak, Roland and Santha [6].

Basic ideas and known results: Quantum walk algorithms generally
turned out to outperform classical random walks it two ways. First, quantum
random walks usually have a faster hitting time, i.e., the expected time of
particle moving from a source vertex to a target vertex. Second, they have
faster mixing time, that is, the time time taken to spread out over all vertices.
It is shown that for the special class of graphs, hitting time of quantum walks
can be exponentially faster than in the classical case [4]. In general setting, it
has been shown that the separation between quantum and classical mixing time
can be quadratic, but no more than this [1].

One of the first discrete time quantum walks introduced, considers an ana-
logue of classical random walk on a line with non-negative transition proba-
bilities only for going left or right on the line. In other words, it consists of
a particle (”the walker”) jumping at each step either left or right depending
on the outcome of the probability system (”the coin”). Quantum analogue of
a such random walk consists of three main components: a walker, a coin and
evaluation operators. It is based on two quantum systems, one for the walker
and one for the coin. The walker is represented by a Hilbert space spanned by
the basis states corresponding to the possible positions of the walker. The coin
is represented by a 2-dimensional Hilbert space, consider it as a Hilbert space
spanned by basis vectors corresponding to outcomes of zero and one of the coin.
The total state of the quantum walk is then the tensor product of two states
from spaces described above. To simulate the jump of the walker we use an
evolution operator to the coin state followed by a conditional shift operator to
the total quantum system. Since we are in quantum world now, this allows the
walker and the coin to be in a superposition and new possibilities for algorithms.
Similarly the quantum random walks on a finite cycle were introduced.

Although simple, this model is used to build more complicated random walks
on graphs and to understand important properties of quantum random walks. It
can also be used to test the quantumness of a realization of a quantum computer.
For more details on quantum walks and their development, we refer the reader
to a nice and comprehensive review [9].

All of above shows the importance of random walks in classical computer
science as well as in quantum computer science.

We now continue with the review of the main paper considered.

2 Problem statement and previous results

Markov chain preliminaries: For a Markov chain over a finite state set
X, the transition matrix is P = (pxy) where pxy is probability of transition
from x to y. A Markov chain is irreducible if there is a positive probability
for transition from every state to any other state in some number of steps.
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An irreducible chain is ergodic if it is aperiodic. Every irreducible chain has a
unique stationary distribution π = (πx), which can be thought as probability
of being in state x after infinitely many steps of Markov chain. All eigenvalues
of P are not bigger than 1 in the absolute value. If chain is ergodic then
eigenvalue 1 is a unique eigenvalue having absolute value 1. The eigenvalue gap
δ(P ) is 1 − λ where λ is the maximum absolute value of some eigenvalue not
equal to 1. The time-reversed Markov chain P ∗ = (p∗xy) of P is determined by
equations πxpxy = πyp

∗
yx. The chain is reversible if and only if P = P ∗. The

Markov chain is symmetric if and only if P is equal to its transpose. It is easy to
show that stationary distribution of any symmetric Markov chain is the uniform
distribution.

Classical problem: We consider an abstract problem of finding a marked
element from the set X with n elements. That is, a problem of finding an
element of a set of marked elements M, where M ⊆ X. The set M is given
implicitly with additional data structure that we will formally define later. Using
this structure we are able to check if an element x is in M . The most simple
solution for the problem would be to uniformly at random sample the elements
of X until we find a marked element, but a more efficient solution would include
simulating a Markov chain on the state space X to take advantage of a possible
structure present in the set X. We will see how this could be done in classical
case, and then we state known results for their quantum analogues. Now, we
present classical algorithms to better understand their quantum analogues later.

Algorithm 1: Classical search

1 Sample a state x from a probability distribution s on the set X;
2 for t2 steps do
3 if state y reached in previous step is marked then
4 return y and stop;
5 else
6 simulate t1 steps of P starting with current state y;
7 end

8 end
9 return no marked elements

The values t1 and t2 in Algorithm 1 are determined by the properties of P .
Intuitively, if we consider some ergodic Markov chain P and high enough value
t1 is the same as sampling the state y from the stationary distribution π of
P . Then we sample y for t2 steps until we find a marked element. In order to
find a marked with high probability1, we take t2 inversely proportional to the
stationary distribution of P . The second algorithm is a more natural version of
the first algorithm, where the value t1 is set to one.

1Under the term high probability, we consider a constant positive probability.
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Algorithm 2: Classical search

1 Sample a state x from a probability distribution s on the set X;
2 for t2 steps do
3 if state y reached in previous step is marked then
4 return y and stop;
5 else
6 simulate one step of P starting with current state y;
7 end

8 end
9 return no marked elements

To state complexity of the above algorithms we first consider a model for
it that will also nicely translate to the quantum algorithm. We consider three
different types of costs. Before that, since these are search algorithms, we need
to formalize procedure of determining whether x ∈ M . As said before, we also
have a data structure keeping data d(x), for each x ∈ X. From it we can
determine if for some state x it holds x ∈ M . Then, the following costs for
classical algorithms are considered:

• Set-up cost S : The cost of sampling an element x and constructing
d(x).

• Update cost U : The cost of simulating a step of a Markov chain and
updating data structure for the step we made.

• Checking cost C : The cost of checking if x ∈ M using data structure
d(x).

The following proposition captures the complexity of the classical algorithms.

Proposition 1 ([6]). Let δ > 0 be the eigenvalue gap of ergodic, symmetric

Markov chain P on space X and |X| = n. Let |M ||X| ≥ ε > 0. For uniform

distribution s

• Algorithm 1 finds a marked element with high probability if t1 ∈ O( 1
δ ) and

t2 ∈ O( 1
ε ) are suitably large with the cost of order S + 1

ε

(
1
δU + C

)
.

• Algorithm 2 finds a marked element with high probability if t ∈ O( 1
δε ) is

suitably large, with the cost of order S + 1
εδ (U + C).

Quantum formalization of the problem: The idea of the quantum ran-
dom walk used here has already appeared in [2, 8]. The intuition of random
walks defined in mentioned works, can be seen as a random walk on the edges
of the Markov chain instead of vertices. At each step, one vertex of an edge
(x, y), say y, is ”mixed” over all possible neighbors of x. The paper of Magniez
et al. follows the same idea, while their algorithm and analysis of algorithms
are simpler.
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To define the problem in quantum setting we consider the problem where
a finite set X is given together with a data structure d maintened through the
algorithm. To be able to consider data structure in quantum algorithms, we
consider the space Xd which represents the set of elements of X together with
data structure d, formally Xd = {(x, d(x)) : x ∈ X}. Following the intuition
behind quantum random walks, we define the quantum analogues of the costs:

• Quantum Set-up cost S : The cost of constructing the state∑
x∈X
√
πx |x〉d |0〉d from |0〉d |0〉d.

• Quantum Update cost U : The cost of realizing one of unitary trans-
formations

|x〉d |0〉d → |x〉d
∑
y∈X

√
pxy |y〉d

|0〉d |y〉d →
∑
x∈X

√
p∗xy |y〉d |y〉d

and their inverses.

• Quantum Checking cost C : The cost of realizing conditional phase
flip

|x〉d |y〉d →

{
− |x〉d |y〉d , if x ∈M
|x〉d |y〉d , otherwise.

Observe that the quantum update cost can be used to express the complexity
of ”mixing” the state over all neighbors of some vertex x.

We state the previous results for the problem of finding a marked elements
in the following two theorems. Theorem 2 due to Ambainis, is a quantum
analogue of Algorithm 1 and Theorem 3 due to Szegedy is a quantum analogue
of Algorithm 2. As we can see, simper approach of Algorithm 2 comes with
the additional price in the terms of complexity. The result of Magniez et al.
combines the approach of both results and improves them while having the
complexity of the faster algorithm. The algorithm due to Magniez et al. is
more similar to the quantum analogue of Algorithm 1.

Theorem 2 (Ambainis [2]). Let P be the random walk on the Johnson graph2

on r-subsets of a universe of size m, where r = o(m), and with intersection
size r − 1 Let M either empty, of the class of all r−subsets that contain a
fixed subset of size k ≤ r. Then, there is a quantum algorithm that with high
probability, determines if M is empty or finds the k-subset, with cost of order

S + 1√
δ

(
1√
ε
U + C

)
.

Theorem 3 (Szegedy [8]). Let δ > 0 be the eigenvalue gap of ergodic, symmetric

Markov chain P, and let |M ||X| ≥ ε > 0. There exists a quantum algorithm

that determines, with high probability, if M is non-empty with cost of order
S + 1√

δε
(U + C).

2Johnson graph is a graph having as vertices subsets of size r of a universal set of size m,
and edge between two vertices if their intersection is of size r − 1.
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The algorithm proposed by Magniez et al. expends the scope of the two
previously known algorithms in the sense that it finds a marked element and is
being applicable to all finite ergodic Markov chains without considering special
cases.The algorithm combines both of the previously known works, taking the
quantum random walks as defined in [8] and the idea that is more similar as
in [2].

3 Quantum analogue of Markov chain

Let P be the transition matrix of an irreducible Markov chain on a finite state
space X. Denote |X| = n. Magniez et al. define the notion of quantum
analogue of a classical Markov chain following the approach of Ambainis [2] and
later Szegedy [8]. Quantum analogues are defined using two reflection operators.

Let |ψ〉 ∈ H. The orthogonal projector onto Span(|ψ〉) is denoted as Πψ,
where Πψ = |ψ〉 〈ψ|. Then the reflection operator through the line generated
by |ψ〉 is ref(ψ) = 2Πψ − Id = 2 |ψ〉 〈ψ| − Id. Let {|ψi〉 : i ∈ I} be an or-
thonormal basis of K a subspace of H, then orthogonal projector onto K is
ΠK =

∑
i∈I Π|ψi〉. The reflection through K is ref(K) = 2ΠK − Id.3 Let

x, y ∈ X and vectors |px〉 , |px〉 be

|px〉 =
∑
y∈X

√
pxy |y〉 and |p∗y〉 =

∑
x∈X

√
p∗yx |x〉 .

Let A = Span (|x〉 |px〉 : x ∈ X) and B = Span
(
|p∗y〉 |y〉 : y ∈ X

)
be vector sub-

spaces of H = CX×X .

Definition 1 (Quantum walk [6], [8]). The unitary operator W (P ) defined on
H as W (P ) = ref(A) ref(B) is called the quantum walk based on the classical
transition matrix P .

It is worth mentioning that the above definition is first appeared in the work
of Szegedy [8] where it was introduced with bipartite walks and it is consistent
with the prior work in the area. It is also not clear what is the real intuition
and motivation behind the definition of quantum walk. Szegedy abstracted the
approach of Ambianis [2] to define quantum walks with bipartite walks, and
Magniez et al. define in the same way but avoiding bipartite walks.

Similarly as the eigenspectrum and eigenvalue gap play a very important
roll in the analysis of classical Markov chains the spectral decomposition plays
an important roll in quantum setting. These properties are determined through
the discriminant matrix D(P ) = (

√
pxyp∗yx). Since

√
pxyp∗yx =

√
πxpxy

√
πy we

can write
D(P ) = diag(π)1/2 · P · diag(π)−1/2 .

The matrix diag(π) is diagonal matrix with the distribution π on the diago-
nal. Observe that matrices D(P ) and P are similar and hence have the same

3Id is always the identity operator in a corresponding vector space.
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eigenvalues. Hence all singular values of D(P ) lie in [0, 1] and we can express
them as cos θ for some θ ∈

[
0, π2

]
. The phase gap ∆(P ) of W (P ) is 2θ where θ

is the smallest angle in
(
0, π2

)
such that cos θ is singular value of D(P ). This

is value that plays the similar role in quantum random walks as the eigenvalue
gap plays in the classical random walks. The definition is motivated by the fact
that angular distance of 1 and any other eigenvalue is at least ∆(P ).

It is pointed out in [9] that a development of a quantum walk operator W
based on a classical transition matrix is ”remarkable feature” of [8], and that
surely adds to the importance of work of Magniez et al. Besides that, it would
be also interesting to see if there is a quantum notion that is not just an analogue
of a classical Markov chain defined for a given Markov chain, but rather a self
contained generalization of the notion of classical Markov chain. Of course this
is not so easy question, one could even argue that it is not really possible to
do. The main idea of Markov chain is the idea of ”forgetting the past” and
making the next step based just on the current position of the walker which
could be the problem since all allowed operations in quantum computing have
to be unitary and hence reversible. The similar problem due to reversibility of
unitary operations is pointed out in [5] for the convergence to the stationary
distribution of a Markov chain.

4 Quantum search algorithm

We will present the idea of the quantum algorithm for reversible Markov chains.
The generalization for non-reversible Markov chains can be found in Section 5
of [6]. Generalization is based on the examining the singular values of D(P ) and
showing that even when irreducible Markov chain in not necessary reversible,
there is a unique singular value of D(P ) equal to 1. Also, this does not impact
the execution of the algorithm, so from now on we assume that P is a transition
matrix of an ergodic, reversible Markov chain.

The main idea here is to use quantum phase estimation to the quantum walk
W (P ) to be able to implement an approximation of reflection operator about
the initial state. Later they used this in a reversible amplitude amplification
scheme to get the final algorithm. This is a new idea that turn out to be useful in
both its generality an simplicity when compared to previous work. For example
Szegedy [8] uses a different approach. He uses the leaking matrix PM , which
is obtained from P by deleting rows and columns indexed by M , to find the
classical hitting time of M and then also properly define quantum hitting time
and bounds it using the classical hitting time.

The algorithm proposed by Magniez et al. can be seen as the quantum
analogue of Algorithm 1. The quantum algorithm starts with the initial state

|π〉 =
∑
x∈X

√
πx |x〉 |px〉 =

∑
y∈X

√
πy |p∗y〉 |y〉

which corresponds to the stationary distribution π in the classical case. This
state can be prepared with cost of S + U as following. We use one set-up
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operation to prepare
∑
x∈X
√
πx |x〉 |0〉 and then one update operation to go to∑

x∈X
√
πx |x〉 |px〉. Assume that M 6= ∅, and let M = CM×X be the subspace

with marked items in the first register. Then the idea of the algorithm is to
transform the initial state |π〉 to the target state |µ〉 which is a projection of |π〉
onto the subspaceM. The later can be done exactly if we would have a way of
computing the reflection operator efficiently, but naive way turns out to be too
expensive and the authors propose approximation of the reflection operator.
The result regarding the approximation of reflection operator is contained in
Theorem 4. The proof relies on k repetitions of quantum phase estimation to
get k identical copies of estimates of a phase which increases the precision of
phase estimation. Further more, the approximation of reflection operator fixes
the unique eigenvector corresponding to the unique eigenvalue 1 of W (P ). Such
a produced operator is the main concept used in the paper.

Theorem 4. Let P a transition matrix of an ergodic Markov chain on a state
space of size n ≥ 2, such that the phase gap of the quantum walk W (P ) based
on P is ∆(P ). Then for any integer k there exists a quantum circuit R(P ) that

acts on 2 log2 n + ks qubits, where s ∈ log2

(
1

∆(P )

)
+ O(1), and satisfies the

following:

1. The circuit R(P ) uses 2ks Hadamard gates, O(ks2) controlled phase ro-
tations, and makes at most k2s+1 calls to the controlled quantum walk
c-W (P ) and its inverse c-W (P )†.

2. If |π〉 is the unique 1-eigenvector of W (P ) as defined above, then
R(P ) |π〉 |0ks〉 = |π〉 |0ks〉.

3. If |ψ〉 lies in the subspace spanned by A and B orthogonal to |π〉, then
|| (R(P ) + Id) |ψ〉 |0ks〉 || ≤ 21−k.

Now we are able to state the main algorithm in the paper.
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Algorithm 3: Quantum search (P, ε)

1 for 5 steps do
2 Sample a state x from a probability distribution π of P ;
3 if x ∈M then
4 output x and stop ;
5 end

6 end
7 Choose T uniformly a random in [0, 1/

√
ε], let k ∈ log2(T ) +O(1), and

let s as given by Theorem 4 ;

8 Prepare the initial state |x〉d |0Tks〉;
9 for T steps do

10 For any basis vector |x〉d |y〉d |z〉 of H and the ancillary (Tks)-qubit
space, flip the phase if x ∈M ;

11 Apply circuit R(P )d of Theorem 4 with k, using new set of ancillary

qubites |0ks〉 in each iteration;

12 end
13 Observe the first register;
14 return x if x ∈M , and ”no marked elements” otherwise;

The first for loop is used to deal with the case when probability of some
element being marked pM is bigger than 1/4, otherwise we ε ≤ pM ≤ 1/4. Then
the step 7 is a version of randomized Grover’s search. The next for loop is uses
the mentioned approximation of reflection operator which as we know is used to
model quantum random walk and it is easier to think of it as quantum analogue
of Algorithm 1. The following theorem stated proves that the speed up using
the quantum computation is quadratic in comparison with classical algorithm.

Theorem 5. Let δ be the eigenvalue gap of an ergodic, reversible Markov chain
P , and let ε > 0 be a lower bound on the probability that an element chosen from
the stationary distribution of P is marked whenever M is non-empty. Then, with
high probability, Algorithm 3 determines if M is empty or finds and element of

M , with cost of order S + 1√
ε

(
1√
δ
U + C

)
.

The quandartic speed up in quantum case lies in the relation of the phase
gap ∆(P ) of W (P ) and the eigenvalue gap δ of P . It is shown that ∆(P ) > 2

√
δ.

5 Comments and questions

Interesting question about random walks and in general quantum computation is
whether the computation really uses the quantumness, and is the quantumness
necessary?! There have been several arguments for possibility of using classical
physics for building experiments that would replicate some interference and sta-
tistical properties of quantum walks and model discrete random walks on a line.
It has been also argued that quantum properties are necessary for testing the
quantumness of a quantum computer realization and for the walks that would
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include more walkers. It still not known weather more complicated random
walks require quantum implementation or they can be implemented using some
other classical tools as wave interference of electromagnetic filed [9].

It is highly improbable that the given quantum algorithm does not require
quantumness, since it relies on several famous results in quantum computation
such are phase estimation, Grover’s search and amplitude amplification. On the
other side, Algorithm 3 is optimal for the problem in its full generality and the
only question would be to try to simplify it even more, or improve it for the
special cases of the problem of finding marked element in a finite set.

Regarding the notion of quantum walks, one can ask how could we apply
similar definition of quantum walk on Markov chains with infinitely many states.
It is not obvious how one could do this since the notion of quantum walks relies
on the transition matrix.
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