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1 Introduction

The immense computing power offered by the realisation of a quantum computer have led
to an increasing interest in all branch of computer science. This computational power is
mainly due to the use of three principles coming from quantum physics : quantum entan-
glement of states, quantum interference and quantum parallelism. When exploiting this
massive parallelism, it has already be shown that in some case the quantum formulation
of a complex algorithm (Shor, Grover, Deutsch-Jozsa) can outperform its best classical
formulation. This is of interest for signal processing, where there is a need for very high
performance computing to achieve real time processing, and some signal processing pro-
blems that seems unoptimizable nowadays and untracktable even for the world’s largest
suppercomputer, could be approach on a quantum computer.
The remarkable property of quantum information and computation have thus led to a va-
riety of formulation and studies in the quantum setting of classical algorithm from all filed
of computer science, including signal and image processing. As we will see, exploiting the
remarkable properties of quantum systems remains a challenging task due to fundamentals
differences between the allowed operating modes of quantum and classical machines.

We will focus on this report on the quantum image processing formalism and after some
general formulation of the filed we will mainly present the work of Simona Caraiman
and Vasile I. Mana : Quantum Image Filtering in the Frequency Domain, 2013. We will
also need to introduce at some point the work of Lomont : Quantum convolution and
correlation algorithm are physically impossible, 2003.
Quantum signal processing field is still in an early stage, and thus is confronting with fun-
damental aspect of its formalism, such as how to represent and store an image quantumly,
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how to implement fundamental geometric operation that are used as building blocks of
almost all image processing algorithm. In their paper the authors focused on one of those
fundamental image processing task : image filtering. We will see that it’s a good example
of a non-trivial (and non-direct) translation to the quantum world due to the drastic dif-
ferences between allowed computations in classical and quantum algorithms. We will also
show that as in almost any others many-qubits quantum system the principle of quantum
entanglement will be a valuable resource and play a key role in our algorithm formulation.

We have tried to make this report as self-sufficient as possible, bringing all the pieces needed
to understand the overall problem of quantum image filtering.

2 Quantum Image representation

Multiple approachs have been proposed to represent image using a quantum computer,
inspired by the images representation of image in classical computers, that captures the
information about colors and their corresponding position, these approachs could be sum-
marized in two main classes.

2.1 Single qubit color encoding

In order to itegrates information about an image into a quantum state one can uses a
quantum register prepared in the state :

|Q〉 = |C〉 ⊗ |P 〉2n (1)

Pixel positions are encoded using 2n qubits in register |P 〉 considering that we are storing
an image with N = 2nx2n pixels. Color information is encoded in the state of a single
qubit, as suggested in [6] :

|I(θ)〉 =
1

2n

22n−1∑
i=0

(cos θi |0〉+ sinθi |1〉)⊗ |i〉 (2)

θi ∈
[
0,
π

2

]
, i = 0, 1, . . . , 22n − 1, (3)

where |0〉, |1〉 are 2-D computational basis states, |i〉 are 22n-D computational basis states
that encode the pixel position corresponding to a given color and θi = (θ0, θ1, . . . , θ22n−1)
is a vector of angles encoding the colors.
This approach relies on the definition of a machine capable of detecting the frequency of
the monochromatic electromagnetic wave that determines the color, and by establishing a
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bijective relationship between these frequencies and the angle parameter of a qubit, meaning
that the color information is encoded in the propability amplitudes of the corresponding
one qubit state.
Despite of the efficient color encoding (1 qubits) there are several drawbacks that limit the
usability of this quantum image class :

1. The classical image cannot be accurately retrieved, according to the postulate of
quantum mechanics that states that the probability amplitudes of a quantum state
cannot be accurately determined using a finite number of measurements. The re-
trieval protocol requires here too that that several instance of the input image be
prepared and then a statistical protocol that aims to minimize the uncertainty of
the retrieval process by estimating the amplitude of the quantum states encoding the
colors for each pixel within a given accuracy, should be run for each image instances.
The main criticism we could made about this encoding is that in addition of the fact
that it has to deal with several copies of the input image, the retrieval is probabilistic.

2. Moreover there are practical limitations, on the number of colors/positions that can
be physically represented using the angle parameter of the qubit due to the fact that
energy separation between the state should be greater than the thermal energy. The
authors state in [5], that it’s not physically feasible to encode separated information
in 224 angles of a single qubit even if we could prepare the image with high frequen-
cies radiation at very low temperature, this drastically limit the size of the image
we can deal with, recalling that the position register |P 〉 encode pixel position using
2n qubits (e.g a 224 a 4, 096 x 4, 096 image requires already the 224 values to be
encoded in the qubit angles).

3. Also this encoding doesn’t allow for complex color based processing, indeed it is
difficult to construct quantum algorithm based on the separation of pixels with dif-
ferent colors (e.g Histogram segmentation [5]) since there is a unique qubits that
encode the colors for each pixel (no tensor product state).

2.2 Multiple qubits color encoding

The second class of quantum image representation, proposed by Caraiman and Manta in
[4], is defined as follows :

Q = |C〉m ⊗ |P 〉2n =
1

2n

22n−1∑
i=0

2m−1∑
j=0

αij |j〉 |i〉 (4)
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where Q is an (m + 2n) qubits register prepared in a state that encode both color and
position of a pixel as introduce in [4]. Colors are encoded in the basis states of a sequence
of qubits in register |C〉 - using m = log2 L qubits encoding the L colors (gray levels here)
composing the image - by means of a superposition of all possible colors for each pixels.
Unlike in the classical case, a considerable advantage here is that the same m qubits are
used to store the color of all the pixels in the image, hence only m = 2n qubits are needed
to store a 2nx2n image composed of L gray levels, that is an an overall exponentially
lower memory space usage compared to the classical case where m22n bits are necessary
to store the same image. This is achieved due to the principle of quantum superposition of
states. The general form of the color register for a pixel |i〉 is therefore :

|Ci〉 =

2m−1∑
j=0

αij |j〉 (5)

meaning that color information is represented using the coefficients αij where
∑2m−1

j=0 |αij |2 =

1, ∀i ∈ [0, 22n[ and where αij = 1 if the color of the i pixel is j and 0 otherwise.

Pixel positions are encoded using 2n qubits in register |P 〉 considering that we are storing
an image with N = 2nx2n pixels. Moreover register |P 〉 is of the form |y〉 |x〉, where y and
x encode the row and column position of a pixel respectively.

Figure 1 – Example of a simple 2 x 2 quantum image with four possible colors represented
(2 qubits are used to represent the color information and 2 other qubits encode the pixel
position
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Using m qubits register basically overcome almost all the limitations stated for the Single
qubit representation thanks to its basis states encoding of colors :

1. Allows for a deterministic retrieval of both color and pixel positions through a
finite number of projective measurement, measuring the color register for a given
pixel position outputs the pixel color of that pixel with unit probability

2. The number of colors that can be represented does not depend on the actual physical
implementation (e.g, m = 24 qubits are necessary to represent the color informations
of a in a 24 bits true color image, irrespective of the technology for implementing
the qubit). See [5] for the complete deterministic retrieval procedure.

3. More complex image processing algorithms can be applied, since the colors are
represented using a computational basis state, and can therefore act as control for
some value-dependent color transform.

4. Also unlike the image representation using a lattice of qubits proposed in [7] and [6],
the superposition defined in Eq. (4) allows for a simultaneous application of color
operation on all pixels.

From that we think it is the way to go for designing complex quantum image processing
algorithms, and it’s the one (chosen by the authors) that we will use in the rest of this
report.

2.2.1 Preparation of the quantum state representing the image

In [5] the authors showed that a quantum state representing the input image can be pre-
pared in a two steps process.

1. First step concern the position information for all the pixels in the image stored,
the superposition of the pixels position in the image is produce by applying an
Hadamard gate on each position qubits.

2. Second step is about setting the color value for every pixel position, the color of
each of the 22n pixel can be set using a 2n-CNOTgate on each of each color qubit.
Thus setting the color |Ci〉 of a pixel i as in Eq.(5), is done by inverting each
qubits corresponding to a bit of 1 in the classical binary representation of Ci, and
hence the qubits corresponding to a bit of 0 in the binary representation of Ci are
left unchanged. The color preparation requires a sequence of at most m2n-CNOT
gates ; this maximum boundary of gates is required when the pixel gray level color
to encode is the maximum one 2m − 1, corresponding to the white color.

The complete preparation process can be achieved using no more than O(mn22n) for a
2nx2n image with gray level 2m. Despite it uses more qubits, the authors have shown in
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[5] that the complexity of the image preparation process is lower in their many-qubits re-
presentation than in the single-qubit representation, since the representation of the color
in a single-qubit requires the use of 22n2n-controlled rotation gates which are expensive to
compute using simple quantum gate operations.

The preparation of the quantum image in Fig.1 can be achieved using the following cir-
cuit :

Figure 2 – Two steps quantum circuit for the preparation of a quantum image, where two
qubits are used to encode the pixel position (|x〉 and |y〉) and two more qubit are used to
encode corresponding the gray level of each pixels (|C0〉 and |C1〉).

3 Quantum Image Filtering in the Frequency Domain

3.1 Classical algorithm for image filtering

In classical image processing, image filtering is achieved by convolving the input image
with a filter kernel, either in the spatial or in the frequency domain. For computational
complexity purposes the latter is often preferred, which turns out to be a simple multiplica-
tion in the frequency domain thanks to the well known convolution theorem (see Appendix
for a complete demonstration of this theorem). As one can show the frequency domain
convolution become faster as the filter kernel size increases.
The classical algorithm for image filtering can be summarized in the following steps :
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Algorithm 1 Classical Image Filtering

Require: f(m,n), h(m,n) are respectively the input image and the filter kernel
Ensure: f̂(m,n) is the filtered image
1: function Image Filtering(f(m,n), h(m,n))
2: Compute F(u, v) the Fourier Transform of the input image f(m,n)
3: Compute H(u, v) the Fourier Transform of the filter kernel h(m,n)
4: Compute the filtered image spectrum F̂(u, v) = F(u, v) · H(u, v)
5: Compute f̂(m,n) the Inverse Fourier Transform of F̂(u, v)
6: return f̂(m,n)

with :

F(u, v) =
M−1∑
m=0

N−1∑
n=0

f(m,n) · e−2iπ(
um
M

+ vn
N ) (6)

H(u, v) =
M−1∑
m=0

N−1∑
n=0

h(m,n) · e−2iπ(
um
M

+ vn
N ) (7)

f̂(m,n) =
1

MN

M−1∑
u=0

N−1∑
v=0

F̂(u, v) · e+2iπ(umM + vn
N ) (8)

for u = 0, 1, . . . ,M − 1, v = 0, 1, . . . , N − 1 in (2) and (3) and m = 0, 1, . . . ,M − 1, n =
0, 1, . . . , N − 1 in (4) where u and v are spatial frequencies, and M = N for square image
of size NxN . F(u, v) and H(u, v) are complex in general.

3.2 Quantum Fourier Transform and its Inverse

The Quantum Fourier Transform (QFT ) on an orthonormal basis |0〉 , |1〉 , . . . , |N − 1〉, is
the classical discrete Fourier transform applied to the vector of amplitudes of a quantum
state. QFT is the unitary map defined on basis state |x〉 as :

|x〉 QFTN−−−−→ 1√
N

N−1∑
k=0

e2iπxk/N |k〉 (9)

From the unitary of the QFT it follows that the Inverse Quantum Fourier Transform
(QFT−1) is defined as the Hermitian adjoint of the QFT operator :QFT−1 = QFT † :

|x〉
QFT−1

N−−−−−→ 1√
N

N−1∑
k=0

e−2iπxk/N |k〉 (10)
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The QFT can be implemented on a quantum computer using Hadamard gates and Controlled-
phase gates, see [3] for the proof. One can show that it can be done on quantum state of
N = 2n complex values with complexity O(log2N) = O(n2), that is exponentially faster
than its classical counterpart (FFT : Fast Fourier Transform) which require O(NlogN) =
O(n2n) gates for computing the Discrete Fourier Transform on 2n elements. Even if the
QFT is more efficient than its classical analogue it cannot allows using this algorithm as
a direct replacement of the FFT because all Fourier coefficient in (5) are encoded in the
amplitudes of a quantum state, and we know that such amplitudes cannot be directly ac-
cessed by measurements. However more subtle uses of the QFT allow exponential speed
up on several classical algorithms : Shor and Grover algorithms.
Since the QFT and QFT−1 are implementable efficiently on a quantum computer and the
FFT and FFT−1 (inverse FFT) are the cornerstone of the convolution algorithm, one can
attempt to build a quantum analogue of the convolution algorithm that will outperform
its classical counterpart. But as we are going to discuss now the convolution algorithm is
not physically realizable on a quantum computer.

3.3 Quantum convolution algorithm is physically impossible

3.3.1 Problem Statement

Since the Fourier Tranform and the Inverse Fourier transform have their quantum counter-
part, that tunrs out to be more efficient, and ar the basic building block of the convolution
algorithm, one can reasonably attempt for a quantum convolution algorithm that will out-
perform its classical analogue. This turns out to be false and it has been shown by Lomont
in [2] that that there is no physically realisable method to compute the normalized convo-
lution or correlation of the coefficients of two quantum states, meaning that the precise
definition of quantum convolution and quantum correlation cannot be computed without
violating quantum mechanics. Let’s review briefly some statement aspect of this proof.
First let’s defined convolution.
The convolution of two sequence ofN complex numbers S1 = (α0, α1, . . . , αN−1) and S2 =
(β0, β1, . . . , βN−1) is defined to be the sequence S3 = (γ0, γ1, . . . , γN−1) given by :

γk =

N−1∑
j=0

αjβk − j for k = 0, 1, . . . , N − 1 (11)

where subscript are taken mod(N).
The quantum convolution problem is stated as follows : Given quantum states repre-
senting the two initial sequences, compute a quantum state representing the convolution

8



sequence ? That is given the two states (forN = 2n)

|α〉 =
N−1∑
i=0

αi |i〉 (12)

|β〉 =
N−1∑
j=0

βj |j〉 (13)

compute the state :

|γ〉 =
N−1∑
k=0

γk |k〉 (14)

where |γ〉 is the normalization of the sequence given by

ck =
N−1∑
j=0

αjβk − j for k = 0, 1, . . . , N − 1 (15)

Then the main theorem that claim the the convolution problem formulated as above cannot
be computed by any device obeying quantum mechanics is stated as follow :
Impossibility of quantum convolution theorem : There is no physically realisable
process P to compute the (normalized) coefficients of two quantum states. That is, for
arbitrary quantum states

∑
i ai |i〉 and

∑
j bi |b〉, there is no physically realizable process P

to compute the state :

N−1∑
i,j=0

aibj |ij〉
P−→ λ

N−1∑
k=0

N−1∑
j=0

αjβk − j |k〉 (16)

where λ = 1/
√∑

i,j |aibj |2 is the normalization factor, N = 2n for some positive integer

n > 0. And by physically realizable process on a quantum computer, Lomont means the
more general definition one can expect :
A mapping P of quantum states :

|Φ〉 P−→ |Ψ〉 (17)

is called physically realizable if there exists a finite fixed sequence of unitary transfor-
mation and measurement operators and a quantum state |ρ〉 (which are extra states called
”ancillary qubits” used as extra working space) performing the mapping P . That is for all
|Φ〉, the fixed sequenceS performs :

|Φ〉 ⊗ |ρ〉 S−→ |Ψ〉 (18)

where the mapping is a composition of linear operators, so that is linear operator also, in the
view that quantum mechanics has linear evolution, so that quantum computer cannot solve
NP-complete problems in polynomial time. The definition above just mean that quantum
mechanics allows only two methods to change the state of a system :
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1. Unitary transformation : any state change of an isolated system must be re-
versible, and must satisfy

∑
i |αi|2 = 1 where the αi are the probability amplitudes

associated to the ith orthonormal basis element |i〉, which combined leads to unitary
operations U on the state : a state |Φ〉 can only be transformed to a state U(|Φ〉)
by the unitary matrix U where UU † = I

2. Measurement operator : when applying a measurement to a quantum state re-
turns a value with a probability related to the quantum states amplitude coefficients
and places the system into the state whose value was returned. Quantum measure-
ment are mathematically a collection of measurements operators {Mm} that preserve

probability :
∑

mM
†
mMm = I

3. Combining state : quantum mechanics allow to concatenate two quantum register
on n and m qubits with states |Φ〉 and |Ψ〉 respectively, using the tensor product
state |Φ〉 ⊗ |Ψ〉 in complex 2n+m dimensional space.

3.3.2 Proof intuition

For the complete (and beautiful) proof, we refer the reader to [2]. But for the sake of
completeness we just give some intuitive insights of how it is done.

1. First he show that the componentwise multiplication step of the convolution algo-
rithm (step 4 of the Algorithm 1 described above) has no quantum counterpart, it
does so by :
— Studying requirements on a linear transformation (unitary transforms and mea-

surement systems are linear operators) that attempts this step.
— Then he show that there is no physically realizable process P that only consist of

unitary transformation, measurements operator and combination of states that
can perform this step.

— This prove that componentwise multiplication step in not computable on a quan-
tum computer.

2. Then he show that any physical process able to compute the quantum convolution
problem must be able to compute the impossible componentwise multiplication step,
then we reach a contradiction.

3. Quantum convolution cannot be done on quantum state.

Thus the replacement of the convolution algorithm in the quantum world cannot be achie-
ved in adirect, simple manner, but must be approach using more sophisticated procedure,
avoiding the impossible componentwise multiplication step.
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3.4 Quantum Algorithm for Image Filtering

Therefore replacing the convolution algorithm in the quantum world cannot be achieved in
adirect way. As Lomont notice this is only and directly related to mathematical definition
of the convolution operator but not to the image processing task that it is usually used
to perform. Thus the Lomont proof states that the convolution algorithm is not physi-
cally realizable on a quantum computer but makes no claims about filtering a signal on a
quantum computer. Indeed [1] have shown that it could be approach by more sophisticated
techniques.
Caraiman and Manta have shown in [1] that in order to derive to convolution step of the
filtering algorithm one can take as a quantum Oracle the function that filter the desired
(good) frequencies from the undesired (bad) ones without actually transforming the regis-
ter into a filtered version of the input image but rather into a superposition of two image :
one containing the good frequencies and one containing the bad frequencies. It follows that
their quantum filtering algorithm outputs the input image itself in a frequency segmented
manner and do not output a convolved version of it. Indeed what the Lomont proof states
is that a quantum register containing the quantum image and the quantum filter cannot
be transformed in the convolution of both.

3.4.1 Algorithm Analysis

In order to distinguish between the two images |Igood〉 containing the desired frequency
components and |Ibad〉 containing the undesired frequency components, they exploit the
quantum interference phenomenon, using an additional qubit initialised in state |0〉 to rein-
terpret the image as a superposition of |Igood〉 and |Ibad〉. Therefore this additional qubit
can be used to make distinction between the two images. Let’s analyse the states of the
quantum image filtering algorithm at each step of the computation.

1. First we need to prepare the input state |I0〉, which consist of a tensor product state
between the quantum input image and the additional qubit in state |0〉 :

|I0〉 = |Q〉 ⊗ |0〉 =
1

2n

2n−1∑
y=0

2n−1∑
x=0

2m−1∑
j=0

αxyj |j〉 |y〉 |x〉 |0〉 (19)

where |Q〉 is the quantum register containing our quantum image as described in
(1).
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2. Then we apply the QFT on the initial state |I0〉 :

|I1〉 = (Im ⊗QFT22n) |Q〉 ⊗ I |0〉 (20)

=
1

2n

2n−1∑
y=0

2n−1∑
x=0

2m−1∑
j=0

αxyj |j〉QFT22n(|y〉 |x〉) |0〉 (21)

=
1

2n

2n−1∑
y=0

2n−1∑
x=0

2m−1∑
j=0

αxyj |j〉 (QFT2n |y〉)(QFT2n |x〉) |0〉 (22)

=
1

2n

2n−1∑
y=0

2n−1∑
x=0

2m−1∑
j=0

αxyj |j〉

[
1√
2n

2n−1∑
k=0

e
2iπyk
2n |k〉 1√

2n

2n−1∑
l=0

e
2iπxl
2n |l〉

]
|0〉 (23)

=
1

22n

2n−1∑
y=0

2n−1∑
x=0

2m−1∑
j=0

2n−1∑
k,l=0

αxyje
2iπyk
2n e

2iπxl
2n |j〉 |k〉] |l〉 |0〉 (24)

=
1

22n

2n−1∑
y=0

2n−1∑
x=0

2m−1∑
j=0

2n−1∑
k,l=0

αxyj e
2iπ(yk+xl)

2n |j〉 |k〉 |l〉 |0〉 (25)

where Im and I denote here the identity operator on m and 1 qubit respectively. In
the above calculation one can use the fact that the QFT on k qubit is similar to the
k-fold tensor product of k one qubit QFT :

QFT2k |i〉k = QFT⊗k |ik−1 . . . i0〉 = QFT |ik−1〉 ⊗ · · · ⊗QFT |i0〉 (26)

and also the phase kick back effect which is a consequence of the following tensor
product property :

(λA)⊗B = λ(A⊗B) = A⊗ (λB) (27)

meaning that the phase is conserved through tensor product, so it doesn’t matter
in which register the phase appears.
The QFT targets information about both color and position, indeed it as a form
I ⊗ U , where U is a n qubits unitary operator, I is the identity operator. The
application of QFT on quantum image can be consider as the application of Fourier
Transform on the α part of the quantum image state coefficients, when applied to a
superposition of state |l〉 with complex amplitude α it outputs another superposition
of states |k〉 with amplitude βk related to α as in the following calculation :

|IQFT 〉 =
1

2n

22n−1∑
l=0

2m−1∑
j=0

αlj |j〉 ⊗QFT (|l〉) (28)

=
1

2n

22n−1∑
k=0

2m−1∑
j=0

βk |jk〉 (29)
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where :

βk =
1

2n

22n−1∑
l=0

e2iπlk/2
2n
αlj (30)

At this point we have the quantum state |I1〉 containing the spectrum (frequency
domain representation) of our input image, and thus can be already thought (thanks
to linearity) as a superposition of a state containing the frequencies that will pass
through the filter and a state containing the frequencies that will be discarded by
the filter. Let’s call |I1 good〉 and |I1 bad〉 such states, and let g be the number of good
frequencies, |I1〉 can be represented as :

|I1〉 =

√
g

22n
|I1 good〉+

√
22n − g

22n
|I1 bad〉 (31)

3. The next step is the critical one, the analogue of the convolution, meaning the
filtering step. At this point the autors of [1] build a quantum Oracle UH using the
desired filter function H(k, l).
A quantum Oracle is a quantum circuit that recognizes solution to a given problem,
and is supplied as a black box that can provides yes-no binary answers to a specific
question, which in our case is : does this frequency belong to this specific frequency
set ?
They show that the additional qubit (|0〉) can be use to distinguish between the two
desired state when applying the Oracle on the |I1〉 state, where the the Oracle UH
and the filter function H(k, l) are respectively defined as :

|k l〉 |z〉 UH−−→ |k l〉 |z ⊕H(k, l)〉 (32)

H(k, l) =

1 if k, l ∈ Sgood
0 if k, l ∈ Sbad (33)

where Sgood and Sbad are respectively the set of coordinates for the good and bad
frequencies classified according to the desired filter function, and where |z〉 in our
case is the |0〉 computational basis state. Now using the so-called Oracle, one can
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compute the filtering step as follows :

|I2〉 = (Im ⊗ UH) |I1〉 (34)

=
1

22n

2n−1∑
y=0

2n−1∑
x=0

2m−1∑
j=0

2n−1∑
k,l=0

αyxj e
2iπ(yk+xl)

2n |j〉UH(|k〉 |l〉 |0〉) (35)

=
1

22n

2n−1∑
y=0

2n−1∑
x=0

2m−1∑
j=0

∑
k,l∈Sgood

αyxj e
2iπ(yk+xl)

2n |j〉 |k〉 |l〉 |1〉

+
1

22n

2n−1∑
y=0

2n−1∑
x=0

2m−1∑
j=0

∑
k,l∈Sbad

αyxj e
2iπ(yk+xl)

2n |j〉 |k〉 |l〉 |0〉

(36)

From the equation (20) we see that the Oracle only acts on the position (spatial
frequencies) qubits and leaves the colors qubits and corresponding amplitudes unaf-
fected by its action.
At this point one can build the commonly used ideal filter functions by the means
of the corresponding Sgood and Sbad as summarized in the following table :

Filter Frequency Sets

Low-pass

{
Sgood = {k, l|D(k, l) ≤ Dcutoff}
Sbad = {k, l|D(k, l) > Dcutoff}

High-pass

{
Sgood = {k, l|D(k, l) ≥ Dcutoff}
Sbad = {k, l|D(k, l) < Dcutoff}

Band-pass

{
Sgood = {k, l|DL ≤ D(k, l) ≤ DH}
Sbad = {k, l|D(k, l) < DL ∩D(k, l) > DH}

Band-stop

{
Sgood = {k, l|D(k, l) < DL ∩D(k, l) > DH}
Sbad = {k, l|DL ≤ D(k, l) ≤ DH}

Table 1 – Table of some ideal filter and their corresponding Frequency Sets used by the
Oracle UH

4. Once the quantum image spectrum has been separated into desired frequency sets,
one can perform the QFT−1 that will transform the spectrum of the two images
into theirs spatial representations. For notation convenience let’s introduce α̃yxj =

αyxj e
2iπ(yk+xl)

2n . As shown in [1] the outputs of the QFT−1 step can be considered
as a superposition of two image, for example in the case where the Oracle is build
using the frequency sets associated with an ideal low pass filter function, one will
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get a superposition of one image constructed with the low frequency component of
the image (global shapes and forms), with another one constructed with the high
frequency component (details and edges). The following calculation shows how such
images could be derived :

|I3〉 = (37)

=
1

22n

2n−1∑
y=0

2n−1∑
x=0

2m−1∑
j=0

∑
k,l∈Sgood

α̃yxj |j〉QFT−12n (|k〉 |l〉) |1〉

+
1

22n

2n−1∑
y=0

2n−1∑
x=0

2m−1∑
j=0

∑
k,l∈Sbad

α̃yxj |j〉QFT−12n (|k〉 |l〉) |0〉

(38)

=
1

22n

2n−1∑
y=0

2n−1∑
x=0

2m−1∑
j=0

∑
k,l∈Sgood

α̃yxj |j〉QFT−12n (|k〉)QFT−12n (|l〉) |1〉

+
1

22n

2n−1∑
y=0

2n−1∑
x=0

2m−1∑
j=0

∑
k,l∈Sbad

α̃yxj |j〉QFT−12n (|k〉)QFT−12n (|l〉) |0〉

(39)

=
1

22n

2n−1∑
y=0

2n−1∑
x=0

2m−1∑
j=0

∑
k,l∈Sgood

α̃yxj |j〉
1

2n

[
2n−1∑
c=0

e
−2iπkc

2n |c〉
2n−1∑
r=0

e
2iπlr
2n |r〉

]
|1〉

+
1

22n

2n−1∑
y=0

2n−1∑
x=0

2m−1∑
j=0

∑
k,l∈Sbad

α̃yxj |j〉
1

2n

[
2n−1∑
c=0

e
−2iπkc

2n |c〉
2n−1∑
r=0

e
2iπlr
2n |r〉

]
|0〉

(40)

=
1

23n

2n−1∑
c=0

2n−1∑
r=0

2m−1∑
j=0

∑
k,l∈Sgood

2n−1∑
y=0

2n−1∑
x=0

α̃yxje
−2iπ(kc+lr)

2n |j〉 |c〉 |r〉 |1〉

+
1

23n

2n−1∑
c=0

2n−1∑
r=0

2m−1∑
j=0

∑
k,l∈Sbad

2n−1∑
y=0

2n−1∑
x=0

α̃yxje
−2iπ(kc+lr)

2n |j〉 |c〉 |r〉 |0〉

(41)

(42)

here one can notice that :
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|I3〉 = (43)

=
1

23n

2n−1∑
c=0

2n−1∑
r=0

2m−1∑
j=0

∑
k,l∈Sgood

2n−1∑
y=0

2n−1∑
x=0

αyxje
2iπ(yk+xl)

2n e
−2iπ(kc+lr)

2n |j〉 |c〉 |r〉 |1〉

+
1

23n

2n−1∑
c=0

2n−1∑
r=0

2m−1∑
j=0

∑
k,l∈Sbad

2n−1∑
y=0

2n−1∑
x=0

αyxje
2iπ(yk+xl)

2n e
−2iπ(kc+lr)

2n |j〉 |c〉 |r〉 |0〉

(44)

=
1

2n

2n−1∑
c=0

2n−1∑
r=0

2m−1∑
j=0

1

22n

αyxj ∑
k,l∈Sgood

2n−1∑
y=0

e
2iπk(y−c)

2n

2n−1∑
x=0

e
2iπl(x−r)

2n

 |j〉 |c〉 |r〉 |1〉
+

1

2n

2n−1∑
c=0

2n−1∑
r=0

2m−1∑
j=0

1

22n

αyxj ∑
k,l∈Sbad

2n−1∑
y=0

e
2iπk(y−c)

2n

2n−1∑
x=0

e
2iπl(x−r)

2n

 |j〉 |c〉 |r〉 |0〉
(45)

=
1

2n

2n−1∑
c=0

2n−1∑
r=0

1

22n

2m−1∑
j=0

αgrcj |j〉 |c〉 |r〉 |1〉

+
1

2n

2n−1∑
c=0

2n−1∑
r=0

1

22n

2m−1∑
j=0

αbrcj |j〉 |c〉 |r〉 |0〉

(46)

where the complex terms in [. . .] is nothing more than the amplitude associated

with state |j〉, in other word the superposition
1

22n
∑2m

j=0 α
g
rtj |j〉 is the color as-

sociated with the pixel at position |rt〉 in the filtered image constructed with the

proper frequencies, same thing with
1

22n
∑2m

j=0 α
b
rtj |j〉. Thus the probability that a

measurement results in outcome j is :

P gj =

∣∣∣∣∣∣ 1

22n

2n−1∑
y=0

2n−1∑
x=0

∑
k,l∈Sgood

αyxje
2iπk(y−c)

2n e
2iπl(x−r)

2n

∣∣∣∣∣∣
2

for c, r ∈ [0, 2n − 1] (47)

P bj =

∣∣∣∣∣∣ 1

22n

2n−1∑
y=0

2n−1∑
x=0

∑
k,l∈Sbad

αyxje
2iπk(y−c)

2n e
2iπl(x−r)

2n

∣∣∣∣∣∣
2

for c, r ∈ [0, 2n − 1] (48)

from there one can easily verified that the αgrtj and αbrtj and indeed proper normalized

quantum amplitudes, meaning that
∑

j |α
g
rtj + αbrtj |2 = 1, let’s sum the Sgood and

Sbad frequency sets over all k, l to see how the sum of the good and badquantum
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amplitudes behaves :

P totj =

2n−1∑
j=0

∣∣∣∣∣∣ 1

22n

2n−1∑
y=0

2n−1∑
x=0

2n−1∑
k,l

αyxje
2iπk(y−c)

2n e
2iπl(x−r)

2n

∣∣∣∣∣∣
2

for c, r ∈ [0, 2n − 1] (49)

=
2n−1∑
j=0

∣∣∣∣∣∣ 1

22n

2n−1∑
y=0

2n−1∑
x=0

αyxj

2n−1∑
k=0

(
e

2iπ(y−c)
2n

)k 2n−1∑
l=0

(
e

2iπ(x−r)
2n

)l∣∣∣∣∣∣
2

for c, r ∈ [0, 2n − 1]

(50)

using the geometric series sum form, one can notice that :

2n−1∑
k=0

(
e

2iπ(y−c)
2n

)k
=


1− e2iπ(y−c)

1− e
2iπ(y−c)

2n

if y 6= c∑2n−1
k=0 e0 = 2n if y = c

(51)

since the exact same reasoning can be done for x and r, we are left with :

P totj =
2n−1∑
j=0

∣∣∣∣ 1

22n
αyxj2

n2n
∣∣∣∣2 for y = r , x = c and c, r ∈ [0, 2n − 1] (52)

=
2n−1∑
j=0

|αrcj |2 (53)

= 1 (54)

since αrcj = 1 by construction for a given pixel with position r, c with color j and 0
otherwise.

From (34) one can recognize that the two sum terms have a quantum image form,
where |r〉 and |c〉 register encode the row and column coordinates of a pixel, respec-
tively, and as usual the m qubits of |j〉 are used in a superposition manner to encode
the color of all the pixels, thus one can rewrite (34) as an explicit superposition of
two images, meaning :

|I3〉 = |Qgood〉 ⊗ |1〉+ |Qbad〉 ⊗ |0〉 (55)

where |Q〉 = |C〉m⊗|P 〉2n is the form of a quantum image register as firstly construc-
ted by Caraiman and Manta in [4]. This is the main advantage of using an Oracle
instead of trying to directly implement the quantum analogue of the convolution
procedure that obviously try to transform the register, here instead the whole spa-
tial frequency set of the quantum image is still present in the algorithm output,
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but in distinguishable states. Thus further processing steps could then be applied to
either of the two quantum images in the final quantum superposition by making use
of controlled operators on the oracle qubits to manipulate one image or the other.

4 Extract information from the filtered images

4.1 Retrieval of the whole image

Finally, once the filtering is done (which is often just a pre-processing step embedded as
a building block in a more large procedure) one might hope to extract some useful infor-
mations from the filtered image by just ”looking” at it. Unfortunately this is not directly
achievable since in our case the images are store in quantum states, meaning that if a
measurement is performed on the final state |I3〉, it will just samples from the images and
reveals the color at a single pixel position. Moreover, the state of the measured quantum
register storing the images superposition will collapse during the measurement to one of its
basis states, therefore measuring the state again after the first measurement was performed
will yields the exact same state as the initial measurements with unit probability.

Thus, retrieving the whole image(s) from a quantum superposition state requires, first
that multiple instances of the input image are prepared - no matter what quantum image
representation we used (first or second class from part 2.) - then the quantum filtering
algorithm must be run on each of the image instances, and finally one has to samples each
output images until all the colors of all the pixels positions are sampled.
Despite this sampling issue, we have seen that the computational advantage of the quantum
image encoding we used (2.1) initially proposed by the authors in [4]) is that that both
color and position of a pixel can be retrieved deterministically through a finite number of
projective measurement.
However the deterministic retrieval of the of pixel colors by projective measurements is only
possible as long as the αij remains binary coefficient under the action of our algorithm, this
is no more the case after we applied the quantum filtering algorithm since the amplitude
of our two images are then real values, and thus requires here also a statistical procedure
(as in 2.1) to be be retrieved.
There are different approachs to perform this statistical procedure according to quantum
sampling theory to estimate the quantum probability amplitudes of the quantum states
encoding the colors of each pixels within a given accuracy. Even if those are beyond the
scope of this report, for the sake of completeness, we can cite the Quantum storage and
retrieval protocol proposed by Venegas-Andraca and Bose in [7]. As stated before this
protocol requires to deal with several instances of the input image, apply the same algorithm
to all of them and then sample using measurement operators. The multi-sampling behaviour
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of this kind of procedure try to minimize the uncertainty in the retrieval of the quantum
parameter. This uncertainty is inherent to the postulates of quantum mechanics about the
retrieval of a quantum stated above about the estimation of a quantum amplitude through
a finite number of quantum measurements.

4.2 Process some additional quantum algorithms

There exists also other alternatives for gaining some useful insights from a quantum-
transformed image, instead of retrieving the whole classical image to infer classical compu-
ting information from the quantum image, and since in our setting the filtering procedure
is often a pre-processing step, one can instead perform some more processing steps on the
quantum register(s) storing the image(s), and hence other classes of measurements could
reveal some useful properties of the processed image without the need to actually ”look” at
it entirely.
For example, in our case, the segmentation of the high frequency image can yield a quan-
tum register containing only the pixel belonging to the edges of an object represented in
the image. Following the same reasoning other transformations/segmentations of any given
frequency-band can yield to quantum register containing only the pixel belonging to some
spatial useful information encoded by this specific frequency band.

Furthermore, statistical information about the shapes (perimeter, area, spatial descriptors,
etc.) of the objects represented in the image could be accurately obtained using several
variations of Groover quantum search, quantum counting or quantum intergal estimation,
those informations cold then be determined by measuring the output state of these ope-
rators and thus there is no need to retrieve the whole classical image from the quantum
one. This are left for future quantum algorithm development but it is sound that this
kind of statistical informations could be used for image classification for quantum ma-
chine learning, meaning comparing images based on this kind of statistical descriptors in a
recognition quantum computer vision system. And since both QFT and Quantum Search
provide speed up compared to their classical analogue, implementing a content-based image
retrieval system on a quantum computer will bring significant speed compared to actual
classical system.

This is true for 1-D and 2-D signals (images), but as the quantum analogue of Fourier
Transform and Filters have been proved to be implementable and very efficient on a quan-
tum computer, one can reasonably expect that quantum counterpart of Graph Fourier
Transform / Graph Spectral Filter and Manifold Harmonic Transform / Manifold Spectral
Filters will certainly be developed in the future and hence yield to a variety of algorithms,
applications and content-based learning systems for Graph/Manifold that will outperform
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in complexity the classical ones thanks to the qubit power !

5 Simulation

To demonstrate the soundness of their algorithm, the authors implement a simulation of
the quantum filtering operation in MATLAB on 32x32 gray scale images by representing
quantum image as αij matrices according to (4) ad by applying the quantum filtering
operation (45) to compute the the intensity values of the pixels in the final quantum states
that represent the filtered image |Qgood〉 and |Qbad〉.

Three 32x32 images were used, a synthetic image containing only 2 gray levels, and two
sub-image A and B from a microscopy image containing respectively 4 and 189 different
gray levels. For each of these images the color information of each pixel were encoded using
m = 8 qubits to encode 256 possible gray levels. The pixel positions were encoded using
10 qubits.

Figure 3 – Test images : Left - 32x32 synthetic image with two gray levels. Right -
Microscopy image, where A and B are 32x32 sub-image used for the testing

The images were then filtered using an oracle build on an high-pass filter with cutoff
frequencyD0 = 0.2×32 = 6.4, the resulting high and low spatial frequencies - corresponding
to |Qgood〉 and |Qbad〉 states respectively - are shown in the figure below.
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Figure 4 – Result of filtering the synthetic image with an high-pass filter with cutoff fre-
quency D0 = 0.2×32. Left - High frequencies image. Right - Corresponding low frequencies
image

As one could expect the high frequencies image contain information about edges and boun-
daries - it emphasizes the horizontal edge in the middle, while the low frequencies image
has a smoothing (blurring) effect. The horizontal oscillating bands in the above filtered
images are due to the well known ringing effect of spectral ideal filters.
The authors store for a given pixel coordinate (3, 3) of the synthetic image, the gray levels
and the corresponding quantum representation for the original image - high frequencies
and low frequencies images :

In the resulting filtered images, the intensity value of each pixel is, as we have shown,
represented by a quantum superposition of the 2 basis states colors corresponding to the
gray levels in the original image. Furthermore we can also observe that the amplitudes
of the quantum states |Qgood〉 and |Qbad〉, yield as expected to

∑
j |α

g
rtj + αbrtj |2 = 1 and
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moreover is equivalent to the quantum representation of the original image where there
were filtered from, which is sound with one can expect from the classical setting where the
two frequency filtered image sum to the original image.
The authors choose for displaying purposes to extract the classical representation of the high
and low frequencies image from the quantum superposition by multiplying the amplitudes
with the integer encoding of the state vector and as in the classical filtering setting some
negative gray level values may be obtained, and similarly as in the classical case we just
rescale the so-obtained coefficient according to the minimum value (0 -black) and maximum
value (255 - white). For instance the gray level of the (3, 3) pixel in the |Qgood〉 (high-freq

image) was map to −3.91
rescale−−−−→ 105th gray level while in the |Qgood〉 (low-freq image) it

was map to 173.91
rescale−−−−→ 246th gray level.

For the sub-image A and B, the very same procedure was used, we will focus on sub-image
B since it is the more interesting.

Figure 5 – Result of filtering the sub-image B with an high-pass filter with cutoff frequency
D0 = 0.2×32. Left - Original image. Center - High frequencies image. Right - Corresponding
low frequencies image

Same observation here, the high frequencies image contain information about edges and
boundaries of the object, while the low frequencies image has a smoothing effect and present
the global shape of the object.
Since the original sub-image B contains 189 gray levels, the quantum representation of
each pixel in the above filtered images is described as a quantum superposition of 189
basis vectors corresponding to the gray levels used in the original image. The quantum
amplitudes of the superposition representing the intensity value of the (3, 3) pixel in the
the |Qgood〉 of sub-image B are plotted in the below figure.
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Figure 6 – Quantum representation of the pixel with coordinates (3,3) in sub-image B
filtered by an high-pass filter of cutoff frequency D0 = 0.2 × 32 = 6.4. The gray level of
the pixel turns out to be 0.2788 and is expressed as a superposition of the quantum states
representing all the gray level presents in the original image

6 Conclusion

We saw that despite the speed up introduces by the quantum analogue of the Fourier
transform, the quantum implementation of the filtering operation in the frequency domain
cannont be achieved in a straightforward way because the quantum convolution of two
sequences encoded in quantum states is not physically possible. The authors proposed a
workaround based on the use of a quantum oracle that implement the filer function. The
tricks avoiding the impossible convolution was to interpret the image as a superposition of
the two filtered images containing respectively good and bad frequencies according to the
filter oracle classification. Doing so one does not have to convolve the image with a filter
but instead use the filter to distinguish between the two filtered images.

The main complexity advantage of this quantum algorithm compare to its classical counter
part (FFT) is the exponential speed provide by the QFT. Although this exponential speed
up is usually hard to exploit because the set of Fourier coefficients are store as probability
amplitudes of quantum states and thus cannot be directly accessed, in this filtering algo-
rithm the exponential speed up of the QFT is preserved since one does not have to extract
this set of Fourier coefficients in order to obtain the filtered images.

On other advantages of implementing such algorithm on a quantum computer is related to
the reversibility of the allowed quantum computations, meaning that unlike in the classical

23



setting, one can reconstruct the original image out of the filtered ones.
In contrary the main disadvantages of this quantum translation is that the retrieval of the
filtered images is not straightforward unlike in the classical case, because one again infor-
mations are encoded in the amplitudes of quantum states and cannot be accessed directly.
But as we discussed in section 4.2, the retrieval might not be necessary since the filtering
operation is often just a pre-processing step embedded as a building block in more complex
procedure, so more computational steps could be applied without the need to actually re-
trieve the whole image by the means of controlled operation on the oracle qubits to further
process either of the two filtered images.

Also unlike in the classical case, a considerable improvement of encoding image on a quan-
tum computer is that the same m qubits are used to store the color of all the pixels in
the image, hence only m = 2n qubits are needed to store a 2nx2n image composed of L
gray levels, that is an an overall exponentially lower memory space usage compared to
the classical case where m22n bits are necessary to store the same image.
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